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Abstract For repetitive material-handling operations in various industries, fixed
automation using single-degree-of-freedom mechanisms can often serve as a low-
cost alternative to multi-degrees-of-freedom robots. Therefore, developing design
procedures for inexpensive fixed automation solutions may be highly relevant in the
context of developing as well as underdeveloped economies. A design methodol-
ogy to analytically synthesise a planar pick-and-place system for displacement and
velocity requirements using a planar four-bar mechanism is carried out in this work.
A methodology to establish the availability of kinematic defect-free solutions in
terms of two free design parameters is also proposed and illustrated with a numerical
example.

Keywords Kinematic synthesis · Pick-and-place mechanism · Circuit defect
Branch defect

1 Introduction

The problem of kinematic path synthesis using planar four-bar linkage for positional
requirements is well studied in the literature both analytically (see, e.g., [1]) and
numerically using continuation techniques (for example, see [2, 3]). Holte et al. [4]
presented a closed-form solution for a two precision-points problem with velocity
requirements at one of the points and used the available free parameters for velocity
approximations at several other positions, for assisting a technician in a laboratory
environment. Robson and McCarthy [5] solved a synthesis problem matching three
positions and two velocities by adjusting the velocity specifications iteratively to find
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defect-free solution. In this work, a closed-form solution to a pick-and-place applica-
tion in an industrial setting is presented, for exact position and velocity requirements
at two precision-points, in addition to a requirement of finite angular displacement
of the end-effector by a desired angle. This problem falls under PP-PP category with
two sets of two infinitesimally separated positions, as termed by Tesar [6]. A pair of
infinitesimally separated positions represents a positional requirement and a velocity
requirement at the same position.

Figure1 depicts the problem schematically. The objective of this work is to design
a pick-and-place system to transfer a component from amoving conveyor 1 to another
moving conveyor 2, which is a common and highly repetitive task inmany industries.
While performing the pick-and-place operation, the following requirements are to
be met:

1. The mechanism should include the pick and drop locations in the path of a
designated coupler point, where a gripper would be attached.

2. The said coupler point (i.e., the gripper) should match the velocities of the
corresponding conveyors as it picks and drops the object to reduce mechanical
impact during operation.

3. The object to be handled should be rotated by a finite angle before the drop
at the destination, as depicted with two different reference frames p1 − X1Y 1

and p2 − X2Y 2 at the pick and drop locations, respectively.
4. Additionally, the mechanism must be free of any kinematic defects such as the

branch defect, circuit defect and order defect, and it should be of Grashof type.

Although kinematic synthesis of pick-and-place mechanisms have been discussed
in the literature, only subsets of the requirements listed above have been addressed.
For example, the requirements 1 and 2 are partially addressed in [4, 5] with little
emphasis on kinematic defects. To the best of the authors’ knowledge, all the four
requirements are not addressed in an exact manner in the existing literature. The

Fig. 1 Schematic of a
two-conveyor system with a
pick-and-place mechanism
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proposed comprehensive methodology to find a feasible design free of the defects
can be potentially extended to other class of problems.

The rest of the paper is organised as follows: a closed-form solution to the afore-
mentioned problem is proposed in Sect. 2. Feasibility analysis for obtaining defect-
free solutions using the available free design parameters is carried out in Sect. 3. The
solution methodology is illustrated with a numerical example of a pick-and-place
problem in Sect. 4. Section5 concludes the paper.

2 Problem Formulation

A planar four-bar mechanism is modeled as a combination of two vector-dyads,
represented by the complex variables (z1, z2) and (z3, z4), with z5 as the ground
link, as shown in Fig. 2. The complex numbers r1 and r2 represent the position
vectors of the pick and drop locations p1 and p2, respectively, in the global frame
of reference o− XY . Let the conveyors be moving at constant velocities defined
by v1 and v2, respectively1 (refer to Fig. 1). Further requirement to rotate the object
by a fixed angle λ, between the two positions, imposes an additional constraint. The
angular velocity of the crank is considered to be a constant ω, which is the frequency
of the operation cycle. This leaves the problemwith two free real parameters, namely,
the crank displacement, φ and the follower displacement, μ (see Fig. 2), of which the
details are explained in the following. These parameters are utilised at a later stage to
eliminate branch defects and to identify Grashof four-bars that are devoid of circuit
defects, as classified by Chase and Mirth [7].

