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Abstract
Dengue viruses (DENV) are mosquito-borne 
positive sense RNA viruses in the family 
Flaviviridae. The four serotypes of DENV 
(DENV1, DENV2, DENV3, DENV4) are 
widely distributed and it is estimated over a 
third of the world’s population is at risk of infec-
tion [4]. While the majority of infections are 
asymptomatic, DENV infection can cause a 
spectrum of disease, from mild flu-like symp-
toms, to the more severe DENV hemorrhagic 
fever and shock syndrome [24]. Over the past 
20  years, there have been intense efforts to 
develop a tetravalent live-attenuated DENV 
vaccine [36]. The process of vaccine develop-
ment has been largely empirical, because effec-
tive live attenuated vaccines have been 
developed for other flaviviruses like yellow 
fever and Japanese encephalitis viruses. 
However, recent results from phase III live 

attenuated DENV vaccine efficacy trials are 
mixed with evidence for efficacy in some popu-
lations but not others [20]. In light of unexpected 
results from DENV vaccine trials, in this chap-
ter we will review recent discoveries about the 
human antibody response to natural DENV 
infection and discuss the relevance of this work 
to understanding vaccine performance.
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5.1  DENV Structure

The DENV genome encodes a single open read-
ing frame that is translated into a polyprotein. 
Viral and host proteases cleave the polyprotein 
into three structural and seven non-structural 
viral proteins. The structural envelope protein (E) 
contains three domains, domain I (EDI), domain 
II (EDII) and domain III (EDIII) [45]. Two enve-
lope monomers come together in a head-to-tail 
orientation, forming the E dimer (Fig. 5.1). Three 
E dimers form the dimer raft, and 30 dimer rafts 
cover the surface of the DENV virion in icosahe-
dral orientation with both threefold and fivefold 
axes of symmetry. Domain II contains the hydro-
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phobic fusion peptide, which mediates fusion 
between the virus and host cell membrane. To 
prevent fusion with the host membrane during 
egress from infected cells, the pre-membrane 
(prM) protein covers the fusion loop. As the virus 
moves through the endosome, pH changes trig-
gers the host protease furin to cleave the prM pro-
tein [60]. As the virus is released from cells, 
cleaved prM dissociates from the virion. This 
process is inefficient however, leaving a hetero-
geneous population of fully mature (no prM pres-
ent), fully immature (containing prM), and 
partially mature virions [59]. While cell culture 
grown virus shows a spectrum of maturation 
states, it is now clear that the overall maturation 
state of virions can vary between strains and even 
between different preparations of the same strain 
[39]. As we discuss later, maturation state can 
influence the ability of some antibodies to bind 
and neutralize DENV and other flaviviruses.

5.2  Antibody Response to DENV 
Infection

The basic kinetics of the DENV specific Ab 
response, the timing of IgM and IgG Ab develop-
ment and the timing of neutralizing antibody 
(Nab) development have been well understood 
for many years [27, 46, 61]. In brief, individuals 
with no prior immunity to DENVs mount a pri-

mary antibody response that includes a specific 
IgM response followed by a durable IgG 
response. The initial IgG response contains dif-
ferent types of antibodies, including serotype 
cross-reactive neutralizing antibodies, serotype 
cross-reactive non-neutralizing antibodies, and 
serotype-specific neutralizing antibodies [6]. The 
serotype cross-reactive neutralizing antibodies 
may provide immediate protection to subsequent 
infection with any of the DENV serotypes, but 
these antibodies wane over the course of a year. 
DENV serotype-specific neutralizing antibodies 
and some cross-reactive poorly neutralizing anti-
bodies are maintained for decades following 
infection and appear to protect against subse-
quent re-infection with the same serotype, but do 
not protect against the other serotypes (Fig. 5.2). 
Conversely, cross-reactive antibodies not only 
are non-protective, but can enhance subsequent 
infection via a mechanism known as antibody 
dependent enhancement (ADE) whereby non- 
neutralizing antibodies bind the virus and the 
antibody-virus complex is taken up by cells via 
FC-receptor mediated endocytosis [25]. Although 
ADE is poorly understood, the response is impor-
tant in natural infection and vaccine development 
but will not be discussed in this review. Readers 
are recommended to refer to these earlier reviews 
for additional information on ADE and DENV 
[23, 25, 26].

