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Abstract. Reshaping accurate and realistic 3D human bodies from
anthropometric parameters (e.g., height, chest size, etc.) poses a fun-
damental challenge for person identification, online shopping and vir-
tual reality. Existing approaches for creating such 3D shapes often suf-
fer from complex measurement by range cameras or high-end scanners,
which either involve heavy expense cost or result in low quality. However,
these high-quality equipments limit existing approaches in real applica-
tions, because the equipments are not easily accessible for common users.
In this paper, we have designed a 3D human body reshaping system
by proposing a novel feature-selection-based local mapping technique,
which enables automatic anthropometric parameter modeling for each
body facet. It is worth nothing that the proposed approach can take as
input limited anthropometric parameters (i.e., 3–5 measurements), which
avoids complex measurement, and thus better user-friendly experience
can be achieved in real scenarios. Specifically, the proposed reshaping
model consists of three steps. First, we calculate full-body anthropomet-
ric parameters from limited user inputs by imputation technique, and
thus essential anthropometric parameters for 3D body reshaping can be
obtained. Second, we select the most relevant anthropometric parameters
for each facet by adopting relevance masks, which are learned offline by
the proposed local mapping technique. Third, we generate the 3D body
meshes by mapping matrices, which are learned by linear regression from
the selected parameters to mesh based body representation. We conduct
experiments by anthropomorphic evaluation and a user study from 68
volunteers. Experiments show the superior results of the proposed sys-
tem in terms of mean reconstruction error against the state-of-the-art
approaches.
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1 Introduction

Reshaping accurate and realistic 3D human bodies from anthropometric param-
eters plays a key role for real users, and can benefit a broad range of applications
for person identification, health monitoring, online shopping and virtual reality.
For example, reshaping an appropriate 3D human body can help people choose
suitable clothes by fitting clothes into the 3D model, and thus the high refund
rate for online shops and the waste of time for users can be largely reduced.
However, building such a system is challenging, because the body shape of each
person is unique, which is hard to be expressed by traditional anthropometric
parameters (e.g., height, weight, chest size, etc.) even for the users themselves.

Significant progress has been made by introducing datasets on 3D human
body reshaping (e.g., CAESAR dataset [1]), which provides opportunities for
representing human bodies by 3D models and motivates great number of research
works on learning statistical models for 3D human bodies. These works mainly
focus on learning linear regression models from anthropometric parameters and
PCA coefficients from vertex information in 3D body shapes [2–4]. Furthermore,
Sumner et al. proposed to reformulate the deformation transfer problem in terms
of the triangles’ vertex positions in their work [5]. Such an approach introduced
more complex models for 3D body reshaping by a deformation transfer method
for the first time. Later, Yang et al. proposed the SPRING model, which out-
performs deformation-based global mapping methods with a significant margin
[6]. However, the SPRING model requires segmenting the body shape into fixed
rigid parts beforehand (e.g., 16 parts) and binding anthropometric parameters
to each part manually for calculating mapping relationship, which brings several
limitations. First, defining the relationships among these parts and more than
20 parameters manually often involves heavy human efforts. Second, the defini-
tion can vary a lot among different people, which may bring inconsistent results
using the same algorithm. Third, binding parameters to facets by hand totally
loses the statistic information among the parameters, which may cause some
error-prone results. Moreover, creating such 3D shapes from range cameras [7,8]
or high-end scanners [9–11] often requires complex measurement devices that
are not widely available. A high precision 3D scanner usually costs thousands of
dollars, which limits the applications for common users in real scenarios.

To address the above problems, we have designed a 3D human body reshap-
ing system by proposing a novel feature-selection-based local mapping technique
with limited user inputs. First, we propose to adopt Multivariate Imputation by
Chained Equations (MICE) technique to fill in the missing parameters from the
limited user’s input [12], which improves the precision of model and enables
better user experience in real scenarios. Second, the proposed feature-selection-
based local mapping method takes advantage of recursive feature elimination
techniques to remove irrelevant anthropometric parameters recursively based on
the linear regression weights from a parameter set to mesh based body rep-
resentation for each facet [13]. As a result, an optimal relevant subset of fea-
tures will be selected automatically, which eliminates the heavy human involve-
ment from manually binding parameters into body parts. Third, we conduct
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anthropomorphic evaluation and a user study from 68 volunteers for the pro-
posed system. From these experiments, we find that the proposed system out-
performs the state-of-the-art approaches with a clear margin. Figure 1 shows an
exemplar screenshot of our system. The contributions are summarized as follows:

(a) Our system provides users with an accurate body shape by using limited
parameters as inputs, which ensures better user experience in real scenarios.

