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Abstract In this paper, the forward kinematics of the 3-RPRS manipulator is posed
as an intersection problem of two plane algebraic curves. The manipulator is hypo-
thetically decomposed into two kinematic sub-chains by dismantling one of the
spherical joints. A pair of points, consisting of one each from the said sub-chains,
are now constrained to individual loci, the points of intersection of which lead to
the assembly modes of the manipulator. Computations of these points lead to the
derivation of a 16-degree univariate polynomial equation, whose coefficients have
been obtained as closed-form functions of the architecture parameters and the actu-
ator variables. It is also found that this polynomial has only the even-powered terms,
making it effectively an octic equation. The theoretical results are illustrated with
the help of a numerical example and the results are validated numerically.

Keywords Forward kinematics · Coupler surface · 3-RPRS parallel manipulator
Planar algebraic circular curves · Forward kinematic univariate

1 Introduction

The 3-RPRS manipulator is a six-degrees-of-freedom spatial parallel manipulator,
which is recently introduced in [1], where the inverse kinematics has been solved.
In [2], the forward kinematic (FK) problem has been solved using a joint-space for-
mulation where an 8-degree polynomial equation, namely, the forward kinematic
univariate (FKU) (as defined in [3]), has been derived in terms of one of the joint-
space variables. In the current work, a geometric approach has been followed to solve
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the FK problem of the 3-RPRS manipulator in a similar manner as is done for the
3-RPS manipulator in [4]. The manipulator is hypothetically divided into two kine-
matic sub-chains. Once the input joint variables are fixed, the FK problem converts
into an intersection problem of two plane algebraic circular curves corresponding
to each of the sub-chains. To obtain the intersection points, a 16-degree FKU has
been obtained and it is found that the FKU is even-powered, making it effectively
a degree eight polynomial equation. A numerical example is used to illustrate the
formulation.

The rest of the paper is organised as follows: in Sect. 2, the geometry of the 3-RPRS
manipulator is discussed. Formulation of the FK problem leading to the derivation
of the FKU is presented in Sect. 3.

The formulation is illustrated via a numerical example in Sect. 4. The conclusions
are presented in Sect. 5.

2 Geometry of the 3-RPRS Manipulator

The moving platform of the 3-RPRS manipulator is in the form of an equilateral
triangle, which is inscribed in a circle of radius a. Each vertex of the said triangle,
denoted by pi , i = 1, 2, 3, is connected to the fixed base of the manipulator through
a RPRS leg. Only the first two joints, R (revolute) and P (prismatic) of each leg are
active (i.e., actuated). The three prismatic joints are mounted on the fixed circular
guide of rectangular cross-section, such that their axes intersect at the centre of the
guide. A rigid strut of length l, connected to the moving platform via a spherical
joint, joins the prismatic pair at the base of each leg via a rotary joint.

As shown in Fig. 1a, the fixed coordinate system {0}, given by o0-X0Y0Z0, is
positioned at the centre of the circular guide fixed at the base platform. The coordinate
system attached to the moving platform {1}, given by o1-X1Y1Z1, has its origin o1,
located at the centroid of the triangle p1 p2 p3. The X1 axis is directed towards the
centre of the spherical joint at p1. Consider another moving coordinate system {2},
denoted by o2-X2Y2Z2, which is obtained by rotating the fixed coordinate system {0}
about its Z0 axis through an angle θ1 in the counter clockwise sense, such that the X2

axis is always aligned with the first prismatic joint axis. The passive rotary joints
are located at the points denoted by bi , which are given in the frames {0} and {2},
respectively, as

0bi = [di cos θi , di sin θi , 0]�, (1)
2bi = [di cos θi1, di sin θi1, 0]�,where, θi1 = θi − θ1, i = 1, 2, 3, (2)

and di is the ith prismatic joint extension (measured from the origin o0), θi is the
counterclockwise rotation of the ith prismatic joint axis, measured from the axis X0

about the Z0 axis.



Forward Kinematics of the 3-RPRS Parallel Manipulator … 161

Fig. 1 The 3-RPRS manipulator and its conceptual decomposition

The positions of the vertices of the top platform in terms of the active and passive
variables are given by

0 pi = 0bi + RZ (θi )[l cosφi , 0, l sin φi ]�, (3)
2 pi = 2bi + RZ (θi1)[l cosφi , 0, l sin φi ]�, i = 1, 2, 3, (4)

where φi is the ith passive joint angle made by the strut, measured from the prismatic
joint axis.

The position and orientation (or the pose) of the moving platform can be specified
uniquely, once the variables, q = [θ1, θ2, θ3, d1, d2, d3,φ1,φ2,φ3]� are known. Out
of these, θ = [θ1, θ2, θ3, d1, d2, d3]� are the active (i.e. actuated) joint variables and
φ = [φ1,φ2,φ3]� are the passive (i.e., unactuated) joint variables.

