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Abstract Additive Manufacturing is identified as a key emerging technology and
has received much attention during recent years. Three-Dimensional Printing (3D
printing) is an Additive Manufacturing (AM) method and has tremendous appli-
cations in industries. Selection of appropriate AM process for an application
requires consideration of various conflicting criteria. The right AM option ensures
competitive performance of manufacturing which in turn affects the quality of the
parts. For achieving the best results of any manufacturing process, parametric
optimization is essential which has been attempted in the case of 3D printing
process using Multi-Criteria Decision-Making (MCDM) techniques. This paper
represents the application of an MCDM technique, viz. Multi-Objective
Optimization using Ratio Analysis (MOORA) method, to optimize the parame-
ters of 3D printing process, which takes into account any number of criteria, both
quantitative as well as qualitative, and offers a simple computational procedure.
Three process parameters of FDM based 3D printer, viz. layer thickness, build
pattern and fill pattern are considered in this study. Surface roughness and building
time of part are taken as response parameters. Effect of each process parameter on
surface roughness and build time has been studied.
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Nomenclature

Yi Normalized assessment value
Ra Surface roughness
I+ Positive ideal solution
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I− Negative ideal solution
Si
+ Distance between PIS and normalized values

Si
− Distance between NIS and normalized values

CCi Closeness coefficient

1 Introduction

Additive Manufacturing (AM) is one of the revolutionary technologies that fabri-
cates 3D objects from CAD data. Additive manufacturing has been visualized as an
innovative path for future manufacturing due to its ability to create one-off custom
products and capability to manufacture complex designs as a single unit. 3D
printing is one of the potential AM technology in which 3D model of object is
sliced in successive layers under computer control and these layers are laid down
one over the other to create object. Most commonly used 3D printing technology is
material extrusion process. This technology also named as Fused Deposition
Modelling (FDM) uses extrusion nozzle to extrude material to create successive
layers. Most commonly used materials for FDM process are thermoplastics such as
Acrylonitrile Butadiene Styrene (ABS), Poly-Carbonate (PC) and Poly Lactic Acid
(PLA). FDM printer is connected with a computer interface that processes STL file
(Stereo lithography file format) according to which the extrusion nozzle moves both
horizontally and vertically following the designed path. Build material is fed to the
printer extrusion nozzle in the form of solid where it gets heated past their glass
transition temperature and extruded from nozzle in the form of thin filament. These
filament strings get deposited on one another to generate 3D model. By using 3D
printing process, any complex geometry can be produced.

This chapter presents optimization of process parameters of a non-laser based 3D
printing process working on FDM technology using MOORA method. Three
process variables are considered, viz. layer thickness, build pattern and fill pattern.
Layer thickness is a measure of height of each layer in additive manufacturing
process measured along vertical axis (Z-axis). It is one of the important technical
characteristics of printer which has impact on part quality. Build pattern is the way
in which internal structure of the part is created. Fill pattern is associated with
support structure style. Support structure is required to support if any overhang or
cantilever is present in geometry. This affects build time and support material
volume usage. Different settings of these parameters are taken and surface rough-
ness and build time are calculated in each case. Process variables of 3D printing
influence the quality of 3D printed parts (Abdullaha et al. 2015). Major quality
indicator considered in this study is surface roughness of parts. Similarly, build time
is also an influencing parameter that implies the time needed to build part. These
two parameters have been optimized in this study to get the best setting of process
variables.
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1.1 Objectives of the Present Study

FDM process is the most commonly used AM technology. Parts manufactured
using this process show different properties. In order to overcome certain short-
comings of this process, proper understanding of FDM process and its input
parameters is essential. This study attempts to understand and analyse the FDM
process thoroughly so as to make the components manufactured by this process
more reliable and also to make this process more cost-efficient and
environment-friendly than any other process. Taking into consideration above
factors, objectives of this study are as follows:

1. One of the important objective is optimization of the printing process parameters
of FDM based 3D printing. To get optimal settings of process parameters, a
multi-objective optimization problem is formulated and solved using MOORA
method (Multi-objective optimization using ratio analysis). Finally, the results
obtained using MOORA method have been analysed using TOPSIS method and
ranks obtained for each experimental run are compared.

2. A detailed study of various process parameters of FDM is carried out and their
impact on part quality is investigated. Effect of each process parameter on
response parameters has been studied.