Formulation through complex variables enables easier computation of the solu-
tion in the closed-form. The procedure adopted is a hybrid one in that the complex
variables are eliminated from the vector equations first and then the real variables
are solved for by splitting the real and imaginary components of the residual equa-
tions. Loop-closure equations using complex numbers offer a concise way to pose
the problem. First, the displacement constraints are posed mathematically. With z6
as the reference vector of the base point b1, the following equations can be written
for the first precision-point in terms of its position vector r1:

z6 + z1 + z2 = r1, (1)

z6 + z5 + z3 + z4 = r1. (2)

Analogous equations can be written for the second position, r2:

z6 + z1e
iφ + z2e

iλ = r2, (3)

z6 + z5 + z3e
iμ + z4e

iλ = r2, (4)

1Vectors expressed as a pair of real numbers are represented in bold fonts, while those expressed
as complex numbers are not.
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Fig. 2 Vector loop for two
finitely separated
positions p1 and p2, which
represent the pick and drop
locations, respectively

where i is the imaginary unit. As z2 and z4 are rigidly embedded in the coupler, they
are displaced through the same angle λ between the two positions, thus completing
the four-bar linkage architecture. Eliminating the variables z5 and z6 by subtracting
Eqs. (1) and (2) from Eqs. (3) and (4), respectively, the loop-closure conditions of
the path are obtained, with the increment vector [2] defined by r12 = r2 − r1:

z1(e
iφ − 1) + z2(e

iλ − 1) = r12, (5)

z3(e
iμ − 1) + z4(e

iλ − 1) = r12. (6)

The time derivative of the Eqs. (1)–(4) yields the velocity constraints, Eqs. (7)–(10),
in terms of vk , the conveyor velocity vector at position k, k = 1, 2:

z1ω + z2ω21 = −iv1, (7)

z3ω31 + z4ω21 = −iv1, (8)

z1e
iφω + z2e

iλω22 = −iv2, (9)

z3e
iμω32 + z4e

iλω22 = −iv2, (10)

where ω jk refers to the angular velocity of the vector z j , j = 2, 3 at the precision-
point k, k = 1, 2.

The system of equations to be solved can be summarised as follows:

• Number of complex equations: 6 (Eqs. 5–10)
• Number of complex variables: 4 (z1, z2, z3, z4)
• Number of real variables: 4 (ω21, ω22, ω31, ω32).

Thus, the problem is formulated as 6 × 2 = 12 scalar equations and it can be solved
for 4 × 2 + 4 = 12 scalar variables as listed. This leaves the designer with two free
real design parameters, namely, φ and μ. From Eqs. (7)–(10), the complex vari-
ables z1, z2, z3 and z4 can be solved for linearly, in terms of the angular displacement
variables φ and μ, and angular velocity variables ω21, ω22, ω31 and ω32:
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z1 = −i(v2ω21 − eiλv1ω22)/(ω(e
iφω21 − eiλω22)), (11)

z2 = −i(eiφv1 − v2)/(e
iφω21 − eiλω22), (12)

z3 = −i(v2ω21 − eiλv1ω22)/(e
iμω21ω32 − eiλω22ω31), (13)

z4 = −i(v2ω31 − eiμv1ω32)/(e
iλω22ω31 − eiμω21ω32). (14)

