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Chapter 5
Fungal Nanotechnology: A New Approach 
Toward Efficient Biotechnology Application

Cintia Mariana Romero, Analía Alvarez, María Alejandra Martínez, 
and Silvina Chaves

Abstract Nanotechnology is a wide developing area of the biotechnology since the 
important applications of nanoparticles (NPs) in different technologies. The NPs 
produced by green technologies have many advantages such as greater surface area 
and high catalytic activity, in addition to providing a suitable contact between the 
metal salt and enzyme. Fungi secrete proteins, enzymes, and reducing agents which 
can be used for the synthesis of metal NPs from metal salts.

The biosynthesis of metal NPs by fungi has been explored in recent years, evalu-
ating the extracellular and intracellular chemistry of formation. Emphasis has been 
given to the potential of metal NPs as an antimicrobial agent to inhibit the growth of 
pathogenic bacteria and fungi and other potential applications such as their cyto-
toxic activity against cancer cell lines. Further, the metal NPs are being explored as 
promising candidates for several biomedical, pharmaceutical, and agricultural 
applications.
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5.1  Introduction

Nanotechnology is a wide developing field of biotechnology due to its great range 
of applications in different areas. Nowadays a large variety of methods are used for 
nanoparticle (NP) synthesis which in turn are able to deliver nanomaterial with 
desirable characteristics. A large number of NPs are continuously produced to be 
used in different areas/processes as biomedicine, fine chemical synthesis, cosmet-
ics, electronics, and information technology and recently utilized as catalysts, semi-
conductors, optical devices, biosensors, and encapsulation of drugs (Bhargava et al. 
2016; Bhushan 2010). According to their chemical nature, NPs can be classified in 
two major groups: organic and inorganic. The first group refers to NPs consisting 
mainly of carbon, while the second group refers to those composed of a noble metal 
as silver or gold and others as aluminum, zinc, titanium, palladium, iron, fullerenes, 
and copper (Boroumand Moghaddam et al. 2015). Conventional chemical methods 
for NP synthesis have shown certain limitations. These limitations are the use of 
poisonous chemicals which are responsible for different biological hazards and the 
use of high energy levels which increase manufacturing costs. In this context, the 
need to develop environmentally friendly procedures usually known as “green tech-
nologies” is a current concern.

Nanobiosynthesis is considered a green technology since it includes biological 
methods which have great possibilities for nanoparticle synthesis through natural 
biomineralization. Biomineralization is an eco-friendly and sustainable biological 
process that provides water-soluble particles with well-defined properties produced 
by a highly reproducible process (Bhargava et al. 2016; Golinska et al. 2016; Ahmed 
and Ikram 2016). NPs developed by green technologies have more advantages than 
those produced by chemical synthesis such as greater surface area and higher cata-
lytic activity, in addition to providing a suitable contact between the metal salt and 
enzyme (Bhattacharya and Mukherjee 2008; Prasad et al. 2016).

Although plant tissues are an important source of NPs, microorganisms are cur-
rently explored as new biofactories of metallic NPs following simple processes such 
as metal reductions (Vigneshwaran et al. 2007; Sharma et al. 2009). The biomass 
extracts are used as extracellular or intracellular reductants (Ammar and El-Desouky 
2016; Kubo et al. 2016), being the extracellular method the most popular because it 
facilitates the downstream process of NP recovery. Microbial nanobiosynthesis is 
currently the focus of interest mainly because of the production of tiny particles on 
a large scale to a relatively high morphology control (Salunke et al. 2016; Prasad 
et al. 2016).

Among microorganisms, fungi have been reported as one of the best NP produc-
ers. The synthesis of NPs using fungi has been reported by several authors 
(Table 5.1).
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5.2  Biosynthesis of NPs by Fungi

Fungi are eukaryotic organisms present in nature, known typically as decomposer 
organisms since they possess the ability to synthesize numerous extracellular 
enzymes that hydrolyze complex macromolecules. The metabolic capacity of fungi 
and their use in bioprocesses have stimulated a great interest in the fungi application 
as metallic NPs producers (Bhargava et al. 2016; Kitching et al. 2016; Dhillon et al. 
2012; Jain et al. 2015; Prasad 2016, 2017).

Most of fungi are capable of high wall-binding and intracellular metal uptake 
(Volesky and Holan 1995). Their metabolic mechanism could participate either 
directly as in the case of on-cell/intracellular nanoparticle synthesis or indirectly by 
the extracellular nanoparticle synthesis mediated by secreted metabolites (Jain et al. 
2011; Bhargava et  al. 2015). Thus, metal NPs can be nano- or mesostructured, 
according to the path of synthesis, the intra- or extracellular reducing enzymes, and 
the biomimetic mineralization. These possibilities are related with the cell tolerance 
and metal bioaccumulation capability (Kitching et al. 2016; Sastry et al. 2003). In 
this connection, fungal strains isolated from metal-rich environments are the better 
source for biosynthesis of metal nanoparticle (Jain 2013).

5.2.1  Silver Nanoparticles

Synthesis of silver NPs has become an important scientific field applied since it is 
used mainly in pharmaceutical industry. Generally, the methods employed for its 
preparation include chemical treatments where high temperatures and chemical 
reducing agents are critical procedures. Reducing agents have to be able to donate 
electrons to the Ag+ resulting in a reverting Ag+ to Ag0 (Mishra et al. 2015).

