
L3C Model of High-Performance
Computing Cluster for Scientific
Applications

Alpana Rajan, Brijendra Kumar Joshi and Anil Rawat

Abstract High-performance computing clusters (HPCCs) are widely used for
various scientific applications. In a typical scientific research environment, software
applications need large but varying number of processing elements and processor
cores. To maximize throughput of a computing cluster and optimum utilization of
resources, one new model has been proposed. The proposed model visualizes the
computing cluster as loosely coupled cluster of clusters (L3C). Execution time for
scientific applications also varies in terms of lapsed time for execution and CPU
time utilized. The process scheduling algorithm maintains a list of applications to be
executed along with respective number of node/core required. Using the L3C model
and scheduling algorithm, multiple applications are scheduled on the computing
cluster for concurrent execution. Basis for proposing L3C model along with its
details is discussed in the paper. Experimental results of performance evaluation of
HPC clusters were published earlier by the authors and are referred at respective
places. L3C model has certain inherent advantages which are also discussed in the
paper.

Keywords High-performance computing cluster � Performance evaluation
HPCC throughput � Scientific applications

A. Rajan (&) � A. Rawat
Computer Division, Raja Ramanna Centre for Advanced Technology, Indore, India
e-mail: alpana@rrcat.gov.in

A. Rawat
e-mail: rawat@rrcat.gov.in

B. K. Joshi
Military College of Telecommunication Engineering, Mhow, India
e-mail: brijendrajoshi@yahoo.com

© Springer Nature Singapore Pte Ltd. 2018
S. K. Muttoo (ed.), System and Architecture, Advances in Intelligent Systems
and Computing 732, https://doi.org/10.1007/978-981-10-8533-8_25

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8533-8_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8533-8_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8533-8_25&domain=pdf

1 Introduction

Use of computing technology for scientific research and development became
popular with the advent of general purpose computers in the mid-sixties. As the
computing technology progressed in terms of computing power and ease of pro-
gramming, complexity of scientific codes also increased, leading to increase in
workload of computing clusters [1]. In the endeavor to achieve high-performance
computing at lower costs, computing clusters were built. Cluster-based computing
deploys multiprocessor machines for executing scientific codes having parallel
components. Interprocessor communication is supported by very high-speed
interconnects. HPCCs are deployed worldwide for scientific applications demand-
ing huge computing power.

Various software tools are available for measuring performance of clusters.
Estimated performance of a cluster is a good indication for the capability of the
cluster to execute computational tasks. High-performance Linpack (HPL)
benchmark is a set of tools for performance evaluation of HPCC [2]. HPL is a de
facto standard for measuring cluster performance; it solves a linear system by
distributing data over a two-dimensional grid of processes. Peak computing power
is quantified as GFlop/s.

Optimum utilization of the available resources is ensured by the architects of the
computing clusters to achieve high throughput. When a cluster is built to run
heterogeneous types of applications, the task becomes more complex and param-
eters affecting the performance are to be balanced for maximizing throughput.

2 Performance of HPCC

Performance of a computing cluster depends on components used to build it and
also on the type application deployment on it. There are various software tools
available for measuring the performance. Estimation of performance indicates the
strength, capability, and power of a computing cluster for processing a
computation-intensive task. With the advancements in technology, introduction of
new system architectures, and also renewed user requirement, it is important that
performance evaluation tools are also updated. In this section, the standard basic
formula used for estimation is briefly described.

Let us say Rpeak is the maximum theoretically calculated computing power of
system, and Rmax is the maximum actual computing power of system. Rmax can be
obtained by using software tools like HPL [2–4], high-performance computing
challenge benchmark. Rpeak can be calculated using the following formula:

Rpeak ¼ PCS� NC� FPOC

250 A. Rajan et al.

where PCS is processor clock speed in GHz, NC is total number of Cores X, FPOC
is floating point operations/cycle.

3 Scientific Applications on HPCC

Clusters have provided a platform for execution of a wide range of applications,
including supercomputing (highly processor-intensive jobs). While focusing on
scientific applications, use of cluster computing is widely seen for running codes for
weather forecast modeling, life sciences, computational fluid dynamics, simulation
of beam tracking for accelerators, image processing, aerodynamics, astrophysics,
etc. Following subsections briefly cover some popular legacy application and also
include certain specific details on sequential applications and parallel applications.