3 Geometric Formulation of the FK Problem

In the FKproblem, the actuator inputsθ, are known and the pose of the top platform is
to bedeterminedvia the computationof the remaining configurationvariablesφ, from
the kinematic constraint equations, that the manipulator needs to satisfy at all times.
Towards this, the manipulator is hypothetically decomposed into two kinematic sub-
chains at one of the three spherical joints. Consequently, the loop-closure constraints
are formulated using the fact that the position of the endpoints of the said sub-chains
should be identical.
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InFig. 1b, themanipulator is divided into twokinematic sub-chains at the spherical
joint p1 and this leads to two hypothetically distinct points pc1 and ps1 , where pc1
is the point representing the tip of the serial kinematic chain o0b1 p1 and ps1 is the
coupler point of the spatial RSSR linkage b2 p2 p3b3. Geometrically, the locus of
the point pc1 , which is the circle C = 0, should intersect the coupler surface S = 0,
traced by the coupler point ps1 . In order to identify the locus of the points pc1 and
ps1 and to make those computations easier, all the calculations are performed in the
coordinate system {2}.

3.1 Number of Assembly Modes of the 3-RPRS Manipulator
in The FK Problem

As the name suggests, assembly modes in the FK problem are the different con-
figurations in which the manipulator can be assembled while keeping the actuators
fixed at a given set of inputs. The number of assembly modes possible can be found
by identifying the various configurations in which the decomposed sub-chains can
be assembled back. In other words, it is equal to the number of intersection points
possible between the loci of pc1 and ps1 .

It is shown in [5, p. 433], that the degree of the surface traced by the coupler
point of a general spatial RSSR link is 16. Further, in [6], the circularity of the said
surface is stated to be 8. Consider the RSSR linkage b2 p2 p3b3, as shown in Fig. 1b.
The degree and the circularity of the coupler surface S = 0, traced by the point ps1 ,
are nS = 16 and cS = 8, respectively.

Considering the other sub-chain o0b1 p1, in Fig. 1b. Point pc1 , which is attached to
a rotary joint at b1 with a strut traces a circle C = 0, with its centre at b1. Therefore,
its degree nC = 2 and circularity cC = 1. The number of points of intersection of the
coupler surface S = 0 with the circleC = 0 can be calculated by using the extension
of the Bezout’s theorem (see [7]):

n = nSnC − 2cScC = 16 × 2 − 2 × 8 × 1 = 16. (5)

Therefore, the maximum number of ways in which the 3-RPRS manipulator can
be assembled is 16. This result is the same for the 3-RRS and 3-RPS manipulators
because of their architectural similarity.All of these havemoving triangular platforms
connected to the rest of the respective manipulators via spherical joints located at
the vertices of the triangle.
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3.2 Derivation of the Circularity Constraint, C = 0

Given the input variables θ, one can determine the positions of the points b1, b2
and b3. Let 2 pc1 = 2 ps1 = 2 p1 = [x, y, z]�. The locus of the point pc1 is a circle of
radius l, with its centre at b1. The circle lies in the plane o0b1 p1, which contains the
first limb. The algebraic equations representing the circle C = 0 in the coordinate
system {2} are derived from the constraint equations as follows:

• Leg-length constraint: The distance between the points pc1 and b1 is equal to l.
This leads to the equation of a sphere centred at b1:

ξ1
�= (2 pc1 − 2b1) · (2 pc1 − 2b1) = l2. (6)

• Planarity constraint: The strut pc1b1 is always perpendicular to the axis of the
rotary joint at b1. This leads to the equation of the plane in which the point pc1 is
confined to move, which is obtained as follows:

ξ2
�= (2 pc1 − 2b1) · eY2 = 0,where eY2 = [0, 1, 0]�; (7)

⇒y = 0. (8)

The equation of the circle C(x, z) = 0 is obtained by substituting the plane equation
y = 0 in the leg-length constraint Eq. (6).

3.3 Derivation of the Coupler Surface, S = 0

The surface traced by the coupler point of the RSSR chain b1 p1 p2b2, can be formu-
lated in terms of the vector of the variables θs = [φ2,φ3, x, y, z, l2, l3, θ21, θ31]�.
Out of these variables l2, l3, θ21, θ31 are specified in the FK problem. Hence, the
coupler surface can be expressed in terms of x, y, z after eliminating the passive
variables φ2,φ3 from the constraint equations. The constraint equations are derived
in the following:

• Loop-closure constraint: The first constraint is defined by closing the RSSR loop,
the geometric condition being that the distance between the points p2 and p3 is a
constant:

g1(φ2,φ3)
�= (2 p2 − 2 p3) · (2 p2 − 2 p3) − 3a2 = 0. (9)

