Accelerating Airline Delay M)
Prediction-Based P-CUDA Computing T
Environment

Dharavath Ramesh, Neeraj Patidar, Teja Vunnam
and Gaurav Kumar

Abstract Machine learning techniques have enabled machines to achieve
human-like thinking and learning abilities. The sudden surge in the rate of data
production has enabled enormous research opportunities in the field of machine
learning to introduce new and improved techniques that deal with the challenging
tasks of higher level. However, this rise in size of data quality has introduced a new
challenge in this field, regarding the processing of such huge chunks of the dataset
in limited available time. To deal such problems, in this paper, we present a parallel
method of solving and interpreting the ML problems to achieve the required effi-
ciency in the available time period. To solve this problem, we use CUDA, a
GPU-based approach, to modify and accelerate the training and testing phases of
machine learning problems. We also emphasize to demonstrate the efficiency
achieved via predicting airline delay through both the sequential as well as
CUDA-based parallel approach. Experimental results show that the proposed par-
allel CUDA approach outperforms in terms of its execution time.

Keywords Machine learning (ML) - Naive Bayes < GPU . CUDA
Tree reduction

D. Ramesh (=) - N. Patidar - T. Vunnam - G. Kumar

Department of Computer Science and Engineering, Indian Institute of Technology (ISM),
Dhanbad 826004, Jharkhand, India

e-mail: ramesh.d.in@ieee.org

N. Patidar
e-mail: neerajism@cse.ism.ac.in

T. Vunnam
e-mail: vunnamteja@gmail.com

G. Kumar
e-mail: gaurav315kumar@ gmail.com

© Springer Nature Singapore Pte Ltd. 2018 9
D. Reddy Edla et al. (eds.), Advances in Machine Learning and Data Science,

Advances in Intelligent Systems and Computing 705,
https://doi.org/10.1007/978-981-10-8569-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8569-7_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8569-7_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8569-7_2&domain=pdf

10 D. Ramesh et al.

1 Introduction

The introduction of new technologies has made the computer science at its best as
an emerging field. With the availability of new software paradigms, dependency on
computers and machines to perform extreme and computationally exhaustive tasks
is growing day by day. For example, the traditional way of file storage on local file
systems is replaced by distributing and even more secure cloud storage systems.
Among all, the Internet has turned out to be the most resourceful technology ever
created for instant sharing of knowledge and resources with the rest of the world
with ease. Its popularity around the world can be assessed by the fact that the total
number of Internet users has grown by around 82% or almost 1.7 billion in the last
5 years and this number is forecasted to increase up to 4 billion around the year
2020. The main reasons behind this increasing popularity of the Internet are its
speed, economic nature and ease of accessibility to the users. The aid of Internet has
made the activities easier to a tremendous extent by reducing the communication
delay between users in the different parts of the world.

The dependency and conscience to improve our methods by means of research
and analysis have led to an immense hike in the rate of data production. As a result
of its increased popularity, around 90% of the world’s data has come into existence
in the past 2 years and Internet has turned out to be the largest contributor among its
sources. With the availability of sufficient data for research and analytics, machine
learning and related techniques have picked up popularity [1] to achieve some
computationally impossible solutions by using well-defined mathematical models.
Machine Learning [2] is a term used to define a technique to find a solution or more
precisely improve the existing solution gradually by following the process of
learning through previous observation or experience without any human interven-
tion. Machine learning is a popular community to solve problems which require
human-like instinct and decision-making. With the ease and availability of Big
Data, machine learning is used to solve some complex and interesting problems [1]
which help in achieving those tasks that normally require some special human
assistance, intelligence or decision-making skills to execute successfully. For
example, making classification, predictions in advanced robotics, and driver-less
cars include such tasks.

1.1 Limitations of Classical ML Methodology

The basic approach to solve the machine learning problem involves two subtasks:
(i) training and (ii) testing. Apart from the techniques [1] used, both these subtasks
are common in the process of solving any machine learning task. Both these tasks
are extremely crucial in solving a machine learning problem. The quality of the
training and testing methods eventually decides the overall quality of the model or
solution. Initially, training is performed to train or develop a mathematical model/
classifier/machine with the help of existing chunks of data in a huge quantity. The

Accelerating Airline Delay Prediction-Based P-CUDA ... 11

(a)

Error
Calculation

Pre
Processing

Learning

b) =

-
Data

Fig. 1 Machine learning as a process, a learning phase, b testing phase

Training
Data

vast amounts of data help in improving the accuracy and performance of the model,
but processing these chunks of data is another crucial problem. Hence, the overall
performance of the ML algorithm is limited by the processing methodologies used
to process the data for training the model. The same can be improved to process
those huge datasets, so that appreciable results can be achieved within the con-
served time limits. A learning phase and training phase of ML process are depicted
in Fig. la, b.