Legacy Applications: Very large number of scientific codes has been written
over the years, and these codes have existed for decades. They have been altered
and expanded to improve them, and experiments have been conducted using these
codes. Scientific community has been hesitant to replace these codes by rewritten
codes, since the risk of introducing a logical error is high. Even a subtle change may
result in serious consequences.

Sequential Scientific Code: Many scientific codes have been parallelized to gain
on execution time using various programming tools and techniques. Tools have
been developed to auto-parallelize sequential codes, although with limited success.
Certain standard sequential codes are still being used by scientists and researchers.

Parallel Scientific Codes: Parallel scientific codes are either written afresh or are
developed by identifying parts of the code which can be parallelized. Major
improvement in performance of these codes has been achieved by computer sci-
entists and programmers while working in tandem with scientist having required
domain knowledge of the scientific codes [1, 5, 6].

4 Factors Governing Performance for Scientific
Applications

Scientific codes have different characteristics as compared to codes in other
application areas, as they are computationally intensive programs requiring huge
resources in terms of memory, storage, etc. A large number of CPU cycles are
required for completing the computations as the problems being solved are very
complex in nature [7]. Typical characteristics in addition to computational
requirements are computations on large data sets and large number of iterations to
converge to the result. Large numbers of iterations are required before the program
converges to the solution.

L3C Model of High-Performance Computing Cluster … 251

Impact of Number of PEs and Cores: For most of the scientific codes, paral-
lelization is done to optimally distribute the computational part on multiple pro-
cessors in such a way that the overall computational time reduces. The speedup
achieved by parallelization is governed by Amdahl’s law. Theoretically speaking,
very large number of processing elements (PEs) and cores can be used for solving
any complex problem, but there is a limitation due to other limiting factors like
interconnect, interprocess communication overheads, inherent serial part of the
code, etc.

Impact of Interconnect: Interconnect used for building HPCC is an important
factor governing performance of the cluster. Typically, internode communication
takes place using the interconnect network. Parallelized parts of code have to
interact with each other for transferring the input data sets (which are generally
large for scientific computing codes), for combining the output data sets for
preparation of program output and at times for transferring intermediate result sets.
Thus, this interprocess communication becomes one of the major factors governing
performance of cluster. To provide high bandwidth and low latency, many high-end
interconnects like Myrinet and Infiniband are used in HPCCs.

Process Distribution Patterns: Scientific codes being resource hungry applica-
tions, when execute on a computing cluster, will tend to exploit all the available
resources. The performance governing factors like number of processors/cores, size
of memory, type of interconnect, etc., depend on the budget available for building
any computing cluster. After the hardware components are bought and cluster is
built, optimization of algorithm and granularity of parallelism play important role in
improving performance of the application. Many a times source codes of scientific
applications are not available due to various reasons. It may be old legacy appli-
cation or buying source code for commercially available application may be pro-
hibitive in terms of high cost. This leaves little scope for performance improvement
by changing these parameters. There is lot of scope for performance improvement
of HPCC running multiple scientific codes simultaneously by optimally distributing
the processes on available nodes/processors/cores. Process distribution among
available nodes and cores to maximize throughput and in turn improve overall
cluster performance is an area to be explored and investigated.

5 Models for Understanding HPCC Performance
for Scientific Applications

Process Distribution Model: When computation in form of a software application
is to be executed on a cluster, its resource requirement is assessed in terms of
number of cores required, memory required, scratch area requirement, etc. Based on
the assessment of requirement, applicability of available resources is carried out.
Figure 1 shows a cluster having six nodes and each node is having four cores, thus
total 24 cores are available for carrying out computational tasks.

252 A. Rajan et al.

In this basic model to understand process distribution, processes are created
increasingly from 6 to 36, while keeping the task size constant [8]. The cluster peak
computing power increases as we deploy more cores and processors for the com-
putational task [9]. The peak computing power deliverable by the cluster will be
achieved when maximum number of available cores matches number of processes
created for the computational task. Practically achieved peak computing power in
each case is recorded for analysis and further explorations [8]. Using the ‘process
distribution model,’ complexity or the size of the scientific application can be fixed
for execution on the available resources.

Processor Core Usage Model: The ‘processor core usage model’ has been
conceptualized for a finer understanding of core usage by computational tasks on
clusters. The model can be viewed as two virtual models built over two different
clusters differing basically in interconnect speed and also processor performance.
This approach has been followed for comparative analysis purpose [10]. The model
presented in previous section uses 10 G Ethernet connectivity for internode com-
munication. To carryout comparative performance evaluation, another model built
using Infiniband connectivity for internode communication is proposed. Physical
realization of the model has been achieved by configuring hardware components,
and the model is presented in Fig. 2.