One of the main characteristics of the silver NPs is their excellent antimicrobial 
ability against a large range of pathogenic strains. The anti-biofilm activity of silver 
NPs has been demonstrated, showing good biocompatibility in cell viability studies 
in human keratinocyte HaCat cells suggesting its potential application in chronic 
wound healing. Antioxidant properties and their remarkable toxicity to cancer cell 
lines as Hela and A549 cells even at very low concentration make silver NPs a 
possible anticancer agent (Du et al. 2016).

Different fungal species have been utilized for the extracellular synthesis of sil-
ver NPs, due to great particle stability and excellent biocompatibility (Table 5.1).

Endophytic fungi is an interesting group for the synthesis of silver and gold NPs. 
Pestalotiopsis microspora VJ1/VS1 isolated from leaves of Gymnema sylvestre 
showed an efficient and eco-friendly approach for the synthesis of silver NPs using 
aqueous culture filtrate of the fungus, due to the higher enzymatic activity present 
in the cell-free extract. Nanoparticle synthesis was evidenced by the observation of 
a characteristic absorption peak at 435 nm (UV-visible). Silver NPs showed antioxi-
dant effects by the effective radical scavenging activity against 2,2′-diphenyl-1- 

C. M. Romero et al.
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picrylhydrazyl and H2O2 radicals as well as exhibited significant cytotoxic effects 
against different cancer cell lines (Netala et  al. 2016). Golinska et  al. (2016) 
observed a significant antimicrobial activity by silver NPs synthesized by the myco-
endophyte Guignardia mangiferae. Besides, the authors informed that if NPs were 
used in combination with common antibiotics, antimicrobial activity was enhanced. 
In addition, silver NPs were found to be highly biocompatible, so it could be used 
in biomedical/pharmaceutical and agricultural industries (Golinska et  al. 2016; 
Balakumaran et al. 2015; Ramalingmam et al. 2015; Rekha et al. 2012).

Even though the synthesis of NPs using fungi has been widely reported, the more 
important issue to reach this achievement is the optimization of the parameters used 
in the synthesis protocol (Golinska et al. 2016). For instance, the size of silver NPs 
could be controlled by temperature and AgNO3 concentration (AbdelRahim et al. 
2017).

The aqueous silver ions can be reduced to silver NPs by mixing with fungal fil-
trates. For example, the evidence of Ag NPs formation was detected using the aque-
ous mycelial extract from Rhizopus stolonifer observing a surface plasmon band 
around 420 nm. The smallest size of Ag NPs (2.86 ± 0.3 nm) was obtained with 10–2 
M of AgNO3, at 40 °C.

Cultures of Aspergillus terreus HA1N and Penicillium expansum HA2N incu-
bated for 72 h in the dark at 30 °C showed the change of color in the medium which 
would be produced by the excitation of surface plasmon vibrations in the metal NP 
(Ammar and El-Desouky 2016). Similarly, cultures of Penicillium decumbens 
(MTCC-2494) have shown a dark brown color in the culture flask suggesting the 
extracellular biological synthesis of silver NPs which was confirmed by 
UV-spectrophotometric analysis. As was expected, silver nanoparticle displays anti-
cancer effects and a broad antimicrobial activity including a synergistic effect with 
carbenicillin, piperacillin, cefixime, amoxicillin, ofloxacin, and sparfloxacin 
(Majeed et al. 2016). Extremophile fungi also exhibit a high capacity for synthesis 
of mineral NPs (Beeler and Singh 2016). Thus, Aspergillus fumigatus, a thermo-
philic microorganism, was able to produce stable silver NPs (15–45 nm). These NPs 
showed to have capping proteins and the NADH reductase was the mechanism to 
reduce Ag+ (Alani et al. 2012).

5.2.2  Gold Nanoparticles

Gold NPs represent a key area of nano-research since they show finely tunable sur-
face plasmon resonance that allows applications in a wide array of biomedical sci-
ences (Khan et al. 2014; Karthika et al. 2017).

Extracellular synthesis of gold NPs using metal-tolerant fungi has been widely 
reported. Cladosporium oxysporum AJP03 has been found to produce gold NPs by 
extracellular synthesis. The highest tested concentration of extracellular metabolites 
(1:5, biomass/water ratio) and 1 mM precursor salt concentration at physiological 
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pH (7.0) favored the synthesis of well-defined gold NPs with maximum yield 
(Bhargava et al. 2016).

Extremophile fungi exposed to higher concentration of gold chloride produced 
smaller NPs. Thus, Aspergillus sydowii, a halophilic marine fungus, has been recog-
nized as a biofactory capable of producing highly specific gold NPs (Vala 2015; 
Gunde-Cimerman 2014). Regulating gold chloride concentration in a potato dex-
trose medium at 27 °C, Aspergillus sydowii was capable of modulating the size and 
changing the mechanism from intra- to extracellular production pathway. Fusarium 
oxysporum showed several extracellular enzymes, naphthoquinones (Medentsev 
and Akimenko 1998; Duran et al. 2002; Bell et al. 2003) and anthraquinones (Baker 
and Tatum 1998), which possess redox properties to reduce the metal ions (Newman 
and Kolter 2000). In the biosynthesis process of metallic NPs, the fungal mycelium 
is exposed to a solution of metal salt, where the metal ions are reduced to NPs by 
the action of metabolites and extracellular enzymes (Siddiqi and Husen 2016).

The synthesis of NPs not only is made by extracellular metabolites but also by 
proteins bound to the cell surface which showed a significant biomineralization 
activity. In fact, several studies have shown that cell surface proteins of Rhizopus 
oryzae play a crucial role in biomineralization of Au (III) to produce gold NPs. Cell 
surface proteins are able to reduce Au3+ to later produce the nucleation and growing 
of Au crystals (Kitching et al. 2016). Other proteins act as capping agents, thereby 
controlling the size of the gold NPs (Kitching et al. 2016; Das et al. 2009).

