
A Review of Dynamic Scheduling
Algorithms for Homogeneous
and Heterogeneous Systems

Mahfooz Alam, Asif Khan and Ankur K. Varshney

Abstract The dynamic scheduling algorithms are widely used to evaluate the
performance of homogeneous and heterogeneous systems in terms of QoS
parameters such as scheduling length, execution time, load imbalance factor and
many more. Over the time, many dynamic scheduling policies were introduced
which are designed to achieve their goal such as efficient utilization of process
elements, minimization of resources idleness, or determining the total execution
time. In this paper, we analyzed different aspects in dynamic scheduling algorithm
and numerous issues in various levels of the homogeneous and heterogeneous
systems.

Keywords Parallel processing � Multiprocessor system � Static and dynamic
scheduling � Heterogeneous and homogeneous systems

1 Introduction

Scheduling is a process of comparable tasks to the resources at specific times.
A scheduling algorithm (SA) is used to find out a schedule for a set of task on the
bases of task’s deadline and recourse requirements specified. The prospective
speedup of applications has motivated the extensive use of multiprocessors in
current years [1–5]. In multiprocessor, scheduling algorithms developed for
uniprocessor can be applied if we consider each core of the multiprocessor as an

M. Alam (&)
Department of Computer Science, Al-Barkaat College of Graduate Studies, Aligarh, India
e-mail: mahfoozalam.amu@gmail.com

A. Khan
University of Electronic Science and Technology of China, Chengdu, China
e-mail: asif05amu@gmail.com

A. K. Varshney
Institute of Technology & Management, Aligarh, India
e-mail: ankur.varshn@gmail.com

© Springer Nature Singapore Pte Ltd. 2018
S. K. Muttoo (ed.), System and Architecture, Advances in Intelligent Systems
and Computing 732, https://doi.org/10.1007/978-981-10-8533-8_8

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8533-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8533-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8533-8_8&domain=pdf

isolated core, which is a uniprocessor [6–8]. However, in multiprocessor scheduling
the complexity of varying the execution of different tasks on multiple cores does not
interfere with each other and also determining which tasks should be given to a
certain core increases the complexity greatly as compared to uniprocessor
scheduling. The two main approaches for SA on multiprocessors are global
scheduling and partitioning scheduling [9–12]. But the point of emphasis of
scheduling is always to reduce the execution time, schedule length (or makespan),
and maximization of speedup. Besides this, it is clear that the multiprocessor
scheduling suffers from NP-complete problem in its many variants excluding some
interpreted conditions. The SA can be categorized as off-line (static or deterministic)
SA and on-line (dynamic or nondeterministic) SA.

In off-line scheduling, all scheduling decisions are taken before the system starts
and the scheduler has an exact knowledge of the all task properties and behaviors
are therefore needed. During runtime, the tasks are executed in a predetermined
order. The static task scheduling problem is known as NP-complete [2]; that is, task
list is not updated with new ordering at runtime. There are two kinds of static
scheduling algorithms (SSA): one is Heuristic Based (HB) and another is Guided
Random Search-Based (GRSB). HB algorithm can be further subdivided into three
categories: List Scheduling, Cluster Scheduling, and Task Duplication-Based
Scheduling (TDBS) algorithms.

An on-line scheduling algorithm takes its scheduling decisions during the
operation of the application. In other words, on-line scheduling tasks can be real-
located to other processors during runtime [3]. On-line scheduling is supple and
very faster than the static scheduling algorithms. The key point of on-line
scheduling is to map tasks in parallel on the multiprocessor and arrange their
execution so that a minimal makespan is given in the bound of task priority
necessities. Dynamic scheduling algorithm can be further subdivided into three

Scheduling Algorithms

Off-Line Scheduling On-Line Scheduling

HB GRSB

List
Scheduling

Cluster
Scheduling

TDBS

Task Based
Scheduling

Processor Based
Scheduling

Priority Based
Scheduling

Fig. 1 Taxonomy of scheduling algorithms

74 M. Alam et al.

kinds: Task-Based Scheduling (TBS) Algorithms, Processor-Based Scheduling
(PBS) Algorithms, and Priority-Based Scheduling (PRBS) Algorithms (Fig. 1).

