
Chapter 3
Integrative Omics for Interactomes

Debangana Chakravorty, Krishnendu Banerjee, and Sudipto Saha

Abstract Single-layer omics provide limited insight, whereas integrated multi-
omics layers allow understanding of their combined influence on the complex
biological process. The integrative omics approach has been initially applied to
cancer research and later used in understanding host-pathogen interactions and
pluripotency regulatory networks in stem cells. Here, different multi-omics layers
along with databases and tools specific for multiple data integration, visualization,
and integrated network modeling are described. In summary, this chapter focuses on
integrative analysis of different multi-omics layers and modeling of interactomes to
identify robust biomarkers and biological processes associated with diseases.
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3.1 Introduction

The initial multi-omics data was generated by The Cancer Genome Atlas (TCGA)
project on different tumors and cancer cell lines. It provided a comprehensive
genomics profiles including genetic mutations, gene expression, microRNA, copy
number, and methylation data of 32 types of human tumors. This genomics dataset
was possible due to the availability of next-generation sequencing (NGS) technology
that provided the complete genome-wide coverage with low cost. After that, the
Clinical Proteomic Tumor Analysis Consortium (CPTAC) used the same TCGA
tumor samples and generated tandem mass spectrometry (MS/MS)-based proteo-
mics data. All these multi-omics data from TCGA and CPTAC projects were
analyzed and stored in LinkedOmics database (Vasaikar et al. 2018). Detailed
proteogenomics analysis was performed in TCGA breast cancer samples, where
functional consequences of somatic mutations were reported (Mertins et al. 2016).
Large-scale protein-protein interactions of human and other model organisms were
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generated using affinity purification followed by mass spectrometry and yeast two-
hybrid-based techniques (Ewing et al. 2007; Rual et al. 2005; Krogan et al. 2006;
Uetz et al. 2000). Multi-omics data was not only restricted to cancer, but there were
other applications of multi-omics integrative studies such as understanding host-
pathogen interaction (Jean Beltran et al. 2017), host signaling regulation by the gut
microbiota (Manes et al. 2017), and pluripotency regulatory network in embryonic
stem cells (Stumpf et al. 2016).

There are several bioinformatics tools available for integrating, visualizing, and
modeling multi-omics data and networks. Bayesian support vector machine and
clustering methods have been used to integrate the data of mixed types (Yifeng et al.
2016). Cytoscape is an open-source software that can be used for visualizing the
integrated networks (Cline et al. 2007). Network-based approaches used graph
theory to integrate multiple homogeneous networks (e.g., protein-protein interac-
tion), where node represents gene or protein and edge represents interaction. There
can be two different types of interaction in heterogeneous networks (e.g., protein-
protein, protein-DNA and DNA-metabolite interactions), one is the intraspecies
interaction (protein-protein) and the other is the interspecies interaction (protein-
DNA). The latter interaction is mainly involved in cross talk among multiple layers
of the interactome. In summary, multi-omics approaches along with bioinformatics
tools allow the integration of data generated from different omic levels and aid in
understanding the complex and wired biological networks.

This chapter will first highlight different multi-omics layers and four different
types of integrative analysis of multi-omics datasets, including (1) integrative anal-
ysis of genomics, epigenomics, and transcriptomics data; (2) integrative analysis of
transcriptomics, proteomics, and protein interaction networks; (3) integrative anal-
ysis of transcriptomics and metabolomics; and (4) integrative analysis of multi-
omics data. Next, the databases and tools used for multi-omics studies will be
presented. And finally, the future perspectives and challenges of integrative omics
studies will be discussed.