Fig. 5.1 Structure of DENV. (a) Linear schematic of 
DENV envelope (E) protein. DENV E protein dimer com-
posed of two monomers with domains I, II and III colored 

in red, yellow and blue respectively. (b) DENV virion 
structure composed of 30 rafts, each containing three E 
dimers
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5.3  Methods to Study 
the Molecular Specificity 
of Human Antibodies 
to DENVs

A variety of techniques have been used to map 
the viral epitopes targeted by polyclonal antibod-
ies in human immune sera and monoclonal anti-
bodies (MAbs) isolated from dengue patients 
(Fig. 5.3). Traditionally, to study DENV-specific 
MAbs, peripheral blood B-cells from DENV 
immune donors are transformed and clones 
secreting DENV-reactive MAbs are fused with 
myeloma cell lines to generate human hybrid-
omas producing the MAb of interest [34, 48]. 
Recent advances in single-cell-sequencing has 
allowed individual IgG heavy and light chains 
from the same cell to be sequenced, cloned and 
recombinantly expressed [44, 49]. The properties 
and specificity of these MAbs can then be deter-
mined using binding assays to recombinant 
DENV proteins (rE and rEDIII) and whole viri-
ons, and neutralization assays, as well as by solv-

ing high-resolution structures of the MAb bound 
to viral antigen. Once a putative MAb epitope has 
been identified, recombinant viruses with point 
mutations at the region of interest can be used to 
confirm and further refine the epitope. 
Importantly, these studies have revealed that 
most DENV neutralizing epitopes are created by 
presentation of discontinuous residues that are 
brought together in tertiary and quaternary struc-
tures. Additionally, our group has shown that the 
discontinuous residues that comprise these com-
plex epitopes can be transplanted to a different 
serotype to generate chimeric DENVs that 
encode neutralizing epitopes from multiple 
DENV serotypes, and which can be used to map 
and confirm the binding and neutralization epit-
opes of individuals MAbs [17, 38].

Polyclonal sera contains a complex mixture of 
DENV-specific IgG antibodies, those that are neu-
tralizing or non-neutralizing, and those that are 
specific to a serotype or cross-reactive to multiple 
serotypes (Fig. 5.2). Depletion assays can be used 
to determine the percentage of neutralizing sero-
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Fig. 5.2 Antibody response following DENV infec-
tion. Following primary DENV2 infection, there is an IgG 
response composed of neutralizing DENV2 serotype- 
specific antibodies, a transient population of cross- reactive 
neutralizing antibodies, and long-lived cross-reactive non- 

neutralizing antibodies. After a secondary infection, in 
this case with DENV3, the cross-reactive non- neutralizing 
antibodies become strongly neutralizing. It is also possi-
ble to generate a new population of neutralizing serotype- 
specific antibodies to the second infecting serotype
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Fig. 5.3 Methods to dissect DENV antibody response. 
(a) Human DENV antibodies can be studied using a vari-
ety of approaches. PBMCs from a DENV immune donor 
can be EBV-transformed to generate MAb producing 
hybridomas, or antibody DNA sequences can be single- 
cell sequenced, cloned and recombinant expressed to gen-
erate MAbs. DENV polyclonal immune sera can be 
depleted of different populations of antibodies using 
beads coated with DENV antigens to determine the rela-
tive importance and neutralization capacity of these dif-
ferent populations. For example, a DENV2 immune sera 
containing polyclonal Abs (PAbs) can be depleted of all 
DENV cross-reactive antibodies by incubating with beads 