2 Homogeneous and Heterogeneous Systems

A multiprocessor system is either homogeneous (HM) or heterogeneous (HT).
Heterogeneous and homogeneous systems are explained as under.

2.1 Heterogeneous System

Heterogeneous systems (HTS) consist of different processors that are capable of
performing different tasks. HTS become the latest thing in both client and cloud.
Scheduling a parallel program is critical step in inefficiently harnessing the com-
plexity power of a HTS. Heterogeneity in parallel systems introduces an extra
degree of complexity to the scheduling difficulty that is variable speed of proces-
sors. The difficulty of the problem rise when task scheduling is to be done in
heterogeneous nature, where the computational nodes in the system may not be
equal and different amount of time to execute the same task. Heterogeneity can be
proposed in two types, namely functional-level and performance-level hetero-
geneity [4, 5]. All tasks may not be running on all functional units. One of the key
concepts of HTS is schedule problem. To achieve high performance, the efficient
scheduling of the tasks of a function is needed.

2.2 Homogeneous System

Homogeneous systems (HMS) consist of the processors identical in terms of their
functionality [2]. The characteristics of homogeneous multiprocessor system are
replication effect, memory dominant, less performance, data parallelism, shared
memory and dynamic task mapping. HMS is all exactly the identical: cache sizes,
equivalent frequencies, functions, etc., while every core in a HTS may have a unlike
function, memory model, frequency, etc. So, it is easier to develop software for
HMS. However, in homogeneous processor, system typically requires additional
registers for “special instructions” such as Single Instruction Multiple Data likes
MMX, SSE, while a HTS can implement unlike types of hardware for unlike
instructions/uses.

This paper is classified as follows: Sect. 2 presents HMS and HTS, and Sect. 3
reviews the dynamic scheduling algorithms. Section 4 presents comparison of
algorithm with factors, and Sect. 5 presents conclusions and suggests possible
avenues for future research.

A Review of Dynamic Scheduling Algorithms … 75

3 Review of Dynamic Scheduling Algorithms (DSA)

In dynamic scheduling the decision about how to schedule tasks priorities which are
either assigned dynamically or statically? Many research works investigated the
DSA problem in different aspects and the problems faced in various levels of the
HMS and HTS. Then important contributions of DSA in HMS and HTS are dis-
cussed in this section.

3.1 The Earliest Time First (ETF) Algorithm

This algorithm is alike to the Modified Critical Path Algorithm; it considers fixed
node priorities and assumes only a limited number of processors. Yet, a node with
superior priority may not automatically obtain scheduled earlier than the nodes with
inferior priority [13]. After the computation of earliest begin times (EBT) for all the
prepared nodes at each step, ETF algorithm selects the one with the lesser begin
time, which is calculated by investigating the begin time of the node on all pro-
cessors thoroughly. The ETF is stated below.

1. At every node, static b-level is calculated.
2. In the starting, the group of prepared nodes contains only the admission nodes.

Repeat.
3. At every processor, for every node in the prepared group, the EBT is calculated.
4. Finally, joint the new prepared nodes to the prepared node group. Till all nodes

are scheduled.

3.2 Dynamic Level Scheduling (DLS) Algorithm

This algorithm is alike to the Mobility Directed Algorithm; its uses as node pri-
orities dynamically through allocating an attribute called dynamic level (DL) to
unscheduled nodes at every scheduling step. The stepwise description of the DLS is
given below.

1. At every node, static b-level is calculated.
2. In the beginning, the group of prepared contains only the admission nodes.

Repeat.
3. The EBT is calculated at each processor for every node.
4. Pick the node processor couple that gives the biggest DL. All nodes are

scheduled to the equivalent processor.
5. Finally, joint the new prepared nodes to the prepared group. Till all nodes are

scheduled.

