
An Announcer Based Bully Election Leader
Algorithm in Distributed Environment

Minhaj Khan(&), Neha Agarwal, Saurabh Jaiswal,
and Jeeshan Ahmad Khan

Shri Ramswaroop Memorial University, Lucknow, Uttar Pradesh, India
minhajkhan7786@gmail.com, lko.neha@gmail.com,

saurabhjaiswalcs@gmail.com, jeeshan.jak@gmail.com

Abstract. In distributed system, a job is divided into sub jobs and distributed
among the active nodes in the network; communication happens between these
nodes via messages passing. For better performance and consistency, we need a
leader node or coordinator node. There is no compulsion that leader node should
be same all the time because of out of services, crashed failure etc. Over past
years, tremendous algorithms have been introduced to select a new leader when
leader is dead or crashed. Bully algorithm is a well known traditional method for
the same when leader or coordinator becomes crashed. In this algorithm the
highest Id node is selected as a leader, but this algorithm has some drawbacks
such as message passing complexity, heavy network traffic, redundancy etc. To
overcome this problem, we are introducing an announcer based Bully election
leader algorithm which is the modified version of original algorithm to over-
come the above mentioned shortcomings. In our proposed algorithm we use an
announcer who will decide the next leader or coordinator after current leader
failure. Our analytical comparison presents that our proposed algorithm uses less
messages passing with respect to the existing algorithms.

Keywords: Distributed systems � Bully algorithm � Announcer
Message passing

1 Introduction

In distributed computing various nodes connected to one another via a network to solve
a common problem without having any concern who performed it. In a network each
node communicates with each other to make an acceptable decision but problem arises
when consistency needed among the active nodes. To determine consistency, a node is
selected as a leader and act as a centralized controller node for that decentralized
distributed system to achieve some specific goals like synchronization, time schedul-
ing, load balancing, mutual exclusion etc. [10]. Several algorithms have been presented
to select a leader or coordinator in a distributed system like bully algorithm, ring
algorithm, LCR algorithm which use some specific topology such as spanning tree,
fully connected graph, ring topology etc. [1, 14]. So here we got a chance to select any
topology for designing the distributed system which reduces time and message passing
during the leader selection [14].

© Springer Nature Singapore Pte Ltd. 2018
P. Bhattacharyya et al. (Eds.): NGCT 2017, CCIS 827, pp. 664–674, 2018.
https://doi.org/10.1007/978-981-10-8657-1_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8657-1_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8657-1_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8657-1_51&domain=pdf

Here we are presenting a new approach which uses the fully connected topology
and extended version of bully algorithm by which we can reduce message passing,
network traffic, redundancy as well as time to select a leader. This approach is based on
below basic assumptions:

a. A synchronous timeout based system is in use.
b. Each node contains only information about its owned unique node id and announcer

id as well as leader id.
c. During election, the highest id node will be the announcer.
d. Whoever will have noticed that leader is down, it will become a new leader and

same information will broadcast by the announcer.
e. There are N nodes in the network and Nth node is announcer by default. If it will

crash, then (N − 1)th node will be the new announcer.
f. If message will come from new announcer, then node will have to validate the

announcer id and update its table accordingly.
g. After recovery, failed node can again join the system again.

The layout of the paper is organized as follows. This paper is separated into 6
sections. Section 1 is describing the basics of distributed system. Section 2 is intro-
ducing literature survey regarding leader selection in distributed system with its limi-
tations. Section 3 presents the proposed algorithm and is briefly explained with an
example. In Sect. 4 we have figured out the performance analysis of the proposed
modified algorithm. In Sect. 5 there is a comparison between proposed and other
existing algorithms. Section 6 concludes the paper along with future work.

2 Literature Survey

For electing a leader in distributed system, various algorithms have been proposed. In
this section we are going to describe two notable leader election algorithm i.e. original
bully algorithm which is one of the basic election algorithm [1], and second is modified
bully election algorithm [4].

2.1 Original Bully Algorithm

Bully algorithm was proposed by Garcia Molina in 1982. In this algorithm, the node
having the highest Id works as a leader [4, 8, 9]. If any node observes that the
coordinator is not responding i.e. the coordinator failed then detector node will start an
election and sending election message to all nodes which are having higher Ids than its
own Id. If detector node doesn’t receive any response from the receivers within certain
time duration, then it elects itself as a leader and send leader message to all nodes in the
network but if the detector node receive responses from the receivers, it means these
nodes are alive and will take over the election. Afterwards all nodes give up except one
node that means the last one node who wins is now work as a current leader and
broadcast leader message to all nodes that have lower Id [12].