adsorbed with DENV1, DENV3, and DENV4 antigen, 
leaving only DENV2 serotype-specific antibodies remain-
ing (heterotypic depletion). Conversely, all DENV anti-
bodies can be depleted using DENV2 antigen (homotypic 
antigen). (b) To map the binding and neutralizing epitopes 
of these MAbs and PAbs, they can be evaluated for their 
ability to bind recombinant E domain III (rEDIII), recom-
binant E (rE), whole DENV, and chimeric viruses contain-
ing transplanted epitopes of multiple DENV serotypes 
(e.g. rDENV1/3 contains epitopes from both DENV1 and 
DENV3). These MAbs and PAbs can also be evaluated for 
their ability to neutralize these DENV and chimeric 
rDENV
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type-specific antibodies to neutralizing cross-reac-
tive antibodies (Fig. 5.3a). To remove cross-reactive 
Abs, primary infection sera can be incubated with 
beads coated with a heterologous serotype (e.g. a 
primary DENV2 sera can be incubated with 
DENV1/DENV3/DENV4-coated beads). Cross-
reactive Abs will bind to the virus on the beads and 
be pelleted out, leaving only DENV2 serotype-
specific Abs. Neutralization assays using depleted 
sera allow one to calculate the fraction of neutral-
ization due to serotype-specific Abs, relative to the 
total neutralization  coming from both serotype-
specific and cross-reactive Abs [30, 41, 43]. These 
depletion techniques, in addition to use of epitope 
transplant chimeric rDENVs described above, has 
allowed us to study the amount of polyclonal anti-
bodies targeting epitopes represented by individ-
ual MAbs [17, 41].

5.4  Molecular Specificity 
of Neutralizing MAbs 
from Primary Cases

The most striking feature of primary DENV 
infections is the rapid clearance of the virus and 
the maintenance of serotype-specific neutralizing 
Abs in the serum in most individuals for decades 
if not longer. Recent studies have only begun to 

define the molecular specificity of human B-cells 
and antibodies responsible for durable type- 
specific neutralization and protection. The enve-
lope protein is the major antigenic protein and the 
majority of DENV-specific antibodies target E 
[45]. Traditionally human monoclonal antibodies 
(MAbs) have been screened based on their ability 
to bind recombinant envelope monomeric protein 
(rE). This has biased our study of MAbs to those 
that recognize epitopes contained within a single 
E protein. Several groups have recently used 
intact dengue virions as antigens in MAb screens 
[8, 11]. These studies have identified antibodies 
from each serotype that recognize unique confor-
mations of the E monomer on the viral surface or 
quaternary structure epitopes that span different 
E proteins (dimers and rafts) on the viral enve-
lope (Fig.  5.4). Additionally, it has been found 
that while antibodies using simple epitopes can 
be neutralizing, it is the antibodies recognizing 
complex epitopes that are ultimately responsible 
for polyclonal neutralization [9, 17, 57]. 
Antibodies recognizing quaternary epitopes are 
not unique to DENV; West Nile Virus (WNV) 
and Zika Virus (ZIKV) infection have also been 
shown to generate human MAbs recognizing 
similar complex epitopes [28, 31, 52, 58].

Fig. 5.4 Epitopes 
recognized by DENV 
serotype-specific 
human neutralizing 
MAbs. Serotype- 
specific neutralizing 
human MAbs isolated 
from primary infections 
recognize different 
quaternary structure 
epitopes displayed on 
the viral envelope. Note 
that many MAb 
footprints span different 
E molecules
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5.5  Differences in Neutralizing 
MAb Epitopes 
Across Serotypes

While the E protein is structurally similar 
between DENV serotypes (~80% conservation of 
amino acids), the location of type-specific epit-
opes targeted by human antibodies appear to be 
different between serotypes (Fig.  5.4). Unlike 
anti-DENV mouse MAbs that predominantly tar-
get EDIII [19, 53], many human MAbs recognize 
EDI, EDII, and the EDI/II hinge region. For 
example, DENV1 type-specific human MAbs 
1F4 and 14C10 recognize epitopes centered on 
EDI [14, 54]. The 14C10 epitope includes amino 
acids on EDI and EDIII on the adjacent dimer. 
Interestingly, the DENV1 14C10 epitope is quite 
similar to an epitope on WNV recognized by 
human MAb CR4354 [31]. The DENV3 MAb 
5J7 targets an epitope centered around the EDI/II 
hinge region and the footprint of this epitope 
includes amino acids from three different E mol-
ecules within a single raft [16]. Recent work has 
identified human DENV4 MAbs that target epit-
opes near the EDI/II hinge although further stud-
ies are required to precisely map the DENV4 
epitopes [41]. Interestingly, DENV2 MAbs 
appear to use an epitope distinct to the EDI/EDII 
region, instead centering on EDIII [15, 17]. Our 
understanding of immunodominant epitopes for 
each serotype is informed by only a handful of 
monoclonal antibodies from a few immune indi-
viduals. To fully define the boundaries of the 
polyclonal neutralizing epitopes against each 
serotype, additional antibodies from more indi-
viduals will need to be studied.

