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Abstract The ongoing competition on cutting tools drive the tool manufactures to
enhance the cutting tool quality through real-time condition monitoring and per-
formance prediction. The digitization of tool within the manufacturing process,
allows for the creation of an intelligent manufacturing system, to reduce the cycle
time required for testing, and facilitate the categorization of tool performance as
well as early warning signals of the change in the manufacturing processes. The
system comprises two platforms such as feature extraction engine (FEE) and feature
prediction engine (FPE). The FEE monitors real-time progression of operational
behavior during wear with the tool–work interface signals. The accelerated tool
wear testing applies a milling arrangement, incorporating a clock-testing workpiece
that simulates an intermittent cutting process on hardened steel. The feature
extraction engine uses the accelerated wear results to build a calibrated wear model
as a reference tool for wear analysis and prediction. Flank wear lands were imaged
using a Leica toolmaker’s microscope and used to calibrate the wear model, cor-
relating the digital signal feature to the tool–work interface wear behavior. The
imaged wear progression, force, and acoustic emission signal features were ana-
lyzed by statistical methods including applications of Spiro-Wilks, ANOVA, and
Kruskal–Wallis evaluations. This confirms the experimental accuracy and provides
the baseline for wear prediction driving the development of a feature prediction
engine (FPE). The results are a significant reduction in the quality control cycle
time and performance prediction. The experimental results indicate that the FEE
correlates accurately across sensors and progression tracking of abrasive wear in the
cutting tools, clearly distinguishing between machining cuts, signal noise, and
signal anomalies.
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Nomenclature

ry Yield strength of the PCD cutting insert (GPa)
l Population mean of the test samples
E Young’s modulus of the PCD (GPa)
Fn Normal force exerted on the workpiece during machining (N)
HPCD Hardness of the PCD matrix (GPa)
i Number of data points
KIC Fracture toughness of the PCD insert (MPa m1/2)
lc Cutting distance traversed (m)
l Number of hidden units
L Levene’s statistic (L)
k Number of sets from which the data come
m Work hardening factor
n Size of the sample
N Total number of sampled cases
P Weighted sums in a nonlinear model
s Standard deviation of the experimental data
t “t” factor
Vabrasive Volume lost from the cutting insert (m3)
x Sample mean
w Neuron weights
Z Array of the mean and median values of the sampled case i from group j

1 Introduction

The ongoing thrust toward a high value manufacturing and services necessitates the
manufacturing industries to ensure total system uptime, reliability, and efficiency,
particularly for mission-critical high value assets. Conventional approaches such as
scheduled preventive maintenance and reactive “fail-and-fix” methods are no longer
adequate or effective to meet the increasingly higher operational availability at an
affordable cost. In addition, with a paradigm shift toward “fly by the hour” business
models, original equipment, lines, engines, and tools manufacturers (OEMs) are
compelled to remodel the traditional ways of maintaining these resources to
broaden their revenue streams by providing 100% fulfillment at all time. The
problem is severe when the manufacturing processes change the product charac-
teristics in terms of dimensional features, precision, and surface integrity. The
cutting tool industries often battle to maintain a consistent quality as the manu-
facturing process varies continuously. Use of intelligent cutting tool testing and
prediction of performance would transform manufacturing into predictive reliability
so that a consistent quality can be maintained in the tool manufacturing. One such
in-demand technology is the use of polycrystalline diamond (PCD) cutters, as
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cutting inserts brazed into oil well drill bits (National Renewable Energy
Laboratory 2000). This increasing demand for PCD cutters necessitate research on
PCD performance optimization, with the objective of extending tool-life cycles.
The process of enforcing high quality standards and real-time modification of the
manufacturing process to account for creeping manufacturing defects becomes a
critical tool in the production of PCD inserts. Current quality control processes are
inadequate, inefficient processes, which do not operate as real-time applications,
resulting in excessive time wastage and subquality inserts that must be discarded.
Research on intelligent tool testing methods, therefore, becomes a priority,
emphasizing digital monitoring of PCD wear behavior and extending to appropriate
predictive analysis. The intent being to establish links between the manufacturing
process and the failure behavior of the PCD insert. The quality control process
associated with the preemptive elimination of these undesirable features, signifi-
cantly extend the manufacturing time of an insert batch and require extensive
hands-on qualitative analysis by experienced personnel. Accelerating the quality
control approach would enable faster rectification of nonideal failure mechanisms
experienced by the PCD cutting tools. Furthermore, the application of necessary
corrective actions on the manufacturing floor becomes significantly faster than
current protocols allow. This, in turn, minimizes material wastage and prioritizes
superior tool performance prediction strategies. Ensuring PCD tool compliance to
industrial standards begins during manufacture and ends during field testing.
During and immediately after manufacture, line inspection procedures assess the
PCD tools, for obvious damage and dimensional compliance. In general, the tools
presenting with edge chipping, micro-grooving, crack formation, and gouge marks
are discarded. Minor surface defects, however, are corrected through further
applications of grinding and polishing processes.

The objectives of this research are to develop an intelligent PCD tool testing
system that clearly establishes the failure characteristics of the PCD cutting inserts,
as well as predicting the product performance. This is implemented via (see Fig. 1):

(A) Feature extraction engine (FEE) with a dashboard interface, and
(B) A predictive tool-life model for PCD Failure.

The scope of this research extends to:

• Development of an appropriate sensor system (select, acquire, and set up the
most appropriate type of sensors, placement locations, fastening methods; types,
levels, and extent of sensory data to achieve balance between accuracy and
analytical ability).

• Development of a data acquisition system so as to digitize the behavior of the
tool–work interface.

