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Abstract For the customary classification algorithms, performance depends on fea-
ture extraction methods. However, it is challenging to extract such unique features.
With the advancement of Convolutional Neural Networks (CNN), which is the
widely used Deep Learning Framework, there seems to be a substantial improve-
ment in classification performance combined with implicit feature extraction pro-
cess. But, training a CNN is an intensive process that often needs high computing
machines (GPU) and may take hours or even days. This may confine its application
in a few situations. Considering these factors, an ensemble architecture is modelled,
that is trained on a subset of mutually exclusive classes, grouped by Hierarchical
Agglomerative Clustering based on similarity. A new Probabilistic Ensemble-Based
Classifier is designed for classifying an image. This new model is trained in compara-
tively lesser time with classification accuracy comparable to the traditional ensemble
model. Also, GPUs are not necessary for training this model, even for large datasets.

Keywords Convolutional neural networks « Deep learning + Computer
vision * Image classification

1 Introduction

Convolutional Neural Network is the widely used deep learning framework which
was inspired by the visual cortex of animals [1]. Initially, it had been widely used
for object recognition tasks but now it is being examined in other domains as well
[2]. The neocognitron in 1980 [3] is considered as the predecessor of ConvNets.
LeNet was the pioneering work in Convolutional Neural Networks by Jackel et al. [4]
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in 1990. It was specifically designed to classify handwritten digits and was
successful in recognizing visual patterns directly from the input image without any
preprocessing. But, due to lack of sufficient training data and computing power, this
architecture failed to perform well in complex problems. Later in 2012, with the rise
of GPU computing, Krizhevsky et al. [5] had come up with a CNN model that suc-
ceeded in drastically bringing down the error rate on ImageNet 2012 Large-Scale
Visual Recognition Challenge (ILSVRC-2012) [6]. Over the years later, their work
has become one of the most influential one in the field of computer vision and used
by many for trying out variations in CNN architecture. But initially their results also
daunted many in the area of computer vision due to the fact that the high-capacity
classification of CNN is owed to huge labelled training dataset like ImageNet and
it is obviously difficult in practice to have such large labelled datasets in different
domains.

The aforementioned problem is addressed using Transfer Learning. The mid-level
feature representations learned by a ConvNet on a large dataset are transferred to
other object recognition tasks with limited training data. The main challenge while
transferring knowledge is that it should produce positive learning in the target task.
There is a high chance of negative transfer learning when the source and target tasks
are less related. The datasets chosen as source is ImageNet and the target is Cal-
tech101. Chances of negative transfer learning are less in our case since the source
and target dataset are not totally unrelated.

The specific contributions of this work are as follows: we have trained a new
ensemble model of convolutional neural network on Caltech101 and achieved the
best results in terms of time complexity on this dataset, without compromise on
accuracy. The subset of classes fed to each network of the ensemble (conveniently
called pipeline) is grouped by Hierarchical Clustering algorithm based on single
linkage to suit our need for grouping similar classes. The subsets chosen are mutually
exclusive. Also, the concept of transfer learning is applied by retraining a trained
AlexNet model which has significantly reduced the training time and also improved
learning. Further to improve the learning process, visual saliency maps of all training
images are generated to identify the salient portion of images and the network is
trained using this. Much of the unnecessary background details are eliminated in the
process.

2 Related Works

Even though Convolutional Neural Networks were introduced in 1990 by LeCun
et al. [7], the architecture developed by Alex Krizhevsky et al. [5] is credited as the
first work in CNN to popularize it in the field of computer vision. It has a total of 8
learned layers—5 convolution layers and 3 fully connected layers. The network was
similar to LeNet but instead of alternating convolution layers and pooling layers,
AlexNet had all the convolution layers stacked together. And compared to LeNet,
this network is much bigger and deeper.



Image Classification Using an Ensemble-Based Deep CNN 447

An improvement over AlexNet was the CNN architecture by Zeiler and Fergus
[8]. They have presented a novel way to visualize the activity within the ConvNets
using a multi-layered Deconvolutional Network (DeConvNet) [9]. A DeConvNet is
also a ConvNet that operates in reverse direction, mapping features to input pixel
space. So the visualization of a ConvNet is done by attaching a DeConvNet to each
of it layers. This architecture can be used to observe the evolution of features during
training and also to troubleshoot the network in case of any issues. They have used
these tools to analyse the components of AlexNet and did a tweaking of the network
by reducing the filter size and stride in first layer and expanded the size of the middle
convolutional layers, resulting in an improved version over AlexNet.

