
Prime Numbers: Foundation
of Cryptography

Sonal Sarnaik and Basit Ansari

Abstract Prime number plays a very important role in cryptography. There are
various types of prime numbers and consists various properties. This paper gives
the detail description of the importance of prime numbers in cryptography and
algorithms which generates large/strong prime numbers. This paper also focuses on
algorithms which find prime factors and tests whether the entered number is prime
number or not.

Keywords Prime numbers � Primality testing � Prime number generation

1 Introduction

Exchange of information or data plays a very vital role nowadays. There are various
ways through which this data is exchanged. Today’s most common way is to
communicate through some electronic medium for exam Internet. We perform
many important tasks through the internet such as online shopping, online banking,
personal data share, etc. So it is very important to make this communication very
secure so that an attacker will not be able to get access to the data. Currently, there
are various security measures to make this communication secure one of the method
is to use Cryptography [1–4]. Cryptography focuses on the concept that “security
can be achieved by hiding the data or converting it into some unreadable form,” so
cryptography is the study of mathematical science which is used to convert the data
in some incomprehensible form which gives security to the data [1–3], i.e., cryp-
tography is the art of secret writing [4]. Secret writing is achieved by applying the
key to the original data which converts original data into unreadable data (called as
Encryption) and unreadable data to original data (called as Decryption) [1–4]. This

S. Sarnaik (&) � B. Ansari
Marathwada Institute of Technology, Aurangabad, India
e-mail: sonalsarnaik141@gmail.com

B. Ansari
e-mail: basit.ansari@sycet.org

© Springer Nature Singapore Pte Ltd. 2018
M. U. Bokhari et al. (eds.), Cyber Security, Advances in Intelligent Systems
and Computing 729, https://doi.org/10.1007/978-981-10-8536-9_31

315

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8536-9_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8536-9_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8536-9_31&domain=pdf

task is achieved by applying key at sender and key at receiver for encryption and
decryption. Two types of keys are mostly used in cryptography, symmetric key and
asymmetric key [3, 4]. The intensity of the security will completely rely on the type
of key is used. An asymmetric key is much stronger then symmetric key as in
asymmetric key two different keys are used one for encryption (encryption key is
publically declared) and one for decryption (Decryption key is private only known
to receiver) whereas in symmetric key, the same key is used to encryption and for
decryption [1–4]. An asymmetric key is also called a public-key cryptosystem
[3–5].

There are various algorithms which are used to provide security to the data.
Basically, all the concepts of cryptography based on the modular arithmetic con-
cepts, Number systems, Groups rings, Fields, etc [4, 5]. This paper focuses on the
concepts of the number system and in which prime number which plays a vital role
in Cryptography. If we consider about asymmetric key then the calculation of key
completely depends on the prime number and its factors [3–5].

2 Prime Numbers

The numbers which are divisible by itself or by 1 are called as prime numbers and
other numbers are called as composite numbers. Examples: 2, 3, 5, 7, 11, 13, 17,
19, etc., are prime numbers which are divisible by only one or by itself and rest of
the numbers such as, 2, 4, 9, 10, 12, 14, etc., are composite numbers [4, 6–10]. The
securities of cryptographic algorithms are depending on prime numbers and its
length. There are various type of prime numbers such as Balance prime, Circular
Prime, Long Prime, Mersenne Prime, Minimal Prime, Strong Prime, Palindromic
Prime, Permutable Prime, Twin Prime, Unique Prime, Wilson Prime, Regular
Prime, Integer Sequence Prime, Higgs Prime, etc. All these types of prime numbers
have different properties and it is used in cryptography depending on its properties.
The main type of prime numbers which plays a vital role in cryptography are strong
prime numbers. A strong prime is a prime number with certain special properties.
A number p is a strong prime number if it satisfies following conditions [2–4]:

• p is large prime number
• p − 1 must have large prime number factor, say a1 q1, where p = a1 * q1 + 1
• q1 must have large prime factors say a2 q2, where q1 = a2 * q2 + 1
• p + 1 must have large prime factors say a3 q3, where p = a3 * q3 − 1.