• Testing, validation, and selection of the most appropriate time–frequency cut-
ting signals in terms of the sensitivity and repeatability of the tool characteri-
zation at the production testing stages.
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• Testing, validation, and selection of reliable and repeatable feature extraction
techniques in the selection of significant parameters for the development of
tool-life predictive reference models.

• Testing, validation, and selection of effective self-learning techniques in terms
of training sample size, convergence speed, and accuracy in predicting the
expected life span of cutters at production testing stages.

• Testing, validation, and selection of the most effective clustering techniques in
terms of the accuracy, reliability, and repeatability in mapping specific signals in

Fig. 1 Plan for development of an intelligent PCD tool testing and prediction of performance
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relation to known reference models for the prediction of PCD cutting insert life
span at production testing stages.

• Distillation of the best sensory signals, feature extraction, learning, and clus-
tering methods for the development of reference models.

• To test the effectiveness of the reference models for the characterization of PCD
inserts in a nondestructive and dynamic manner.

2 A Review of PCD Tool Testing Methods

Ensuring PCD compliance to industrial standards begins during manufacture and
ends during field testing of the inserts. The testing methods are grouped into
industrial-based testing and laboratory-based testing methods as described below.

2.1 Industrial-Based Testing for PCD Tools

• Field testing

The field tests conducted at the industries predominantly determines the wear
progression and evaluate this against performance expectations. This data is unable
to isolate the performance behavior of the PCD tool against the manufacturing
inputs but collectively addresses the tool, machine, and process characteristics. As a
result, the tool manufacturers are unable to impart corrective actions into their
production processes. Furthermore, relying on this method is time-consuming and
expensive, with excessive equipment requirements and high scrappage anticipated
prior to defect correction.

• Simulated field testing

A simulated field test is devised to eliminate third parties from the testing process.
However, simulated field testing methods are time-consuming and expensive, as
they tend to be associated with high levels of tools scrappage. Despite the
encompassing nature of the simulated tests, several approximations are needed, and
hence, the accuracy of tool testing is compromised.

• Accelerated tool wear testing

With the intention of reducing tool testing time accelerated tool wear (ATW) testing
protocols are employed by the tool manufacturers but a time-consuming post-
mortem analysis is a prerequisite to link the failure characteristics of the cutting tool
to the respective manufacturing processes. A typical example of accelerated tool
wear testing is shown in Fig. 2.
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2.2 Laboratory-Based Testing of PCD Tools

The laboratory approaches to investigating cutting tool product performance are
intended to develop an understanding of the failure behavior of a given cutting
insert during testing.

• Nondestructive testing (NDT)

Nondestructive tests aim to identify and remove from circulation, defective cutting
tools prior to conducting destructive tests that focus on identifying and correcting
significant insert flaws.

• Visual inspection

Visual inspection processes in laboratory settings progress with line operators
inspecting the PCD tools as they come off the production line. Scanning electron
microscope was used to accurately measure the wear of the diamond-like coatings
(Thorwarth et al. 2015). Material properties, including porosity and particle grain
size, can be confirmed using SEM analysis, with the added advantage of inspecting
the surface for the presence of micro-crack defects, likely to propagate in fracture
failure. This analysis is largely unsuited for use in tracking the severity of wear
between machining passes, as the time and cost commitment is high. Not all
experimental or industrial environments have this equipment available for use.
A more economical alternative for monitoring flank wear is a toolmaker’s
microscope.

• Raman spectral analysis

The Raman spectral analysis and applications of ultrasonic tests have had some
success in identifying defects especially for the PCD matrix (Radtke 2006).
Incomplete matrix mixing and nonuniform material concentration flaws can be

Fig. 2 Accelerated cutting tool testing employed by the cutting tool manufacturers
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detected, but there are limitations in their ability to locate the vertical positioning of
the defect within the matrix layer. Obvious defect detection can help rectify poor
quality cutting tools, but cannot assist in identifying those cutting tools without
defects that will still underperform. Before and after Raman spectroscopy studies on
fatigued oil and gas cutting tools mainly the PCD cutters exhibited changes in the
stress field of the matrix, from general compressive stress fields to residual tensile
stress fields (Vhareta et al. 2012).

On an overall note, the nondestructive evaluation confirms the cutting tool’s
material properties and has some success in identifying obvious external, and to a
limited degree, internal defects, but is most powerful in providing baseline refer-
ence imaging of the cutting tool’s surface textures.

• Destructive testing

Standard destructive testing protocols, like breakage tests, tend to focus on infor-
mation obtained at the point of failure. Information that is more pertinent to the
evaluation of wear performance is obtained in the moments prior to failure which
presents the behavioral changes in the insert, indicative of imminent failure.
Common apparatus for testing tool wear are lathe or milling stations. Lathes have
the obvious advantage of generally mounting single cutting tools. Khidhir et al.
(2015) chose to turn a single point cemented carbide cutting insert, simplifying their
analysis and focusing on the creation of the prediction model for product perfor-
mance. Milling machine applies a wider range of cutting tools and is capable of
using multiple insert tool holders. Che et al. (2012) recommend isolating a single
cutting insert, to simplify the correlation of machining signals to wear development,
and eliminate noises. In this manner, a single cutting insert operating with minimal
milling station features can provide a holistic signal representation of insert failure,
from initiation through growth to catastrophic termination of the insert.

