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Abstract The Travelling Salesman Problem (TSP) is one of the major problems in
graph theory and also is NP-Hard Problem. In this work, by improving the firefly
algorithm (MFA), we introduced a new method for solving TSP. The result of the
proposed method has compared with the other algorithms such as Firefly algorithm,
GA and PSO. The Proposed Method out performs of other algorithms.
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1 Introduction

Traveling salesman problem (TSP) is one of the known problems in artificial
intelligence. TSP is a discrete optimization problem and also NP-Hard problem.
Many Studies have been done to find the best solution for this problem, but no exact
solution has been provided yet. This simple problem has many applications,
including vehicle timing [1] route optimization to transport the goods to different
locations, route optimization for postal shipments, Vehicle routing [2] and route
minimizing of a tour. The TSP represents the salesman who wants to visit a set of
cities exactly once and finally turns back to the starting city. The objective is to
determine the tour with minimum total distance (see Fig. 1).
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In recent years many approaches have been developed to solve TSP The simplest
exact method solve all possible tours, and then select the optimal tour with the
minimum total cost. All possible permutations of N cities are equal to N!, so, every
tour can be represented in 2N different manner depends on the initial city and the
length of tour. So the size of search space is computed as Eq. (1). It is obviously
that this measurement is not possible for computational time even for 50 cities.

T ¼ N!
2 � N ¼ N � 1ð Þ!

2
ð1Þ

In Sect. 2, we examine some algorithms provided for solving the TSP. In
addition, a mathematical model and an introduction to Firefly algorithm will be
described. In Sect. 3, we consider the proposed algorithm. We indicate the desired
mutations used in the proposed algorithm. Then, in Sect. 4, the proposed algorithm
will be used to solve the TSP and the results will be compared with other
bio-inspired algorithms such as GA, PSO and FA. In Sect. 5, we review the
strengths of the proposed method compared to other algorithms. Finally the paper
ends with Conclusion and Acknowledgement.

2 Theoretical Principles

Recently, different methods have been proposed to solve the TSP whichever have
their own strengths and weaknesses but it is important to use the method or
algorithm that achieves the best tour in the shortest possible time. Some
meta-heuristic algorithms used to solve the TSP are: Genetic algorithm (GA) [3–5].
Particle swarm (PSO) [6–8], Ant colony (ACO) [9–11], Memetic algorithms [12],
Artificial Bee Colony [13, 14], Bee Colony [15, 16], and etc. Better solution can be
achieved by changing the parameters in any of these algorithms. In 2014, Saranya
et al. have presented a method for solving the TSP based on Tabu search and

Fig. 1 Sample of solving
TSP
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biological algorithms such as ant colony optimization algorithm, cuckoo algorithm
and bee algorithm [17]. In 2012, Yang et al. have purposed an optimization
approach to reduce the processing costs associated with ant colony routing
(ACO) and they have Improved ACO using individual diversification strategy [18].
So that, the speed of ACO greatly increased. They used this approach for solving
the TSP. Rizak Allah et al. In 2013 have presented a hybrid algorithm called ACO
—FA, that integrate Ant colony algorithm (ACO) and Firefly algorithm (FA) to
solve unlimited problems [19]. Las zolocota [20] used Firefly algorithm to solve
multiple TSP. In this work, we purpose an accurate and fast algorithm to solved
TSP by adding best and Effective mutations to FA.