3.2 Multi-omics Layers

A single layer of “omics” including genomics, epigenomics, transcriptomics, prote-
omics, and metabolomics provides specific insight of DNA, RNA, protein, and
metabolite level into the biological process of a cell. Genomics, involving the
sequencing and analysis of genomes, uses high-throughput DNA sequencing such
as next-generation sequencing (NGS), whole-genome sequencing (WGS), whole-
exome sequencing, real-time PCR (RT-PCR), and single nucleotide polymorphism
(SNP) along with bioinformatics to assemble and analyze the function and structure
of the entire genomes (Concepts of genetics 2012; Culver and Labow 2002).
Epigenomics, on the other hand, involves the study of reversible modifications on
a cell’s DNA or histones that affect gene expression without altering the DNA
sequence. The study of epigenetics on a global level has been made possible only
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recently through the adaptation of genomic high-throughput assays such as chroma-
tin immunoprecipitation followed by microarray (ChIP-chip), chromatin immuno-
precipitation followed by sequencing (ChIP-seq), methylated DNA
immunoprecipitation (Me-DIP) (Friedman and Rando 2015), and ATAC-seq
(Buenrostro et al. 2013). Transcriptomics refers to the study of the information
content of an organism present in DNA, which includes mRNA and noncoding
RNAs such as tRNA, rRNA, microRNA, and long ncRNA. The various RNA pools
differ dramatically in abundance relative to each other and can change across
experimental conditions (Yang et al. 2011). The standard protocol for transcriptome
analysis involves RNA extraction, reverse transcription, cDNA amplification using
quantitative reverse transcription-PCR (qRT-PCR), and hybridization using
microarrays followed by library construction and sequencing (RNA-Seq). Proteo-
mics refers to the large-scale analysis of the whole set of proteins which has
significantly benefited from the Human Genome Project, accumulation of both
DNA and protein sequence databases, improvements in mass spectrometry, and
the development of computer algorithms for database searching (Graves and
Haystead 2002). Metabolomics aims to measure the low molecular weight com-
pounds called metabolites. The metabolome composition reflects the current status
of the organism and is considered to be a chemical reflection of a molecular
phenotype (Bujak et al. 2015). Numerous analytical platforms are commonly used
in both targeted and untargeted metabolomic studies such as nuclear magnetic
resonance (NMR) and mass spectrometry (MS), coupled with different separation
techniques (Lindon and Nicholson 2008).

Multi-omics approaches integrate data from different omics levels to understand
their combined influence on the biological process. For example, pluripotent stem
cells show a high degree of regulation between multiple species of molecules.
Studies have shown that the pluripotent state in mouse and human cells is regulated
at multiple levels, including transcriptional (Boyer et al. 2005), epigenetic (Lee et al.
2006), signaling (Chen et al. 2008), and metabolic (Moussaieff et al. 2015) layers.
Studies by Stumpf et al. shows that in the presence of external stimuli (Ying et al.
2008), the pluripotent state is maintained by a set of TFs, Oct4, Sox2, and Nanog
along with secondary factors such as Klf4, Myc, and Lin28 (MacArthur et al. 2012).
These core TFs interact with a range of auxiliary TFs via PPIs (Wang et al. 2006) and
collectively control transcription of a large number of genes. Transcriptional control
is exerted either directly, by binding to gene promoters (Boyer et al. 2005), or
indirectly, by mediating the effects of epigenetic remodeling complexes (Orkin
and Hochedlinger 2011). To add to this is a network of microRNAs (Wang et al.
2007) which ensures that appropriate protein levels are robustly maintained. Collec-
tively, these reports indicate that pluripotency is regulated by cross talk among
multi-omics layers to form interactome (Fig. 3.1) and involves layers of combina-
torial regulatory control, including complex feedback relationships between the
transcriptional, epigenetic, and signaling strata. Thus, the cross talk between multi-
omics layers cannot be determined by single omics reduction approach.
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3.2.1 Integrative Analysis of Genomics, Epigenomics,
and Transcriptomics Data

The TCGA data provides comprehensive genomics profiles including genetic muta-
tions, gene expression, microRNA sequencing, and copy number alterations of over
30 human tumors. Thus, the TCGA data is well studied for integrating multi-omics
datasets. The effect of copy number alterations (CNA) on mRNA levels was studied
in breast cancer samples, and it was seen that 64% of all genes studied have a
positive correlation between CNA and mRNA levels (Mertins et al. 2016). In
another study of integrative analysis in liver cancer, it was observed that cancer
gene expression could be correlated with DNA copy number (CNVcor) and with
DNAmethylation (METcor) (Woo et al. 2017). Expression profiles of these CNVcor
and METcor genes were able to predict subgroups in hepatocellular cancer. There
are few bioinformatics tools available for integrating genomics, epigenomics, and
transcriptomics datasets like DINGO, BioWardrobe, and mixOmics (Ha et al. 2015;
Kartashov and Barski 2015; Rohart et al. 2017). These tools allow building differ-
ential networks and identifying common hub genes found in expression datasets of
multiple layers.