• Wear growth analysis

Most wear analysis bases itself on empirical relations tracks the progression of tool
wear against the cutting distance traversed to generate that level of wear
(Arsecularatne et al. 2006). Further machining with the same tool–work combi-
nation allows tool performance predictions to be calculated from this wear curve.
Where new or used tool–work combinations are tested, the algebraic constant
parameters developed by the Taylor relation are unlikely to exist in literature. One
method of investigating tool wear is to determine these constants during testing. de
Mesquita et al. (2011) have demonstrated the Taylor relation method for computing
the tool life on turning ABNT 1038. The method tracks the flank wear progression
against cutting time to plot a Taylor tool-life curve, and algebraic constants were
computed. Using the Taylor relation, further instances of tool life were predicted to
plan removal time of the cutting tool from the CNC machining operations.
Evaluating these curves for wear behavior shows initially faster wear rates that
stabilize to almost constant wear rates, until rapidly generated wear occurs just prior
to failure, or alternatively, a catastrophic failure occurs (Kato and Adachi 2001).
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Quantifying the extent and severity of wear mechanisms defines the rate of wear
generation and the mechanism of insert failure.

• Flank wear analysis

ISO standards require that the tool maintain its cutting edge as long as the limit of
flank wear not exceeding VB = 0.3 mm (Juneja 2005; Palanisamy et al. 2008), at
which point the tool is declared worn and substituted for a sharp tool. Standard
flank wear is measured linearly down the flank face from the cutting edge to the
extremity of the wear land. A marked limitation of this approach is that the position
of maximum wear can misrepresent the severity of the wear. Kuttolamadom (2012)
suggested taking the average linear wear measurement as the flank wear across a
series of points along the flank face, generating more realistic flank wear values. For
small flank wear presentations, as with short-cycle quality control tests, this can be
challenging to measure with only slight incremental wear rates experienced
between passes.

• Volumetric flank wear analysis

A past analysis of a volumetric wear approach for the turning TI–6Al–4V with
carbide cutting tools, considering the volume of material lost from the cutting tools
is a more accurate indicator of the severity of wear. This allows for an accurate
three-dimensional representation of the wear land through the cutting tool. Their
analysis is driven by the modeling of the dominant microstructural wear mecha-
nism, and its application to predictive modeling. This approach is highly dependent
on the process, machine parameters, and tool–workpiece combination
(Kuttolamadom 2012). Indeed, Adesta et al. (2010) quantified their simulated flank
wear through volumetric analysis during high-speed hard turning. This approach
must be customized to both the tool geometry and relative orientation of the cutting
plane to describe the extent of his insert wear by integrating over both dimensions
of orthogonal cutting process generating a 3D wear volume (Palmai 2014). Unique
tool geometries can prove challenging to map as a 3D wear volume and small
inaccuracies in the wear measurements can be magnified through calculation of the
volume. Burger et al. (2009) used a Zygo NewView 7200 white light interferometer
3D imaging technique to map the worn areas of their titanium milling inserts. This
allows them to characterize failure mechanisms for each of the tool edges and
complements the unusual geometry of their cutting inserts that incorporate chip
breaker features and clamping sites, which would otherwise make modeling the
volume of the cutting inserts lost, a lengthy and problematic exercise.
Unfortunately, the use of highly specialized imaging software adds time delays and
costs to the data processing. 3D mapping should only be applied to those worn
areas not easily determined through geometric analysis. Monitoring wear volume
during machining cannot be done through imaging, as the wear face will always be
in contact with the machining surface. Additional analytical approaches are needed
to both categorize the wear mechanism and monitor its development during
machining.
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• Tool condition monitoring

Research by Maropoulis et al. (1996), Arsecularatne et al. (2006) and Byrne et al.
(1995) illustrates this point by discussing the vast array of approaches to condition
monitoring of cutting tools. Most approaches include indirectly monitoring wear via
cutting forces, temperature, vibrations, surface finishes, acoustic emissions, and
subsequently building relations between these signals and direct imaging of wear
progression through the tool. Byrne et al. (1995), also championed the incorpora-
tion of torque, current, power, speed, touch probes, microphones, and smoke
sensors. Harnessing this behavior in condition monitoring systems allows accurate,
timeous quality control checks to be developed.