2 Literature Review

Multiple studies have been conducted for optimization of process parameters for 3D
printing. The studies identify how printing parameters affect various response
parameters such as dimensional accuracy of 3D printed parts, surface finish and
manufacturing time.

Thrimurthulu et al. (2004) determined optimal part orientation for FDM process
in order to enhance surface finish and minimize build time. To obtain optimum
results, genetic algorithm was used. Two case studies were carried out in this work
with two parts namely axisymmetric part and a 3D part. Two contradictory
objectives were achieved as minimum build time and maximum surface finish.
Also, support structure minimization was implicitly done in this work. They
developed a model for assessing the build time and average part surface roughness.
Their contributed methodology can be used to recognize optimum part orientation
for any complex part.

Wang et al. (2007) used Taguchi method with Grey Relational Analysis
(GRA) to optimize FDM process parameters. Two specimens were prepared
namely trapezoid test specimen and tensile test specimen. Six process parameters
were taken namely layer thickness, support style, deposition style, deposition ori-
entation in Z-direction, deposition orientation in X-direction and build location.
Taguchi’s L18 orthogonal array was applied to determine experimental runs.
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Response parameters such as tensile strength, dimensional accuracy and surface
roughness were taken. GRA was used to determine the optimum parameter setting.
Results of GRA were verified using TOPSIS method. Results of this study showed
that deposition in Z-direction was influencing parameter in case of tensile strength
and dimensional accuracy whereas layer thickness was found to be the most
influencing parameter in case of surface roughness. They proposed a methodology
of integrating Taguchi method with GRA for optimizing RP processes. TOPSIS
method was used to verify the resolutions of multiple quality characteristic
problems.

Sood et al. (2009) investigated the influence of vital FDM parameters on
dimensional accuracy of processed ABSP400 part. Process parameters studied were
layer thickness, orientation angle, raster angle, air gap and raster width along with
their interactions. Standard test specimens were taken and experiments were
designed according to Taguchi’s experimental design. Grey Taguchi method was
adopted in this study in order to obtain optimum settings of process parameters.
Minimization of percentage change in length, width and thickness simultaneously
was achieved. It was observed from the study, that shrinkage is the dominating
factor along with length and width direction of built part. They adopted grey
Taguchi method for identifying common factor setting such that all the three
dimensions of a fabricated part show lesser deviation from actual value. They found
the optimal process parameters settings to reduce percentage change in length,
width and thickness.

Anoop et al. (2011) carried out optimization study for FDM parameters using
weighted principal component analysis. Process parameters taken in this study were
layer thickness, orientation, air gap, raster angle and raster width. Taguchi method
was used to determine experimental runs. L27 orthogonal array was taken in this
study with five input parameters and three levels of each parameter. Tensile,
flexural and impact specimen were prepared and data was collected in terms of three
responses. Results of this study showed that all process parameters have significant
effect on response parameters. To simultaneously optimize three responses, opti-
mum parameter settings have been found. They concluded that factors such as layer
thickness, raster angle, raster width and orientation have a great influence on the
mechanical properties of FDM produced parts. They identified optimum parameter
settings for optimizing three mechanical properties concurrently.

Zhang and Peng (2012) carried out Taguchi based optimization study to deter-
mine optimum parameters for FDM process. Four process parameters were selected
in this study namely wire-width compensation, extrusion speed, layer thickness and
filling speed. Dimensional error and warpage deformation were taken as response
parameters. L9 orthogonal array was used with four process parameters with three
levels. For optimization, Taguchi method was used in combination with fuzzy
comprehensive evaluation. Results showed that most significant parameter was
wire-width compensation. They used Taguchi method in integration with fuzzy
comprehensive evaluation for optimizing four process parameters. They found that
performance index of FDM process is greatly influenced by ‘wire-width compen-
sation’ followed by extrusion speed, layer thickness and filling speed.
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Alhubail et al. (2013) worked on Taguchi method based optimization of FDM
input parameters to get improved part quality. Process variables namely layer
thickness, raster orientation, air gap, raster width and contour width were consid-
ered and impact of these parameters on quality characteristics such as tensile
strength and surface roughness was studied. They concluded that setting layer
thickness and raster width at lower values could minimize the surface roughness in
addition to the air gap at −0.01 mm and also higher tensile strength can be
obtained. They identified that tensile strength and surface roughness of a processed
part is highly influenced by air gap parameter. Validation runs were done to confirm
the predicted analysis.