The second task is testing and analysing the accuracy of the model by using the
related test data. This step is crucial as it measures the accuracy and the accept-
ability of the model. But, the solution must work for regular as well as new
problems [2], i.e. to make the solution robust against different possible situations.
A suitable ML model can be used to test the model against a large dataset which
may or may not belong to dataset. Again, the vastness of the dataset will extend the
evaluation period of our model which is completely undesirable. To deal with these
kind of problems, several efforts have been made in this field to improve its per-
formance. To over-relate and achieve this problematic instance, in this paper, we
discuss a strategy using the GPU-based parallel processing platform named as
CUDA, to perform the ML tasks in allowable time limits [3, 4]. This approach
works in an efficient way and can make the training and testing strategies workable
within the time period scan.

2 Resolving with CUDA Platform
2.1 CUDA

In 2007, NVIDIA, a GPU-designing firm, released the initial version of CUDA—a
parallel computing platform which uses the graphical processing units (GPUs) for
massive parallelization of computation tasks [4]. It follows general purpose

12 D. Ramesh et al.

Fig. 2 CPU versus GPU

computing, on graphics processing unit (GPGPU) approaches to perform the
general tasks which are computationally intensive and require a lot of time to be
executed if performed on the CPU [5]. It allows users to write massively parallel
programs using languages like C, C++ and Fortran [6]. The CPUs are optimized for
sequential processing and contain only limited numbers of powerful cores, whereas
on the other hand, GPUs are optimized for performing parallel tasks and contain
thousands of smaller and less powerful cores [7]. The graphical representation of
CPU and GPU is depicted in Fig. 2.

2.2 Impact on Solving ML Problems

Solution to the ML problems using traditional systems may turn out to be an
expensive technique with the increase in the size of the dataset. Especially, the time
required to process such a large set of data increases drastically. Using parallel
GPU, computation can turn out to be a perfect solution for solving such large-scale
machine learning problems without any extra increase in the machine cost by
harnessing the graphical computation power of the system [3, 8].

Accelerating Airline Delay Prediction-Based P-CUDA ... 13

3 Problem Formulation: Predicting Flight Delay
Occurrences

Every year around one-fifth of the airline flights suffer a cancellation or delay which
results in critical loss of time and resources to both airlines and passengers. Hence,
creating a model which can predict whether a given flight with certain parameters
like source, destination, duration will suffer a delay or not can offer huge help to the
passengers and airline managers in choosing and managing their flights. Here, we
use a dataset from American Statistical Association (ASA) 2009 data expo [9],
which includes dataset for all commercial flights within USA from year 1987 to
2008. This dataset includes nearly 120 million flight records. To predict the future
occurrences, we consider Naive Bayes Classifier (NBC). The sequential standard of
NBC is described in Sect. 3.1.

3.1 Solution: Sequential Naive Bayes Classifier

3.1.1 Naive Bayes Classifier

Naive Bayes Classifier (NBC) belongs to a class of conditional probabilistic clas-
sifiers which assume a major assumption of independence between all features of its
dataset to calculate most probable outcome depending on the input given by the
user [10]. It uses Bayesian interpretation to measure a degree of belief to identify
the class which includes the input features [11]. Given an input in the form of a
vector;

X = (%1, X2,X3, -o.y Xy) (1)

The NBC will provide the probability P, for each class, whether the input vector
X belongs to the given class Cy, i.e.

P(Ck|(X1,X2,X3, ...,Xn)) (2)
Using Bayes theorem, the given probability can be decomposed as;

P(B)P(A|B)
PB|A) = ——+—— 3
(B14) = =500 (3)
The above formulae can be extended to calculate the joint probability consid-
ering several parameters for each sample;

14 D. Ramesh et al.

P(B;)P(A|B;)
ST P(B)P@A|B) @

i=1

P(B;|A) =

However, the denominator can be ignored since it will remain same for all the
classes [12]. Hence, the classification problem reduces to finding numerator for a
given input vector X. Using the assumption of independence between the features of
the vector X, i.e. the probability of occurrence of one feature, is independent of the
probability of occurrence of any other feature or collection of features. At the same
time, we can simplify the calculation of the numerator probability same as a joint
probability.