5.6  Cryptic Epitopes

The majority of human epitopes studied are pres-
ent on the surface of the intact virion. Some stud-
ies have identified mouse MAbs that target 
cryptic epitopes not readily accessible on the sur-
face of the virus. However, at elevated tempera-
ture E proteins on the viral surface can flex/move 
and these cryptic epitopes are transiently dis-
played, allowing antibody binding and neutral-

ization [13]. Recent studies suggest that there are 
antibodies present in human immune sera that 
also target these cryptic epitopes, potentially 
allowing the virus to be neutralized when it is 
under specific conditions exposing these epitopes 
[13]. Further studies are needed to evaluate the 
importance of cryptic epitopes in human anti-
body neutralization and protective immunity.

5.7  Other Flaviviruses – Zika 
Virus MAbs

With the emergence of Zika virus (ZIKV), 
approaches developed for DENV have been 
extended to isolate MAbs and map the human anti-
body response to ZIKV [28, 52, 58]. Multiple 
groups have generated human ZIKV MAbs. 
Similarly to DENV, the strongest neutralizing 
MAbs target quaternary epitopes only present on 
the intact ZIKV virion. These quaternary ZIKV epi-
topes are similar to previously identified quaternary 
DENV epitopes that are centered around the EDI/II 
hinge region, span across E monomers within the 
dimer, or span across dimers [28, 52, 58].

5.8  Mapping the Molecular 
Specificity of the Polyclonal 
Serum Neutralizing 
Antibody Response

While MAbs are isolated or generated from mem-
ory B-cells, circulating polyclonal antibodies come 
from plasma cells [33]. The memory B-cell derived 
human MAbs can be used as tools to interrogate 
the properties and specificity of the more complex 
polyclonal serum antibody response (Fig.  5.5). 
Work by multiple groups have shown that individ-
ual MAbs can be representative of the anti-DENV 
B-cell repertoire, polyclonal Abs from the same 
individual, and polyclonal Abs across other natu-
rally infected and vaccinated individuals, confirm-
ing the importance of studying individual 
monoclonals [17, 22, 41]. Importantly, depletion 
assays have revealed that after primary DENV 
infections, the majority of polyclonal neutraliza-
tion comes from serotype-specific antibodies, not 
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cross-reactive ones [30, 41, 43]. Additionally, we 
have found that epitopes defined by individual 
MAbs that are complex and quaternary, are repre-
sentative of the polyclonal epitopes targeted by 
neutralizing serotype- specific antibodies [9, 57]. 
With the rapid emergence of ZIKV, similar tech-
niques as described above were applied to dissect-
ing the antibody response to ZIKV infection. 
Multiple groups have found that strongly neutral-
izing ZIKV MAbs target complex quaternary epit-
opes [28, 52, 58]. Additional work using depletion 
assays, has identified that primary ZIKV infections 
can results in ZIKV specific Abs, despite popula-
tions of Abs that cross-neutralize DENV [5].

5.9  Molecular Specificity 
of Neutralizing Antibodies 
Following Secondary DENV 
Infection

Individuals experiencing secondary DENV infec-
tions with a new serotype develop a neutralizing 
and protective antibody response that is funda-
mentally different from a primary infection- 
induced response. People with known sequential 
infections with two different DENV serotypes 

have type-specific antibodies to serotypes of 
infection and a new population of durable 
serotype- cross neutralizing antibodies that are 
also effective against serotypes not encountered 
by the person [7]. Human cohort studies in 
dengue- endemic countries have also established 
that tertiary infections are nearly always mild or 
inapparent, implicating a protective role for these 
broadly cross-neutralizing antibodies that develop 
after a second DENV infection [42]. Figure 5.6 
presents a model to explain the evolving antibody 
response following sequential DENV infections 
with different serotypes. The model is based on 
the premise that low affinity DENV cross-reactive 
memory B-cells derived from primary infections 
undergo antibody somatic hypermutation and 
each subsequent DENV exposure selects and 
expands rare affinity matured clones with greater 
neutralization breadth and potency [43]. The 
model is supported by recent studies demonstrat-
ing that serotype cross-reactive antibodies derived 
from secondary infections had stronger neutral-
ization potencies and higher binding avidities 
than those derived from patients with primary 
infections [10, 37, 55, 56, 62].