Szegedy et al. [10] from Google, later in 2012 proposed an architecture called
GoogleLeNet with a new module, Inception(v1), that gives more utilization of the
computing resources in the network. GoogLeNet is a particular incarnation that has
22 layers of Inception module but with less parameters compared to AlexNet. This
module has multiple convolution filters applied on the input image along with pool-
ing and then combining the results. This leads to multi-level feature extraction from
each input and also abstract features from different scales simultaneously.

Another famous architecture is VGGNet by K. Simonyan and A. Zisserman [11].
They have done a thorough analysis of the depth factor in a ConvNet, keeping all
other parameters fixed. This try could have led to huge number of parameters in the
network but it was efficiently controlled by using very small 3 X 3 convolution filters
in all layers. This study has led to the development of a more accurate ConvNet
architecture called, VGGNet.

Szegedy et al., in 2015 proposed an architecture [12], which is an improvement
over GoogLeNet where the training of Inception modules (by Szegedy et al. [10])
are accelerated when trained with residual connections (introduced by He et al. [13]).
The network has yielded state-of-the-art performance in the 2015 ILSVRC challenge
and has won the contest.

A residual learning framework was presented by Kaiming et al. [13], where the
layers learn residual functions with respect to the inputs received instead of learn-
ing unreferenced functions. The main drawback of this network is that it is much
expensive to evaluate due to the huge number of parameters.

The work by Soman et al. [14] does grouping of misclassified characters together
to improve accuracy which is in line with our work, but the performance is found to
be dropping down when the number of classes exceeds the range of 40.

3 Proposed Ensemble Architecture

The proposed architecture can be viewed as a ConvNet which is replicated more
than once (called as pipelines), each trained on a subset of class labels with differ-
ent parameter settings. Here, subset of dataset refers to subset of classes or labels.
This inherently means that the training subsets formed are mutually exclusive. The
advantage of training on a subset of classes are analysed to be multifold, i.e. training
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Fig.1 Proposed Ensemble Architecture

time is expected to be reduced significantly; eliminate the need for high-end GPUs
for the training of ConvNets on huge datasets.

Figure 1 clearly shows all the components involved, starting from the process of
transfer learning whereby the new model gets initial weights from AlexNet trained
on ImageNet. From the 101 classes, reference images are selected for each class
and it is subjected to Hierarchical Agglomerative Clustering which results in group
of similar images. Based on this grouping, mutually exclusive subsets are formed
which is fed to network after preprocessing steps (training). The following sections
detail all the steps involved.

3.1 Transfer Learning

The mid-level feature representations learned by AlexNet model on ImageNet are
efficiently transferred for training the new network on Caltech101. Mid-level features
or generalized features are captured in the first seven layers, i.e. from first conv layer
to second fully connected layer (FC7). The learned weights of these layers are used
in our model as well and these are kept constant and not updated during training.
The final fully connected layer FC8 and classifier of source task are more specific to
ImageNet hence we ignore them and add new FC8 and softmax classifier, which are
retrained.
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3.2 Clustering

Each pipeline in the new ensemble architecture is to be trained on images that belong
to similar set of classes. And the grouping of similar classes is done by hierarchi-
cal clustering. Initially, reference images are selected for each class, the one with
minimum noise. Based on the similarity matrix computed, Hierarchical Agglomer-
ative Clustering (HAC) of the reference images is done. HAC follows a bottom-up
approach, i.e. hierarchy of clusters are formed by recursively merging, starting from
individual elements. Maximum similarity metric is considered for merging process,
called as single-linkage clustering. Classes belonging to a cluster are considered for
training a pipeline of the proposed ensemble, and thereby expecting a model that can
be trained in lesser time without the need of GPUs, compared to the existing one.

3.3 Preprocessing Steps

The bottom-up method of computing saliency maps, Graph-Based Visual Saliency
(GBVS), proposed by Koch et al. [15] is used to detect the objects (Fig.2). The
method is particularly useful when images have multiple objects and background.
Based on the saliency maps, bounding box is drawn and objects are cropped from
the original image, thereby removing much of the background information.

The customary procedure of random cropping is replaced by resizing the visual
saliency-based detected object image to the standard input size required for AlexNet
model. In addition to this, another data augmentation applied is horizontal flipping
of the images. This is done based on the requirement that objects should be equally
recognizable even if it is its mirror image. Applying more relevant transformations,
the model is exposed to additional variations without the need of more labelled train-
ing images. Also, the problem of overfitting can be solved and thereby improving the
model’s ability to generalize.