Raol et al. (2014) studied the effect of FDM printing parameters on surface
roughness. Printing parameters such as layer thickness, part built orientation and
raster angle were considered. Experiments were conducted using response surface
methodology and from the results of the experiments, mathematical model was
developed. Experimental result analysis and surface plots concluded that part build
orientation possesses most vital effect on surface roughness followed by layer
thickness. Nevertheless, raster angle has the least vital influence on surface
roughness.

Kumar et al. (2014) conducted study to optimize the process parameters of
ABS-M30i parts built by FDM to get minimum surface roughness. Five parameters
were considered in this study and Taguchi’s design of experiments and ANOVA
were used to analyse the effect of each parameter. It was found that in this study, not
all FDM printer parameters have impact on surface roughness but vary in influence
on each proposed response variables. Smooth surface construction and lower Ra

were ensured with layer thickness value of 0.254 mm and negative air gap
−0.01 mm or raster width of 0.508 mm. They analysed variable parameters of
FDM process like laser thickness, air gap, raster width, counter width and raster
orientation and their interactions. They determined that thinner layer and voids
between deposited layers may minimize surface roughness.

Farzad and Godfrey (2014) optimized FDM parameters using group method for
data handling and differential evolution. Relationship between FDM process
parameters and tensile strength was determined. Initially, pretest was carried out
considering two process parameters namely part orientation and raster angle.
Results of pre-test showed that both parameters affect tensile strength. Further,
parameters viz. air gap, part orientation, raster angle and raster width were taken
and 16 runs were conducted. Optimal parameter settings were found using differ-
ential evolution.

Abdullah et al. (2015) investigated the impact of printing orientation and layer
thickness on mechanical and topological properties of printed ABS samples. Two
printing orientations (XY and YZ) with three different layer heights (0.1, 0.2 and
0.3 mm) were chosen and specimens were printed utilizing a 3D printer. ANOVA
was carried out to investigate the relationship of layer height and printing orien-
tation on tensile strength and surface roughness of the specimens. They concluded
that layer height and orientation setting could be improved for better mechanical
and topological properties for patient specific implant fabrication.
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Manikandan et al. (2015) studied the effect of FDM parameters on flexural
strength and surface roughness of PC-ABS mix using FDM 900mc machine.
Parameters considered in the study were raster angle, contour style, raster width and
air gap. Taguchi method was applied to design experiments and flexural strength
and surface roughness were tested. They also found that contour style has the most
vital effect on surface roughness of PC-ABS part made using FDM process in
comparison with other parameters. They identified the best possible parameters of
FDM process in order to ensure good flexural and surface roughness properties.
They have shown that raster angle has great effect on flexural strength and counter
style has great effect on surface roughness.

Nidagundi et al. (2015) used FDM process parameters for optimization. Process
parameters considered for optimization were layer thickness, orientation angle and
fill angle. Output parameters considered were ultimate tensile strength, surface
roughness, dimensional accuracy and build time. Taguchi’s L9 array was used to
conduct experimental runs. S/N ratio was applied to identify optimum parameter
settings. They optimized the parameters of FDM process for enhancing properties
namely; ultimate tensile strength; dimensional accuracy; surface roughness and
manufacturing time. They validated the performance of optimum conditions of
FDM by conducting verification experiment.

Rao and Rai (2016) carried out optimization study for FDM process using
Teaching Learning-Based Optimization (TLBO) algorithm. FDM parameters such
as air gap, layer thickness, orientation angle, raster angle and raster width were
taken. Total five case studies were conducted to attain optimum combination of
process parameters. Optimization algorithms used in this study were TLBO algo-
rithm and Non-dominated Sorting TLBO (NSTLBO) algorithm. They considered
three single-objective optimization problems and two multi-objective optimization
problems of FDM process and solved using TLBO and NSTLBO algorithm. They
concluded that TLBO algorithm shows better performance compared to GA and
QPSO algorithm in terms of objective function value.

Srivastava et al. (2017) carried out optimization study for FDM process
parameters using response surface methodology (RSM). Face-centred central
composite design was used to conduct experiments using 86 experimental runs. In
this study, contour width, orientation, raster angle, raster width, layer height and air
gap were taken as process parameters. Response parameters such as build time,
model material volume and support material volume for ABS were taken. Optimal
parameter setting was obtained using RSM method. Developed mathematical
models were tested using design expert software for accuracy.