While we know a lot about epitopes targeted 
by DENV serotype-specific neutralizing and pro-

DENV immune/vaccinated
population Polyclonal

DENV immunity 

PBMCs 

DENV MAbs

Fig. 5.5 From MAbs to polyclonal serum Abs. 
Complex host generic diversity, exposure history, and 
immune differences can make it challenging to study 
DENV polyclonal antibody responses across a popula-
tion. Studying DENV antibody immunity in a single indi-
vidual can simplify these analyses, however there is still 
the polyclonal nature of the adaptive immune response. 

Conversely, we can characterize the properties of indi-
vidual MAbs from DENV immune donors. Information 
learned from MAbs can then be used to inform study of 
the B-cell repertoire from that, and other donors. 
Additionally, it can be determined whether the individual 
MAbs represent the polyclonal antibodies in that donor, 
and in a larger DENV immune population
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Fig. 5.6 Model of B-cell maturation following sequen-
tial DENV infections. With each successive DENV infec-
tion, the ratio of serotype-specific (TS) and cross- reactive 
(CR) antibodies that contribute to DENV neutralization 
changes. During a primary infection (DENV2  in this 
example), dengue-specific naïve B-cells are activated and 
these cells give rise to both memory B-cells (MBCs) and 
antibody secreting long lived plasma cells (LLPCs). This 
primary response is dominated MBC and LLPCs clones 
producing low affinity, weakly neutralizing serotype CR 
antibodies. The primary response also contains rare MBC 
and LLPCs producing TS antibodies that strongly neutral-
ize DENV2. Following a secondary infection with a new 
serotype (DENV3  in this example), the overall DENV-
specific B-cell response will be dominated by the activa-
tion and expansion of DENV2 and 3 cross- reactive MBCs 
induced by the primary infection. MBCs producing CR 

antibodies that bind to the second infecting serotype with 
high affinity will be preferentially activated. These acti-
vated cells will reenter germinal centers and undergo fur-
ther rounds of somatic hypermutation. CR B-cells with 
high affinity for the second serotype will be selectively 
expanded to give rise to cross-reactive MBC and LLPCs 
that strongly cross-neutralize multiple serotypes. In 
Fig.  5.6., this increase in affinity and neutralization is 
depicted by an increase in the color gradient (light pink to 
bright pink) of CR B-cells. Following a tertiary infection 
(DENV4 in this example), this process is repeated again 
and results in a population of CR MBCs and LLPCs that 
dominate the neutralizing antibody response. While the 
B-cell clones producing TS strongly neutralizing antibod-
ies are also likely to be maintained through each successive 
round of infection, the TS response will account for only a 
small fraction of the total neutralizing response

tective antibodies, less is known about the targets 
of durable serotype-cross neutralizing antibod-
ies. Several cross-neutralizing human MAbs that 
bind to an epitope near the bc-loop on domain II 
of the E protein monomer have been recently 
described (Fig.  5.7) [50, 55]. Another class of 
serotype cross-reactive and strongly cross- 
neutralizing MAbs, which bind to quaternary 
epitopes on the E homodimer, was recently iso-
lated from acute-phase plasmablasts in the 
peripheral blood of secondary DENV cases [11, 
47]. These MAbs, which have been designated E 
dimer epitope (EDE) antibodies, bind to epitopes 
that span domains I or III of one monomer and 
domain II of the adjacent monomer (Fig. 5.7). It 
is unclear if the strongly cross-neutralizing MAbs 
isolated from acute-phase plasmablasts are main-

tained as MBCs and LLPCs and responsible for 
the durable cross-neutralizing antibodies 
observed in people after recovery from second-
ary infections. Additionally, there are still 
unknowns regarding if the order of infecting 
serotypes is important for the epitopes of strongly 
cross-neutralizing MAbs. The molecular mecha-
nisms leading to the evolution of cross-neutraliz-
ing antibodies from the memory B-cell pool from 
a primary infection are also unclear.

5.10  NS1 and prM MAbs

While E is the major antigenic protein of DENV, 
antibodies are also generated targeting the viral 
proteins NS1 and prM. The host sees prM protein 

E. N. Gallichotte et al.
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in several configurations. As mature viruses are 
released from infected cells, prM protein dissoci-
ates from the virus and is released as an antigen. 
Additionally, immature viruses have prM present 
on their surface, allowing the immune system to 
recognize them as part of the virus. prM antibod-
ies are predominantly non-neutralizing enhanc-
ing antibodies; they allow non-infectious 
immature viruses to be taken up into cells via 
FC-receptor-mediated endocytosis [51].