An Announcer Based Bully Election Leader Algorithm in Distributed Environment 665

In Fig. 1 node 7 has biggest Id and work as a coordinator.

a. Node 3 observes the coordinator is failed.
b. After observing coordinator is failed, node 3 send election message to their biggest

Id nodes i.e. nodes 4, 5 and 6.
c. Node 3 received Ok messages from nodes 4, 5 and 6 that means these nodes now

will take over the election.
d. After sending ok message to node 3, nodes 4, 5 and 6 will send election message to

their biggest Id nodes.
e. Nodes 5, 6 send ok message to node 4 and node 6 send ok message to node 5.
f. Node 6 wins the election and elects as a new coordinator and send coordinator

message to all nodes.

2.1.1 Limitations

a. This algorithm needs high number of messages passing for electing a new coor-
dinator when current coordinator is failed and due to this heavy network traffic
generates in the system.

b. At a time two nodes may broadcast as a coordinator if they are next biggest IDs
nodes.

c. When N nodes observe that the coordinator is failed then accordingly number of
nodes, election message will be started which will impose heavy network traffic.

d. There is no confirmation that the coordinator is exactly failed or not.

2.2 Modified Bully Algorithm Presented by M. S. Kordafshari et al.

M. S. Kordafshari et al. proposed a new algorithm which is the enhanced version of
original Bully algorithm. This algorithm basically focuses on reducing message passing

Fig. 1. Traditional Bully algorithm steps for electing a coordinator

666 M. Khan et al.

and network traffic and ensured that only one leader remains in the system at a time. In
this algorithm, when any node finds that the leader is crashed then it will send election
message to its highest process number. If it will not receive any response messages
from the receivers, then it elects itself as a leader and send coordinator message to all
alive nodes. If it will receive response message from them, then it will send GRANT
message to highest process number between them [4, 11]. After receiving the GRANT
message, the highest process number will have to send coordinator message to all alive
nodes [4, 11, 13].

In Fig. 2, node 7 is working as a leader because it has highest process number.

a. Node 3 observes the coordinator is failed then send election message to their biggest
Id nodes i.e. nodes 4, 5 and 6. If node 3 doesn’t receive any responses from these
nodes, then it will select itself as a leader and send coordinator message to all alive
nodes.

b. After receiving the election message these nodes send responses (ok) to node 3.
c. After receiving the responses from these nodes, node 3 compares the Ids of these

nodes and send grant message to biggest Id node. Here node 6 is biggest Id node.
d. After receiving GRANT message from node 3, node 6 will elect as a new coor-

dinator and node 6 send coordinator message to all nodes.

2.2.1 Limitations

a. If a node failed after sending election message to biggest Id nodes or failed after
getting priority of biggest Id nodes, the biggest Id nodes will wait for 3D time D is
average propagation delay time) for coordinator message [11],if they don’t get any
coordinator message, they will start election again [4].

Fig. 2. Modified bully algorithm steps for selecting a coordinator

An Announcer Based Bully Election Leader Algorithm in Distributed Environment 667

b. After getting the GRANT message if that node crashed (which send Grant message)
then detector will have to start election again and send the GRANT message again
to the biggest Id nodes between the remaining ones and this will create redundancy

c. Each redundant election consumes resources and generates more messages passing
and network traffic.

d. There is no such guarantee of coordinator is exactly failed or not.

3 Proposed Algorithm

This paper proposes a new algorithm to elect a leader between nodes in the distributed
environment. This algorithm overcomes the problem which is revealed in bully algo-
rithm and modified bully algorithm. This algorithm is announcer based algorithm
where announcer decide who will be the next leader when current leader is failed. In
this algorithm the node which has the biggest Id is work as a announcer and if any node
notices the leader is failed then send election message to announcer, the announcer
decide who will be the next leader and also take confirmation of the old leader is
exactly crashed or not.

The variables which are used in this algorithm are given below:
anp_id -> announcer process Id, this variable is used for announcer
slp_id -> store leader process Id, this variable is used to store the leader process Id
mcp_id -> message creator process Id, this variable create the message creator
process Id
clp_id -> crashed leader process Id, this variable contains recently crashed leader
process Id.