On substituting the solutions of Eqs. (11)–(14) in Eqs. (5) and (6), four scalar
equations in terms of the four angular velocity variables are obtained by sepa-
rating the real and imaginary parts of the equations. The variables ω21, ω22, ω31

and ω32 appear linearly, pairwise, in the resulting equations, which are not presented
for the sake of brevity. They can be solved through Cramer’s rule, in terms of the
components of the increment vector r12 = δa + iδb and the conveyor velocity vec-
tor v j = v ja + iv jb, j = 1, 2, where δa, δb, v ja and v jb are real. The solutions to the
angular velocity variables along with the dyadic solutions given by Eqs. (11)–(14)
constitute a closed-form solution to the PP-PP problem parametrised in terms of the
design parameters φ and μ. Since the problem has a unique solution for each point
on the parameter space, the problem has ∞2 solutions.

3 Parametric Analysis to Find Feasible Solutions

Although a closed-form solution is obtained for the problem, it is not guaranteed
that the solution obtained is feasible. In other words, the mechanism may suffer
from kinematic defects that are inherent to any synthesis problem. It has been well
established in literature that, three types of defects can occur in kinematic synthesis,
namely, branch defect, circuit defect (includingGrashof defect) and order defect (see,
for example, [8]). In problems of path synthesis, order defects occur only in problems
with four precision-points or higher. In three precision-point problems, order defect
can be circumvented by changing the direction of the input motion and in two-point
problems, order defects do not occur at all. Thus, in the following sections, only
branch and circuit defects are addressed for the pick-and-place problem using the
two design parameters available to find a feasible solution.

3.1 Branch Defect

Branch errors cannot be avoided during synthesis, due to the inherent quadratic
nature of trigonometric functions in the loop-closure constraints. A methodology is
proposed here to identify branch transition linkages in the design parameter space,
which mark the transition of a precision-point between the two branches of the four-
bar mechanism. A two precision-point problem with points A and B can have the
following branch behaviour regions:
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1. A1B1: Both precision-points lying on the first branch.
2. A1B2: Point A lying in the first branch and point B in the second.
3. A2B1: Point B lying in the first branch and point A in the second.
4. A2B2: Both precision-points lying on the second branch.

Among the four cases listed, the first and the last cases represent the branch defect-
free scenarios. For the problem at hand, the design parameters φ and μ represent the
angular displacements of the crank and the follower, respectively, that vary from 0
to 2π radians. Since it is a PP-PP problem with only two finitely separated points
and the design parameters can take any set of values in the continuous domain,
the branch transition points occurring at the two design positions should split the
two-dimensional parameter space into four distinct regions of branch behaviour as
enumerated. Consequently, to find the corresponding branch transition points in the
parameter space, the condition for collinearity of the vectors that represent the coupler
and the follower at the design points are studied. For the first design point p1, using
the following identity for parallel vectors:

(z2 − z4)z3 = (z2 − z4)z3, (15)

and solving it in conjunction with the Eqs. (11)–(14) derived in the previous section,
the condition for branch transition corresponding to the first precision-point p1 is
obtained, as shown below:

ω21ω32 sin(φ − μ) − ω22ω31 sin(φ − λ) + ω22ω32 sin(μ − λ) = 0. (16)

Identical analysis at the second design point p2 yields the transition condition for
the second precision-point, given by Eq. (17):

ω22ω31 sin(φ − μ) − ω21ω32 sin(φ − λ) + ω21ω31 sin(μ − λ) = 0. (17)

These two conditions divide the parameter space into four regions and facilitate
identification of the feasible regions that are free of branch defect. There may be
degenerate points in the parameter space where one or more link lengths become
zero or tend to infinity. Hence, care must be taken to stay clear of these degenerate
points while choosing a solution.

3.2 Circuit Defect

Elimination of branch error does not ensure mechanical feasibility, as the resulting
mechanism can still encounter circuit defect. Chase and Mirth [7] termed a circuit
as “all possible orientations of the links which can be realised without disconnecting
any of the joints”. Even if the precision-points lie on the same branch or phase of the
mechanism, theymay ormay not lie on the same circuit.Murray et al. [9] showed that
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critical points in the parameter space, where the circuit behaviour changes, occur in a
planar four-bar linkage when all the links are collinear. For identifying those critical
points of the design parameter space that change the circuit behaviour, a formulation
similar to the one presented in [10] is followed.