3.1.2 Normal Distribution

For calculating the probability of occurrence of features which are continuing in
nature rather the discrete, we use the normal (also known as Gaussian) distribution
function [10] which can be given as follows.

)2

1 O —Kci
P(xi | Ci) = g(xk, pici» 0ci) = oroo & (5)
ci

where g(xx, i¢i» 0ci) is the Gaussian (normal) density function for attribute A, while
Hei and o¢; are the mean and standard deviation, respectively, given the values for
attribute A for C;. Advantages of using NBC over other classifiers are: (i) simple
and easy to test new data, (ii) minimum error rate as compared to other complex
algorithms, (iii) high degree of accuracy with lower computational complexity and
(iv) compete with more advanced algorithms like SVM, etc.

3.2 Methodology: Predicting Airline Delays

3.2.1 Training the Model

To train the model, we start by calculating mean and variance for each relevant
parameter in the flight description which belong to either class Cperayea OF Chodelay-
The calculated values of mean and variance are shown in Table 1.

Using the table similar to above, we calculate the probabilities to find out the
numerator for given values of features of flight whose class has to be identified as
either delayed or on-time.

Accelerating Airline Delay Prediction-Based P-CUDA ... 15
Table 1 Sample airline delay database

Sample | Dep. time | CRS Arr. | CRS Act CRS Arr. | Dep. delay

dep. time |time |arr. elapsed | elapsed delay
time time time

1. 741 730 912 | 849 91 79 23 11

2. 729 730 903 | 849 94 79 14 -1

3. 741 730 918 |849 97 79 29 11

4. 729 730 847 | 849 78 79 -2 -1

5. 749 730 922 | 849 93 79 33 19

6. 728 730 848 | 849 80 79 -1 -2

7. 728 730 852 | 849 84 79 3 -2

8. 731 730 902 | 849 91 79 13 1

9. 744 730 908 | 849 84 79 19 14

10. 729 730 851 |849 82 79 2 -1

3.2.2 Testing

After performing preprocessing, we use mean and variance calculated in the pre-
vious step to find the posterior probabilities for the given test samples. After
combining the posterior probabilities of all the features, we get the combined
probabilities of that test sample belongs to the same class. For each sample, the
class with the highest numerator value can be considered as the most optimum
prediction for that sample. After this, we apply the strategy to find the probability
for all the flight variables in the test dataset one by one, sequentially. The corre-
sponding algorithm which includes these two steps is shown in Algorithm 1.

Algorithm 1: NBC Classification algorithm

Input: Airline Dataset
Output: Set of probabilities for each class

Step-1. Select the relevant features for each flight to be considered in the flight
delay evaluation.

Step-2. Find Mean () and Variance () for the selected features over each class in

the complete dataset.

Step-3. For each input vector, X calculate the individual probability of occurrence

for each different class.
Step-4. Combine all the probabilities, to calculate the joint probability in the numerator.
Step-5. Select and assign each input vector class which has the highest numerator value.

16 D. Ramesh et al.

4 Parallelizing the Approach

In this section, we test and improve the performance of the above algorithm using
the parallel CUDA computing model [13, 14]. To accelerate the process to find the
mean, we use a methodology known as Tree-Based Reduction Sum. This technique
utilizes the parallel architecture of CUDA [6] to efficiently calculate the mean and
variance for a given feature belonging to a particular class. The instance of Tree-
Based Reduction Sum is depicted in Fig. 3.

In reduction sum, we particularly focus on the tree reduction technique to
evaluate the sum of the given large set of values which can produce a speedup
nearly equal to log(n). As CUDA has no global synchronization facility to easily
communicate with all the threads [13], this limitation can be avoided by using a
recursive kernel invocation while adding a small hardware/software overhead in the
individual kernel launch [15]. The state of recursive kernel invocation is shown in
Fig. 4.