3.1 Algorithm

Here we are going to describe the algorithm which is used for leader node election
(Figs. 3, 4 and 5).

int anp_id, slp_id, mcp_id, clp_id
//when any node N detect the leader is crashed, initiate an election
Create message msg (mcp_id, clp_id) and send to announcer
Start timer
//upon receiving message by announcer
If (slp_id = = clp_id)
{

If (leader is failed)
slp_id = mcp_id

broadcast leader msg (anp_id, mcp_id, clp_id)
else
broadcast message msg (anp_id, slp_id, null)
}
else
discard the received message msg (mcp_id, clp_id)
}

Fig. 3. Pseudo code when any node finds that the leader is crashed

668 M. Khan et al.

Case1: When any node found that leader is crashed and it needs a leader then
immediately it will start election by sending election message [(msg <mcp_id,
clp_id>)] to the announcer. Announcer will check the slp_id with clp_id and if it
matched then it will check whether stored leader is really crashed or not. If it is crashed
then announcer will store the mcp_id as a leader and broadcast this message [(msg
<anp_id, mcp_id, clp_id>)] to remaining nodes in the network to inform others about
the new leader.

After getting message from the announcer, nodes will update their table and replace
old leader id with new one.

In the example (shown in Fig. 6), node 4 founds that the current leader (node 5) is
crashed, so node 4 create a message (msg <4, 5>) and send to announcer (node 7).
After receiving the message (msg <4, 5>), announcer compare its store leader process

//when nodes N1,N2,N3…..Nn detect the leader is crashed, initiate an election
Create message msg (mcp_id, clp_id) and send to announcer
Start timer

//upon receiving messages from N1,N2,N3…..Nn for i=1 to n
Find the node Ni whose mcp_id is highest and discard the messages transmitted by other
nodes If (slp_id = = clp_id) \\clp_id taken from node Ni {

If (leader is failed)
slp_id = mcp_id

broadcast leader msg (anp_id, mcp_id, clp_id)
else
broadcast message msg (anp_id, slp_id, null)
}
else
discard the received message msg (mcp_id, clp_id)

Fig. 4. Pseudo code when two or more nodes find the crash of the leader

//when announcer and leader both are crashed and any node X detect the leader is
crashed Initiate an election
Create message msg (mcp_id, clp_id) and send to announcer
Start timer
If (sender not receives any responses from announcer)
Send message to N-1 node \\N-1 node is the next highest Id node
//after receiving message by N-1 node Check (anp_id is crashed
or not)
If (anp_id is crashed)
anp_id(N) = anp_id(N-1)
Check (leader is failed or not)
If (leader is failed)
broadcast leader message (anp_id, mcp_id, clp_id)
else
broadcast message msg (anp_id, slp_id, null)
}
else
discard the received message msg (mcp_id, clp_id)

Fig. 5. Pseudo code when any node find announcer and leader both are crashed

An Announcer Based Bully Election Leader Algorithm in Distributed Environment 669

id (slp_id) with the second field of the received message (clp_id). Here slp_id
(5) = clp_id(5). According to our algorithm the announcer (anp_id) verify the leader is
exactly crashed or not. If leader is crashed then it store mcp_id(4) as a new leader and
broadcast this message (msg <7, 4, 5>) to remaining nodes in the network to inform
others about the new leader. After getting message from the announcer, nodes will
update their table and store mcp_id(4) as a slp_id(4).

Case2: If simultaneously two or more nodes noticed that leader is down, they will send
message to the announcer. Now announcer have to elect leader between them based on
whose node id is bigger.

Fig. 6. Steps when one node detect leader is failed

Fig. 7. Steps when two nodes detect leader is failed

670 M. Khan et al.

In the example (shown in Fig. 7) when at a time node 4 and node 6 detect the leader
is down or crashed. In this case node 4 create the message <4, 5> and node 6 create the
message <6, 5> and send to announcer (node7). After getting message the announcer
compare the message creator process id (mcp_id) of both nodes. Here mcp_id
(6) > mcp_id(4). So announcer will discard the message <4, 5> and select the mes-
sage <6, 5> . After that the announcer compares slp_id and clp_id. Here slp_id
(5) = clp_id(5), so announcer check the slp_id is exactly crashed or not if crashed then
it store mcp_id(6) as a slp_id and broadcast message <7, 6, 5> to all active nodes in the
network to inform about the new leader. After receiving message the nodes update their
table and store mcp_id(6) as a slp_id.