5.2.3  Magnetic Nanoparticles

In the last years has been observed an increasing interest in the development of 
procedures for the synthesis of magnetic NPs, due to their potential application in 
areas such as storage devices (Matsunaga 1991), ferrofluids (Raj et  al. 1995), 
enhancement in magnetic resonance imaging (Schüler and Frankel 1999), and drug 
delivery.

Bharde et al. (2006) focused their studies in the biosynthesis of magnetic NPs. 
The authors observed that when Fusarium oxysporum and Verticillium sp. were 
exposed to an aqueous solution of a 2:1 molar mixture of K3[Fe(CN)6] and 
K4[Fe(CN)6], extracellular magnetite was synthesized. The proteins secreted by 
Fusarium oxysporum and Verticillium sp. hydrolyzed iron precursors extracellularly 
to form iron oxide prevailing in the magnetite (Fe3O4) at room temperature. 
Particularly, the fungi were capable of hydrolyzing metal ion precursors under 
acidic conditions. Protein analysis suggests the induction of two proteins of molecu-
lar weights of 55 and 13 kDa, which might be responsible for the hydrolysis of 
magnetite precursors and/or the capping of magnetite particles. The magnetite bio-
synthesis mentioned above presents a simple and aerobic route for the magnetic 
nanomaterial synthesis.

New techniques for the synthesis of magnetic NPs have been evaluated. One of 
them consisted in the growing up of magnetite NPs (nano-Fe3O4) on the mycelium 
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of fungus Penicillium sp. (Ding et al. 2015). Given a large number of functional 
groups naturally present on the mycelium surface, the assembly of nano-Fe3O4 is a 
relatively simple process. More important to this is that nano-Fe3O4 could self- 
assemble on the fungus template accompanied with forming mycelia pellet in a 
mild case, whereas the chemical synthesis to obtain similar product requires extreme 
pH and temperature environment. Moreover, Penicillium sp. formed mycelia pellets 
under submerged shaking cultivation conditions which enrich functional groups on 
the surface (Mishra 2013).

Fungus-Fe3O4 presented a composite structure by nano-Fe3O4 particles uni-
formly adhered on the surface of Penicillium sp. which improve the dispersion and 
stability of nano-Fe3O4 particles, avoiding the pollution resulting from the nano- 
Fe3O4 particles (Ding et al. 2015).

Similar studies have been made with the white rot fungus. The external mem-
brane of fungus has abundant negatively charged functional groups. So, it was able 
to grab various positively charged inorganic particles through both physical adher-
ence and chemical bonding, and nano-functionalized fungus could be assembled 
(Ding et al. 2015).

5.2.4  Other Metal Nanoparticles

Although the silver, gold, and magnetic NPs are the most studied NPs synthesized 
by fungi, there are other NPs with interesting properties. In fact, the first NP synthe-
sis by fungus was reported as CdS NPs in addition to the formation of PbS, ZnS, and 
MoS2 NPs (Iram et al. 2016).

Zirconia nanoparticles have been produced by F. oxysporum with aqueous ZrF6
−2 

anions. Extracellular protein-mediated hydrolysis of the anionic complexes at room 
temperature results in the synthesis of nanocrystalline zirconia (Bansal et al. 2004). 
A strain of F. oxysporum f. sp. lycopersici was screened and successfully produced 
intra- and extracellular platinum NPs. Riddin et al. (2006) reported the synthesis of 
zinc, magnesium, and titanium NPs by using six Aspergillus by employing several 
salt precursors of nitrates, sulfates, chlorides, and oxides.

The synthesis of luminescent lanthanide NPs has shown an increasing attention, 
since the presence of efficient luminescent groups such as samarium, europium, and 
terbium (Blasse 1979). This makes the lanthanide compounds to present extraordi-
nary temporal and spectral properties such as sharp emission bands, long lifetime, 
and large Stokes shifts which make them especially useful in time-resolved lumi-
nescence bioassays, wherein they can effectively be distinguished from the back-
ground noise (Yuan and Wang 2006; Eliseeva and Bunzli 2010). In the case of 
terbium, most of the work has been focused on its chemical synthesis (Iram et al. 
2016).

Iram et al. (2016) report for the first time the synthesis of terbium oxide NPs using 
Fusarium oxysporum. The biocompatible terbium oxide NPs (Tb2O3 NPs) were syn-
thesized by incubating Tb4O7 with the biomass of the fungus. Physical characteriza-
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tion (UV-V and photoluminescence spectroscopy, TEM, SAED, and zeta-potential) 
was made to confirm the synthesis, crystallinity, distribution, purity, optical and sur-
face characteristics, shape, size, and stability of the nanoemulsion of Tb2O3 NPs. 
These NPs showed a high degree of biocompatibility and ability to inhibit the growth 
of bone cancer cells at biologically safe concentrations. They were nontoxic for nor-
mal primary osteoblast cells up to a considerably high concentration.

5.3  Mechanisms of Nanoparticle Biosynthesis

Mechanisms of NPs biosynthesis are deeply related to the microorganism since 
each one may reduce and oxidize the materials of NPs by different ways. In general, 
methods of synthesis show relationship with the specific survival strategies of the 
microorganism (Bansal et al. 2012). It has been shown that microorganisms utilize 
defense mechanisms to reduce the environmental toxicity through different routes 
of NPs production.