L T

Fig. 2 Starting from left, original image followed by the saliency map and original image with
bounding box
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3.4 Ensemble Training

Based on the results of hierarchical clustering, classes in each cluster is given as input
to each pipeline of the ensemble model. ConvNets are usually trained on GPUs. But
we have trained the new model without GPU, with parameter settings like 50 training
data and 10 testing data, trained for a total of 15 epochs with batch size as 10 and
0.03 as learning rate. The activation function used is Rectified Linear Units (ReLU),
ie.

f(x) = max(0, x) )

If f(x, y) is the input image and w[s, f] is the filter, then the basic convolution opera-
tion is given by

a b
glryl= Y ) wis.tl-flx+s,y+1] ©)

s=—at=—b

Existing ensemble architecture, with equal number of pipelines, is also trained on
full dataset by varying parameters to do a comparative study on performance. Top-1
and top-5 errors are computed in the process. Both the metrics decrease progressively
over the training phase.

Algorithm 1 Proposed Ensemble

INPUT: Set of images img
OUTPUT: A trained network ¢
1: procedure PROPOSED-ENSEMBLE(img)
2: Initialize weights with that of pretrained AlexNet.
Select reference image from each class.
Compute similarity score matrix M.
set of clusters C « Hierarchical_Clustering(M)
for each dataset i € C(i) do
Saliency_Extraction(i);
t «Train(i).
9: end for
10: Return trained model ¢
11: end procedure

A U

3.5 Probabilistic Classifier

Testing of ensemble model involves feature computation and softmax classification
(with scores) with each pipeline model (as given in Algorithm 2). The state-of-art
ensemble networks does prediction by averaging the softmax classifier’s score val-
ues. We have come up with a probabilistic classifier where we select the maximum
score of softmax classifier from each pipeline and again a maxima of all the maxi-
mum scores. This is based on the presumption that given a test image, the pipeline
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which has learned the features accurately will recognize it with a very high proba-
bility compared to other incorrect classification scores of other pipelines.

Algorithm 2 CNN Testing

INPUT: Any image from Caltech-101 or of similar data distribution
OUTPUT: Object label with predicted score
1: procedure CNN-TEST

Load the saved models of each pipeline.

Replace the last softmax loss layer with softmax classifier.

Each pipeline computes score for the given image using the same convolution and pooling
operations done during training.
5 Find maximum of scores from each pipeline. Let it be score(i), where i represents pipeline.
6: final_score < max(score(i))
7
8

Rl

Return associated label, final_score.
: end procedure

4 Results and Performance Evaluation

The new ensemble model is trained on Caltech101 dataset using initialization weights
from AlexNet trained on ImageNet.

4.1 Dataset

The source dataset for transfer learning of mid-level representations is chosen as
ImageNet. The images have center-focused objects with less background clutter. The
AlexNet model trained on ImageNet is chosen as the source task. The main advantage
of selecting AlexNet as the source model over other models is that, since it is trained
on the largest image database available, the mid-level representations learned will
be more accurate and can be easily adapted to any other challenging datasets of
different data distributions. The target dataset chosen for studying the impacts of
transfer learning is Caltech101. It contains a total of 9,146 images distributed across
102 categories.

4.2 Testing

Testing is done on Caltech101 dataset by considering 8 classes, 25 classes, and full
dataset. This incremental testing approach has ultimately proved useful in under-
standing the correlation between the number of classes, number of pipelines in the
ensemble and classification accuracy.
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Table 1 Caltech-101 classification accuracy for our ConvNet model trained on 8 classes, against
the alternate approach

Models Acc% Train time

New ensemble 80 approx. 20 mins
Score-averaging ensemble 79 approx. 45 mins
Single-nonpipelined 78 approx. 20 mins

Table 2 Class-wise accuracy

Class Acc% (new) Acc% (existing)
Airplanes 70 60
Beaver 80 80
Car side 30 20
Dalmatian 100 100
Elephant 100 90
Helicopter 100 100
Kangaroo 90 100
Motorbikes 70 80

Table 3 Caltech-101 classification accuracy for our ConvNet model trained on 25 classes, against
the alternate approach

Models Acc% Train time

New ensemble 84 approx. 40 mins
Score-averaging ensemble 83.66 approx. 1.5h
Single-non-pipelined 83 approx. 40 mins

Case 1: 8 Classes and 2 Pipelines—We have trained an ensemble model of two
pipelines, for a total of 8 classes, i.e. 4 classes per pipeline. Also, a score-averaging
ensemble of comparable size (two pipelines), 8 classes per pipeline is also modelled.
And the results are given in Tables 1 and 2.