• Rigidity constraints: The remaining two constraint equations can be formulated
by using the fact that the distance between the points ps1 and p j , j = 2, 3 are also
fixed as the moving platform is rigid:

g2(φ2, x, y, z)
�= (2 ps1 − 2 p2) · (2 ps1 − 2 p2) − 3a2 = 0, (10)

g3(φ3, x, y, z)
�= (2 ps1 − 2 p3) · (2 ps1 − 2 p3) − 3a2 = 0. (11)
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The passive variables φ2,φ3 are eliminated by the following procedure: Eqs. (9),
(10) and (11) are linear in terms of cosφ2, sin φ2, cosφ3, sin φ3. Solving for cosφ2,
sin φ2 from Eqs. (9), (10) and substituting these in the identity cos2 φ2 + sin2 φ2 = 1
gives an equation in terms of φ3, x, y, z:

g1(φ2,φ3) = 0

g2(φ2, x, y, z) = 0

)
×φ2−→ h1(φ3, x, y, z) = 0, (12)

where the symbol ‘
×φ2−→’ denotes the elimination of the variableφ2 from the equations

preceding it. The solution of φ2 can be uniquely identified by using the two-argument
inverse tangent function, atan2(sin(·), cos(·)):

φ2 = atan2(sin φ2, cosφ2). (13)

Equation (12) is not linear in terms of cosφ3, sin φ3. The variable φ3 is elimi-
nated after transforming the equations h1 = 0, g3 = 0 to their respective algebraic

forms, via the tangent half-angle substitution: t3 = tan
(

φ3

2

)
. After the transforma-

tion, Eq. (12) becomes a polynomial equation, namely, s1 = 0, of degree four in t3
and Eq. (11) becomes a quadratic equation, s2 = 0, in the variable t3. The coupler
surface can be obtained by finding the resultant of s1 = 0 and s2 = 0 with respect to
the variable t3. This elimination procedure is summarised schematically below:

h1(φ3, x, y, z) = 0
φ3→t3−→ s1(t3, x, y, z) = 0

g3(φ3, x, y, z) = 0
φ3→t3−→ s2(t3, x, y, z) = 0

)
×t3−→ S(x, y, z) = 0. (14)

The symbol ‘
φ3→t3−→ ’ denotes the conversion of an equation in φ3 into their algebraic

form in t3 = tan(φ3/2). Equation S(x, y, z) = 0, which is in terms of the actuator
variables and architecture parameters, defines the coupler surface of point ps1 of the
RSSR chain. The size1 of the coupler surface is 218.053 MB.

The variable t3 can be solved by equating the polynomial remainder obtained by
dividing s1 by s2, with respect to the variable t3 to zero. One can solve t3 uniquely
as the remainder is linear in t3 and this solution is guaranteed to satisfy s1 = 0 and
s2 = 0 simultaneously. Hence, the solution of the variable t3 is obtained as follows:

s1(t3, x, y, z) = α(t3, x, y, z)s2(t3, x, y, z) + β(t3, x, y, z) = 0,

β(t3, x, y, z) = 0 ⇒ β1(x, y, z)t3 + β2(x, y, z) = 0,

⇒t3 = −β2(x, y, z)/β1(x, y, z), assuming β1(x, y, z) �= 0. (15)

Special cases such as β1(x, y, z) = 0, need to be studied further, which fall outside
the scope of the present paper.

1Here, the “size” of an expression indicates the amount of memory required to store the expression
in the internal format of the computer algebra system (CAS) used, namely, Mathematica.



Forward Kinematics of the 3-RPRS Parallel Manipulator … 165

3.4 Derivation of the FKU

A real point of intersection of the coupler surface S = 0 with the circle C = 0
implies that the manipulator can be assembled, with the dismantled spherical joint
re-established at that point. To identify the intersection points, one can eliminate two
of the variables x, y, z and derive the FKU in terms of the remaining.

As the circle C = 0 lies in the plane X2Z2, one can substitute y = 0 in S = 0.
Tangent half-angle substitutions for θ21, θ31 follow, to convert the resulting equation
into its algebraic form.2 This leads to the curve C ′(x, z) = 0 in the X2Z2 plane:

S(x, y, z) = 0
y→0,θ21→t21,θ31→t31−−−−−−−−−−−−→ C ′(x, z) = 0. (16)

The “size” of the curve C ′(x, z) = 0 is 24.450 MB, after using the in-built sym-
bolic simplification routine of Mathematica, namely, Simplify. The curve
C ′(x, z) = 0 is of degree 16 in x and z and the circularity of the curve is 8.
The Bezout’s limit for the number of intersections of this circular curve with
the circle C(x, z) = 0 is 16. By eliminating the variable x from C(x, z) = 0 and
C ′(x, z) = 0 via their resultant yields the FKU:

C ′(x, z) = 0

C(x, z) = 0

)
×x−→ ζ(z) = 0. (17)

The FKU ζ, has only the even-powered terms and hence can be written as a polyno-
mial of degree 8 in m = z2:

ζ = υ8m
8 + υ7m

7 + υ6m
6 + υ5m

5 + υ4m
4 + υ3m

3 + υ2m
2 + υ1m + υ0. (18)

The “size” of the FKU has been reduced from approximately 3 GB to 902.911 MB
by using the Simplify routine, on each of the coefficients, (υi , i = 0, ..., 8), indi-
vidually.