316 S. Sarnaik and B. Ansari

3 Importance of Prime Number in Cryptography

Strong primes are basically used in public-key cryptography to make encryption
key and decryption key more secure. Algorithms such as RSA algorithms, Taher
and ElGamal algorithms, elliptical curve cryptography, etc., uses strong prime
numbers for the encryption key and decryption key generation [2–5]. For example,
RSA algorithm uses two types of key, public key (also called as an encryption key)
and private key (also called as decryption key) [2–4]. The public key is used to
encrypt data; this key is publically declared and known to all [4, 5].

Private key is used to decrypt the data by the receiver, as the name suggests this
key is private and no one else can use this key [4, 5]. The main security point in
RSA is completely depending on two prime numbers chosen by the sender used for
public-key generation and private-key generation [2–5, 11].

RSA algorithm:

Step 1: Sender selects two large prime number p and q
n = p * q
Calculate u(n) = (p − 1) * (q − 1)

Step 2: Choose d such that it satisfies following condition.

• Gcd(d, u(n)) = 1
• Max(p, q)
• d must be prime no

Step 3: Find e such that it satisfies:

• e. d � 1 mod u(n)
• e > log2(n)
• Gcd(e, u(n)) = 1

Step 4: C = M e mod n
Step 5: M = C d mod n

Where M is original text, C is Ciphertext, p and q both are prime numbers, n is
the product of two prime numbers, u(n) is Euler’s totient function, e is the
Encryption key, d is the Decryption key.

In above demonstration, we can easily understand that if p and q are sufficiently
large then complexity other computations will be increased and so decryption key
will be very difficult to find out by any third user. This has been shown in [11]. If
encryption key and n are known then by applying various factorization methods it is
very easy to find prime factors of n, through which decryption key is easy to find
[11].

Prime Numbers: Foundation of Cryptography 317

4 Primality Testing

There are various tests which will give us result that whether the entered number is
a prime number or not. Methods such as Fermat little’s theorem, Miller Rabin,
Solovay Strassan [2–6]. An old method of primality checking on the given number
is trial and error method, where number “n” will be divided by all possible m from 2
to n, if n gets divided by m then the number is not prime number else number is a
prime number [2–5].

Example:
n = 13 then m = 2, 3, …12

n mod m =? 13 mod 7 = 6

13 mod 2 = 1 13 mod 8 = 5

13 mod 3 = 1 13 mod 9 = 4

13 mod 4 = 1 13 mod 10 = 3

13 mod 5 = 3 13 mod 11 = 2

13 mod 6 = 1 13 mod 12 = 1

In this example, n is not divisible by all possible m up to n − 1. Hence we can
say that the given number n is called a prime number. This method is very much
time consuming and hence it is not used. Following are the algorithms/Methods
which are mostly used to identify whether the entered number is prime or not.

i. Fermat little theorem

A different method is used to check primality of a given number is Fermat little
theorem. According to Fermat’s Little Theorem any number “p” who is prime and
any number “a”, where p a (a is not divisible by p), ap−1 = 1 (mod p) [4].

Example:
a = 15, p = 37

ap−1 = 1 (mod p).
1537−1 mod 37 = 1
1 = 1 mod p

so, 37 is a prime number.

ii. Solovay–Strassen Algorithm

This algorithm is based on Monte Carlo algorithm with error probability at most
of half. It uses Legendre Jacobi symbol a

n

� �
, where n is the odd composite number

which can be factorized. Instead of factorizing, it can be solved by using some
concepts of number theory and some other properties [3, 4].