Case 2: 25 Classes and 2 Pipelines—Next, the number of classes are increased
and trained an ensemble model of two pipelines, for a total of 25 classes, 12 in one
pipeline and 13 in the other. In this case as well a score-averaging ensemble of com-
parable size (two pipelines), 25 classes per pipeline is modelled. The test results are
shown in Tables 3 and 4.

Case 3: 101 Classes and 5 Pipelines - Having seen the good results in above two
scenarios, we have trained the ensemble on the whole Caltech-101 dataset, for 101
classes. Since we have more number of classes in this case, the ensemble is designed
to have 5 pipelines with 20 classes per pipeline except one having 21 classes. The
score averaging ensemble as well has 5 pipelines, each trained on full dataset.
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Table 4 Class-wise accuracy
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Class

Acc% (new)

Acc% (existing)

Airplanes 50 60
Beaver 80 80
Binocular 30 40

Bonsai 100 100
Brontosaurus 90 100
Camera 100 100
Cellphone 100 80
Chair 80 90
Dalmatian 100 70
Elephant 50 60
Ferry 100 100
Garfield 100 100
Gerenuk 100 90
Helicopter 90 90
Joshua tree 90 100
Kangaroo 100 90
Leopards 60 50
Llama 60 70
Okapi 80 90
Panda 100 90
Rhino 90 90
Stegosaurus 70 80
wheelchair 100 100
Wild cat 100 90
Windsor chair 80 70

Table5 Caltech-101 classification accuracy for our ConvNet model, against the alternate approach

Models Acc% Train time
New ensemble 68 approx. 3
Score-averaging ensemble 78.48 approx. 15h
Single-non-pipelined 78 approx. 3 h

Classification accuracies for the model as such as well as for per-class are detailed

in Tables 5 and 6.

Figure 3 shows the top 3 classes with high classification accuracies and Fig. 4
shows top 3 classes with low classification accuracies, compared to the state-of-the-
art model. Incorrectly classified are highlighted in red and those in green are correctly
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Table 6 Class-wise accuracy

Class Acc% (new) Acc% (existing)
Airplanes 50 40
Beaver 70 80
Binocular 50 20
Bonsai 100 100
Brontosaurus 90 60
Camera 90 50
Cellphone 20 0
Chair 90 80
Dalmatian 70 60
Elephant 50 50
Ferry 100 100
Garfield 100 90
Gerenuk 90 80
Helicopter 90 100
Joshua tree 100 100
Kangaroo 80 60
Leopards 50 50
Llama 60 50
Okapi 80 80
Panda 90 90
Rhino 80 80
Stegosaurus 80 80
Wheelchair 90 100
Wild cat 80 50
Windsor chair 80 70

Fig. 3 Top 3 classes for
which our method has
performed well compared to
alternate approach

Fig. 4 Classes for which
our method has very low
classification results
compared to the alternate
approach
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Fig. 5 Sample predicted srpianes G veave 1000
output

classified. Figure 5 shows a sample prediction, where the given image (airplanes) is
predicted with the highest score of 1.

4.3 Evaluation

The result clearly shows improved accuracy with the new model when compared
to the existing architecture, for less number of classes, with a reduction in training
time. Thus, the new method is particularly useful when a new convolutional neural
network is to be trained on large datasets like ImageNet where training complexity
is a critical factor. However, performance drops as the number of training classes
increases. Since we have increased the number of pipelines proportional to the num-
ber of classes, the probabilistic classification is severely impacted when maximal is
chosen from the set of maximals. From an analysis of the score and class predictions
it is found that in most of the cases, individual pipelines have correctly predicted the
desired class. But with probabilistic classification we miss the desired result. This
has led to a significant reduction in the classification accuracy of the new model. But
the conventional requirement of high computing machines for training convents on
huge datasets can be eliminated with the proposed ensemble architecture.

5 Conclusion

Various aspects of CNN have been analysed, starting from transfer learning of feature
representations from a pretrained model and the new model is actually found to be
well adapted to the target dataset. With accuracies comparable to the existing model,
we were able to bring about a decrease in the training time, thus reducing the time
complexity of network. Our testing is limited to only one dataset in this work. We
plan to have more rigorous testing of the model on challenging datasets like Caltech-
256 and Pascal-VOC, in our future work.
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