5.3.1  Intracellular Synthesis

During intracellular synthesis metallic ions are attracted to the negatively charged 
functional groups along the cell wall and nucleated there, initiating the reduction 
and synthesis of NPs. For instance, Kalabegishvili et al. (2015) demonstrated the 
biosorption of metallic ions to the cell wall of a fungus, observing that the ions were 
heterogeneously distributed according to specific binding sites. Moreover, shape, 
size, and stability of the NPs are also determined by the binding sites of the cell wall 
(Asmathunisha and Kathiresan 2013; Erasmus et al. 2014).

For some microorganisms, the metallic ions are transferred into the cell via active 
cellular pumps (ATP-mediated), followed by enzymes that reduce these ions and in 
occasion cap them. Finally, capping proteins bind to NPs (Fig. 5.1) via open amine 
groups and cysteine residues, neutralizing its surface charge. The capping proteins act in 
the prevention the agglomeration and the alteration of NP properties playing an impor-
tant role also as a site for bioconjugation with other molecules. The protein caps provide 
stability to biologically synthesized NPs that are not otherwise found in traditional 
methods unless the surfactants included are very toxic (El-Deeb et al. 2013). Furthermore, 
the stability decreases the toxicity of the NPs, making them more environmentally 
friendly (Beeler and Singh 2016; Faramarzi and Sadighi 2013; Stark et al. 2015).

Interesting studies were performed using fungi cells as biotemplate for NPs con-
struction. Self-assembly of NPs on living biotemplate surfaces is a promising route 
to fabricate nano- or microstructured materials (Kubo et  al. 2016). Filamentous 
fungi, Aspergillus aculeatus, Penicillium brasilianum, and a Xylaria sp., have been 
used for producing microtubules of gold NPs by the isolation of the growing hypha 
from the culture medium. Using this methodology, a better morphological control 
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and faster adsorption kinetics were obtained, allowing the control of microtubule 
thickness through successive additions of NPs.

It was observed that the secondary metabolites and growth media influence the 
fungi metabolism producing differences in the adsorption rates due to modifications 
in the chemical identity of colloidal gold NPs and therefore in NPs biosynthesis 
(Kubo et al. 2016).

Ding et al. (2015) synthesized NPs of fungus Fe3O4 using the mycelium pellet of 
Penicillium sp. as biotemplate. SEM images showed uniform decoration of nano- 
Fe3O4 particles on fungus surface. The FTIR analysis showed that nano-Fe3O4 were 
linked to the cellular wall by chemical bonds. The authors highlight the novel syn-
thesis method of fungus-Fe3O4 magnetic NPs.

5.3.2  Extracellular Synthesis

There are two possible pathways for extracellular NP synthesis. The first is similar to 
the intracellular synthesis. Ions pass through the cell membrane via active transporters, 
and then through reductive enzymes, the synthesis of the NPs is initiated. The proteins 
bind to the NPs during the reductive process, capping and reducing them through 
active sites. These NPs, after setting their size and form, are transported outside the 

Fig. 5.1 Schematic synthesis of nanoparticles (NPs) by fungi
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cell (Bansal et al. 2012). Thus, in some microorganisms, the intracellular and extracel-
lular synthesis of NPs can occur in the same cell (Ramanathan 2011) (Fig. 5.1).

The second pathway involves the emission of reducing proteins to the cell solu-
tion. This is a result of the whole change in pH of the solution in the presence of the 
metallic ions. Upon receiving this signal, the cell emits oxidoreductase enzymes 
that reduce the ions and synthesize mineral NPs. These proteins can cap the NPs, 
adding stability and additional properties as mentioned above. Thus, the cell-free 
supernatant from the microorganism culture contains the biomolecules responsible 
not only for biosynthesis of NPs but also of it dispersion throughout the supernatant 
(Huang et al. 2015) (Fig. 5.1).

One of the more important minerals in NP study is the silver. One of the more 
used synthesis mechanism for silver NPs has been the use of fungal extract due to 
the higher enzymatic activity present in the cell-free extract. NPs resulting from the 
reduction exposure of fungal filtrates prove to be an important biological compo-
nent for extracellular biosynthesis of stable NPs. The reduction of ions occurs extra-
cellularly through the enzymes secreted by the fungi in the solution and the 
interactions between silver and bioactive molecules (cap proteins) (Ammar and 
El-Desouky 2016). Several authors have shown that filamentous fungi such as 
Aspergillus terreus HA1N and Penicillium expansum HA2N (Ammar and 
El-Desouky 2016), Fusarium oxysporum (Ishida et al. 2014), Fusarium acumina-
tum (Ingle et al. 2008), Aspergillus niger (Gade et al. 2008), Amylomyces rouxii 
(Musarrat et al. 2010), Aspergillus flavus, Aspergillus nidulans, Aspergillus terreus 
(Khalil 2013), Aspergillus foetidus (Roy and Das 2015), Aspergillus oryzae (Bhimba 
et al. 2015), and Penicillium expansum (Mohammadi and Salouti 2015) are most 
efficient for silver nanoparticle biosynthesis via extracellular biosynthesis.

Another strategy using cell-free extract is to use bound cell surface proteins, 
previous extraction from the wall. Kitching et al. (2016) purified cell surface pro-
teins from Rhizopus oryzae to conduct the in vitro gold NP synthesis. The author 
probed the extraction of cell surface proteins using common detergents as sodium 
dodecyl sulfate (SDS) and Triton X-100 and the reducing agent 1,4-dithiothreitol 
(DTT) observing gold NPs of different size and shape. These different properties 
would have occurred due to the protein extraction method which may be so aggres-
sive affecting the morphology and particle size distribution. In fact, the structure 
and function of the proteins are influenced by pH, temperature, ionic strength, and 
the presence of surfactants and solvent (Kitching et al. 2016).