The interconnect used to build this model is 20 Gbps Infiniband. To carryout
comparative analysis, these two models are loaded with same task size and identical
process creation is done for one-to-one comparative analysis [10]. The task size N
in the HPL is varied in moderate range of 10,000–40,000 in steps of 10,000.
A number of processes are created as a set of 1, 2, or 4 for each comparison. By
using the advanced technique of HPL for distributing created multiprocesses among
cores and processors, true results are obtained. For comparative analysis purpose,
identical distribution of tasks on nodes and cores has been carried out on the two
cluster models.

Fig. 1 Process distribution
model—six node cluster with
24 cores

L3C Model of High-Performance Computing Cluster … 253

In these experiments, performance is measured in terms of computing power
delivered, and focus is also drawn on execution time. In both the options of this
model, the created processes are forced for execution on a single processor, thus
enabling interprocess communication bound to be within the processor itself. The
approach uses all the cores available in the processor. The model is also investi-
gated by distributing same size task on cores on different processor.

Figure 3 shown below represents how interprocess communication takes place
using QPI when four processes are distributed on four cores of same processor. C1,
C2, C3, C4 are cores of processor P1, and Proc1, Proc2, Proc3, and Proc4 are
processes of an application spawned on four cores of same processor, thus the
interprocess communication domain is confined to the processor itself.

Fig. 2 Processor core usage model

254 A. Rajan et al.

If four processes are executed on two cores of two different processors, then the
interprocess communication takes place through the interconnect, as depicted in
Fig. 4. In this case, Proc1 and Proc2 are spawned on C1 and C2 cores of processor
P1, whereas Proc3 and Proc4 are allocated to C1 and C2 cores of processor P2. The
interprocess communication domain is not confined to a single processor, instead it
is through the interconnect. It is very interesting to carryout analytical studies using
this model, and various experimental test runs of HPL provided set of results.
Analysis of the result set revealed the behavior of cluster measured in terms of
execution time for different process patterns expressed in terms of process per node
(PPN). The two models discussed so far gave a clearer understanding of the cluster
performance under varying processor core usage and process distribution.

Fig. 4 Interprocess communication through interconnect

Fig. 3 Interprocess communication through QPI

L3C Model of High-Performance Computing Cluster … 255

Interconnect Impact Model: This model has been conceptualized to investigate
impact of Infiniband interconnect. The model described in previous section is
upgraded using 40 Gbps interconnect, and studies are carried out to compare the
performance of clusters using 20 and 40 Gbps interconnects. Performance mea-
sured with increasing task complexity in case of 20 and 40 Gbps interconnect
speed gives a clear picture of the positive impact of interconnect speed. Problem
size is increased from 10,000 to 100,000 in steps of 10,000, and 24 cores have been
used in three different distributive patterns. Execution time and peak computing
power delivered are recorded [11, 12]. The lower latency offered by Infiniband has
considerably nullified the bottleneck posed by conventional interconnects [12].

The three models described and discussed from operational requirement point of
view have provided a clearer understanding of cluster performance for scientific
applications. In the next section, an optimized and comprehensive model for exe-
cuting multiple scientific applications concurrently on one cluster is proposed and
described.

6 L3C Model of HPCC for Scientific Applications

After carrying out investigations on the three different models for scientific appli-
cations, it is logical to conceptualize an ‘Optimized Model for Scientific
Computing.’ In a typical scientific computing scenario, the cluster is being used
concurrently by multiple users for running their codes. All these scientific appli-
cations being resource hungry applications compete for available resources and at
times result in resource contention, affecting the performance severely. The pro-
posed model for scientific computing applications can be visualized as collection of
multiple virtual clusters.

The current technological trends have enabled deployment of HPCCs having
large number of PEs and cores. Each PE can typically have four, six, and even up to
eight cores. Each node can have one, two, and even up to four PEs. This high
density of PEs and cores in a single node results in availability of large number of
cores for computational tasks. Application may need n number of cores, where
n < N (total no. of cores in the cluster), leaving some nodes unused if only one
application is running. Limitation on usage of cores can come in from multiple
fronts. First, there may be limitation in terms of license of the application for
number of cores on which the task can be actually distributed. Second, the code
may not be scalable beyond a limit and thus may leave certain cores/nodes unused.
These unused cores may fruitfully be utilized by other applications.