FDM is a widely used AM technology and has tremendous role in 3D Printing.
To achieve optimization of multiple input characteristics of FDM process, MOORA
method is used in this study with effective experimental design, i.e. L8 orthogonal
array. Results have also been verified using TOPSIS method. Comparative analysis
has been done to derive appropriate inferences. Details about process parameters,
response parameters and experimental design are given in subsequent section.
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3 Experimental Setup

To determine the effect of process variables on printed parts, tensile specimens were
built according to the standards ISO 527:1993 under different conditions of input
parameters. Process parameters considered are (1) layer thickness, (2) build pattern
and (3) fill pattern. Test specimens were manufactured using uPrint SE plus 3D
printer machine and ABS plus plastic as build material. uPrint SE 3D Printer is used
in this study which uses ABS plus as model material. Table 1 shows the selected
values of process parameters. Two settings of layer thickness are used to build part,
they are 0.254 and 0.3302 mm respectively. Build pattern is defined by ‘Solid’ and
‘Sparse-High Density’. Two fill patterns namely ‘Basic’ and ‘Smart’ are used.
Detailed description of process parameters used in this study is given in Sect. 3.1.

Two-level full factorial design is used to design the experiment runs using three
process parameters and two levels providing 23 experiments (Hwang and Yoon
1981). Table 2 indicates experimental design according to 23 design. Figure 7
shows tensile specimens made by FDM 3D printing process.

3.1 Details About Process Parameters

Process parameters involved in this study are layer thickness, build pattern and fill
pattern. For this study, uPrint SE Plus FDM printer is used. This printer has two
settings of layer thickness, three settings of build patterns or model interior style
and three settings of fill pattern or support style. The software accompanied with

Table 1 Parameter design Process parameters Level 1 Level 2

Layer thickness (mm) 0.2540 0.3302

Build pattern Solid Sparse-high density

Fill pattern Basic Smart

Table 2 L8 experimental design

Experiment No. Process parameters

Layer thickness (mm) Build pattern Fill pattern

1 0.2540 Solid Basic

2 0.2540 Solid Smart

3 0.2540 Sparse-high density Basic

4 0.2540 Sparse-high density Smart

5 0.3302 Solid Basic

6 0.3302 Solid Smart

7 0.3302 Sparse-high density Basic

8 0.3302 Sparse-high density Smart
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this machine is Catalyst EX 4.4. With reference to this software, detailed
description about printer parameters with appropriate figures is given below
(Catalyst EX 4.4 software manual):

1. Layer thickness: Layer thickness is a measure of the height of each successive
layer of material in AM or 3D printing process. The number of layers required to
create a part determines the build time required. The thinner the layers, the
longer it takes to produce a part of a given height. It is the thickness of layers of
material deposited by nozzle and depends on nozzle type. For this study,
FDM SE plus 3D printer is used which has two settings of layer thickness, viz.
0.254 and 0.3302 mm.

2. Build pattern: Build pattern sometimes called as part interior style is an
important parameter. Build pattern influences some important characteristics of
prototypes like strength, weight, material consumption build time, etc. 3D
printer has three build patterns namely solid, sparse-high density and sparse-low
density. Some important features of each pattern are given below:

a. Solid: This pattern has dense fill. There is no gap between adjacent rasters
and rasters run perpendicular to those on the preceding layer. For this pat-
tern, model material consumption is higher. Also, it takes longer time to
build the part than other patterns. Figure 1 shows solid build pattern.

b. Sparse-Low density: This pattern gives hollow interior with internal lattice
for structural rigidity. Large air gaps will be there between rasters and there
will be unidirectional rasters on each layer. The interior will be
‘honeycombed/hatched’. This pattern results in lowest model material con-
sumption and shortest build time. Figure 2 illustrates sparse-low density
build style.

c. Sparse-High density: This interior style is default and is widely applied
because of lesser build times, reduced material usage and reduction of the
probability of part curl for geometries with higher mass. This pattern also
gives hollow interior with internal lattice for structural rigidity. It consumes
slightly more model material and takes slightly longer time for building as
compared to sparse-low density. Figure 3 illustrates sparse-high density
build style.