5.3.3  Biomolecules Responsible for Nanoparticle Synthesis

In recent years, great attention has been paid to determine which fungal metabolites 
are involved for the biosynthesis of a nanoparticle. Several reports have been pub-
lished about the ability for biosynthesis of NPs by of a wide range of fungal enzymes 
(Durán et al. 2007). Although enzymes differ among fungal species, there is a ten-
dency to fall within a common group of enzymes used for the synthesis of NPs by 
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microorganisms: the oxidoreductase enzymes. Oxidoreductases are a wide class of 
enzymes involved in redox reactions, shifting electrons from a reductant – the elec-
tron donor – to an oxidant, which in the production of NPs would be the inorganic 
substance, being reduced (NADH-dependent reductase).

The enzyme nitrate reductase showed relevant activity during the biosynthesis of 
NPs in several fungi. Such is the case of cell-free filtrates of Fusarium oxysporum, 
in which the largest amount of silver NPs synthetized were obtained during the 
early stationary phase of growth, simultaneously to the higher secretion of extracel-
lular enzymes, particularly nitrate reductase (Hamedi et al. 2016). Moreover, it was 
observed to enhance the nitroreductase synthesis increasing the number of silver 
atoms in nucleation centers. The presence of nucleation centers enhances the con-
sumption of reducing agents and reduces the possibility of NP uncontrolled aggre-
gation favoring the formation of silver NP clusters (Hamedi et al. 2014). Thus, the 
characteristics of the silver nanoparticle can be controlled and improved by the 
induction of nitrate reductase enzyme (Hamedi et al. 2016).

On the other hand, it was discovered that different quantities of NADH make 
possible the synthesis of different NPs from diverse compounds. In this sense, 
Golinska et al. (2016) proposed a mechanism for the synthesis of silver NPs from 
Fusarium oxysporum based on the presence of an NADH-dependent reductase 
responsible for the reduction of Ag ions and the subsequent formation of silver NPs 
(Kitching et al. 2015).

Reduction of silver ions could be by electron transfer from the NADH by NADH- 
dependent reductase as an electron carrier; thus the electron-deficient silver ions 
(Ag+) accept the electrons and are reduced to silver neutral (Ag0). As a consequence, 
silver NPs are finally synthesized NPs (Golinska et al. 2016).

The biosynthesis of NPs could involve other biomolecules produced by the same 
fungus. It was reported that the biosynthesis of silver NPs may occur not only in the 
presence of NADPH-nitrate reductase but also in presence of anthraquinone or 
hydroxyquinoline molecules (Ahmad et al. 2003; Li et al. 2012). The reduction of 
NADPH to NADP+ is required in this process, and electrons generated during the 
reduction of silver ions are donated from both quinones or hydroxyquinoline and 
NADPH (Golinska et al. 2016; Balakumaran et al. 2015).

Other oxidoreductase enzymes involved in NPs biosynthesis are hydrogenase 
enzymes. In this regard, Govender et al. (2009) suggested a mechanism that reduces 
biologically H2PtCl6 and PtCl2 to platinum NPs by means of filtered hydrogenase 
enzymes from Fusarium oxysporum. The authors suggest that H2PtCl6 may act as an 
electron acceptor during the redox mechanism of the hydrogenase through a direct 
electron transfer between metal ions and the enzyme. Hydrophobic channels 
between the active site and the molecular surface serve as a passage for metal ions.

Vetchinkina et al. (2017) also evaluated the role of phenol oxidase enzymes as 
laccases, tyrosinases, and Mn-peroxidases. These enzymes were isolated and puri-
fied from submerged culture of Lentinus edodes. The pure fungal intracellular 
phenol- oxidizing enzymes were able to form Au0 NPs. The NPs synthesized by 
Mn-peroxidase were regular spheres of 5–20 nm. The NPs produced by laccases 
and tyrosinases were mostly irregular spheroids, with some triangles and tetrahe-
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drons from 5 to 120 nm. The structure of Mn-peroxidase enzyme contains one mol-
ecule of protoporphyrin IX with an iron (III) atom. The authors believe that 
extracellular AuCl4 reduction was performed by the prosthetic group in the enzyme’s 
catalytic center. On the other hand, laccase and tyrosinase reduce gold ions indi-
rectly through forming exogenous hydrogen peroxide. When the enzymes react 
with molecular oxygen in the presence of a reduced substrate, hydrogen peroxide 
forms in one of the four active centers of the enzymes (Vetchinkina et al. 2017).

In the bioreduction of metal NPs, the proteins with amino acids with –SH bonds 
have a relevant role; most likely cysteine undergoes dehydrogenation in the reaction 
with the metal ion to produce metal nanoparticle. Besides, the free amino acids pos-
sibly serve as a capping for metal NPs (Golinska et al. 2016).