76 M. Alam et al.

3.3 The Earliest Deadline First (EDF) Algorithm

EDF is a DSA that helps real-time operating systems in placing processes in a
precedence line. When a scheduling incident arises the processor searches the line
for finding out the process nearest to its limit. This process succeeds to be scheduled
for execution. EDF is the finest scheduling algorithm on preemptive uniprocessor,
in the following way: if a group of free jobs, each having its own arrival time,
execution necessity and a limit, can be programmed in a manner that ensures all the
jobs complete by their limit, the EDF will schedule this group of jobs so they all
complete by their limit. With scheduling periodic processes that have limits equal to
their stages, the utilization limit of EDF is 100%.

3.4 Online Scheduling of Dynamic Task Graph (OSDTG)

This algorithm stated that the OSDTG is more practical compared to conventional
schemes and task graphs are subject to variation at execution time and interpro-
cessor communications (IC) of static number (SN) of channels. Broadcast and
point-to-point communication is applied in online scheduling. The key point of this
algorithm is to decrease scheduling length [6].

3.5 Dynamic Load Balancing Using Task-Transfer
Probabilities (DLBTTP)

This algorithm is based on the recent position of the system load; task move
probabilities were calculated for every node in the system. These probabilities,
represented by Pnm, are between a node n and each other node m. The computation
and adjustment of the task move probabilities later than the move of every recently
arrived task are at done at the end of every periodic interval [14].

3.6 Dynamic Task Scheduling (DTS) Algorithm

This algorithm has been proposed with a lower time complexity for homogeneous
environment. This algorithm is based on DAG model, and the plan makes the entire
parallel task complete at the feasible initial time; that is, response time (RT) of this
parallel task is smallest [7].

A Review of Dynamic Scheduling Algorithms … 77

3.7 DLS Algorithm with Genetic Operators (DLSAGO)

Dynamic Level Scheduling Genetic Algorithm (DLSGA) proposes to overcome the
excess time for schedule. DLSGA uses a quantity known as dynamic level, which is
the dissimilarity between the maximum total of calculated costs from task to a way
out task, and the earliest begin run time on processor [8]. No tasks are scheduled
between two earlier scheduled tasks by DLSGA. To reproduce offspring, the most
favored and the fittest are selected.

3.8 Dynamic Task Graph Scheduling
with Fault-Tolerant (FTDTGS)

An approach has been proposed to fault-tolerant execution of dynamic task graphs
scheduled using work stealing. The work-stealing-based algorithm is applied when
the data and metadata corresponding with a task get corrupted; then a task graph is
mounted to enable recovery [10]. The algorithm was shown to be asymptotically
optimal for graphs whose degree can be bound by a stable. In the lack of faults, the
fault-tolerant edition was shown to not incur significant overheads compared to the
non-fault-tolerant version.

3.9 DTS with Load Balancing (DTSLB)

DTSLB proposes to schedule a heterogeneous tasks dynamically on to corre-
sponding processors in a distributed setup and load balancing which is a main
problem in task scheduling is also measured. The nature of the tasks is free and
non-preemptive. To determine the efficiency of the scheduling algorithm, a number
of different tests have been performed [11]. The unique approache of this algorithm
is solving the DTS using Hybrid Particle Swarm Optimization (HPSO).

3.10 Dynamic Load Balancing Using Genetic
Algorithms (DLBGA)

DLBGA have been proposed for a static number of tasks; each having a task
number and a length is arbitrarily generated and located in a task group from which
tasks are allocated to processors [15]. As load balancing is performed by the
centralized Genetic Algorithm (GA)-based method, begin with initializing, a pop-
ulation of probable solutions [16]. By using the sliding window technique it is
achieved.

78 M. Alam et al.

3.11 Parallel Genetic Algorithms for Heterogeneous
(PGAH)

This PGAH engages a central scheduler, which has the processor lists and the task
queue. The processors are heterogeneous in distributed system. The available
network resources vary over time between the processors in distributed system. The
possibility of every processor can vary over time. In distributed system the task
which are indivisible, independent of all other tasks, arrive randomly and can be
processed by any processor [17].