(b) We propose a feature-selection-based local mapping method for anthropo-
metric modeling, which can jointly bind relevant parameters to each facet.

(c) We design comprehensive experiments from objective and subjective aspects
to show the superiority of our system.

Fig. 1. A screenshot of the proposed system. User can (1) enter a few anthropometric
parameters in the right panel; (2) view the generated body shape inside the center
window; (3) refine the current body shape slightly by using the slide controls on the
left panel as they expected.

The rest of the paper is organized as follows. Section 2 introduces the pro-
posed system. Section 3 describes the evaluation and analysis, followed by the
conclusion in Sect. 4.

2 System

To develop an accurate and user-friendly 3D human body reshaping system, we
propose to leverage MICE and propose the feature-selection-based local mapping
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method for anthropometric modeling in our system. Specifically, our system
consists of three modules in offline stage and online stage, i.e., the Imputer, the
Selector and the Mapper. The overview of our system can be found in Fig. 2.
Several relevant data are marked as (a–g) in Fig. 2.
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Fig. 2. The overview of the proposed 3D human body reshaping system. The system
consists of three parts, i.e., the Imputer, the Selector and the Mapper in both online
stage and offline stage. In offline stage, the Selector takes the dataset of 3D body
meshes (a) and corresponding anthropometric parameters (b) as inputs to learn the
relevance masks (c) by the proposed feature-selection-based local mapping technique.
The mapping matrices (d) are further learned by linear regression from the parameters
selected by (c) to mesh based body representation. The details of the Selector are
introduced in Sect. 2.2. In online stage, MICE is leveraged in the Imputer for the
imputation of the parameters from user input (e), which is introduced in Sect. 2.1. ‘?’
in (e) indicates the missing parameters from user inputs, yet could be complemented
in (f) by the proposed approach. After imputation, the vector of parameters (f) will be
passed to the Mapper. By adopting (c) and (d), 3D body mesh (g) will be generated
from (f) in the Mapper, which is introduced in Sect. 2.3.

The Imputer module is responsible for imputation of user’s input (Fig. 2(e)),
which may contain missing data. After imputation, the vector of parameters
(f) will be passed to the Mapper module. The Mapper module selects the most
relevance parameters from (f) by adopting relevance masks (c) for each facet, and
then generates a final body mesh (g) by mapping matrices (d). (c) and (d) are
learned offline by the proposed feature-selection-based local mapping technique
in the Selector module. The Selector module takes as inputs the dataset of body
mesh (a) and corresponding anthropometric parameters (b) to learn (c) and (d)
offline. The details of these modules will be introduced in Sects. 2.1, 2.2 and 2.3.
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2.1 Imputer

Since more anthropometric parameters contained in the reshaping model, more
constrains will be used when generating the 3D body mesh, which results in a
more approximate body mesh. Our system allows users to enter as up to 19 items
of anthropometric parameters as listed in Table 1 (e.g., height, weight, chest etc.)
so that more approximate body meshes can be obtained. In case most users do
not remember all values of these 19 parameters and the input may contain
missing data, the Imputer module needs to preprocess the parameters so that
a completed 19 dimensional vector of parameters can be passed to the Mapper
module for further calculation.

Table 1. 19 parameters used in our models. These parameters have covered primary
body measurements, and each item has a strict anthropometric definition (e.g. natural
waist means the minimum circumference of the mid torso). More details can be referred
in the measurement guide [14].