5.4  Nanoparticle Applications

5.4.1  Antimicrobial Activity

Nanoparticles are a hope particularly in the pharmacological industry, because of 
their antimicrobial properties. It is believed that one of the mechanisms by which 
the NPs present antimicrobial capacity is due to the use of the NPs negatively 
charged ions which bind to the microorganism cell wall and break it. Another mech-
anism that explains this NPs property is the passage of smaller NPs through the cell 
to cause a direct damage to DNA, inhibiting its replication (El-Deeb et al. 2013). 
Some authors suggest that NPs release reactive oxygen species (ROS) or free radi-
cals, inducing the cell death (Prasad and Swamy 2013; Beeler and Singh 2016; 
Mamonova et al. 2015) (Fig. 5.2) since has been observed that NPs are able to attach 
to the bacterial cell membrane and produce unrest in its normal functioning. 
Nanoparticles could be accumulated in the cytoplasm or in the periplasmic region 
producing the cell membrane disruption and consequently the release of the cell 
contents (Golinska et al. 2016). The alteration of cell membranes involves the bind-
ing of NPs to sulfur- containing proteins present in the membrane (Rai and Yadav 
2013; Singh et al. 2014; Shahverdi et al. 2007; Ping Li et al. 2005; AshaRani 2009a, 
b; Brayner et al. 2006). Similarly, sulfur content of intracellular enzymes and DNA 
makes these molecules the target of the NPs (Raghupathi et al. 2011). In particular, 
it has been reported that silver NPs specially target pathways of synthesis of bacte-
rial cell wall and nucleic acid and protein synthesis (Marambio-Jones and Hoek 
2010) (Fig. 5.2).

The modification of the structure of the bacteria membrane and the possible 
damage to DNA caused by the NPs may affect the respiratory chain, cell division, 
and DNA replication, and, finally, the cell death occurs (Golinska et al. 2016; Lara 
et al. 2010; Andrade et al. 2015; Morones et al. 2005; Aziz et al. 2015). Moreover, 
silver ions generated from the dissolution of silver NPs could also be involved in the 
antimicrobial activity since it may complex with electron donor groups (sulfur, oxy-
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gen, or nitrogen atoms) present in phosphates, thiols, amino acids, and nucleic acids 
(Golinska et al. 2016; Marambio-Jones and Hoek 2010; Louise Meyer et al. 2010).

Another cellular damage produced by NPs is the denaturation of the 30S subunit 
of ribosomes. These suppress the action of enzymes and other proteins necessary 
for ATP production (Chauhan et al. 2013).

The antibacterial properties of various metal NPs from fungal cultures have been 
reported by several publications. However, so far, the best antibacterial activity was 
observed by silver NPs alone or together with antibiotics (Singh et al. 2014; Louise 
Meyer et al. 2010; Jung et al. 2008; Aziz et al. 2016). Thus, the antimicrobial effi-
ciency of synthesized silver NPs via the utilization of fungal species against bacteria 
(Singh et al. 2014; Louise Meyer et al. 2010) and fungal pathogens has been widely 
demonstrated (Louise Meyer et al. 2010).

Other metallic NPs from fungi used as reducing agents are the nanogold biocon-
jugate (Kitching et  al. 2016). The gold NPs which presented high antimicrobial 
activity against pathogenic bacteria such as Gram-negative Klebsiella pneumoniae; 
Escherichia coli, including MDR E. coli; Pseudomonas aeruginosa; Salmonella 
typhimurium; Salmonella typhi; Proteus mirabilis; Shigella dysenteriae; 
Enterobacter aerogenes; Citrobacter sp.; and Gram-positive bacteria such as 
Streptococcus pyogenes; Enterococcus faecalis; Staphylococcus epidermidis; 
Staphylococcus aureus, including MRSA; and Bacillus subtilis have been reported 
(Rekha et al. 2012; Raheman et al. 2011; Hullikere et al. 2014; Mukherjee et al. 
2001; Mohanpuria et al. 2008; Shankar et al. 2003; Rai et al. 2009; Rahi et al. 2014).

The effect of fungal nanoparticles has been also extensively evaluated against 
fungal pathogens. Different mechanisms were proposed to discuss its effects on the 
growth of fungi (Fig. 5.2). Thus, several studies have shown that silver NPs exhibit 
antimicrobial activity against Candida and Cryptococcus (Ishida et  al. 2014), 
Trichophyton mentagrophytes, Candida sp. (Musarrat et al. 2010), Aspergillus fla-
vus, Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilo-
sis, Candida krusei, Cryptococcus neoformans, Cryptococcus gattii, Sporothrix 
schenckii, Aspergillus fumigatus, Fusarium solani, Trichophyton rubrum, 
Trichophyton mentagrophytes, Epidermophyton floccosum, and Mucor hiemalis 
(Ramalingmam et  al. 2015; Rai and Yadav 2013; Thakkar et  al. 2010; Vardhana 
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Fig. 5.2 Schematic mechanism of antibacterial activity of nanoparticles (NPs) produced by fungi
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2015; Rahi and Parmar 2014, Aziz et  al. 2016) and against the plant pathogens 
Colletotrichum sp., Aspergillus niger, Culvularia lunata, Fusarium sp., Rhizoctonia 
solani (Golinska et al. 2016; Hullikere et al. 2014), Cladosporium cladosporoides, 
Aspergillus niger (Pulit et al. 2013), Aspergillus ochraceus, and Aspergillus para-
siticus (Ammar and El-Desouky 2016).

5.4.2  Cytotoxicity

In the last years, the area of diagnosis and treatment of cancer has shown a signifi-
cant progress. A large variety of nanomaterials has been evaluated to achieve an 
improved efficacy in cancer therapy as well as to reduce side effects compared to 
conventional therapies. The toxicity effect of fungal NPs is evaluated mainly by 
changes in cell morphology and viability, as well as metabolic activity (Ping Li 
et  al. 2005; Prabhu and Poulose 2012; Oberdorster et  al. 2000; Krishnaraj et  al. 
2014). Nanoparticles have been localized in mitochondria, inducing structural and 
functional damage as well as oxidative stress (Arora et al. 2008) (Fig. 5.3). It was 
observed that the functional damage to the mitochondria affects the cellular meta-
bolic inhibition, followed by a decrease in ATP yield, which could affect the mito-
chondrial respiratory chain. The mitochondrial damage also affects the lactate 
dehydrogenase activity, which can be used as an indicator of NP success (Golinska 
et al. 2016; Hullikere et al. 2014; Oberdorster et al. 2000).