Case3: If leader and announcer both were crashed and any node notices it then it will
send this message (msg < mcp_id, clp_id >) to (N − 1)th node considering it a new
announcer. After receiving the message, (N − 1)th node will have to validate it and
broadcast message (msg <anp_id, mcp_id, clp_id>) to the network.

Here in example (shown in Fig. 8) node 4 detect that the leader 5 is crashed then it
immediately create a message <4, 5> and send to announcer (node 7). After a certain
period of time if node 4 not received any responses from the announcer. Then it sends
the message <4, 5> to node 6. According to our algorithm after receiving the message
node 6 will check the announcer (node 7) is exactly down or not if node 7 is down then
node 6 updates their table and store as new anp_id. After that it compares slp_id and
clp_id. Here slp_id(5) = clp_id(5). So node 6 store mcp_id(4) as a new slp_id and
broadcast to all active nodes. After receiving message the nodes update their table and
store the anp_id(6) as a new announcer and mcp_id(4) as new store leader process
slp_id.

Fig. 8. When any node detect announcer and leader both are crashed

An Announcer Based Bully Election Leader Algorithm in Distributed Environment 671

4 Performance Analysis

In Bully algorithm [11] for choosing a leader we need of huge number of messages
passing and time. The message complexity of this algorithm in worst case is O(n2) and
message complexity of modified Bully algorithm is O(n) in worst case. It is more
efficient than Bully algorithm but it also require more messages to choose a leader but
our proposed algorithm more efficient and better performance in comparison to these
algorithm because it require less message passing for choosing a leader in distributed
system which is shown in Table 1. The message complexity of our proposed algorithm
is O(n) and mathematical analysis of this algorithm is shown in Sect. 4.1.

4.1 Mathematical Analysis

Best Case: If there are n nodes in a network and only one node observes leader
failure then number of message passing (M) between the nodes for electing a leader
will be

M ¼ 2þ 1þ n� 2ð Þ ¼ 3þ n� 2ð Þ

Average Case: If there are n nodes in a network and more than one node (assumed
x) observes leader failure then number of message passing (M) between the nodes
for electing a leader will be

M ¼ 2 � xþ 1þ n� 2ð Þ

Worst Case: There are n nodes in a network and all nodes detect leader failure then
number of message passing (M) between the nodes for electing a leader will be

M ¼ 2 � n� 2ð Þþ 1þ n� 2ð Þ ¼ 3 � n� 2ð Þþ 1

5 Comparison with Other Algorithms

In this section, we compare our proposed algorithms with respect to the existing
algorithms based on their message passing complexity. Table 1 shows the number of
message passing to select a leader in worst case. Figure 9 shows a comparison graph in
our proposed algorithm, Bully Algorithm and modified Bully Algorithm. Graph shows
comparison where number of nodes denoted by horizontal axis and number of message
denoted by vertical axis.

672 M. Khan et al.

6 Conclusion and Future Works

After analysis of Bully algorithm and modified Bully algorithm, we propose a new
algorithm for selection of a leader that gives overall less message passing during the
selection of a leader. The main idea of over proposed algorithm is that it uses highest
ID as an announcer node who will decide which one is the next leader in case of leader
failed or crashed. And by analytical simulation, we have shown that in our propose
algorithm the number of message passing for selecting a leader is less than with respect
to entire leader election algorithm.

As a future work, we will study to overcome the problem of message complexity in
worst case that will never affect the performance of our proposed algorithm.

Table 1. Comparison among bully algorithm, modified bully algo-
rithm and our proposed algorithm

No of nodes in a
network

Leader election algorithms
Bully
algorithm

Modified bully
algorithm

Proposed
algorithm

5 24 14 10
10 99 29 25
15 224 44 40
20 399 59 55
25 624 74 70

le
ad

er
 e

le
c

on
nu

m
be

r o
f m

es
sa

ge
 p

as
si

ng

700

600

500
Bully Algorithm

400

300 Modified Bully

200 Algorithm

100 Proposed Algorithm
0

5 10 15 20 25
Number of Nodes in Network

Fig. 9. Comparison among proposed algorithm, bully algorithm and modified bully algorithm

An Announcer Based Bully Election Leader Algorithm in Distributed Environment 673