3.12 Global Scheduling for Mixed-Critically (GSMC)

In the context of multiprocessor mixed-criticality system, the fixed-priority algo-
rithms can be applied globally [18]. The global Fixed-priority (FP) scheduling of
mixed-criticality task sets (MCTS) are on HM multiprocessors. In this paper, there
are two main ways in which an algorithm must be selected. Particularly, a priority
assignment strategy to individual tasks and a feasibility testing given a specific
priority assignment must be selected.

3.13 The Response Time Analysis of Global
Fixed-Priority (RTAGFP)

This algorithm states a new analysis that improves over current state-of-the-art
(SOA) response time analysis (RTA) by reducing its pessimism. Finally, how to
improve the new response time analysis method by empirical tests with arbitrarily
generated task sets [19, 20]. The RTA with Limited Carry-in (RTA-LC) [21] is the
most accurate algorithm for RTA of global FP scheduling on multiprocessors. In
this paper, first propose a new formula to bound the workload of carry-in jobs.

3.14 New Response Time Bounds for Fixed
Priority (RTBFP)

This algorithm improves analysis precision response time for sporadic tasks on
multiprocessor systems where the limits of tasks are within their periods and task
systems with random limits, allowing tasks to have limits beyond the end of their
periods [22]. In this paper, there are two main contribution folds such as: (1) The
analysis precision has been significantly improved against previous work, and
(2) To my knowledge, this is the first work to rectify the RTA problem of
arbitrary-deadline systems on multiprocessors.

A Review of Dynamic Scheduling Algorithms … 79

Table 1 Existing dynamic scheduling algorithm

Algorithms Objectives Merits System
types

Conclusion/
future
enhancements

ETF The initiate time
reduced of a node at
every step

Processor selection
phase goes on side by
side

HM Heterogeneous
environment

DLS To select highest
static stage and lesser
time to schedule

Pair matching of nodes
is performed, and
highest priority node is
found

HM Heterogeneous
environment

EDF Job priority is
inversely proportional
to its deadline

No need to define
priorities

HT Future
deadlines can
be calculated

OSDTG To minimize the
makespan

IC of SN of channels HT Off-line

DLBTTP Determine
transferring tasks
between each two
nodes in the system

Well RT with a feasible
amount of
communication
overheads

Distributed IC and transfer
delays

DTS Lower time
complexity

High
speedup-dependent
tasks

HM Add
fault-tolerant

DLSAGO Overcome the spend
much time and space
for search

The most favored and
the fittest are selected

HT Homogeneous
system

FTDTGS To minimize
overheads in the
absence of faults with
recovery costs

Handling recovery
correctly and efficiently
for dynamic task graph

HT Recovery faults
without global
coordination

DTSLB Schedule the tasks in
a HTS, free and
non-preemptive

Solving the DTS using
PSO with fixed inertia

HT Bounded and
pre-emptive

DLBGA Less run time, higher
processor utilization,
and good load balance

Threshold strategies,
information switching
criteria, and IC

HT Large number
of very
effective tasks

PGAH Reduce parallelization
of the fitness
evaluation

More scalable and
extends its
practicability

HT Spends less
time

GSMC Timing controls to
progress the
schedulability of
MCTS

Priority task policy and
global schedulability
tests

HM Offers robust
performance

RTAGFP Improve the response
time

Iterative analysis
procedure and improve
the efficiency

HM Lead
worst-case RT
and good SOA

(continued)

80 M. Alam et al.

3.15 Load-Based Schedulability Analysis of Certificate
Mixed-Criticality System (LBSCMCS)

It is apriority-based algorithm for scheduling such mixed-criticality systems on
preemptive uniprocessor platforms. This paper shows that this algorithm is strictly
better to prior algorithms that have been used for scheduling mixed-criticality
systems needing certification [23]. The conventional real-time scheduling theory
does not address the certification consideration which give rise to fundamental new
resource allocation and scheduling challenges (Table 1).