Fig. 1 Solid build pattern

148 S. Vinodh and P. Shinde



3. Fill pattern: Fill pattern also can be taken as support style. Selection of fill
pattern is important as it determines the build time required for the model. Part
supports are temporary structures generated during modelling or production
phase in order to enable overhang type features. Three important fill patterns are
basic, smart and surround and their features are as follows:

a. Basic pattern: Basic support style is the standard raster pattern support
structure. It uses a consistent, narrow spacing between support raster tool-
paths. This is suitable for all parts and is the default for builds using
breakaway support materials. Figure 4 illustrates the basic fill pattern.

b. Surround pattern: This support style encloses the entire model with support
material. This style of supports is useful for tall parts with thin features that
require extra support and stability during build process. Surround supports
require higher build times and to be used only with soluble support material.
Figure 5 shows surround support style.

c. Smart pattern: This support style reduces the usage of support material,
minimizes build time and enhances support removability for many parts.
This style is the default style for builds using soluble supports. SMART
supports can be effectively used as it reduces build time up to 14% and also
reduces material consumption up to 40%. SMART supports are compatible
for almost all parts, and those with large support regions. Figure 6 shows
smart support style.

Fig. 2 Sparse-low density
build pattern

Fig. 3 Sparse-high density
build pattern
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3.2 Selection of Response Parameters

Nowadays, FDM is considered as a potential solution for manufacturing of plastic
components in batch size. This process is not only considered for making proto-
types or models for visualization and testing but also to make final products. Apart
from commercial and customized products, implants manufactured by this process
are being used in many of the biological and biomedical applications. To make this

Fig. 4 Basic support style

Fig. 5 Surround support
style

Fig. 6 Smart support style
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process more environment-friendly and cost-efficient, it is essential to consider
some critical parameters of FDM printers. Following response parameters are taken
in this study:

a. Build time: One of the most important applications of FDM process is making
prototypes for either design visualization or testing. FDM can be taken as most
effective process for making prototypes rather than any other conventional
process. Therefore, attention must be given to reduce the cost of prototyping.
FDM process mainly influences with its build time. In order to make this process
cost efficient, build time needs to be reduced.

b. Surface roughness: FDM parts in some cases are considered as final products
and are being used directly. Therefore, parameters like surface finish and part
interior properties are important factors to consider.

FDM printer mostly comes with different parameter settings. These printers
consist of some critical parameters which directly influence the parts manufactured
by this process. Input parameters like layer thickness and part orientation directly
affect part surface finish and part strength. In order to take full advantage of FDM
process, these input parameters need to be optimized in order to get good part
quality. In this study, MOORA method is used to solve optimization problem as
discussed in Sect. 4.

4 MOORA Method

MOORA method considers all attributes with their relative importance, and pro-
vides an effective assessment of the alternatives. This procedure is computationally
simple, logical and robust which can concurrently include any number of quanti-
tative and qualitative selection attributes. As it is based on simple ratio analysis, it
has the least amount of mathematical calculations and is useful for practitioners
also. Also, computation procedure is not influenced by the addition of any
parameter.

Fig. 7 Tensile specimens
built using FDM 3D printer
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Steps in MOORA method includes the following:

Step 1 The first step is to recognize the relevant evaluation attributes.
Step 2 A decision matrix is formulated which depicts the performance of different

alternatives with reference to different criteria. The data can be represented
as matrix X.

X ¼
x11 x12 . . . . . . . . . . . . x1n
x21 x22 . . . . . . . . . . . . x2n
..
. ..

. ..
.

xm1 xm2 . . . . . . . . . . . . xmn

��������

��������
ð1Þ

where xij in above equation is measure of ith alternative on jth attribute,
m and n denote the number of alternatives attributes respectively.

Step 3 The next step is to develop a ratio system. In this step, each performance
on an attribute is compared to denominator which is representative for all
alternatives pertaining to that attribute. Brauers et al. (2008) mentioned
different ratio systems (Mandal and Sarkar 2012) and mentioned that for
this denominator, the best alternative is square root of sum of squares of
each alternative per attribute. Ratio is given by:

Xa
ij ¼ Xij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼0
X2
ij

q
ðj ¼ 1; 2; . . . nÞ ð2Þ

where xij denote dimensionless number which pertains to the interval [0, 1]
indicating the normalized values of ith alternative on jth attribute.