256 A. Rajan et al.

In the proposed model, multiple scientific applications are made to utilize a
subset of cores. For example, if application 1 needs 64 cores while application 2
and 3 require 32 cores each, then these three applications can coexist on the cluster
without any degradation of performance. Concurrent execution of these three
applications will enhance the overall throughput (along with optimum utilization of
available resources) as compared to the situation where they were sequenced for
execution one after another.

This concept of deploying multiple applications concurrently is in no way
limited in terms of number of such applications. The limitation actually comes from
the total number of cores available. All the available cores can be divided in
n number of (n1, n2, n3 …) virtual clusters. Number of cores used by each virtual
cluster could be different (c1 cores by n1 cluster, c2 cores by n2 cluster, and so on) as
long as c1 + c2 + c2 … is not greater than c * n where c * n is total number of
cores in the cluster.

This model can thus be termed as a loosely coupled cluster of clusters (L3C
model). The model allows on-the-fly creation of clusters of varying size as per the
requirement of the applications running concurrently on the cluster. We can visu-
alize the cluster as a loosely coupled cluster of clusters.

Number of ‘virtual clusters’ created in this model depends on number of
applications being deployed and the resources available. Thus, number of virtual
clusters can vary from 1 to many, depending on size and complexity of applications
being run concurrently. One can deploy multiple applications concurrently on the
cluster by dedicatedly assigning/allocating x no. of cores to an application, y no. of
cores to another application, and so on. It is already verified in the model (inter-
connect impact model) presented earlier that the 40 Gbps Infiniband interconnect
ensures very high throughput for inter processor communication. This feature
provided by Infiniband interconnect is exploited in L3C model to allocate cores to
applications irrespective of which processor those cores belong to.

The above diagram depicts the L3C model of HPCC for a typical requirement of
four applications running concurrently on HPCC. Each application requires dif-
ferent number of cores as shown in the Fig. 5. CE1 and CE2 are control elements,
which are responsible for job distribution (scheduling among cores), access to
storage (data and program files), and job submission. In the typical example
depicted above, Scientific Application 1 is deployed on core C1–C64, Scientific
Application 2 uses core C65 to C96, Scientific Application 3 uses another set of
16 cores from C97–C112, and Scientific Application 4 is being run on core C113–
C128.

L3C Model of High-Performance Computing Cluster … 257

7 Implications of L3C Model

Concurrent Execution of Scientific Codes: The L3C model proposes to concur-
rently execute multiple scientific applications or scientific codes on computing
cluster, as long as total number of cores required by all the applications put together
does not exceed the total number of cores available in the computing cluster. If
these multiple tasks are queued up for sequential execution one after another, all
available cores may not be utilized all the time, thus resulting in wastage of
computational power.

Resource Allocation Approach: A set of scientific applications requiring varied
number of cores is listed in Table 1. Estimated execution time is also included in
the table, which is only indicative in nature, since actual execution time depends on
many other factors like size of data set, result convergence methodology,
processing power of the PE, and available memory per core/per PE.

Just for an example, VORPAL, ADF, and WIEN2k_08 can coexist on a com-
puting cluster having 128 cores. Similarly, other combination of applications is also
possible, which solely depends on number of available cores, presuming other
requirements like memory per core, scratch area, etc., are not constrained.

Fig. 5 Loosely coupled cluster of clusters (L3C) model

258 A. Rajan et al.

Optimizing Allocation of Resource: When multiple scientific applications are
deployed on a computing cluster, they may end at different time, meaning they may
need different execution time. This will surely render some cores free earlier as
compared to cores engaged for applications requiring longer execution time.
Optimization of resources as proposed in L3C model suggests scheduling those
applications from the waiting queue, which can be accommodated without any
overlapping of applications on cores. Thus, as soon as a set of cores is free, another
application can be scheduled to occupy the free cores. The virtual cluster of clusters
as visualized in L3C model thus allows an application requiring very large exe-
cution time to coexist with other applications which require comparatively smaller
execution times. The state of this virtual cluster of clusters will vary dynamically
depending on the scientific applications being executed concurrently at any instance
of time.

8 Conclusions

The L3C model conceptualizes the division of cluster into virtual multiple clusters.
Since the Infiniband interconnect ensures that there is no constrain on the inter-
processor communication, thus allocation of cores to a set of concurrent applica-
tions can be done on the fly as per the demand of application, irrespective of
whether the cores belong to same processor or not. Concurrent execution of the
scientific applications increases HPCC utilization considerably and leads to much
enhanced throughput delivered by the computing cluster.