2.1 Mathematical Model of Travelling Salesman Problem

In this study, our purpose is to find best tour of symmetric TSP. In symmetric TSP,
the distance from city A to city B equals to distance from city B to city A. However,
in asymmetric mode, the distance from city A to city B is not necessarily equal to
the distance of city A to city B. We can consider the symmetric TSP problem as a
complete and undirected graph where

A ¼ fði; jÞ : i; j 2 V ; i 6¼ jg

‘A’ is a set of edges and V ¼ 0; . . .;Nf g is a set of nodes.
The number of possible solutions are 1

2 N� 1ð Þ, (N is the number of cities and
N > 2). In fact, the number of possible solutions are equal to the number of
Hamiltonian cycles in a complete graph with N nodes. The mathematical form of
the objective cost function of TSP is as follows:

min z ¼
XN
i¼0

XN
j 6¼i;j¼0

cij ð2Þ

where cij is the distance between nodes i and j. i, j = 0,1, …, N

2.2 Distance of Two Cities

For computing the distance between two cities (nodes), there are some methods
such as hamming and Euclidean distance formulas. We consider the cities as nodes
of two-dimensional Cartesian space (x, y) and by using Euclidean distance formula
as follows:
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d i; jð Þ ¼ d j; ið Þ ð3Þ

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2� yi � yj

� �2q
ð4Þ

3 Firefly Algorithm

In 2009 Yang [21] introduced the optimization firefly algorithm (FA). FA has
inspired by fireflies that use short and rhythmic lights to attract the hunt, protection
or attract mates systems. There are two important issues in firefly algorithm:
changes in light intensity and formulating the attraction. For simplicity, we can
always assume that its light determines the attraction of firefly, which in turn is
associated with the objective function. The attraction is proportional to brightness
and a firefly with lower light is absorbed to firefly with brighter light, and if there is
no light, it moves randomly. The firefly will be visible only for a limited period due
to distance and light reduction by air. A firefly can be considered as a point light
source.

We know that the light intensity at a certain distance r from the light source
follows the inverse square law. The law states that the light intensity I decrease by
increasing the distance r.

I / 1
r

ð5Þ

As mentioned, by increasing distance of two fireflies, the light intensity of
between them is going to be weaker and weaker. In the simplest case, we can
consider the light intensity of a point source by analysis factor c, in distance r as
Eq. (5) (I0 is the light intensity in r ¼ 0).

Since the attraction of firefly is proportional to light intensity seen by adjacent
firefly, the attraction of fireflies is defined as Eq. (6) (b0 is the attraction in r = 0).

b rð Þ ¼ b0e
�cr2 ð6Þ

The distance between any two fireflies i and j at xi and xj, respectively, is the
Cartesian distance:

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd
k¼1

xi;k � xj;k
� �2

vuut ð7Þ

where xi;k is the k th component of the spatial coordinate xi of i th firefly.
Brightness is also proportional to objective function. Therefore, updating the

location for each pair of fireflies i and j at xi and xj is as following equation:
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xtþ 1
i ¼ xti þ b0e

�cr2ij xtj � xti
� �

þ atet ð8Þ

The firefly algorithm has been formulated by following properties:

1. All fireflies are single type, so that a firefly attracts all other fireflies.
2. Attraction is proportional to brightness and a firefly with lower light is absorbed

to firefly with brighter light.
3. If there is no firefly brighter than the other firefly, then the firefly moves

randomly.

The pseudo code of FA as follows:

Algorithm 1: The pseudo code of Firefly algorithm

Firefly Algorithm:
Objective function f(x),x = (x1,…,xd)

T

Generate initial population of firefly xi (i = 1,2,…,n)
Light intensity Ii at xi is determined by f(xi)
Define light absorption coefficienty
While (t < MaxGeneration)
for i = 1: n all n fireflies
for j = 1: n all n fireflies
if (Ij > Ii),Move firefly I towards j in d _dimension;end if
Evaluate new solutions and update light intensity
end for j
end for i
Rank the fireflies and find the current best
End while
Postprocess result and visualization Rank the fireflies and find the current best;
End while;
Post process results and visualization;
End procedure

3.1 Some Mutation Operators

In FA, for finding the shortest path, we can use the various mutations such as:
random, inversion, swapping and greedy mutations and, etc.