Step 4 These normalizes performances are summed for maximization (for bene-
ficial attributes) and subtracted for minimization (for non-beneficial attri-
butes). Then optimization problem is:

Yi ¼
Xg
j¼1

Xa
ij �

Xn
j¼gþ 1

Xa
ij ð3Þ

where g denotes number of attributes to be maximized, (n − g) denote
number of attributes to be minimized, and Yi denotes normalized
assessment value of ith alternative with reference to all the attributes.

Step 5 Yi values can be positive or negative depending on totals of its maxima
(beneficial attributes) and minima (non-beneficial attributes) in decision
matrix (Manikandan et al. 2015). Final preferences are indicted by ordinal
ranking of Yi values. Thus, best choice possesses highest value of Yi while
worst choice possesses lowest value of Yi. In this study, MOORA method
is used for optimization. To get more accurate results, fuzzy evaluation
methods can be used which deals with subjectivity and vagueness asso-
ciated with data.

Application of MOORA method for optimization problem is shown in Sect. 5.
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5 Optimization of Process Parameters

MOORA method is used for selecting optimized process parameters of FDM 3D
printer. Parameters associated with quality of part were build time and surface
roughness as depicted in Table 3. The input parameters considered are layer
thickness, build pattern and fill pattern. In this study, major quality characteristics
examined are surface roughness of parts. Quality of parts is good with lower surface
roughness values. Also, parts which require lower build time are considered as
cost-effective parts. Therefore, both surface roughness and build time correspond to
lower-the-better (LB) criterion. The selected response parameters were widely
applied in prior research studies (Thrimurthulu et al. 2004; Choi and Samavedam
2002). The surface roughness was measured using Mitutoyo SURF TEST SJ-301
tester. The measurement was taken in the middle of gauge length of the tensile
specimen. Table 3 shows objective data obtained from experimental trials. Table 4
shows normalized assessment values of alternatives with reference to attributes, as
calculated using Eq. (2).

Further, Eq. (3) has been applied to each reading and the normalized assessment
scores (Yi) of all alternatives with reference to considered attributes have been
calculated. To calculate Yi values, both build time and surface roughness are taken
as non-beneficial attribute (lower values are desirable in both cases). Ranks are
given according to descending assessment values and specimen having rank 1 is
considered to be built with best setting of process parameters. Table 4 shows
rankings of MOORA method based computations which suggest that optimum
values of process parameters are layer thickness as 0.3302 mm, build pattern as
Solid and fill pattern as Smart.

Table 3 Objective data

Experiment
No.

Process parameters Build
time
(min)

Surface
roughness (Ra)
(μm)

Layer thickness
(mm)

Build pattern Fill
pattern

1 0.2540 Solid Basic 7 10.48

2 0.2540 Solid Smart 6 9.70

3 0.2540 Sparse-high
density

Basic 6 12.09

4 0.2540 Sparse-high
density

Smart 6 9.76

5 0.3302 Solid Basic 6 8.73

6 0.3302 Solid Smart 5 4.29

7 0.3302 Sparse-high
density

Basic 5 6.43

8 0.3302 Sparse-high
density

Smart 5 5.07
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6 Comparative Analysis of MOORA Results
Using TOPSIS

In order to verify the ranks obtained using MOORA method, TOPSIS method is
used. Ranks obtained using both the methods were compared in order to derive
appropriate inferences with multiple input characteristics.

TOPSIS method

TOPSIS is a Multi-Criteria Decision-Making (MCDM) technique used to decide
preference order. This method is called ‘Technique for order preference by simi-
larity to ideal solution’ which was developed by Yoon and Hwang in 1981 (Hwang
and Yoon 1981). Preference order is decided based on the closest alternative to the
ideal solution. In this method, alternatives are graded based on the closeness to the
ideal solution. The alternative which is nearer to the ideal solution is assigned the
highest grade. This method follows certain steps described as below:

Step 1 Normalization of data
In this step, experimental data is being normalized in order to compare the
parameters. Normalized values of each parameter are obtained using the
following equation:

Nij ¼ pijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 p

2
ij

q ð4Þ

where i = 1…m and j = 1…n. pij represents the actual value of the ith
value of jth experiment number and Nij represents the corresponding
normalized value.

Step 2 Computation of weighted normalized matrix

Table 4 Results of multi-objective analysis (normalized assessment)

Experiment
No.