Condition monitoring strives for accurate real-time feedback of tool condition.
Most investigations begin with dynamometer installations that offer good force/
thrust tracking. This sensor offers real-time force monitoring that is independent of
cutting conditions and drill geometry (El-Wardany et al. 1995). Ivester et al. (2000)
used a Kistler three-axis dynamometer to record the machining forces for various
rake angles in turning AISI1045 with coated and uncoated WC/CO Kennametal
grade K68 turning inserts. The force comparison to wear land formation generates a
calibrated database for changing rake angles. Mandal et al. (2011) used three-axis
dynamometers to isolate tangential, radial, and longitudinal forces during lathe
boring of Ti6Al4 V and lathe turning of zirconia toughened alumina. Wang et al.
(2013) isolated the orthogonal x, y, z forces when milling stainless steel (HRC52)
with ball nosed tungsten carbide cutters. Generating force data through
dynamometers is an accurate, real-time indication of force increases. Correlating
this data to wear generation often requires further data analysis. Wang et al. (2013)
used a preliminary off-line calculation to build and calibrate their wear model, with
the intent to operate the model in real time thereafter. Additional indirect wear
monitoring can be achieved through acoustic emission (AE) sensors and
accelerometers. Jemielniak et al. (2008) successfully compared acoustic emission
signals to force signals, tracking wear development in micro-milling applications.
Here, the change in amplitude from signal mean to signal peak, in both the positive
and negative directions was used to “train” their system to recognize wear behavior,
after each pass. The signal changes were graphed against the subsequent used tool
life (where the used tool life is equal to, the current tool life (in minutes) over the
total possible tool life), and approximated using a second-degree polynomial.
Focusing on the change in signal was thought to eliminate baseline variations that
develop due to uncontrollable variations in cutting conditions, presenting only the
most relevant signals features are extracted for wear information (Jemielniak et al.
2008). Govenkar et al. (1996) discussed the applications of AE sensors to nonde-
structive and destructive testing protocols. AE sensor’s sensitivity to the sudden
strain energy propagation of stress waves allow them to be applied to structures
surrounding the machining interface, like exposing the acoustic emission sensor to
the machining interface via a “jet of cooling fluid” and monitor the machining
process. Govenkar et al. (1996) was able to identify the types of chips ejected from
the interface, successfully differentiate between spiral chips of 160, 8, and 3 mm in
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length, with FFT analysis recording higher amplitudes for shorter chip lengths.
Other studies have considered AE sensors mounted indirectly through the cutting
fluid and directly seated on either the tool, or workpiece. Inasaki (1998) has
established the effective use of AE sensor on capturing chip formation signals
regardless of its placement. Furthermore, the AE sensors was effectively used on
distinguishing the chip formation signals from the surrounding signals. AE moni-
toring of turning recorded wear signals isolated from machine vibrations and
external vibrations. This is owing to the AE operating frequency range, which falls
above the operating vibration frequency of the lathe. In a study comparing the
ability of AE sensors, accelerometers, and spectrometric oil analysis to detect pit-
ting wear in spur gears, the AE sensor was the only one responsive enough to
distinguish pitting wear in time to remove the gear before performance suffered
(Tan et al. 2007). Li (2002) attempted experimental investigations into delamination
wear phenomena. The speed at which delamination events occur from the trigger
event to the surface separation makes difficulty in prediction of event. The ensuing
signal chaos is a secondary contributor, as the delaminated surface interacts with the
machining interface, causing damage. Successful tests found that when monitoring
the AE signal output in both the frequency and the time domains, it exhibits distinct
amplitude drops in the signal output, immediately following delamination events.
Ravindra et al. (1997) had success with using their AE sensor to track flank wear,
with their rise times resembling rapid run in wear (stage 1 of flank wear), steady
wear progression, and finally chipping or catastrophic tool failure. AE sensors offer
real-time operation in frequencies that immediately exclude structural resonances
and background noise generated by surrounding machines. AE signals are sensitive
to wear fluctuations and fracture events, with non-directionality that reduces the
number of sensors required. AE sensors are compact and easy to mount, but are
largely dependent on the process parameters, with reference wear models requiring
experimental calibration before implementation. An alternative to the AE sensor is
an accelerometer. Bierman et al. (2013) successfully measured the vibrations in
five-axis machining, where the frequency recorded is a multiple of the spindle
rotation frequency. Comparing this accelerometer to contact-emission sensors
commonly used to tune musical instruments, they found good correlation between
sensors, although the positioning of the contact sensor very close to the location of
the vibration was necessary to ensure accuracy. The acoustic emission sensor
provides reasonably accurate results, regardless of positioning. Fang et al. (2012)
found a triaxial accelerometer sensitive enough to track orthogonal vibrations in
high-speed machining of Inconel 718, using wavelet analysis and comparing this
output to the cutting force data to evaluate the extent of the tool wear. Touch probes
are another consistent vibration monitoring option that is easy to implement and
rarely requirement machine modifications. Their dependency on specific experi-
mental materials and cutting conditions limits their application to generic wear
monitoring, while their low sensitivity limit their applications to monitoring high
performance tools (El-Wardany et al. 1995). Analyzing the quality of a machined
surface finish is a good indicator of insert cutting performance, but is heavily
influenced by tool geometry, cutting speeds, and feed rates. Colding (2004)
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suggested that average surface roughness values must be related to tool radius
before accurate wear implications can be made. The presence of burr formations
(Chen 2005) or material adhesions can indicate that the cutting interface temper-
ature rose too high during machining, implying a worn tool was operated, or
nonideal failure occurred. This artificially raises the average surface roughness
values, with large peak-to-peaks expected. Ozel and Karpat (2005) used calibrated
models to begin predicting the surface finish after training a neural network with
experimental data and monitoring flank wear. They noted that surface finish’s
reliance on geometric and machining parameters make this difficult to apply to new
tool–work combinations (Ozel et al. 2007). Childs et al. (2008), Khidhir et al.
(2015) and Kuttolamadom et al. (2015) obtained their experimental average surface
roughness parameters using various profilometers, all of which require testing to be
conducted post-machining, adding time delays and increasing the personnel
requirements for quality testing protocols. Palanisamy et al. (2008) used surface
finish to target their optimal cutting conditions before beginning to build their tool
wear prediction model. Surface finish used in this manner could help identify
accelerated wear testing conditions designed to reduce the testing cycle for quality
control processes. A final method of directly determining the influence that wear
generation in cutting tools has on the machining process is to measure the increase
in temperature at the cutting interface during each successive cutting pass and
establishing relations between this temperature behavior and the quantity of wear
presenting in the tool. During the turning of AISI 1045 with coated and uncoated
WC/Co inserts, Ivester et al. (2000) incorporated thermocouples into the
bi-conducting tool–chip interface, operating as the junction for the thermocouple
and tracking the voltage readout. The results of which were lower amplitude
variations than produced across force signatures and insufficient data from the
coated inserts. Thermocouples are time-consuming to embed into the workpieces
and cannot necessarily be mounted close enough to the machining interface.
Thermal cameras providing real-time temperature evaluation must be positioned in
line-of-sight of the cutting interface without forward protective barriers. Lin and
Ting (1995), among others, noted that placement of sensors in the appropriate
orientation and correct proximity to the cutting interface are vital to obtain precise
experimental results. El-Wardany et al. (1995) commented that it would further
reduce the impact of noisy signals, and false alarms generated by natural fre-
quencies of the spindle and motor within the machine. This can present positioning
challenges in close machining or drilling environments, where tools are expected to
bore down into or through workpiece materials, while the monitoring system is
expected to continue to operate.