4 Numerical Results and Discussions

Consider the following specifications of a desired pick-and-place scenario,

δa = −1 m, δb = −1 m, v1a = −1/
√
2 ms−1, v1b = −1/

√
2 ms−1,

v2a = −√
3/2 ms−1, v2b = −1/2 ms−1, λ = 3π/4 rad, ω = 2 rad s−1.

For the above set of values, the parametric analysis to find feasible solutions is
demonstrated for a test value of crank displacement2 φ = 5π/3 and the feasible
regions are identified in the parametric space of μ. Without any loss of generality,
the first precision-point p1 is assumed to coincide with the origin o. Conditions for
branch transition derived in the Sect. 3.1 yield the following points:

μ p1 = 1.648, μ p2 = 2.946,

where the subscripts denote the precision point with which each transition point
is associated. Although the bounds are established, the directionality of the branch
defect-free region can only be found by testing a sample value of μ. For this prob-
lem, (1.648, 2.946) forms the range of parameter values that avoids the branching
problem. Some common degeneracies, where one of the link-lengths becomes zero,
occurwhenμ takes the values 0,λ andφ, and also at 2.297 and 5.439 for this example.

The condition for circuit transition linkage (derived following [10]) yields eight
non-degenerate roots for the parameter μ, with six real roots for the numerical exam-
ple addressed. The six real roots of μ that alter the circuit behaviour are listed as
follows:

{1.185, 2.201, 2.269, 2.317, 5.397, 5.482}.

Following the methodology explained in [9], it can be established that Grashof-type
four-bar mechanisms occur for the values of μ represented by (1.185, 2.201). Thus,
the intersection of the two domains, given by μ ∈ (1.648, 2.201), defines the range
of values μ can take for defect-free Grashof four-bar solution. A sample plot for a
feasible parameter value is shown in Fig. 3. The value of the parameter μ can be
chosen so as to address secondary considerations such as foot-print and transmission
capability.

2All the angles, namely, φ,λ and μ, are represented in radians and the units are omitted.
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Fig. 3 Coupler-plot of defect-free four-bar mechanism for φ = 5π/3 and μ = 2. The numeri-
cal solution is given by z1 = −0.432 − 0.419i , z2 = 0.098 + 0.968i , z3 = 0.800 + 0.478i , z4 =
−0.502 + 0.408i , b1 = [0.334,−0.549]� and b2 = [−0.299,−0.886]�. The arrows indicate the
direction of the conveyor velocity at the precision-points, scaled-down for representation

The methodology presented here does not take into account the angular velocity
of the coupler at the pick and drop locations. However, the freedom in choosing the
value of the parameter μ can be utilised to minimise the angular velocities at the pick
and drop locations.

5 Contributions and Future Scope

This work presents a formulation for the exact synthesis of two sets of two infinitesi-
mally separated points using a planar four-barmechanism.The problem is formulated
using complex variables to enable the derivation of the solution in the closed-form.
Feasibility analysis using the available free design parameters, in the form of crank
and follower angular displacements between two positions is carried out. Branch
defect-free regions and degeneracies in the domain of the free parameter space
are obtained. Circuit defect-free regions are identified through a characterisation
scheme presented in [9]. Analytical formulation allows the user to design pick-and-
place systems accurately using a single-degree-of-freedom mechanism. Once the
feasible domains are identified, secondary objectives such as zero angular veloci-
ties at the pick-and-drop locations and foot-print considerations may be addressed.
For double-dwell problems, the prescribed formulation breaks down and the clas-
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sical solution involving double-cusp four-bar mechanisms could be considered (for
example, see [11]). Using six-bar mechanisms for pick-and-place systems may offer
additional variables to include acceleration constraints.
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