1 Weight 2 Height

3 Neck 4 Chest

5 Belly button waist 6 Gluteal hip

7 Neck shoulder elbow wrist 8 Crotch knee floor

9 Across back shoulder neck 10 Neck to gluteal hip

11 Natural waist 12 Maximum hip

13 Natural waist rise 14 Shoulder to midhand

15 Upper arm 16 Wrist

17 Outer natural waist to floor 18 Knee

19 Maximum thigh

Imputation is a task to predict and interpolate the missing item in dataset
with statistical analysis of dataset. The most common imputation techniques
are mean substitution method, similarity coefficients simple average method, K
nearest method, MICE etc. [15]. Specifically, MICE is considered to be one of the
best ways to impute missing data. To simulate the uncertainty of missing data,
Rubin et al. established this method by generating a series of possible values
instead of each missing value [16], and the results of each missing data will be
predicted after a standard statistical analysis on the generated datasets.

In order to choose the optimal imputation technique for the Imputer module,
we have designed experiments to evaluate the above four imputation techniques.
We have 19 parameters in our system, which means that there are 219 possi-
ble input cases. To try out all these possible situations is meaningless. So we
designed five sets of experiments, which involve most common situations and
most important parameters used in [17]. Under the same time consumption, we
found that MICE performs best in our experiments, so we choose MICE as the
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core technique of the Imputer. In our system, the Imputer takes the parameters
from user input together with our datasets to run MICE process for imputation.

2.2 Selector

The Selector module takes as inputs the datasets of 3D body meshes and corre-
sponding anthropometric parameters to learn the relevance masks and mapping
matrices for each facet by the feature-selection-based local mapping method.

The analysis of 3D human body shape can be divided into two paradigms
as point based and mesh based [18]. Our system adopts the latter one, which
analyzes the deformations of each triangle facet. Mesh based analysis can factor
out other variations (e.g. pose etc.) in some complex models and enables us to
use local mapping method in simple body reshaping models. The deformations
of each triangle facets can be computed using the similar method in [5].

After obtaining the deformations across of all bodies in the dataset, we denote
the deformation of each facet in each body mesh as a 3× 3 transformation matrix:

Q =

⎡
⎣
q1,1 q1,2 q1,3
q2,1 q2,2 q2,3
q3,1 q3,2 q3,3

⎤
⎦ , (1)

then the deformations of body mesh i ∈ 1, · · · , n can be expressed as Si =
[Qi,1, Qi,2, . . . , Qi,m]T , where m is the number of facets in a body mesh, n is the
size of datasets. For each body mesh in our datasets, there is a 19 dimensional
vector of anthropometric parameters value P , which are extracted from the body
mesh by point-to-point distance with sets of control points.

SPRING proposed to segment the body mesh into 16 rigid parts, then bind a
vector of the most relevant parameters P ′ from P to the parts. It learns the linear
regression model between deformation matrix Q and the relevant parameters
P ′ for each facets, which utilizes the topology information of the human body
shape and outperforms global mapping method with a large margin [6]. Such an
approach has limits in binding parameters to the parts manually, which results
in inconsistent results by different binding set and involves heavy human efforts.

To address the problems above, we propose the feature-selection-based local
mapping method, which can bind parameters to the parts automatically. There
is no need for our method to segment the body mesh and specify the relevant
parameters for each facet. Our method propose to analyze the statistic informa-
tion between parameters and deformations to select the most relevant parameters
for each facets automatically. The details are introduced as follows.

Consider only one facet. Here we denote the matrix of anthropometric param-
eters for n body meshes as

X =

⎡
⎢⎣
p1,1 · · · p1,19
... · · · ...

pn,1 · · · pn,19

⎤
⎥⎦ , (2)
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where pi,j means the jth (j ∈ 1, · · · , 19) parameter of body i ∈ 1, · · · , n. Since
Q is a linear transformation matrix, the absolute value of the determinant of Q,
det(Q), can reflect how much the transformation expands the “volume” of the
facet, so we can calculate the determinant of each transformation matrices as a
feature of each deformation. The determinants of transformation matrices of a
facet for n body meshes is given by:

Y =

⎡
⎢⎢⎢⎣

det(Q1)
det(Q2)