Fig. 3.1 Cross talk of the multi-omics layer to form interactome. Single omics approach like
genomics, epigenomics, transcriptomics, proteomics, and metabolomics integrated by combining
the interconnections of all layers within species and across species. The molecular species involved
at each level is illustrated with nodes of different shapes and colors, and a key is provided below.
The edges in dotted red lines show intermolecular species interaction, while the edges solid lines
and color matched with nodes show intraspecies interaction, whereas solid arrows indicate external
influence. (Partially adapted from Stumpf et al. Proteomics 2016)
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3.2.2 Integrative Analysis of Transcriptomics, Proteomics,
and Protein Interaction Networks

Integrating transcriptomics and proteomics data with protein interaction networks
have been used for discovery of biomarkers and novel biological processes. In the
field of biomarker discovery, the overlapping genes and proteins observed in
multiple layers are common targets or a part of a feedback loop and so possibly
better targets for therapeutics (Chakravorty et al. 2017). In a study by Mertins et al.
from Broad Institute, results show a correlation between protein expression and gene
expression across breast cancer samples taken from TCGA data (Mertins et al.
2016). These results demonstrate the utility of integrated transcriptome and prote-
ome analysis for confirmation of regulatory mechanisms and identification of can-
didate regulators.

There is a higher coverage of transcriptome data as compared with mass
spectrometry-based proteomics approach. Thus, gene expression datasets are
merged with protein-protein interaction (PPI) network for the identification of
novel biological process and active subnetworks as shown in Fig. 3.2.
NetworkAnalyst and jActiveModules allow to merge gene expression and PPI
networks. This approach has been studied for a better understanding of cancer and
host-pathogen interactions (Jean Beltran et al. 2017; Saha and Ewing 2011).

Fig. 3.2 Integrating transcriptomics and proteomics data to generate an integrative omics network.
The gene expression profile from microarray data of disease versus control is combined with
protein-protein interaction network to generate an integrative network. The red and blue color
gradients represent overexpression and under-expression of differentially regulated genes. Yellow
node indicates the proteins, and black lines indicate the edges of the PPI network, and thicknesses of
the edges indicate the confidence of interaction. In the integrative network, the red to blue color
gradients indicate the gene expression profile of the proteins involved in PPI. Green dotted circle
highlights the subnetwork
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3.2.3 Integrative Analysis of Transcriptomics
and Metabolomics

Metabolomics is an important functional layer in studying multi-omics datasets,
since it links genotype to phenotype. Integrative approaches for metabolomics and
transcriptomics have been well established in the plant system (Urbanczyk-
Wochniak et al. 2003). Datasets from metabolomics and transcriptomics studies
are integrated using the correlation-based method, multivariate-based method that
uses partial least square (PLS) regression and principal component analysis (PCA),
and finally pathway-based method (Cavill et al. 2016). Integrated Molecular
Pathway-Level Analysis (IMPaLA) is a web-based freely available tool frequently
used for integration of two types of datasets (Kamburov et al. 2011). Other tools like
Metscape 2 and Paintomics also perform similar kind of integrative analysis.

3.2.4 Integrative Analysis of Multi-omics Data

With the availability of TCGA and LinkedOmics resources, analyzing multi-omics
dataset is possible. Various bioinformatics tools like Lemon-Tree and Omics Inte-
grator allow network-based interpretation of multi-omics datasets (Bonnet et al.
2015). These are open-source, platform-independent and allow integrating multiple
types of high-throughput datasets for creating networks.

3.3 Databases and Tools Used for Multi-omics Data

3.3.1 Database

Several databases contain multi-omics data as shown in Table 3.1. The first multi-
omics database is The Cancer Genome Atlas (TCGA) that provides an interactive
data system for researchers to search, download, upload, and analyze various cancer
genomic datasets (Wang et al. 2016). The Library of Integrated Network-Based
Cellular Signatures (LINCS) program provides an extensive reference library of cell-
based perturbation-response signatures (Koleti et al. 2018). The LinkedOmics data-
base includes information about mass spectrometry-based global proteomics data on
TCGA tumor samples along with clinical data (Vasaikar et al. 2018). Multi-Omics
Profiling Expression Database (MOPED) contains processed data for gene, protein,
and pathway expression of human and model organism (Montague et al. 2015). Very
few organ-specific diseases like heart and kidney diseases have multi-omics data-
bases available (Alexandar et al. 2015; Fernandes and Husi 2017). Taken together,
most of the integrative resources compiled various types of multi-omics datasets of
tumors and cancer cell lines.