Scientific applications require varied number of cores. Number of cores required
for an application depends on the problem size being attempted and also on some
other factors like software license, simulation model, etc. This concept of allocating
nodes/cores to a set of applications for concurrent execution is a novel approach for
enhanced utilization of computing resources.

Table 1 Set of scientific applications and certain related details

Name of the scientific application No. of
cores

Estimated
execution time (h)

Amsterdam density functional (ADF) 32 75

WIEN2k_08 32 200

Versatile object-oriented code for relativistic plasma analysis
with laser (VORPAL)

64 400

Virtual laser plasma lab (VLPL) code 64 300

Objective ring beam injection and tracking (ORBIT_MPI) 16 24

Crystal 32 350

LS-Dyna 16 20

L3C Model of High-Performance Computing Cluster … 259

The comprehensive L3C model proposed for scientific applications is a novel
idea ensuring maximum throughput and optimum utilization of computing
resources. The concept of deploying multiple applications concurrently has resulted
in enhanced throughput of HPCC leading to better return on investment (RoI).

References

1. Alam, S.R., Barrett, R.F., Kuehn, J.A., Roth, P.C., Vetter, J.S.: Characterization of scientific
workloads on systems with multi-core processors. In: IEEE International Symposium on
Workload Characterization, pp. 225–236 (2006)

2. Dongarra, J., Luszczek, P., Petitet, A.: The LINPACK Benchmark: past, present, and future.
Concurrency: Pract. Exp. 15, 803–820 (2003)

3. Langou, J., Dongarra, J.: The problem with the Linpack benchmark matrix generator. Int.
J. High Perform. Comput. Appl. 23(1), 5–14 (2009)

4. Petitet, R.C., Whaley, J. Dongarra, A.: Cleary, HPL—a Portable Implementation of the
High-Performance Linpack Benchmark for Distributed-Memory Computers. Innovative
Computing Laboratory, Computer Science Department, University of Tennessee, September
2008

5. Buyya, R. (ed.): High Performance Cluster Computing: Architectures and Systems, vol. 1.
Prentice Hall PTR, NJ (1999) ISBN: 0-13-013784-7

6. Buyya, R. (ed.): High Performance Cluster Computing: Programming and Applications, vol.
2. Prentice Hall PTR, NJ, USA (1999) ISBN: 0-13-013785-5

7. Hwang, K., Dongarra, J., Fox, G.: Distributed and Cloud Computing, 1st edn. Morgan
Kaufmann (2011)

8. Rajan, A., Joshi, B.K., Rawat, A.: Critical analysis of HPL performance under different
process distribution patterns. In: CSI 6th International Conference on Software Engineering
(CONSEG 2012), Devi Ahilya Vishwavidyalaya (DAVV), Indore, MP, India, 5–7 Sept 2012

9. Vaidya, M.: Parallel processing of cluster by map reduce. Int. J. Distrib. Parallel Syst. (IJDPS)
3(1), 167 (2012)

10. Rajan, A., Joshi, B.K., Rawat, A.: Analysis of process distribution in HPC cluster using HPL.
In: The Second IEEE International Conference on Parallel, Distributed and Grid Computing
2012 (PDGC 2012), Jaypee University of Information Technology, Solan, HP, India, 6–8 Dec
2012

11. Rajan, A., Joshi, B.K., Rawat, A.: Analytical studies of peak computing power deliverable by
small and mid size HPCC. In: INDIACom 2013—7th International Conference on
‘Computing for Nation Development’, BVICAM, New Delhi, 7–8 Mar 2013

12. Rajan, A., Joshi, B.K.: Performance comparison of 20 Gbps and 40 Gbps Infiniband
Interconnect. In: IEEE International Conference on Global Sustainable Development
(IndiaCom 2014), BVICAM, pp. 5–6, New Delhi, Mar 2014

260 A. Rajan et al.

	25 L3C Model of High-Performance Computing Cluster for Scientific Applications
	Abstract
	1 Introduction
	2 Performance of HPCC
	3 Scientific Applications on HPCC
	4 Factors Governing Performance for Scientific Applications
	5 Models for Understanding HPCC Performance for Scientific Applications
	6 L3C Model of HPCC for Scientific Applications
	7 Implications of L3C Model
	8 Conclusions
	References