Properties such as

318 S. Sarnaik and B. Ansari

a. Legendre’s Symbol: This property will be applicable only if n is prime number.

a
n

� �
¼ 0; if m ¼ 0 mod n

a
n

� �
¼ 1; if x2 mod n ¼ m but m 6¼ 0 mod n x is some valueð Þ

a
n

� �
¼ �1; otherwise

b. Bimultiplicativity:

m1m2
n

� �
¼ m1

n

� �
m2
n

� �
or

m
n1n2

� �
¼ m

n1

� � m
n2

� �

c. Invariance:

m
n

� �
¼ m mod n

n

� �

d. Reciprocity: If, m and n are both odd positive numbers then

m
n

� �
¼ �1 m�1ð Þ n�1ð Þ=4 n

m

� �

e. Special Values:

2
n

� �
¼ �1 n2�1ð Þ=8; 1

n

� �
¼ 1;

0
n

� �
¼ 0

f. Euler’s Theorem: If n is prime number then for any m,

m n�1ð Þ=2 ¼ m
n

� �
mod n

Input: Take any odd number “n”
Output: Number is prime of Not

Step 1: pick a random integer “a”,
Where a � 1 and a � n − 1.

Step 2: z = a
n

� �
––by using Legendre Jacobi Symbol

if z ¼ 0, then write (“Entered number is composite”)

Prime Numbers: Foundation of Cryptography 319

Step 3:

y ¼ a n�1ð Þ=2 mod n

If z � y mod n
Then
Write (“Entered number n is prime”)
Else
Write (“Entered number n is composite”)

Example:
Say n = 367

Step 1: a ¼ 21 where a is 1\21\366
Step 2: x ¼ a

n

� � ¼ 21
367

� �

21
367

� �
¼ 7 � 3

367

� �
¼ 7

367

� �
� 3

367

� �
���ByBimultiplicativity propety

ð1Þ

7
367

� �
¼ �1ð Þ 7�1ð Þ� 367�1ð Þ=4 367

7

� �
���ByReciprocity property

¼ �1ð Þ 367
7

� �
¼ �1ð Þ 367 mod 7

7

� �

¼ �1ð Þ �1ð Þ ¼ 1��By Invariance Property and Euler0s Theorm

3
367

� �
¼ �1ð Þ 3�1ð Þ� 367�1ð Þ=4 367

3

� �
���ByBimultiplicativity property

¼ �1ð Þ 367
3

� �

¼ �1ð Þ 367mod 3
3

� �
���By Invariance property

1
3

� �
¼ �1ð Þ � �By Special value property

¼ �1ð Þ 1ð Þ ¼ �1ð Þ
ð2Þ

Putting above values in Eq. 1,

320 S. Sarnaik and B. Ansari

x ¼ 21
367

� �
¼ 7 � 3

367

� �
¼ 7

367

� �
� 3

367

� �
¼ 1ð Þ �1ð Þ ¼ �1

x ¼ �1

Step 3:

y ¼ a
n�1
2 mod n

y ¼ 21
367�1

2 mod 367

y ¼ 366 Which is equal to� 1 mod 367 ¼ 366ð Þ; so
y ¼ �1

ð3Þ

from Eqs. 2 and 3

x � y mod n

Hence, 367 is a prime number.

iii. Miller–Rabin Algorithm

Input: Any odd number “n”
Output: Number is prime of Not
Step 1: n� 1 ¼ 2ij, where n and j both are odd.

Pick a random number k, Where, k � 1 and k � n − 1.
Step 2: Calculate l ¼ ka j mod n if l � 1 mod n then write(“Entered

number is prime”)
Step 3: for m = 0 to j� 1

do l � �1 mod n
Then return (“Entered number is prime”)
Else
l ¼ l2 mod n

Step 4: Write (“Entered number is Composite”)

Example:
n = 131

Prime Numbers: Foundation of Cryptography 321

Step 1: n – 1 = 131 − 1 = 130 = 21 * 65, So k = 1 and m = 65. Consider
a = 40 where 1 � 40 � 130