References

1. Garcia-Molina, H.: Elections in a distributed computing system. IEEE Trans. Comput. 31,
48–59 (1982)

2. Mirakhorli, M., Sharifloo, A.A., Abbaspour, M.: A novel method for leader election
algorithm. In: The 7th IEEE International Conference on Computer and Information
Technology (CIT 2007), pp. 452–456, October 2007

3. Kordafshari, M.S., Gholipour, M., Jahanshahi, M., Haghighat, A.T.: Modified bully election
algorithm in distributed systems. In: WSEAS Conference (2005)

4. Park, S.H., Hwang, Y.K.: An efficient algorithm for leader-election in synchronous
distributed systems. IEEE Trans. Comput. 43(7), 1991–1994 (1999)

5. Gholipur, M., Kordafshri, M.S., Jahanshani, M., Rahmani, A.M.: A new approach for
election algorithm in distributed systems. In: International Conference on Computer and
Information Technology (2009)

6. Effat Parvar, M.R., Yazdani, N., Parvar, M.E., Dadlani, A., Khonsari, A.: Improved
algorithms for leader election in distributed systems. In: 2nd International (IEEE)
conference, vol. 2 (2010)

7. Yassein, M.B., Alslaity, A.N., Alwidian, S.A.: An efficient overhead-aware leader election
algorithm for distributed systems. IJCA J. 49(6) (2012)

8. Alhadidi, B., Baniata, L.H., Baniata, M.H.: AlSharaiah, M: Reducing massage passing and
time complexity in bully election algorithms using two successors. Int. J. Electron. Electr.
Eng. 1(1), 1–4 (2013)

9. Soundarabai, P.B., Sahai, R., Thriveni, J., Venugopal, K.R., Patnaik, L.M.: Efficient Bully
Election Algorithm in Distributed Systems, pp. 243–251. Elsevier Publications, Amsterdam
(2013)

10. Rahman, M., Nahar, A.: Modified Bully algorithm using election commission.
MASAUM J. Compu. 1(3), 88–96 (2009)

11. Chhabra, S., Tyagi, G., Mundra, A., Rakesh, N.: Location based coordinator election
algorithm in distributed environment. In: International Conference on Computer and
Computational Sciences (2015)

12. Kordafshari, M.S., Gholipour, M., Jahanshahi, M., Haghighat, A.T.: Two novel algorithms
for electing coordinator in distributed systems based on bully algorithm. In: 4th WSEAS
International Conference (2005)

13. Biswas, A., Dutta, A.: A timer based leader election algorithm. IEEE (2016)
14. Yadav, D.K., Sharma, V.K.: Optimal distributed leader election algorithm. Int. J. Adv. Res.

Comput. Sci. Technol. (IJARCST), 2 (2014)
15. Gawali, D.P.: Leader election problem in distributed algorithm. Int. J. Comput. Sci. Technol.

(IJCT), 3 (2012)
16. Beaulah Soundarabai, P., Thriveni, J., Venugopal, K.R., Patnaik, L.M.: An improved leader

election algorithm for distributed systems. Int. J. Next Gener. Netw. 5, 21 (2013)
17. Gajre, V.P.: Comparison of bully election algorithms in distributed system. Int. J. Sci. Res.

Publ. 3 (2013)
18. Katwala, H., Shah, S.: Study on election algorithm in distributed system. IOSR J. Comput.

Eng. 7, 34–39 (2012)
19. Shirali, M., Toroghi, A.H., Vojdani, M.: Leader election algorithms: history and novel

schemes. IEEE Computer Society (2008)
20. Sathesh, B.M.: Optimized bully algorithm. Int. J. Comput. Appl. 121 (2015)
21. Mamun, Q.E., Moham, S.: Modified bully algorithm for electing coordinator in distributed

systems. In: WSEAS International Conference on Software Engineering, Parallel and
Distributed Systems, pp. 22–28

674 M. Khan et al.

	An Announcer Based Bully Election Leader Algorithm in Distributed Environment
	Abstract
	1 Introduction
	2 Literature Survey
	2.1 Original Bully Algorithm
	2.1.1 Limitations

	2.2 Modified Bully Algorithm Presented by M. S. Kordafshari et al.
	2.2.1 Limitations

	3 Proposed Algorithm
	3.1 Algorithm

	4 Performance Analysis
	4.1 Mathematical Analysis

	5 Comparison with Other Algorithms
	6 Conclusion and Future Works
	References