This will prevent the falling into the trap local optimal. With this work new
solution will be replacement of previous solutions.
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3.1.1 Swapping Mutation

This method is the most commonly used methods; this mutation can be performed
on a couple of points. The operation of this mutation for two points, swap the two
points randomly shown in the Fig. 2.

3.1.2 Inversion Mutation

In this method two elements are randomly selected and then we inverse enclosed
elements in block between them and place them on their own place (see Fig. 3).

3.1.3 Insertion Mutation

In this method two elements are randomly selected and transfer one of the two
elements after other chosen element (see Fig. 4).

Fig. 2 Swapping mutation. a Before mutation, b after mutation

Fig. 3 Inversion Mutation. a Before mutation, b after mutation

Fig. 4 Insertion mutation
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3.1.4 2-Opt Mutation

This mutation is one of the most effective mutations for improvement in finding
optimal tour in TSP.In this mutation via check path and selection four points with k
distance between them, if the way of their connection contains twist, will open twist
path and decreases the path length. Figure 4a optimized route is displayed in
Fig. 4b.

The process of execution of this mutation is as follows:
We select randomly four points I, j, n, m

1. We calculate the distance between the points using following relation.
2. |(i, j)| + |(n, m)| > |(i, m)| + |(n, j)|.
3. If the relation is true we change the value of element j with the value of element

m.
4. If necessary we repeat this process and select other points.

Changes resulting from this mutation on the tour are as follows (Figs. 5 and 6):

Fig. 5 a First tour (before mutation), b second tour (after mutation)

Fig. 6 a solution before mutation, b solution after mutation
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4 Proposed Method

Sometimes, in practice it is possible the FA to be trapped in a local minimum and
the rapid convergence there. This is not to achieve an appropriate response.
Therefore, to solve the TSP our algorithm should have the least amount of com-
plexity, because complexity increases the running time of algorithm. In this study,
for escaping of the local minimum at acceptable running time of algorithm, our
purpose is to add some mutations in FA to find a faster algorithm without trapped in
a local minimum. An operator develops a mutation that causes widening areas are
discovered. In addition to the TSP graph, edges should not be crossed. Because the
cross is to increase the length of the tour. Using the appropriate responses to
increase the mutation rate. To fix the problem of trapped in a local minimum,
instead of using an operator or a combination of some operators; we add randomly
one of operators in each iteration of FA. Each mutation operation of Sect. 3.1.4 can
able to solve just some special difficulties to determine shortest paths. In Table 1,
we can see the results of solving salesman problem with four cities, population size
are 10 and the number of iterations is 700. The structure of the proposed algorithm
is as follows (Fig. 7):

Step1:
Create Model Of Benchmark TSP Problem.
Step2:
Objective Function F (Tour), Tour is a Matrix Contains Number of Cities.
Step3:
Define Parameters Algorithm Such as Max Iteration, number of population,delta,
gamma,alpha, …
Step4:
Generate Initial Population Randomly {each Member of the Population is a Tour}.
Step5:
Calculate ri,j,rj,I is equal: norm {tour(i)-tour(j)}.
Step6:
Evaluated New Tour and Calculate Cost.
Step7:
Create Random Number Between [1 to 4]
Step8:
Switch on Random Number Obtained in Above stage.
Step9:
Evaluate New Tour Obtained Of Mutation and Update Cost.
Step10:
If (Cost of (newer tour) < cost of (new tour)).
Then The newer tour is replaced tour Else The new tour is replaced tour.

In MFA (Combine four Mutation) in each iteration, randomly one of the
mutation operators (swapping, inversion, Insertion, 2-opt) added to FA and TSP
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cost function tour is computed. Then, combined mutation (by using the method
mentioned earlier) apply to global best solution. After some iteration minimum
value of cost function will be achieve. Comparison of proposed algorithm and other
algorithms such as FA, GA and PSO show that the proposed algorithm outperforms
of others. The results show that the random combination of four mutations of
Sect. 3.1.4, gives us the better solution.