Squared values Ratio Normalized
assessment
value (Yi)

Rank

Build time Surface
roughness

Build
time

Surface
roughness

1 49 109.83 0.4276 0.4254 −0.8530 7

2 36 94.09 0.3665 0.3938 −0.7603 5

3 36 146.16 0.3665 0.4908 −0.8573 8

4 36 95.25 0.3665 0.3962 −0.7627 6

5 36 76.21 0.3665 0.3544 −0.7209 4

6 25 18.40 0.3054 0.1741 −0.4795 1

7 25 41.34 0.3054 0.2610 −0.5664 3

8 25 25.70 0.3054 0.2058 −0.5112 2

√268 = 16.37 √606.98 = 24.63
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After normalizing the data, weights associated with each parameter are
determined. Weighted normalized matrix is obtained by multiplying nor-
malized value with corresponding weight. It is given by;

Rij ¼ Wi � Nij ð5Þ

where Wi represents the weights of respective parameters.
Step 3 Computation of positive ideal solution (PIS) and negative ideal solution

(NIS)
Based on the objective, values of PIS and NIS are decided. If objective is
maximization of parameters, then maximum value among each parameter
obtained from weighted normalized matrix is taken as PIS (I+) and mini-
mum value among each parameter obtained from weighted normalized
matrix is taken as NIS (I−). If the objective is minimization, then minimum
value among each parameter obtained from weighted normalized matrix is
taken as PIS (I+) and maximum value among each parameter obtained from
weighted normalized matrix is taken as NIS (I−).
PIS and NIS is calculated using the following equations:

I þ ¼ Pþ
1 ;Pþ

2 ;Pþ
3 ;Pþ

4 . . .
� �

maximum values ð6Þ

I� ¼ P�
1 ;P

�
2 ;P

�
3 ;P

�
4 . . .

� �
minimum values ð7Þ

Step 4 Computation of distance between PIS and NIS

Sþ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

rij � Pþ
i

� �2s
ð8Þ

S�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

rij � P�
i

� �2s
ð9Þ

where Si
+ is distance between PIS and normalized values and Si

− is distance
between NIS and normalized values.

Step 5 Computation of closeness coefficient
Closeness Coefficient (CCi) is calculated using following equation:

CCi ¼ S�i
Sþ
i þ S�i

ð10Þ

Based on closeness coefficient value, ranking of each alternative is
obtained. Highest value of closeness coefficient gives the best choice of
alternative. Hence, preference order is decided based on CCi values.
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Application of TOPSIS method and results

TOPSIS method is applied in this study to compare results obtained using MOORA
method. Ranks obtained by MOORA method are compared with TOPSIS ranks and
results are validated. In this study, two response parameters are taken such as build
time and surface roughness. Objective of this study is to minimize both response
parameters and obtain optimal settings. According to TOPSIS method, these two
parameters are normalized using Eq. (4). After normalization of data, weighted
normalized matrix is obtained by multiplying weights of corresponding parameters
with normalized value. In this study, weight for both build time and surface
roughness are being taken equal to 0.5. Weighted normalized matrix is obtained
using Eq. (5). Now PIS and NIS are obtained using Eqs. (8) and (9). In this study,
Pþ

Roughness
¼ 0:08706; Pþ

Buildtime ¼ 0:1527; P�
Roughness

¼ 0:2454; P�
Buildtime ¼ 0:2138.

Finally, closeness coefficient is calculated using Eq. (10). All results are summa-
rized in Table 5. Table 5 shows closeness coefficient values. Based on this value,
preference order is decided and the best alternative is obtained.

As shown in Table 5, first rank is obtained for experimental run 6 according to
TOPSIS method. As shown in Table 4, first rank was obtained for experimental run
6 using MOORA method. Results of MOORA and TOPSIS methods are summa-
rized in Table 6. In MOORA method, ranks are given according to descending
order of ratios, i.e. first rank is given for the highest ratio. Similarly, in TOPSIS
method, ranks are given based on descending order of CCi values, i.e. highest CCi

value possesses first rank. Table 6 shows comparative ranking of MOORA and
TOPSIS methods. It is clear from the table that all rankings for experimental runs
using both the methods are found to be similar.

Table 5 Results obtained using TOPSIS method

Experiment
No.