One commonality through the research so far is that it mostly pertains to flank
wear, although Lu and Chou (2011) considered on delamination failure events. The
designer of quality control tests should be mindful that at some point, inferior tools
failing by nonideal wear mechanisms will pass through the evaluation. The system
must be able to handle, identify, and alert the operator to the discovery of nonideal
fracture failure of the PCD tool. Table 1 summarizes the past PCD tool testing
methods
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The PCD tool testing methods described in Table 1 are centered on in-process
manufacturing tests and consume time. As a result, the scrap rate of PCD tools
between the time of fault finding and corrective action on the production floor is
high. Therefore, intelligent approaches were applied to estimate tool wear states.
Application of neural networks (NN) and clustering techniques such as multilayer
perceptron (MLP), adaptive resonance networks (ART2), support vector machine
(SVM), and self-organizing maps (SOM) was attempted for establishing the tool
wear maps (Si et al. 2011). Also, hidden Markov models (HMM) were successfully
applied as it represents the temporary signal dynamics and reasoning in speech
recognition. These methods were used for prognostic evaluation of tool wear,
finding 92.5% experimental compliance with wear signals (Zhu et al. 2009).
A major limitation of these methods is its lack of consideration on fracture failure
mechanisms. Intelligent tool testing systems that did not handle the fracture events

Table 1 PCD tool testing methods

PCD tool
testing
method

Principle Advantages Shortfalls Reference

Industrial
approach

Field testing Reasonably
accurate

Difficult to identify the
exact source of failure

Huges
(2014)

Industrial
approach

Simulated
field tests

Reasonably
accurate

Difficult to identify the
exact source of failure

Huges
(2014)

Visual
inspection

SEM analysis Enable to identify
the grain size,
porosity, and
micro-cracks

Lack of information on
wear resistance and
strength

Thorwarth
et al. (2015)

Raman
spectral
analysis

Optical test Enable to identify
the defects with
the PCD matrix

Difficult to establish the
internal defects of PCD

Radtke
(2006) and
Vhareta
(2012)

Machining
test

Continuous
turning

Enable to
establish the wear
resistance in the
form of flank wear

Consumes enormous time
as the PCD tool has to
undergo an image analysis
to understand its failure
characteristics

Khidhir
et al. (2015)

Machining
test

Process
parameters
study

Enable to
establish the wear
generation
phenomenon

It is equivalent to a
postmortem study and
consumes time

Byrne et al.
(1995)

Condition
monitoring

Process
parameters
study using
dynamometers

Accurate Suitable only for the
laboratory

El-Wardany
et al. (1995)

Condition
monitoring

Process
parameter
study using
AE sensors

Less expensive
method

Erratic results at times of
delamination

Li (2002)
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tend to limit the real-time quality control processes. Research on intelligent tool
testing methods, therefore becomes, a priority, emphasizing digital monitoring of
PCD wear behavior and extending to appropriate predictive analysis. Accelerating
the quality control approach would enable faster rectification of nonideal failure
mechanisms experienced by the inserts. Furthermore, the application of necessary
corrective actions on the manufacturing floor becomes significantly faster than the
current protocols allow. This, in turn, minimizes the material wastage and priori-
tizes the PCD life prediction strategies. Therefore, the objectives of this project are
to develop an intelligent PCD insert clock-testing system that clearly establishes the
failure characteristics of the PCD cutting inserts, as well as predicting the product
performance.

3 Experimental Setup

The machining experiments were conducted on Röeders RFM 600 high-speed
machining center using a PCD milling cutter head over a linear clock-testing
workpiece as illustrated in Fig. 3. Throughout the experiments, the force signatures
were captured and amplified, and further analysis was done using the data acqui-
sition software Dewesoft, to understand the tool–work interface behavior. Every
cutting experiment was repeated five times, and the average cutting forces of at least
three tests with the clearest values were taken. The machined workpiece surface
texture was examined using a scanning electron microscope (SEM) and the surface
roughness was examined using a Surtronic profilometer. After every 5 m of cutting
distance, the flank wear was measured using a tool maker’s microscope. The AE
sensor tracks machine frequencies above 10 Hz, while the dynamometer x, y-
directions track forces from −10 kN up to 10 kN. The z-direction has 15 kN upper
and lower limits. The temperature at the cutting interface was estimated by
assessing the color of the sparks generated during testing and comparing these to
the known glow point of silver steel. The accelerometer was calibrated using a Rion
VE10 vibration generator.

This milling cutter head was configured to hold a PCD insert of size
D16 � 12 mm at a negative rake angle and mounted on HSK 40 tool holder. The
milling conditions for performing the machining test are given in Table 2.

4 Results and Discussion

The experimental results have enabled to create a quality control approach that
analyzes PCD insert cutting performance, with a view to incorporating accelerated
wear generation and combining this with intelligent condition monitoring in order
to predict the product performance. The results include the output of extensive
experimental findings and its signal correlation with the flank wear behavior.
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Furthermore, ANOVA analysis was performed for validating the AE sensor sig-
natures, and neural network analysis was done to find the performance prediction of
the PCD inserts.