44 D. Chakravorty et al.



3.3.2 Tools

The availability of multi-omics cancer data from the same samples from TCGA
allows developing various tools specific for multiple data integration, visualization,
and integrated network modeling. The list of software dedicated for multi-omics data
along with brief description is shown in Table 3.2. Tools like DINGO,
BioWardrobe, and mixOmics are used for integrated analysis of mRNA/miRNA
expression, DNA copy number, and methylation (Ha et al. 2015; Kartashov and
Barski 2015; Rohart et al. 2017). Tools like jActiveModules (Cytoscape plugins)
and NetworkAnalyst are used for integrating gene expression and PPI networks.
Similarly, there are tools like Metscape 2 and Paintomics for integration of mRNA
expression and metabolites data (Karnovsky et al. 2012; Garcia-Alcalde et al. 2011)
and tools like ZikaVR and Immunet for Zika virus and immunological disease
research, respectively (Gorenshteyn et al. 2015; Gupta et al. 2016). Omics Integrator
software integrates several types of omics data and constructs a heterogeneous
network of phosphorylated proteins, metabolites, and mRNA expression (Tuncbag
et al. 2016). Lemon-Tree software uses large-scale multi-omics datasets and predicts
network modules and pathways (Bonnet et al. 2015). In summary, there are several
integrative analysis tools for multi-omics datasets and inferring network modules
and pathways for understanding complex biological processes.

Table 3.1 Databases of multi-omics studies

Database name Brief description References

CardioGenBase A literature-based multi-omics database for major cardio-
vascular diseases

Alexandar et al.
(2015)

CKDdb An integrative multi-omics expression database of chronic
kidney disease (CKD)

Fernandes and
Husi (2017)

LINCS Library of Integrated Network-Based Cellular Signatures Koleti et al.
(2018)

LinkedOmics Integrates mass spectrometry (MS)-based global proteo-
mics data generated by the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) on selected TCGA tumor
samples

Vasaikar et al.
(2018)

MOPED A freely accessible multi-omics expression database Montague et al.
(2015)

TCGA An archive of genomic sequence, expression, methylation,
and copy number variation data over 30 different types of
cancer

Wang et al.
(2016)
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3.4 Future Prospective and Challenges

The primary requirement of the integrative multi-omics is that all the omics studies
have to be performed in the same sample. So, there are few challenges in integrating
multi-omics datasets. First, for integrating protein-protein interactions data, it was
observed that most of the data available was from HEK 293 cell line in case of
AP-MS studies. There is a considerable gap in generating PPIs of all the proteins
from other human cell lines and tissues including healthy and diseased states.
Second, for integrating metabolomics and transcriptomics data, it was seen that the
metabolites are mainly isolated from blood or urine, while transcriptomics data can
be derived from all tissue samples related to the disease. As there is a need for
experimental sample source parity, there is also the need for establishing data
processing standards and data normalization procedures across different omics
layers. So far, most of the multi-omics studies are mainly focused on tumor and
cancer cell lines. Besides cancer, there are various diseases like respiratory and
cardiac diseases, which need urgent attention for understanding biological mecha-
nisms of these diseases using integrative analysis of multi-omics data.

Table 3.2 Software for integrating multi-omics studies

Software Integrating omics References

BioWardrobe mRNA expression and DNA methylation Kartashov and
Barski (2015)

DINGO mRNA expression, DNA copy number, methylation, and
microRNA expression

Ha et al. (2015)

Immunet mRNA expression, protein-protein interaction, miRNA
motif profiles, and transcription factor motif profiles

Gorenshteyn
et al. (2015)

IMPaLA Web server for integrating transcriptomics and metabolic
datasets

Kamburov et al.
(2011)

jActiveModules Genetic or protein-protein interaction network and mRNA
expression

Cline et al.
(2007)

Lemon-Tree Integrative multi-omics module network inference Bonnet et al.
(2015)

Metscape 2 Metabolites and gene expression data Karnovsky et al.
(2012)

mixOmics mRNA expression, miRNA expression, DNA methyla-
tion, and protein

Rohart et al.
(2017)

NetworkAnalyst Gene expression data and protein-protein interaction Xia et al. (2015)

Omics
Integrator

Integrates a variety of omics data and identifies putative
molecular pathways

Tuncbag et al.
(2016)

Paintomics Metabolites and mRNA expression Garcia-Alcalde
et al. (2011)

ZikaVR Gene, protein, miRNA, siRNA, and shRNA Gupta et al.
(2016)
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