Once the FKU equation ζ = 0, is solved for z, after substituting architecture and
actuator values in it, one can find the corresponding values of x . The value of x
corresponding to each (real) value of z can be uniquely determined by equating the
polynomial remainder obtained by dividing C ′(x, z) by C(x, z) with respect to x to
zero and solving for x in the same manner that was used for obtaining t3 in Sect. 3.3.

2It is found that this tangent half-angle substitutions for θ21, θ31 hasmade the algebraic computations
in the later steps faster.
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Table 1 Forward kinematic solutions of the 3-RPRS manipulator for the input variables: d1 =
6
5 , d2 = 3

2 , d3 = 17
10 , θ1 = 0, θ2 = 7π

12 , θ3 = 7π
4

Solution no. x y z φ1 φ2 φ3

1, 2 0.353 0 ±2.878 ±1.857 ±1.445 ±2.683

3, 4 0.651 0 ±2.949 ±1.755 ±2.677 ±2.604

5, 6 −1.205 0 ±1.794 ±2.501 ±1.603 ±1.930

7, 8 −0.568 0 ±2.424 ±2.201 ±2.755 ±1.646

From the planarity constraint y = 0 for all the solutions of z and x , one can find
all the passive angles φi as well. After the passive angles are computed for all the
real solutions z, one can get the positions of the points 0 pi , i = 1, 2, 3 and the pose
of the end-effector is determined uniquely.

4 Numerical Results

The above procedure is illustrated below via an example. The numerical values are
adopted from [2], so as to compare the final results with the same. The architecture
parameters considered are3: l = 3 and a = 2. All the numerical results are obtained
in Mathematica, with a precision of 50 significant digits after the decimal point.

The numerical values of the active variables are chosen as: d1 = 6
5 , d2 = 3

2 , d3 =
17
10 , θ1 = 0, θ2 = 7π

12 , θ3 = 7π
4 . The monic form of the FKU in this case, is shown

below4:

ζ = m8 − 6.413m7 − 534.433m6 + 9911.630m5 − 47703.189m4 − 250740.961m3

+ 3499560.799m2 − 3096233.726m + 16559580.130 = 0,where m = z2.
(19)

Equation (19) admits 4 real solutions (tabulated in Table1), each leading to a pair of
poses of the manipulator which have a mirror symmetry about the base plane, X0Y0.
The passive variables, φi , for each of the 8 poses, are enumerated in Table1, which
match those in Table1 of [2] up to two digits after the decimal point.

In order to validate the solutions further, they are substituting back into the con-
straint equations, η = [g1, g2, g3, ξ1, ξ2]�. The residual error, defined as ‖η‖, is
found to be of the order of 10−25. The accuracy of the results can be improved by
increasing the working precision albeit at the cost of additional computations.

The time taken to obtain the numeric monic polynomial Eq. (19) by substituting
all the parameters and variables with their numerical values in Eq. (18) is around
34 s, whereas the same equation, when obtained by substituting the numerical values

3All the angles aremeasured in radians, and lengths inmetres, unlessmentioned otherwise explicitly.
4Though the coefficients are obtained with a precision of 50 significant digits, their real approxi-
mations are presented here for the want of space.
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Fig. 2 Intersection of the constraint curves leading to the FK solutions

Fig. 3 Forward kinematic poses 1–4 (numbered as per Table 1)

at the stage of Eq. (17) is around 0.91 s. It is found that the accuracies of the results
obtained are comparable in the two ways of computation.

The intersections of the coupler surface with the circle in the plane X2Z2, for this
example, are shown in Fig. 2 and the different poses of the manipulator are shown in
Figs. 3 and 4.
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Fig. 4 Forward kinematic poses 5–8 (numbered as per Table 1)

5 Conclusion

The forward kinematic problem of the 3-RPRS manipulator is solved in this paper,
using a geometric approach. The problem is reduced to the computation of the inter-
sections between the constraint varieties generated by the individual sub-chains, into
which the manipulator is decomposed hypothetically for the purpose of this work.
A 16-degree FKU equation is obtained in the closed form, for a general architecture
of the manipulator. The FKU is even-powered in the variable z and, therefore, half
of the solutions are mirror images to the other half, with respect to the base plane.
The results are validated by finding the residues of the constraint equations.
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