4 Comparison of Dynamic Scheduling Algorithms
on HMS and HTS

A Comparison of aspects influencing the homogeneous and heterogeneous envi-
ronment has been done and different algorithms are discussed. Out of which, ETF
and DLS were applied on homogeneous setting while OSDTG and DLBGA were
applied on heterogeneous setting, although their objective were same, i.e., to
minimize the execution time and makespan. DTS algorithm may be adding
fault-tolerance, whereas DLSGA can be homogeneous in future. FTDTGS is useful
for recovery from faults without global coordination, while DTSLB is pre-emptive
and dependent in nature, yet both use HTS. The goal of RTAGFP and RTBFP
improves the response time but cannot be applied on same system. The objectives,
merits, and future enhancement of the algorithm have already been discussed. This
review is mainly focused on the parameters such as makespan, running time,
resource utilization load balancing, speedup, efficiency, and high performance.

Table 1 (continued)

Algorithms Objectives Merits System
types

Conclusion/
future
enhancements

RTBFP Improve the analysis
precision response
time

Improve the RTA
problem

HT Deal with
platforms and
task systems

LBSCMCS Priority-based
scheduling

Better quality to the
space-time partitioning
approach to scheduling

HM Study of the
schedulability
properties of
OCBP

A Review of Dynamic Scheduling Algorithms … 81

5 Conclusion and Future Work

The paper gives a short review of DSA for HMS and HTS. In this study, we found
that dynamic scheduling algorithm is important to scheduling. It helps in answering
questions such as: how to minimize the execution time and makespan, how to load
balance on each processor, how to manage selection of task, and how to improve
performance utilization and efficiency of system. It is also analyzed that load bal-
ancing issue in HMS was found easier compare to HTS in essence of load capacity.
The appliance of the dynamic scheduling algorithm is a rapidly developing research
area.

Hence, on the basis of this study in future will propose a novel dynamic
scheduling algorithm for homogeneous as well as heterogeneous system to better
performance.

References

1. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to
multiprocessors. ACM Comput. Surv. 31(4), 406–471 (1999)

2. Singh, K., Alam, M., Sharma, S.K.: A survey of static scheduling algorithm for distributed
computing system. Int. J. Comput. Appl. 129(2), 25–30 (2015)

3. Singh, M.K., Tiwari, R.: A survey on scheduling of parallel program in heterogeneous
system. Int. J. Advanced Research in Computer Engineering & Technology. 1(8), 357 (2012)

4. He, Y., Liu, J., Sun, H.: Scheduling functionally heterogeneous systems with utilization
balancing. In: IEEE International Parallel and Distributed Processing Symposium, pp. 1187–
1198 (2011)

5. Alam, M., Varshney, A.K.: A comparative study of interconnection network. Int. J. Comput.
Appl. 127(4), 37–43 (2015)

6. Choudhury, P.: Online scheduling of dynamic task graphs with communication and
contention for multiprocessors. IEEE Trans. Parallel Distrib. Syst. 23(1), 126–133 (2012)

7. Amalarethinam, D.I.G., Joyce Mary, G.J.: A new DAG based dynamic task scheduling
algorithm (DYTAS) for multiprocessor systems. Int. J. Comput. Appl. 19(8), 24–28 (2011)

8. Kaur, P., Kaur, A.: Implementation of Dynamic Level Scheduling Algorithm Using Genetic
Operators. Int. J. of Appl. or Innovation in Eng. & Manag. 2(7), 2319–4847 (2013)

9. Khan, Z.A., Siddiqui, J., Samad, A.: Linear crossed cube (LCQ): a new interconnection
network topology for massively parallel system. Int. J. Comput. Netw. Inf. Secur. 7(3), 18–25
(2015)

10. Kurt, M.C., Krishnamoorthy, S., Agrawal, K., Agrawal, G.: Fault-tolerant dynamic task graph
scheduling. In: SC14: International Conference for High Performance Computing,
Networking, Storage and Analysis (2014)

11. Visalakshi, P., Sivanandam, S.N.: Dynamic Task Scheduling with Load Balancing using
Hybrid Practical Swarm Optimization. Int. J. Open Problems Compt. Math. 2(3), 475–488
(2009)

12. Khan, Z.A., Siddiqui, J., Samad, A.: A novel multiprocessor architecture for massively
parallel system. Int. Conf. Parallel Distrib. Grid Comput. 466–471 (2015)

13. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to
multiprocessors. ACM Comput. Surv. (CSUR) 31(4) (1999)

82 M. Alam et al.

14. Evans, D.J., Butt, W.U.N.: Dynamic load balancing using task-transfer probabilities. Parallel
Comput. Elsevier North-Holland 19, 897–916 (1993)

15. Zomaya, A.Y., Hwei, Y.: Observations on using genetic algorithms for dynamic
load-balancing. Parallel Distrib. Syst. IEEE 12(9) (2001)

16. Munetomo, M., Takai, Y., Sato, Y.: A genetic approach to dynamic load-balancing in a
distributed computing system. In: Proceedings of First International Conference on
Evolutionary Computation, IEEE World Congress Computational Intelligence, vol. 1,
pp. 418–421 (1994)

17. Pico, C.A.G., Wainwright, R.L.: Dynamic scheduling of computer tasks using genetic
algorithms. In: Proceedings of First IEEE Conference Evolutionary Computation, IEEE
World Congress Computational Intelligence, vol. 2, pp. 829–833 (1994)

18. Kelly, O.R., Aydin, H.: Fixed—priority global scheduling for mixed-critically real-time
system. Int. J. Embedded Syst. 6(2/3) (2014)

19. Sun, Y., Lipariy, G., Guanzx, N., Yix, W.: Improving the Response Time Analysis of Global
Fixed-Priority Multiprocessor Scheduling. Embedded and Real-Time IEEE Xplore (2014)

20. Davis, R.I., Burns, A.: Improved priority assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems. Real-Time Syst. 47(1), 1–40 (2011)

21. Guan, N., Stigge, M., Yi, W., Yu, G.: New response time bounds for fixed priority
multiprocessor scheduling. In: 30th IEEE on Real-Time Systems Symposium, 2009, RTSS
2009, pp. 387–397. IEEE (2009)

22. Guan, N., Stigge, M., Yi, W., Yu, G.: New Response Time Bounds for Fixed Priority
Multiprocessor Scheduling. In Real-Time Systems Symposium, RTSS 2009. 387–397 IEEE,
(2009)

23. Li, H., Baruah, S.: Load-based schedulability analysis of certifiable mixed-criticality systems.
In: Proceedings of the 10th ACM International Conference on Embedded Software (2010)

A Review of Dynamic Scheduling Algorithms … 83

	8 A Review of Dynamic Scheduling Algorithms for Homogeneous and Heterogeneous Systems
	Abstract
	1 Introduction
	2 Homogeneous and Heterogeneous Systems
	2.1 Heterogeneous System
	2.2 Homogeneous System

	3 Review of Dynamic Scheduling Algorithms (DSA)
	3.1 The Earliest Time First (ETF) Algorithm
	3.2 Dynamic Level Scheduling (DLS) Algorithm
	3.3 The Earliest Deadline First (EDF) Algorithm
	3.4 Online Scheduling of Dynamic Task Graph (OSDTG)
	3.5 Dynamic Load Balancing Using Task-Transfer Probabilities (DLBTTP)
	3.6 Dynamic Task Scheduling (DTS) Algorithm
	3.7 DLS Algorithm with Genetic Operators (DLSAGO)
	3.8 Dynamic Task Graph Scheduling with Fault-Tolerant (FTDTGS)
	3.9 DTS with Load Balancing (DTSLB)
	3.10 Dynamic Load Balancing Using Genetic Algorithms (DLBGA)
	3.11 Parallel Genetic Algorithms for Heterogeneous (PGAH)
	3.12 Global Scheduling for Mixed-Critically (GSMC)
	3.13 The Response Time Analysis of Global Fixed-Priority (RTAGFP)
	3.14 New Response Time Bounds for Fixed Priority (RTBFP)
	3.15 Load-Based Schedulability Analysis of Certificate Mixed-Criticality System (LBSCMCS)

	4 Comparison of Dynamic Scheduling Algorithms on HMS and HTS
	5 Conclusion and Future Work
	References