Software:

DEWESOFT-7-
SE

RFM600 (Roeders 
High Speed Machining Centre)

Dynamometer 9257A

Parallel vice

Charge Amplifier 
(Type: 5001)

MSI-BR_TH_K

Thermocouple type interface for 
DAQP Bridge-X

DEWE-43

8 Channel 
DAQ box 
w/USB

1,2

3,4

5,6

Fx

FY

FZ

Charge Amplifier 
(Type: 5001)

Thermocouple 
K Type - 5 
meter

PCD INSERT

D10X 10

Charge Amplifier 
(Type: 5001)

8152B221 PiezotronÆ 
Acoustic Emission Sensor

8772A50 Low 
Impedance 
Acceleromete

5125B2 Industrial Coupler, 
gain:1/10, plug-in filters, 
input:M13x1, output: 8

pole round plug, incl. 1x1500A57

MSI-BR-ACC
Isotron (constant current 

powered) interface for MDAQ-
SUB-BRIDGE / -STG modules 

with DB9 connector

Work-piece: 
Hardened Steel

Fig. 3 Experimental setup and data acquisition arrangement for the machining experiments

Table 2 Milling conditions for the accelerated wear tests

Detail Unit Value

Milling type – Intermitted cutting (clock testing)

Cutting speed m/min 534.2

Feed rate mm/min 1200.00

Depth of cut mm 0.05

Material removal rate mm3/min 60.00

PCD insert size mm/mm D16 � 12

Workpiece material and hardness – Medium carbon alloy steel and HRC 45
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4.1 Flank Wear

Flank wear is the gradual, consistent loss of material from a cutting tool, which
degrades the cutting edge and distorts the tool geometry. Flank wear is usually
characterized by abrasion, sudden catastrophic failure and brittle fracture of a PCD
insert, and the growth of flank wear indirectly explains the physical properties of a
PCD insert such as wear resistance and transverse rupture strength. In order to distil
the effect of built-up edge formation, volumetric flank wear, and VB, accelerated
wear tests were performed, and the results are shown in Figs. 4 and 5. In general,
the localized cracking around diamond grains or failure of the binding matrix will
also result in the smallest diamond particles becoming loose and falling out during
machining. All of these effects combine in the abrasion wear of a PCD insert as
shown in Fig. 6.

Using the PCD material information, the following relationship for the calcu-
lation of volumetric wear under abrasive wear mechanisms is presented by
Stolarski (2000):

Vabrasive�theoretical ¼ m2 � ry � E � F3=2
n � lc
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Fig. 4 Flank wear behavior of a PCD insert at accelerated tool test conditions
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Vabrasive represents the volume lost from the cutting insert (m3), while m is the work
hardening factor, equated to the workpiece hardness over cutting insert hardness.
ry, is the yield strength (GPa) of the cutting insert, of PCD owing to its nature as a
brittle material, E is Young’s modulus (GPa) for PCD, Fn is the normal force
(N) exerted on the workpiece during machining and lc is the cutting distance
(m) traversed. KIC, denotes the fracture toughness (MPa m1/2) experienced by the
PCD material and finally HPCD represents the hardness (GPa) of the PCD matrix.

Abrasion wear volume can be corroborated through direct imaging and mea-
surement of the wear region under a toolmaker’s microscope. Post-machining
weigh-ins can be conducted, comparing the final worn PCD insert weight to the
weight of the insert prior to machining, and calculating the volume of the lost
material based on the density of the PCD material matrix. This does become slightly
more complicated once the WC-Co base becomes involved in wear mechanisms,
however, the use of accelerated wear testing protocol should limit wear to the PCD
matrix. Geometric analysis can model the volume of PCD material lost from a
theoretically ideal cutting insert, by assuming the PCD cutting inserts as a simple
cylindrical shape with an inclined wear plane. In this manner, the lost volume
would approximate a cylindrical wedge tracks the progression of the wear from
zero to a completely used insert as the inclined machining interface progresses
through a PCD insert (Fig. 7).

By considering the geometrical form of the worn portion of the PCD tool, the
volumetric wear is given as

Fig. 5 Flank wear images of a PCD insert at accelerated tool test conditions

176 R. Kuppuswamy and K. A. Airey



VPCD ¼ hR2

3
3 sin h� 3h cos h� sin 3h

1� cos h

� �
ð2Þ

The values for a, b, h, and h was obtained from the PCD worn insert image as it
corresponds to dimension 2a indicated on the flank wear image (Fig. 7b) (Wolfram
Math World 2013) (see Appendix 1 for more details).

• Wear modeling and signal interrelations

The tool–work interface conditions were monitored in terms of cutting forces,
acoustic emission signals, and correlated with the flank wear growth behavior of the
PCD cutting inserts. Specific relationships between these signals and the cutting
distance were established using the data-driven models. The developed data-driven
model was applied to predict the remaining useful life of the PCD tool. Shown in
Fig. 8 is the behavior of cutting forces and AERMS signals for the PCD tools at
various cutting distances. The cutting forces behavior suggests that as the cutting
distance increases the cutting forces increases consistently with each cutting pass
until a maximum force is reached. Continuing machining resulted in an additional
signal spike and beyond this signal, the failure of the PCD insert was apparently
seen. Between the cutting distances from 0 to 30 m, the increase in cutting forces
was found to be higher than the cutting distance range 30–80 m. AERMS has
exhibited a similar trend and confirms the suitability of using AERMS signals as a
measure of cutting forces and flank wear growth behavior.

PCD Insert

PCD Insert cu ng 
distance

Fig. 6 Geometric arrangement of volumetric
abrasion wear determination

2a

(a) (b)

Fig. 7 Dimensional correlation for volumetric wear computations, a theoretical model and
b actual wear
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• ANOVA analysis

To further demonstrate the correlation between force signals and AE sensor signals,
ANOVA tests were performed. As a result, the dynamic digitized map of the tool–
work interface signals of the reference samples was clearly sketched inclusive of
errors and variation. Shown in Table 3 are the experimental results of cutting forces
and AERMS signals for various cutting distances.
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Fig. 8 Cutting forces and AERMS behavior for various cutting distances

Table 3 Variables factors of the experiments and results

Cutting conditions Cutting
distance (m)

Cutting
force Fc (N)

AERMS

(dB)
Flank
wear (lm)

Fixed cutting conditions:
intermitted cutting (clock testing);
cutting speed = 534.2 m/min; feed
rate = 1200.00 mm/min; depth of
cut = 0.05 mm; material PCD insert:
D16 � 12