DENV NS1 protein has many roles depending 
on its interactions and location [1, 40]. NS1 can 
exist as a monomer, dimer or hexamer, and is 
important in viral RNA replication, viral assem-
bly and release, and immune evasion. NS1 is 
secreted from infected cells primarily as a hex-
amer, which can bind to endothelial cells, trigger-
ing hyperpermeability, suggesting a role in the 
vascular leakage seen in severe DENV disease 
[3]. Clinically, levels of circulating NS1 are cor-
related with disease severity [2, 35]. People 
infected with DENV make antibodies directed 
against NS1, but it is unclear if these are an 
important part of the protective immune response, 
or are merely a consequence of high levels of cir-
culating viral antigen [40].

5.11  Mechanisms 
of Neutralization

MAbs can neutralize viruses through a variety of 
mechanisms. MAbs have been shown to neutral-
ize DENV by blocking attachment to host cell 
receptors, binding directly to the fusion-loop, 
binding across E proteins preventing conforma-
tional changes required for fusion, as well as via 
opsonization. Anti-DENV MAbs have been 
shown to neutralize using many of these mecha-
nisms [15, 16, 29, 47]. DENV maturation state 
(amount of prM present) and virus breathing are 
important factors for virus neutralization. A fully 
immature virus (i.e. 180 copies of prM present) is 
non-infectious, and therefore cannot be neutral-
ized, but a partially mature virus, can still be 
infectious [12]. Alternatively, under certain tem-
perature conditions, some DENV strains can 
undergo reversible conformational changes 
where the E proteins expand and contract analo-
gous to “breathing”. These expansion and con-
traction changes can reveal or hide epitopes, 
limiting neutralization by antibodies recognizing 
these epitopes to specific conditions [13, 18, 32, 
63]. While DENV maturation and “breathing” 

Fig. 5.7 EDE and 
other cross-reactive 
epitopes. Envelope 
dimer epitope 1 (EDE1) 
targets EDIII of one 
monomer and spans over 
the fusion loop region of 
EDII of the neighboring 
monomer. EDE2 uses a 
similar epitope, but is 
shifted to also expand 
into EDI of the first 
monomer. Another class 
of cross-reactive 
antibodies targets the 
highly conserved 
bc-loop region of EDII
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have been studied in cell culture systems, the 
importance of these phenomenon in natural 
infection, and therefore the potential impact on 
antibody neutralization, is not well understood.

5.12  Implications for Evaluating 
Antibodies to DENV Live 
Attenuated Vaccines (LAVs)

Recently we have learned important lessons from 
DENV tetravalent vaccine clinical trials. The 
leading tetravalent vaccine had variable efficacy 
depending on DENV serotype and vaccinated 
population [20]. The vaccine had higher efficacy 
in DENV-primed individuals compared to DENV 
naïve individuals who received the vaccine, estab-
lishing the impact of immunological  memory on 
vaccine performance [21]. The population with 
the greatest need for a DENV vaccine is young 
children, the majority of whom will be DENV-
naïve at vaccination. As discussed above, in peo-
ple exposed to primary natural DENV infections, 
the neutralizing and protective antibody response 
is dominated by type-specific antibodies to qua-
ternary epitopes. Therefore, in this population the 
success of tetravalent vaccination is likely to 
require balanced replication of the four vaccine 
viruses leading to type-specific antibodies that 
target quaternary epitopes in each serotype.

As discussed above, secondary DENV infec-
tions result in activation of memory B-cells and 
development and expansion of cross-reactive 
antibodies that broadly neutralize multiple 
DENV serotypes, driven by the sequential infec-
tion and robust replication of two different sero-
types of DENV [43]. A similar mechanism is 
likely to be responsible for the superior perfor-
mance of tetravalent LAVs in DENV-primed 
individuals. In a subject with pre-existing DENV- 
specific MBCs, even unbalanced replication of 
one or two vaccine components is likely to acti-
vate MBCs and expand somatically mutated 
higher-affinity cross-reactive clones with capac-
ity to broadly neutralize multiple serotypes.