Step 2: b = am mod n = 4065 mod 131= 130
b � 1 mod 131, hence go to next step

Step 3: for i = 0 to 1
b � �1 mod n

130 � �1 mod 131

130 � 130 ���condition is true hence 131 is prime

5 Prime Number Generation Algorithm

If we consider the example of RSA algorithm we can say that security of RSA
completely depends on the two prime numbers, but is very difficult to find such
strong prime numbers because if a prime number is week then the decryption key
will easily break [11]. Similarly, there are various algorithms in cryptography which
uses the prime number in the process of key generation. To avoid this difficult to
find large or strong prime number, there are various prime number generation
algorithms which gives a strong/large prime number as output [4, 12]. Algorithms
such as a naive incremental generator, Random search for a prime Product of
Primes, Modular search method, Williams–Schmidt algorithm for finding strong
primes, Gordon’s algorithm for finding strong primes, etc [3–10, 12]. If we discuss
Gordon’s algorithm for finding strong primes then the following algorithm and its
output shows how it produces large and strong prime number from two small prime
numbers [12].

Input: Two prime numbers q, r.
Output: a strong prime p is generated.

Step 1: Pick an integer j0. Calculate and pick the first prime number in
the sequence of 2 * j * r + 1, Where, j = j0, j0 + 1, j0 + 2 …
Denote this prime by s = 2 * j * r + 1

Step 2: Calculate l0 = 2(q * s − 2 mod s) q − 1.
Step 3: Pick an integer k0. Calculate and discover the first prime number

in the sequence l0 + 2k * s * q,
Where k = k0, k0 + 1, k0 + 2 . . .
Symbolize this prime by p = l0 + 2 * k * s * q.

Step 4: Write (p).

322 S. Sarnaik and B. Ansari

Example:

First prime number Second prime number Generated prime number

5 7 349

13 23 5641

157 163 557663

1511 1523 186832127

9941 9973 3034530013

10039 10753 1858419679

1435139 1255361 90549882804427

3413857 4281313 11418127264703807

7646137 8378239 27535998464638019

6 Integer Factorization Algorithms

It is easy to find Prime factors of a small number, such as 35 = 7 * 5, but the same
task becomes difficult if we try on very large numbers. In public-key cryptography,
it is very important to get prime numbers through factorization from a large
composite number [4, 5, 8, 13–17]. Various algorithms are there which performs
the task of finding prime factors of a large composite number, such as Number Field
sieve, Quadratic sieve algorithm, Pollard P-1 algorithm, Pollard’s rho algorithms,
etc [3–5, 8, 16, 17]. We can get the original odd composite number by multiplying
Prime factors with each other. Consider the following example Where, 8633 is an
odd composite number and 89, 97 are two prime factors, By multiplying these two
factors, we can get the original odd composite number, 89 * 97 = 8633.

Example: 8633 = 89 * 97, Here n 8633, p 89 and q 97

i. Pollard’s rho algorithm:

Integer factorization algorithms can be differentiated in two terms,
Special-purpose algorithm and general purpose algorithm, Pollard’s rho algorithm
is an example of special-purpose factoring algorithm, which is used to find small
prime factors of a composite integer. It is basically useful to find nontrivial factors
[3, 4].

INPUT: Consider any odd composite integer n.
OUTPUT: a nontrivial factor d.

1. Consider two numbers i and j, where i = 2, j = 2.
2. For k = 1, 2, . . .do the following:

Prime Numbers: Foundation of Cryptography 323

2:1 Calculate i = i^2 + 1 mod n,

j = j^2 + 1 mod n,
j = j^2 + 1 mod n.

2:2 Calculate d = GCD (i − j, n).
2:3 If d is greater than 1 but less than n, Write (p) and terminate with

success. (Second factor can be calculated by using d1 = (n/d))
2:4 If d is equal to n then terminate the algorithm with failure

Here, p and q are the smallest prime factors of n. This algorithm uses polynomial
function f with integer coefficient, i.e., f(x) = x2 + c, Where c can be any value from
1 but not c 6¼ 0, −2 [3–5, 13–17].

Example:

Odd composite number First factor Second factor

143 11 13

259 7 37

1927 41 47

391883 67 5849

ii. Pollard p-1 algorithm:

This algorithm is an example of special-purpose factoring algorithm to find used
to find prime factors p and q from odd composite integer n. It uses smoothness
bound concept which is calculated by

ffiffiffi
n

p þ 1 [3–5, 13–17].