4.1 Parallelizing Testing Phase

To classify the test dataset, we select an optimum block size (i.e. the total number of
threads per block) and total number of blocks each containing the threads equal to
the block size [16]. After passing the set of mean and variance related to each

Fig. 3 Tree reduction sum
approach

8 blocks

33__ !5 !:5 !-‘! ZS, &3 a ,&! Level 0:
i i \ ! S D
'\“ “'..““‘ ~ \ 7 r ’, ”

S~ ~ s - -
e ~ \ / s - s
-~
W N T
N o

Level 1:
1 block

- T

Fig. 4 Recursive kernel invocation

Accelerating Airline Delay Prediction-Based P-CUDA ... 17

feature in the flight description, we calculate the individual probabilities of the test
flight belonging to a particular class one by one for all possible classes [9]. Figure 5
shows the calculation through the NB model. Hence, each block processes the
number of flights equal to the number of threads, i.e. one thread per test flight that
evaluate the total results. As compared to the sequential processing of each test
flight, the parallel CUDA algorithm only takes time equivalent to the number of
threads per block and some communication time between the CPU and GPU to
distribute [17] the process and recombine the solution. The modified parallel
classification algorithm is shown in Algorithm 2.

Algorithm 2: Parallel NBC Classification algorithm

Input: Airline Dataset
Output: Set of probabilities for each class

Step-1. Select the relevant features for each flight to be considered in the flight
delay evaluation.
Step-2. Find Mean () and Variance () using the reduction sum technique for the
selected features over each class in the complete dataset.
Step-3. Divide the dataset into set of blocks which includes flight vectors equal to
number of threads. For each input vector, X calculate the individual prob
ability of occurrence for each different class.
Step-4. Combine all the probabilities, to calculate the joint probability in the numerator.
Step-5. Select and assign each input vector class which has the highest numerator value.

| Test Data Sample l | Block Size (no. of threads per block)]

| Model Testing Result |

Fig. 5 Parallel test results calculation through NB model

18 D. Ramesh et al.

Fig. 6 Parallel CUDA 0.25
im%)lementation with the —+Sequential Approach
sequential method 2 sl ——Parallel CUDA Approach (Proposed)
% .
E o5t
(o]
£
45 0.1
=
8
45 0.05
0 ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7

Size of the Dataset x 10

4.2 Experimental Analysis

To perform the experiment-related approaches, we use the airline dataset of the
American Statistical Association (ASA) [9]. The system on which we have con-
ducted our tests has Windows 10 operating system running over Intel core
15-3337U processor 1.80 GHz with turbo boost up to 2.70 GHz and 6 GB of
DDR3L internal memory. The GPU version is NVIDIA Geforce GT 740 M with
dedicated 1 GB DDR3 memory. The coding and debugging of the CUDA project
are done over Microsoft Visual Studio 2015 community edition with the latest
CUDA toolkit 8.0 installed on the system. The compared results with the sequential
algorithmic approach are depicted in Fig. 6.

From the results, we can conclude that the inclusion of the GPU support in
training the model and testing the sample test data has resulted in a speedup which
is nearly equal to 2.5 times the sequential methods. It also outperforms the related
time execution sequences. However, this calculation may vary with different ver-
sions of NVIDIA GPU cards with different CUDA core configurations used for the
purpose [18].

5 Conclusion and Future Work

This paper aims to describe how the enormous parallelizing power of CUDA
platform can be utilized to accelerate the process of developing the ML model for
prediction and the classification purpose. To make this scenario’s performance
better, we used the reduction sum technique to parallelize the task of calculation of
the mean in the training phase and parallelized the testing process using the simple
CUDA computation scheme. Both these techniques result in combined actual
improvement over the sequential methodology to calculate the model and evaluate

Accelerating Airline Delay Prediction-Based P-CUDA ... 19

the result. Similar improvements can be made in developing other ML models by
utilizing the resources offered through CUDA computing platform to improve the
time and resources used by overall prediction and classification process without
using costly machines to process on it.

Acknowledgements This work is partially supported by Indian Institute of Technology (ISM),
Government of India. The authors wish to express their gratitude and thanks to the Department of
Computer Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India, for
providing their support in arranging necessary computing facilities.