Immune correlates of protection and vaccine 
efficacy are urgently needed. For the leading 
DENV vaccine, the mere presence of in vitro 

neutralizing antibodies was not sufficient for pro-
tection because many individuals experienced 
breakthrough infections despite having neutral-
izing antibodies to the breakthrough serotype 
[21]. The lessons we have learned from natural 
infections studies about the molecular specificity 
of human antibodies to DENV infection may also 
lead to more robust correlates of vaccine efficacy 
than mere levels of total neutralizing antibodies 
[36]. Certainly, the reagents and tools are now 
available to interrogate vaccine responses in a 
manner similar to that we have described here for 
natural DENV infections.

 Discussion of Chapter 5  
in Dengue and Zika: Control and 
Antiviral Treatment Strategies

This discussion was held at the 2nd Advanced 
Study Week on Emerging Viral Diseases at Praia 
do Tofo, Mozambique. 
Transcribed by Hilgenfeld R and Vasudevan SG 
(Eds); approved by Dr. Aravinda de Silva.

Félix Rey: So you will be calling to question the 
fact that antibodies against Dengue would 
neutralize Zika?

Aravinda de Silva: No. But what I am saying is 
that in people who have recovered from 
Dengue – when they are in the late convales-
cent stage – they do not have circulating anti-
bodies that neutralize Zika. I think in people 
who have secondary Dengue, when you iso-
late antibodies from their plasmablast, you 
can certainly find monoclonals that cross- 
neutralize Zika or even cross-protective 
against Zika, but it looks like they are not per-
sisting into memory.

Félix Rey: How do you know that?
Aravinda de Silva: So in those people who have 

repeated Dengue infections – when we bleed 
them 6 months out from their infection, there 
is no neutralizing antibody against Zika. And I 
think that even in some of the other studies 
that are coming out to say that Zika and 
Dengue cross-neutralize, many of these stud-
ies have been done with samples within the 
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first 3 or 4  weeks of an acute secondary 
Dengue infection. We know that one of the 
hallmarks of Dengue is that soon after they 
recover from Dengue during the convales-
cence period, there are very high levels of 
cross-neutralizing antibodies. This is even the 
case with primary Dengue infection, where 
we get a lot of cross- neutralizing antibodies 
during the convalescence period. But that is 
transient and it goes down and the response 
becomes more monotypic.

Paul Young: Can I just explore that further, 
because we have known that for a very long 
time. Why does the cross-neutralizing activity 
go down yet the serotype-specificity stays on. 
What is driving it?

Aravinda de Silva: So one of the obvious things 
is that IgM plays a role in cross-neutralization. 
But the second possibility is that there is an 
extrafollicular reaction. These cells are acti-
vated but they don’t get into the germinal cen-
ters and differenciate into plasmablast. They 
make a transcient antibody response but the 
cells do not persist. So a lot of the cross- 
neutralizing antibody is coming from extrafol-
licular reactions.

Paul Young: But why? I’m still a little confused. 
But I understand that’s why it happened. But 
why are those selectively lost?

Aravinda de Silva: Yes. That’s a good question. 
What is it about those epitopes that are getting 
lost, why are type-specific ones being 
maintained?

George Gao: Can we have a big picture for those 
three domains [of the envelope protein]? 
Which domain contributes the most to neutral-
izing antibodies? Can we say that now?

Aravinda de Silva: I think you have to really ask 
that question in the context of primary infec-
tion. In someone who has only had Dengue 
once or Zika once and no other flavivirus 
exposures, then what epitope is responsible 
for durable neutralization? We find in these 
cases there are defined epitopes responsible 
and they are the quaternary structure type- 
specific epitopes. But in someone with 
repeated infections – at least repeated Dengue 
infections  – it could be ADE antibodies, it 

could be other antibodies that we haven’t dis-
covered. But after natural infection, I don’t 
think that there is evidence that there are these 
long-lasting memory responses that are cross- 
neutralizing multiple flaviviruses.

Félix Rey: You would say that if it does not bind 
recombinant E protein, it has to bind some 
super-organization between dimers or some-
thing, but the recombinant E is monomeric 
unless you have it at a very high concentration.

Aravinda de Silva: Yes I agree that it could be 
binding dimers because the recombinant E 
protein test would not pick dimers.
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