Physicochemical characteristics of NPs play a significant role in cytotoxicity 
effect. The nature and size of NPs, its surface area, and its surface functionalization 
(capping agents) are important factors that influence their toxicity (Ping Li et al. 
2005; Prabhu and Poulose 2012; Oberdorster et al. 2000). The small-sized NPs are 
more toxic compared with the larger ones (Golinska et al. 2016; Hullikere et al. 

Fig. 5.3 Schematic mechanism of cytotoxic activity of nanoparticles (NPs) produced by fungi
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2014). It has been proven that smaller particles diffuse more readily than bigger. 
Efficient internalization has been observed with particles in the range of 20–50 nm 
(Iram et al. 2016). Small-sized NPs could also be easily diffused into the nucleus 
through the pores and bind to DNA (Asharani 2009a, b). In general, inner transition 
metals are the choice for the synthesis of biogenic NPs, because these metals emit 
strong fluorescence and are relatively nontoxic to biological systems up to a fairly 
high concentration (Iram et al. 2016). In this regard, several studies have verified the 
effect of silver NPs on membrane integrity suggesting that these NPs are targeting 
cancer cells rather than normal cells. In effect, small silver NPs produced by an 
oxidative process results in mutagenic 8-hydroxyadenine and 8-hydroxyguanine, 
inductors of the stability of repetitive sequences. The product of these mutations is 
the highly reactive and short-lived hydroxyl radicals OH− (Golinska et al. 2016; Xia 
et al. 2006).

Netala et al. (2016) biosynthesized silver NPs from fungus Pestalotiopsis micros-
pora VJ1/VS1 and probe its effects on the following cancer cells: B16F10 (mouse 
melanoma), SKOV3 (human ovarian carcinoma), A549 (human lung adenocarci-
noma), PC3 (human prostate carcinoma), and NPs biocompatible toward normal 
cells (Chinese hamster ovary cell line). Cytological observations of SKOV3 cells 
(which were the most susceptible) showed apoptotic changes including pyknotic 
nuclei, cell membrane blebbing, cell shrinkage, and karyorrhexis followed by 
destructive fragmentation of nuclei. The mentioned results were very hopeful and 
provide the bases for the development of versatile biomedical applications of bio-
synthesized silver NPs for cancer therapy.

Several magnetic NPs have also been developed to improve efficacy in cancer 
therapy. The interest in this kind of NPs is due to their unique magnetic properties 
that serve as an extraordinary diagnostic tool, drug carrier, and heat generator for 
therapy in magnetic resonance imaging. Besides, magnetic NPs have a small size 
which allows reaching deeper biological tissues.

Currently, iron oxide NPs are the most explored magnetic NPs for magnetic 
hyperthermia. The use of magnetic NPs as a heat generator could be used in nonin-
vasive cancer treatment to destroy tumor tissues, given that heat promotes cell apop-
tosis through irreversible physiological changes (Kafrouni and Savadogo 2016; 
Prasad et al. 2007).

The cytotoxicity effect of magnetic NPs has been associated with ROS produc-
tion. The decrease in mitochondrial membrane potential in cancerous cells occurs 
when cells are treated with magnetic NPs, although it is not clearly known as to how 
it interferes with the normal function of the mitochondria. Since the mitochondria 
are redox sensitive, they are targeted by NPs (Fig. 5.3). Iron is slowly oxidized, so 
maybe the mitochondrial membrane potential decreases. The oxidation of iron NPs 
and generation of ROS are simultaneous processes (Kafrouni and Savadogo 2016; 
Wei et al. 2015).

Recently, researchers have started to focus on the anticancer activity of lantha-
nide NPs. The Tb2O3 NPs were found to inhibit the propagation of MG-63 and 
Saos-2 cell lines (IC50 value of 0.102 μg/ml) and remained nontoxic up to a concen-
tration of 0.373 μg/ml toward primary osteoblasts. Cell toxicity was evaluated by 
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observing changes in cell morphology, cell viability, and oxidative stress parame-
ters. Morphological examinations of cells revealed cell shrinkage, nuclear conden-
sation, and formation of apoptotic bodies. The levels of ROS within the cells also 
significantly increase (Iram et al. 2016).

5.4.3  Fine Chemical and Pharmacology

The heterogeneous and homogeneous catalysts can be achieved through the use of 
NPs (Johnson 2003). Nanoparticles provide the benefit of increased surface area 
which allows for an increased reaction rate (Chng et al. 2013). The NPs catalyst 
forms a stable suspension in the reaction medium allowing an elevated rate of reac-
tion. One particularly useful and important group of NPs is magnetic NPs.

Magnetic NPs are a highly useful catalyst support enabling immobilization and 
magnetic recovery of the catalyst (Baig and Varma 2013; Romero et al. 2016). The 
magnetic NPs may be dispersed in the same form as any nanoparticle in the absence 
of a magnetic field, provided there is sufficient surface stabilization. But, in the 
presence of a magnetic field, magnetic NPs can be precipitated selectively. This 
enables them to be readily removed from the reaction vessel by a simple magnetic 
separation and may enable them to be re-dispersed and reused.

Magnetic particles have been increasingly used as carriers for enzymes, binding 
proteins, antibodies, and drugs. Thus, the new biological material can be used 
directly as affinity ligands to capture or modify target molecules or cells or for a 
bioassay (Bickerstaff 1997). Immobilization of proteins and enzymes on magnetic 
NPs is an important area of interest. Several magnetic NPs – magnetite (Fe3O4) and 
maghemite (γ-Fe2O3) – have been evaluated with promising applications.