INPUT: Consider odd composite integer n.
OUTPUT: A nontrivial factor of d.

Step 1. Calculate smoothness bound B.
Step 2. Pick random integer s, Where 2 � s and s � n − 1,
Compute d = gcd(s, n). If d � 2 hen write (d is first factor).
Step 3. For each prime t � B do the following:

3:1 Compute l = ln n
ln t

		 		
3:2 Compute s←stl mod n

Step 4. Compute d = gcd(s − 1, n).
Step 5. If d = 1 or d = n, then terminate the algorithm with failure.

Else, Write (d is the first factor). (Second factor can be calculated by using
d1 = (n/d))

324 S. Sarnaik and B. Ansari

Example:

Odd composite number First factor Second factor

87 3 29

553 7 79

2253 3 751

112579 103 1093

7 Conclusion

Prime number is a very important concept in cryptography. Because of its various
features, it is used in almost all well-known algorithms of cryptography such as
RSA, Taher and ElGamal, Diffie–Hell key exchange algorithms, etc. Also, various
algorithms are there to generate prime numbers such as Gordon’s algorithm for
finding strong primes and various algorithms to check its primality. This paper
focuses on such algorithms with various examples and its use in various crypto-
graphic techniques.

Book References

1. Menezes B. Network security and cryptography: Cengage Learning, India, 2010, 432
2. Bose R. Information theory, coding and cryptography 2008, Tata Mc Graw hill
3. Menezes AJ, van Oorschot PC, Vanstone SA (2001) Handbook of applied cryptography,

CRC Press, London, Oct 1996, 816
4. Stinson DR (2006) Cryptography: theory and practice, 3rd edn. CRC Press, London

Journal References

5. Rivest R, Shamir A, Adleman L (1978) A method for obtaining digital signature and
publickey cryptosystem communications. ACM 21:120–126

6. Crandall R, Pomerance C (2001) Prime numbers, a computational perspective. Springer,
New York

7. Joye M, Paillier P, Vaudenay S (2000) Efficient generation of prime numbers?,
Springer-Verlag, 1965:34–354

8. Rivest RL, Silvermany RD. Are strong primes needed for RSA?
9. Agrawal M, Kayal N, Saxena N. Primes is in p

10. Wagsta SS Jr (2014) Is there a shortage of primes for cryptography?, 2(IX), Sep 2014,
IJARET

11. Sarnaik S, Gadekar D, Gaikwad U. An overview to integer factorization and RSA in
cryptography

12. Saouter Y. A (1995) new method for the generation of strong prime numbers, RR-2657,
INRIA

Prime Numbers: Foundation of Cryptography 325

13. Galbraith SD (2012) Towards a rigorous analysis of Pollard Rho. Mathematics of public key
cryptography. Cambridge University Press, Cambridge, pp 272–273, ISBN 9781107013926

14. Yan Y (2008) Integer factorization attacks. Cryptanalytic attacks on RSA, Springer-Verlag,
US, 255

15. Abubakar A, Jabaka S, Tijjani BI (2014) Cryptanalytic attacks on Rivest, Shamir, and
Adleman (RSA) cryptosystem: issues and challenges, JATIT, Mar 2014, 61(1):37–43

16. Hawana B (2013) An overview and cryptographic challenges of RSA. IJERMT
17. Chalurkar SN, Khochare N, Meshram BB (2011) Survey on modular attack on RSA

algorithm, IJCEM, Vol 14, Oct 2011, 106–110

326 S. Sarnaik and B. Ansari

	31 Prime Numbers: Foundation of Cryptography
	Abstract
	1 Introduction
	2 Prime Numbers
	3 Importance of Prime Number in Cryptography
	4 Primality Testing
	5 Prime Number Generation Algorithm
	6 Integer Factorization Algorithms
	7 Conclusion
	Book References
	Journal References