4.8 118.78 16.344 56

9 154.99 6.7500 80

13 219.96 8.9300 88

18 254.56 32.688 96

23 298.33 18.910 108

27 326.22 28.370 124

31 332.85 17.920 136

36 357.57 138.48 144

41 354.54 106.64 170

45 385.61 234.38 180

60 394.81 167.57 240

80 386.49 215.82 320

85 384.08 196.54 390

90 395.45 282.44 450
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The cutting force (Fc) is the resultant of the measured forces FX, FY, and FZ.
AERMS signals were measured at the nearest point of machining zone as the AE
sensor was mounted on the workpiece. In each machining experiment, five sample
signals of FX, FY, FZ, and AERMS were taken, and Fc and AERMS values were
computed. The columns Fc and AERMS shown in Table 3 indicate the mean value
of Fc and AERMS of each experiment. A one-way ANOVA test was applied to
compare the effect of a single factor on the different groups: cutting force (Fc) and
AERMS signals. The findings of ANOVA comparison tests on (i) cutting force and
flank wear, and (ii) flank wear and AERMS are shown in Tables 4 and 5,
respectively.

The p-values of the parameters resulted from the ANOVA are presented in
Tables 4 and 5. The smaller the p-value, the smaller the probability of making
mistakes by rejecting the null hypothesis, and consequently, the larger the corre-
sponding coefficient. By evaluating the p-values of the parameters: cutting force
signatures and AERMS signatures, it is found that the cutting force with the p-values
smaller than 0.05 exhibits a larger effect on the flank wear than AERMS signatures.
Also, the p-values for AERMS signatures show the correlation between the cutting
force and AERMS signatures and suggest that the flank wear growth can be studied
by both cutting force and AERMS signatures with reasonable accuracies. Tables 4
and 5 also give the F-value which is the ratio of the groups’ mean square over the
error mean square. As the value on both cases was found to be more than 1, it
suggests that the samples were drawn from a different population although the
measurement of AERMS signals is closest to the cutting zone whereas the cutting
forces are the measurement at the cutting zones. The F-values computed using the t-
test for the unpaired groups (i) cutting force and flank wear (ii) AERMS and flank
wear was found to be 1.775 and 1.518, respectively. Also, the homogeneity of
variance was tested in SPSS by applying the Levene’s statistic for nonparametric
data (NIST 2014). If the significance p, of statistic L, remains above 0.05, for a 95%

Table 4 ANOVA
comparison tests on cutting
force and flank wear

Source of
variation

Cutting force Fc (N) and flank wear

I DF Seq SS AdjMS F p

In between 1 113,442 113,442 9.8 0.004

Within 26 300,923 11,573

Total 27 414,365 15,346

Table 5 ANOVA
comparison tests on AERMS

and flank wear

Source of
variation

AERMS and flank wear

I DF Seq SS AdjMS F p

In between 1 44021.0 44021.0 3.58 0.06

Within 26 319,235 12,278.2

Total 27 363,256 13453.9

Intelligent PCD Tool Testing and Prediction of Performance 179



confidence interval, indicating no significant variation in the data for all inserts, the
homogeneity assumptions for comparative analysis would be satisfied. The
Levene’s statistic (L) equation is given as (NIST 2014)

L ¼ ðN � kÞPk
i¼1 NiðZi � ZÞ2

ðk � 1ÞPk
i¼1

PNi
j¼1 ðZij � ZiÞ2

ð3Þ

where k represents the number of sets from which the data come, N is the total
number of sampled cases, and Z is an array of the mean and median values of the
sampled case i from group j. The test values for homogeneity of variance in PCD
wear data, using the Levene’s statistic was found to be, 0.299, 0.070, 0.952, 0.763,
and 0.564 for PCD Insert #1 to Insert #5, respectively. Analyzing the value of the
p factor shows no datasets of particular significance, with all p factors consistently
above 0.05 in value. As a result, the homogeneity of variance is consistent across all
experimental data from PCD cutting inserts, #1 to #5, and satisfies that the data be
drawn from population exhibiting equal variance. A similar Levene’s test on data:
cutting forces (Fc) and AERMS signals also conclude that the data were drawn from
population exhibition equal variances.

• t-test

The “t” factor analysis assesses the variability of the data within each machining
cycle. The distribution of the data points within each pass is normally distributed,
and the “t” factor analysis can be applied directly. The “t” factor is computed using
Eq. 2 as (IBM 2015)

t ¼ ðx� lÞ
ðs= ffiffiffi

n
p Þ ð4Þ

where x is the sample mean, and the population mean is denoted by l, with “s”
being the standard deviation, and finally, n represents the size of the sample. The “t”
factor for each distinct machining pass for the PCD tool is presented in Fig. 9

The cutting force “Fc” and “t” factor for Fc were tracked against the flank wear,
which shows the general correlation between the two, and enable to quantitatively
express the cutting force signatures as a wear. On a similar note, the AERMS signals
and t-factor for AERMS have a correlation with the flank wear growth and doubly
confirm the use of AERMS signals as a measure of flank wear. The same was also
expressed quantitatively in terms tAE-RMS factor.

4.2 Frequency Domain Analysis

Between the cutting distance from 5 to 80 m the frequency signal spikes occur at
f = 48, 97 Hz, for both the AERMS and cutting force (Fc) signals. However, beyond
80 m of cutting distance, the frequency signals spikes occur at 45, 95, and 190 Hz
confirming the significant flank wear of the PCD tool.
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4.3 Predictive Model Generation

Analyzing the signal relationships through multivariate analysis has enabled to
build the neural network and a wear model using the machining variables (Liu and
Jolley 2015). Shown in Fig. 10 is the PCD wear multilayer perceptron using the
neural network architecture.