Over the last few years, significant progress was made in the development of new 
catalytic systems which are immobilized onto magnetic nano-carriers (Vaghari 
et al. 2016). Colloidal magnetic NPs are used in drug delivery until the target with-
out interacting with other living cells. In the case of breast cancer (BT 20 cells), 
polyethylene glycol (Schievano)-coated NPs ranging between 10 and 100 nm were 
found to penetrate into the cells (Siddiqi and Husen 2016; Mahmoudi et al. 2009).

In the biomedical area was reported a large variety of bimetallic NPs of the type 
of MFe2O4 (where M= divalent Co, Fe, Zn, Cu, Mg, and Ni) containing two metal 
ions. Their magnetic properties depend on the number of unpaired electrons in the 
d orbital of transition metal ions. Xu and Sun (2013) have attempted to deliver 
 cisplatin to solid tumor through Fe3O4 HMNPs. However, only a few of these com-
pounds have been synthesized by microorganism pathway.

Otherwise, gold NPs may improve the efficiency of PCR, providing an increase 
in yield and a decrease in reaction time due to their ability to bind negative mole-
cules. The gold NPs bind to single-stranded DNA, adding stability to the DNA 
strands and preventing mispairing among strands.

In the chemical industry, traditional pigments have been replaced by NPs due to 
the use of quantum dots that maintain color information despite their small size 
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(Roduner 2006). This allows the creation of much richer color images. Similarly, it 
is possible to create customized crystals for LCD screens allowing a sharper more 
colorful image from the nanoparticle synthesis. They may also be used as UV filters 
on sunglasses and in sunblock (Beeler and Singh 2016; Stark et al. 2015).

5.4.4  Bioremediation

The biological remediation of organic dyes such as methylene blue, methyl orange, 
and rhodamine B has received much attention due to their recalcitrant and xenobi-
otic nature. When dyes are disposed in water bodies high water pollution and eutro-
phication, and aquatic life alteration is produced (Sharma et al. 2015).

The catalytic property of gold NPs has also been evaluated in the area of degra-
dation of environmentally hazardous chemicals, known in general as bioremedia-
tion (Zhao et al. 1998). Among all the methods used for the degradation of organic 
dyes, reduction by strong agents such as NaBH4 in the presence of a nanocatalyst 
may be a viable alternative due to high efficiency and reaction rate (Sharma et al. 
2015). The catalysis by gold NPs increases the reaction rate with the mean time in 
the minute interval (Panáček et al. 2014). Bastus et al. (2014) postulated that the 
reduction mechanism was a two-step process involving first the accumulation of 
borohydride ion electrons on the surface of the NPs and the diffusion of the organic 
dye molecules to the surface of the NPs and their later reduction induced by excess 
surface electrons. The reaction takes place on the surface of the nanocatalyst due to 
the nature of the affected capping molecules having reaction kinetics. Bhargava 
et  al. (2016) hypothesized that surface proteins of gold NPs may facilitate the 
adsorption of organic dyes as amino acids containing aromatic rings to create hydro-
phobic spaces that can enhance the efficient binding of dye molecules.

5.4.5  Food Safety

With regard to food safety, NPs have been evaluated for use in packaging materials. 
Zinc NPs have shown antibacterial properties because of having been proposed for 
produce food packaging and containers (Rajamanickam et al. 2012; Prasad et al. 
2014). Thus, the use of NPs in packaging containers would keep food fresh longer 
and could reduce the chances of foodborne illnesses. In this sense, silver NPs have 
been shown to better penetrate the biofilms that allow bacteria to survive cleaning 
and decontamination processes (Huang et al. 2015; Shanthi et al. 2016). The use of 
these products in industrial food would allow for better control of organisms that 
maintain survival via biofilms (Beeler and Singh 2016).
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5.4.6  Plant Disease Management

In the agriculture area, solutions for protecting food and products from bacterial, 
fungal, and viral agents are in constant search. Nanotechnology techniques can 
improve the existing crop control protocols. In this sense, nanomaterials are being 
developed that offer the opportunity to administer pesticides, herbicides, and fertil-
izers more efficiently and safely by controlling precisely when and where they are 
released (Rai and Ingle 2012; Prasad et al. 2017).

Researches have confirmed that metal NPs are effective against plant pathogens, 
insects, and other pests (Choudhury et al. 2010). In fact, an eco-friendly fungicide 
is being developed capable of using nanomaterials to liberate its pathogen-killing 
properties only when it is inside the targeted pathogen (Liu 2006; Alghuthaymi 
et al. 2015; Bhattacharyya et al. 2016).

On the other hand, pesticides used in agriculture are sometimes harmful to other 
animals and plants. Their reduction to innocuous chemicals by iron nanoparticle is 
a simple strategy to make them useful. It was observed that metal NPs can reduce 
polyhalogenated and nitroaromatic compounds. Also, they can be used for the 
reduction of nonhalogenated pesticides and azo dyes (Siddiqi and Husen 2016).

Iron oxide nanoparticle (Fe3O4) being chemically and biologically neutral has 
been coated with catalysts, enzymes, or even antibodies to be used as biosensors. 
Chauhan et  al. (2016) have modified Fe3O4 nanoparticle using poly(indole-5- 
carboxylicacid) by preparing nanobiocomposite for its use as a sensor for the deter-
mination of pesticides such as malathion and chlorpyrifos in a wide range of 
concentrations.
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