Normalized Weighted normalized Si
+ Si

− CCi Rank

Build
time

Surface
roughness

Build
time

Surface
roughness

1 0.4276 0.4254 0.2138 0.2127 0.1397 0.0327 0.1897 7

2 0.3665 0.3937 0.1833 0.1969 0.114 0.0573 0.3345 5

3 0.3665 0.4907 0.1833 0.2454 0.1612 0.0305 0.1591 8

4 0.3665 0.3961 0.1833 0.1981 0.1151 0.0563 0.3285 6

5 0.3665 0.3543 0.1833 0.1772 0.0951 0.0747 0.4393 4

6 0.3054 0.1741 0.1527 0.0871 0 0.1697 1 1

7 0.3054 0.261 0.1527 0.1305 0.0434 0.1301 0.7499 3

8 0.3054 0.2058 0.1527 0.1029 0.0158 0.155 0.9075 2
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7 Results and Discussions

In order to evaluate surface roughness and build time, each specimen is manu-
factured according to ISO standards. For each experiment, surface roughness and
build time were measured. Build time was recorded at the time of each experimental
run while surface roughness was measured with Mitutoyo SURF TEST SJ-301
tester. Table 3 shows the results of surface roughness test and build time readings
under various settings of process parameters. MOORA method is applied to get the
optimum setting of process parameters. In this study, MOORA method will be used
for parametric optimization as this method has easy intermediate steps for calcu-
lation (Gadakh 2011). TOPSIS method is best suitable method to get preference
order for alternatives (Wang et al. 2007). TOPSIS method is used to validate the
results obtained using MOORA method. Table 4 shows the result of
multi-objective analysis after MOORA method based computations. Also, these
results are compared using TOPSIS method. As observed from Table 6, it is clear
that ranks obtained by both the methods are similar for all experimental runs. The
effect of printing parameters on surface roughness and build time has been studied.
Results of analysis are as follows:

(a) Surface roughness: As observed from Table 3, Ra value which is the most
widely used parameter to indicate the mean surface roughness is measured for
each specimen. For the same layer thickness and build pattern, Ra value is
lower for SMART fill pattern. However, for same values of layer thickness and
fill pattern, Ra value is higher in case of SPARSE build style. Generally, as
layer thickness increases surface roughness value decreases (Anitha et al.
2001).

(b) Build time: As inferred from Table 3, as layer thickness values increases, build
time decreases. Also it is clear from the table that there is no significant effect of
build pattern on build time. Although for SMART fill pattern, build time
readings are lower. As compared to ‘BASIC’ fill pattern, SMART pattern will
minimize the consumption of support material, reducing the build time of part
and improving support removability for many parts.

Table 6 Comparison of
ranks obtained using
MOORA and TOPSIS
methods

Experiment
No.

MOORA
ratio

Rank TOPSIS
CCi

Rank

1 −0.8530 7 0.1897 7

2 −0.7603 5 0.3345 5

3 −0.8573 8 0.1591 8

4 −0.7627 6 0.3285 6

5 −0.7209 4 0.4393 4

6 −0.4795 1 1 1

7 −0.5664 3 0.7499 3

8 −0.5112 2 0.9075 2
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8 Conclusions

The aim of this study was to carry out process parameters optimization for FDM
based 3D printing process. MOORA method was applied as optimization method in
this study. According to results, the following conclusions are drawn:

• Layer thickness and fill pattern are proved to be vital factors influencing part
quality. It was found that build pattern and fill pattern are significant in
influencing Ra value. Surface finish obtained at sparse-high density was
obtained poor. There is a significant decrease in Ra value for smart fill pattern.

• Also, layer thickness was found to be an influencing parameter affecting build
time. Build time was lower for higher values of layer thickness. Build time for
SPARSE build style was obtained lower because it has large air gap between
rasters and requires shortest build time.

• Under same layer thickness and build pattern, build time got decreased for smart
fill pattern. Using MCDM method, optimum parameter setting for FDM printer
was found as layer thickness 0.3302 mm, build pattern solid and fill pattern
smart which gives lowest build time of 5 min and lower surface roughness value
as 4.29 μm.

• Also, after comparison of MOORA method with TOPSIS method, it was
observed that same ranks are obtained for all experimental runs. Hence optimal
parameter settings obtained using both the methods is same i.e. experimental run
6 (Layer thickness—0.3302 mm; Build pattern—Solid; Fill pattern—Smart).

• In the present work, strength of the built parts was not measured. In future,
strength could be measured. Also, tensile specimen is being used in the present
work and in future, other types of specimen also could be considered. Also, in
future, more comprehensive data with varying conditions could be studied.
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