References

1. Liao, S.H., Chu, P.H., Hsiao, P.Y.: Data mining techniques and application—a decade review
from 2000 to 2011. Expert Syst. Appl. 39(12), 11303-11311 (2012)

2. Carbonell, J.G., Michalski, R.S., Mitchell, T.M.: An overview of machine learning. In:
Machine Learning, pp. 3-23. Springer, Berlin, Heidelberg (1983)

3. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.: A performance study of
general-purpose applications on graphics processors using CUDA. J. Parallel Distrib.
Comput. 68(10), 1370-1380 (2008)

4. Wu, R, Zhang, B., Hsu, M.: GPU-accelerated large scale analytics. IACM UCHPC (2009)

5. Ghorpade, J., Parande, J., Kulkarni, M., Bawaskar, A.: GPGPU processing in CUDA
architecture (2012). arXiv:1202.4347

6. Farber, R.: CUDA Application Design and Development. Elsevier (2011)

7. Yang, C.T., Huang, C.L., Lin, C.F.: Hybrid CUDA, OpenMP, and MPI parallel programming
on multicore GPU clusters. Comput. Phys. Commun. 182(1), 266-269 (2011)

8. Harris, M.: Optimizing CUDA. In: SC07: High Performance Computing with CUDA (2007)

9. Data for experimentation, American Statistical Association, Data Expo (2009). http://stat-
computing.org/dataexpo/2009/the-data.html

10. Murphy, K.P.: Naive Bayes Classifiers. University of British Columbia (2006)

11. Rish, L.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on
Empirical Methods in Artificial Intelligence, vol. 3, No. 22, pp. 41-46. IBM, New York (Aug
2001)

12. Jia, P.T., He, H.C., Lin, W.: Decision by maximum of posterior probability average with
weights: a method of multiple classifiers combination. In: Proceedings of 2005 International
Conference on Machine Learning and Cybernetics, vol. 4, pp. 1949-1954. IEEE (Aug 2005)

13. Jian, L., Wang, C., Liu, Y., Liang, S., Yi, W., Shi, Y.: Parallel data mining techniques on
graphics processing unit with compute unified device architecture (CUDA). J. Supercomput.
64(3), 942-967 (2013)

14. Zhou, L., Wang, H., Wang, W.: Parallel implementation of classification algorithms based on
cloud computing environment. TELKOMNIKA Indones. J. Electr. Eng. 10(5), 1087-1092
(2012)

15. Fang, W., Lau, K.K., Lu, M., Xiao, X., Lam, C.K., Yang, P.Y., Yang, K. et al.: Parallel data
mining on graphics processors. In: Technical Report HKUST-CS08-07. Hong Kong
University Science and Technology, Hong Kong, China (2008)

16. Chengpeng, Y., Zhanchun, G., Yanjun, J.A.: GPU-based Native Bayesian algorithm for
document classification. http://www.paper.edu.cn/Ilwzx/en_releasepaper/content/4570429.
Accessed 26 Nov 2013

http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
http://www.paper.edu.cn/lwzx/en_releasepaper/content/4570429

20

17.

18.

D. Ramesh et al.

Viegas, F., Andrade, G., Almeida, J., Ferreira, R., Gong¢alves, M., Ramos, G., Rocha, L.:
GPU-NB: a fast CUDA-based implementation of naive bayes. In: 2013 25th International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD),
pp. 168-175. IEEE (Oct 2013)

Zhou, L., Yu, Z., Lin, J., Zhu, S., Shi, W., Zhou, H., Zeng, X. et al.: Acceleration of
Naive-Bayes algorithm on multicore processor for massive text classification. In: 2014 14th
International Symposium on Integrated Circuits (ISIC), pp. 344-347. IEEE (Dec 2014)

	2 Accelerating Airline Delay Prediction-Based P-CUDA Computing Environment
	Abstract
	1 Introduction
	1.1 Limitations of Classical ML Methodology

	2 Resolving with CUDA Platform
	2.1 CUDA
	2.2 Impact on Solving ML Problems

	3 Problem Formulation: Predicting Flight Delay Occurrences
	3.1 Solution: Sequential Naïve Bayes Classifier
	3.1.1 Naïve Bayes Classifier
	3.1.2 Normal Distribution

	3.2 Methodology: Predicting Airline Delays
	3.2.1 Training the Model
	3.2.2 Testing

	4 Parallelizing the Approach
	4.1 Parallelizing Testing Phase
	4.2 Experimental Analysis

	5 Conclusion and Future Work
	Acknowledgements
	References