The hidden layer tracks the data bias between outputs and is used to evaluate the
influence of the inputs through weighted sums in a nonlinear model as detailed in
Eq. 3 (IBM 2015).

P ¼ r
Xl

i¼1

kirðx:wiÞ
( )

ð5Þ

where l equates to the number of hidden units, the sigmoidal function is given as
rðxÞ ¼ 1=ð1þ exp ð�xÞÞ, such that x are the input covariates and “w” refers to the
neuron weights. The number of data points then becomes “i”. The bias term is
defined by x:wi def

P
k xkwik þwio. The input covariates for this model are the

machining signals identified such as cutting force signatures and acoustic emission
signatures.

The neural network architecture uses a single hidden layer with real-time data
training to update the synaptic weight after each data record, until the stopping
criteria are met. The training criteria for stopping is set as no more than a con-
secutive step with no error decrease before the algorithm halts itself. Table 6 shows
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the summary of neural network model. The assessment of the model accuracy
shows a 6.472 compliance under sum-of-squares methodology creating a 0.087%
relative error. The outcome of the neutral network training is an estimation of the
model parameters defining the relation between the machining signals variables, the
hidden layer, and the wear formation on the PCD cutting insert. These parameters
are summarized in Table 7. Understanding the significance of each machining
parameter on the magnitude of the wear is critical to ensure the correct emphasis of
the variable. Calculating the weighted sum for each of the covariates quantifies their
influence on the target variable is given by the following equation (IBM 2015):

wjðxÞ ¼
Xl

i¼1

kir
0ðx:wiÞwij ð6Þ

where the sigmoidal function is given as rðxÞ ¼ 1=ð1þ exp ð�xÞÞ, such that x are
the input covariates and w refers to the neuron weights. The number of data points
then becomes i, the bias term is defined by x:wi def

P
k xkwik þwio, and lambda is

the constant term for the data position. Furthermore, the neural network identifies
that cutting distance followed by cutting force and acoustic emission signals are the

Fig. 10 PCD wear multilayer perceptron using the neural network architecture
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significant factors of weightage 100, 29.8, and 24.3%, respectively. The imaged
flank wear experienced by the PCD inserts during testing are graphed against
cutting distance in Fig. 3. The sensor array data signals were modeled against
progressive cutting distances and the project values for the cutting force and
acoustic emission signals occurring at 80 m of cutting distance and above and
projected to be 410 N and 45.05 Hz, respectively.

5 Conclusions

This investigation confirms that the developed intelligent PCD clock-testing
method enables to evaluate the PCD insert performance in real time. The feature
extraction coupled with statistical evaluation along with the neural network training
of a predictive model has become an incredibly powerful performance predictor.
Once the calibrated model was developed, the DAQ was automated, with the
resulting cycle time reducing to approximately 1 min and 40 s for a complete
destructive test and real-time calculation of the insert performance relative to the
calibrated wear models for a single polycrystalline diamond cutting insert. This
represents a noticeable reduction of quality control cycle times, with the actionable
feedback produced in real time to be passed to manufacturing production lines. The

Table 6 Neural network model summary

Training Sum-of-squares error 6.472

Relative error 0.087

Stopping rule used 1 consecutive step(s) with no decrease in errora

Training time 0:00:00,03

Testing Sum-of-squares error 2.165

Relative error 0.058

a excluding the bias unit

Table 7 Neural network estimation of parameter relations: output layer parameter estimates

Predictor H(1:1) H(1:2) H(1:3) H(1:4) Predicted hidden
layer (H1:5)

Input
layer

(Bias) −0.092 0.951 0.922 −0.141 0.358

Cutting
force

−0.2 −0.522 1.054 −0.172 0.433

Acoustic
emission

0.213 −0.093 −0.037 0.397 0.439

Cutting
distance

0.161 1.086 0.265 0.07 0.409

Output layer: flank wear −0.706 1.645 0.096 −0.236 −0.426
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accelerated wear test protocol generates representative wear behaviors in the PCD
insert, where abrasive flank wear and one instance of insert chipping failure
mechanisms were noted without degrading the tool through graphitization mech-
anisms. Despite the limited fracture events, anecdotal evidence suggests that the
sensor array is sensitive enough to extract meaningful signal features from these
events, should they occur. Statistical analysis of the data improves the accuracy of
the wear models and allows predictive modeling of the flank wear. The strength of
this system lies in its ability to effect analysis in real time and its proposed
cross-application portability.
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Appendix 1: Computation of Volumetric Wear Using
the Principles Cylindrical Wedge

A wedge is cut from a cylinder by slicing with a plane that intersects the base of the
cylinder. The volume of a cylindrical wedge can be found by noting that the plane
cutting the cylinder passes through the three points illustrated above (with b > R),
so the three-point form of the plane gives the equation

x y z 1
R� b a 0 1
R� b �a 0 1
R 0 h 1

��������

��������
¼ hðR� b� xÞþ bz

Solving for z is given as

z ¼ ðhÞðx� Rþ bÞ
b
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The value of “a” is given as

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ð Þ ðb� RÞ2

� �r
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð2R� bÞ

p
The volume of cylindrical wedge is given as the integral of rectangular areas

along the x-axis

z ¼
Z

ZðxÞyðxÞ dx

Z ¼
Z R

R�b

hðx� Rþ bÞ
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2ð Þ

p
dx

z ¼ h
6b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2R� bÞb

p
3R2 � 2abþ b2
� 	� 3pR2ðR� bÞ sin�1 ðR� bÞ

R


 �
a ¼ R sin h; b ¼ Rð1� cos hÞ; b2 ¼ 2bR� a2

Hence, V ¼ 2
3 hR

2.
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