Evaluate fitness of all 

Start

Generate initial

Update the global

Rank the fireflies and 

Apply mutation to some fireflies

Update the fitness of all 

Apply mutation to global best 

Rich max Iteration
No

Yes

Optimal result

Fig. 7 The flowchart of the proposed algorithm

0 

5 

10

Ulysses16 Ulysses22 Gr24 Eil51 Berlin52 Eil76 Eil101

MFA GAP

Benchmark

7.8 7.3

0.5 0.9 0.0 0.5 0.7

Fig. 8 The GAP Diagram of the MFA algorithm to benchmarks
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5 Simulation

In this paper, using the improved FA to solve the standard TSP by MATLAB 2013
on a platform with Intel CORE i5, 2 GB RAM, and Windows 7 operating system’s
has been solved for standard algorithms such as GA, PSO and also FA. The average
of 10 times running for each standard library problems TSPLIB [22] was calculated
and the results have been compared with the results of the proposed algorithm in
this paper. Also in Table 2 the benchmarks are used is visible. Respectively. Setting
parameter GA and PSO and FA can be seen in Tables 3, 4 and 5. Table 6 shows the

Table 2 Benchmark of TSP Benchmark problem N.City Optimal

Ulysses16 16 6859

Ulysses22 22 7013

Gr24 24 1272

Eil51 51 426

Berlin52 52 7542

Eil76 76 538

Eil101 101 629

Table 3 Defined parameters
for firefly

Parameters Value

Maximum number of iterations 700

Number of fireflies 10

Light absorption coefficient 2

Attraction coefficient base value 1

Mutation coefficient 0.2

Table 4 Defined Parameters
for PSO

Parameters Value

Maximum number of iterations 700

Population size (Swarm size) 10

Inertia weight 1

Inertia weight damping ratio 0.99

Personal learning coefficient 0.2

Global learning coefficient 0.4

Table 5 Defined Parameters
for GA

Parameters Value

Maximum number of iterations 700

Population size 10

Crossover percentage 0.5

Mutation percentage 0.5
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results for size population 10 and the number of iteration: 1000 in applied problems.
The simulation results have been presented as graphical output in Fig. 9. And cost
and roc curve Diagram for Eil76 (TSP Problem) displayed in Figs. 10, 11 in
addition Fig. 8 shows the gap values of the MFA algorithm for Benchmarks, where

Fig. 9 a The simulation result for gr24. b The simulation result for Eil51. c The simulation result
for Berlin52. d The simulation result for Eil76

Fig. 10 The output graph of
MFA algorithm for Eil76
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the gap is defined as the percentage of deviation. In this formula (A′) best answer of
found by our algorithm and (A) the best answer Known (Optimal) for Benchmarks.
The gap is calculated as follows:

GAP ¼ C A0ð Þ � C Að Þ
C Að Þ � 100 ð9Þ

6 Discussion and Conclusion

In this paper, a novel meta-heuristic algorithm called improved FA was applied to
solve the standard TSP and we compared the performance of the three famous SI
(swarm intelligence) algorithms include of GA, PSO, FA to solve TSP. The FA
algorithm has a strong global search capability in the problem space and can
efficiently find optimal tour also it is quite simple and easy to apply, and it is
efficient for large size matters. In this study a novel FA algorithm based on a hybrid
mutation scheme (named MFA algorithm) was introduced for TSP. Experimental
results show that this approach considers both running time and solution quality as
well. In According to the results, it can be seen that the proposed algorithm has
much better result compared to standard algorithms. The results of GA, PSO and
FA are converged rapidly and there is no significant change by increasing the
repetitions. The proposed algorithm is significantly improved by increasing the
number of repetitions. As a future work, the algorithm FA Can be hybridized with
SI algorithms to find better results.

Acknowledgements We thank all who have supported us for this research.

Fig. 11 The rocurve graph of
algorithms for Eil76
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