...
det(Qn)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

d1
d2
...
dn

⎤
⎥⎥⎥⎦ . (3)

For a facet, our method learns linear regression between X and Y to select
the most important parameters from 19 items by recursive feature elimination
algorithm [13]. The recursive feature elimination algorithm learns linear regres-
sion on the whole set of features at first. Then, features with smallest absolute
weights will be pruned and a new linear regression model is then retrained until
the desired number of features to select is eventually reached. Our method binds
the optimal relevant subsets of parameters in this way, at the same time a vector
of corresponding relevance mask will be generated. If the parameter is selected
for this facet, then the label in the vector of this facet will be true, otherwise
it will be false. After selection, we reshape the top k relevant parameters as a
k dimensional vector P ′. Then a linear regression model can be learned from
P ′ to a transformation matrix Q. The mapping matrix M for a facet is a 9 × k
dimensional. From experiments, we found that, the results of feature selection
are consistent with the topology knowledge of human body shape.

2.3 Mapper

The Mapper module synthesizes a final 3D human body mesh for users in our
system. It maps the 19 dimensional vector of anthropometric parameters after
imputation to a mesh based body representation, which consists of a list of defor-
mations for each facets. The vertex positions of the mesh based representation
can be computed from the deformations using the method in [5]. The details of
this module are introduced as follows.

Specifically, the Mapper module consists of two steps. First, the Mapper
module selects a subset of parameters for each facet from the 19 dimensional
vector of anthropometric parameters by adopting the relevance masks, which are
learned in the Selector (details in Sect. 2.2). It reshapes the selected k parameters
(k < 19) as a k dimensional vector P ′. Second, we obtain the deformation by
multiplying P ′ with specific mapping matrix M for each facet separately. M is
mentioned in Sect. 2.2 as a 9 × k dimensional matrix. The mapping for a facet
can be represented as:
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Q′ = MP ′ =

⎡
⎢⎢⎢⎣

m1,1 m1,2 · · · m1,k

m2,1 m2,2 · · · m2,k

...
...

...
...

m9,1 m9,2 · · · m9,k

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

p1
p2
...
pk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

q1
q2
...
q9

⎤
⎥⎥⎥⎦ . (4)

Here the transformation matrix can be obtained by reshaping Q′ to a 3 × 3
dimensional matrix.

Finally, vertex positions can be solved from the list of deformations by a
more efficient method proposed by Sumner and Popović [5], which reformulates
the deformation transfer optimization problem in terms of vertex positions.

3 Evaluation

Here we conduct extensive objective and subjective evaluations by anthropo-
morphic evaluation and a user study for our system. We also trained state-of-art
global mapping method and the SPRING model for comparison. The global
mapping method learns the linear regression on anthropometric parameters and
PCA coefficients of deformation matrices [2]. As for the SPRING model, we con-
duct a survey on the relationship between each rigid part and anthropometric
parameters, then we bind the relevant parameters to each part according to the
analysis of the results of the survey.

These models are trained on the pose-independent dataset published by Yang
et al. [6]. The dataset contains 1531 female meshes and 1517 male meshes. The
resolution of each mesh is 12500 vertices and 25000 facets.

3.1 Anthropomorphic Evaluation

Since anthropometric measurements are important in applications such as cloth-
ing sizing and our system generates 3D body meshes from anthropometric
parameters, the error evaluation in such anthropometric parameters is neces-
sary. We conduct an anthropomorphic error evaluation by calculating the mean
absolute errors (MAE) in anthropometric measurements of reconstructed body
mesh using a similar method used by Streuber et al. [19].

Taking the original anthropometric parameters of the bodies in the dataset as
input, our experiments reconstruct the bodies with the global mapping method,
the SPRING model and our system. To evaluate the accuracy of these three
methods, we extract the anthropometric measurements from the generated
meshes by calculating the point-to-point distance with sets of control points.
Then for each model we calculate the mean absolute error between the measure-
ments of generated meshes and those from the dataset. Table 2 shows the mean
absolute errors of reconstructing meshes using 19 parameters with three models.
Evaluation results shows that our proposed model outperforms the state-of-the-
art approaches in terms of mean reconstruction error.
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3.2 User Study

Anthropomorphic evaluation does not always reflect the performance of shaping
models. Here we adjust the value of a certain parameter from mean shape to see
whether the change in the mesh is similar as we expected, and we also conduct
a user study on these three models from 68 volunteers. The age distribution,
gender distribution and body type [20] distribution are shown in Fig. 3.
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Fig. 3. The distribution of volunteers.
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Fig. 4. The result of satisfaction survey.

We increase the number of gluteal hip circumstance by 12 cm. We analyze the
results generated by different models in Fig. 5, and we find that the upper part
of the result generated by the global mapping method changes a lot including
chest size, belly button waist size etc. Our model produces a similar result with
the one generated by SPRING model. Specifically, when the value of gluteal hip
circumstance is increased, our model can keep the irrelevant parts (e.g., chest
part, thigh part, shoulder part etc.) unchanged.

When the value of chest circumstance is increased by 10 cm, we observe from
Fig. 6 that the global mapping method is unable to reshape the 3D body mesh as
expected. The result generated by the global mapping method seems unchanged
compared with the mean body shape. The results generated by our system and
the SPRING model both change significantly in the chest part of body, which
outperforms the global mapping method dramatically.

SPRING Ours

Mean Body Global Mapping

Fig. 5. Increasing gluteal hip by 12 cm.

Mean Body Global Mapping

SPRING Ours

Fig. 6. Increasing chest size by 10 cm.
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We also conduct a user study on three models. 68 volunteers are invited
to experience these models. Volunteers are asked which model can generates
the most resembling body mesh after experiencing all three models. The results
shown in Fig. 4 according to three body types proves the advantages of our
system.

Table 2. Reconstruction errors of anthropomorphic evaluation. Mean absolute errors
(MAE) for anthropometric parameters used in models: length error in mm, weight error
in kg, and the numbers are listed as female/male. (The smaller, the better)

Parameter Global [2] SPRING [6] Ours

Weight 1.4/1.4 1.2/1.4 0.9/0.9

Height 15.1/16.6 12.2/13.4 4.5/4.7

Neck 8.5/11 2.9/3.5 3.2/4.0

Chest 28.1/25.6 11/11.8 10.3/11.4

Belly button waist 23.8/25.0 10.3/13.3 10.7/14.1

Gluteal hip 20.6/22.3 9.01/9.9 9.5/10.4

Neck shoulder elbow wrist 11.4/11.7 7.9/7.5 7.3/6.8

Crotch knee floor 15.4/15.4 10.4/9.2 10.4/9.1

Across back shoulder neck 11.5/11.8 3.3/3.6 4.7/4.7

Neck to gluteal hip 15.1/18.7 10.5/12.6 9.7/12

Natural waist 23/23.2 10.5/11.9 10.6/12.3

Max. hip 21.7/21 10.1/9.3 10.3/9.7

Natural waist rise 28.6/33.67 16.4/21.7 16.7/22.4

Shoulder to midhand 8.3/9.0 3.8/4.1 3.8/4.3

Upper arm 10.5/11.3 5.4/6.8 4.8/5.9

Wrist 4.5/4.9 2.4/2.1 2.4/2.1

Outer natural waist to floor 14.4/12.9 9.9/10 9.1/8.4

Knee 9.9/8.4 4.5/3.5 4.7/3.6

Max. thigh 18.5/18.2 16.1/14 14.7/12.7

Length average error 16.1/16.7 8.7/9.3 8.3/8.8

4 Conclusion

In this paper, we have design a user-friendly and accurate system for 3D human
body reshaping with limited anthropometric parameters by leveraging MICE
technique for imputation and proposing a feature-selection-based local mapping
method for shape modeling. The feature-selection-based local mapping method
we proposed here can select the most relevant parameters for each facet auto-
matically for linear regression learning, which eliminates heavy human efforts
for utilizing topology information of body shape, and thus a more approximate



106 Y. Zeng et al.

body mesh can be obtained. We also conduct anthropomorphic evaluation and
a user study for our system. The results compared with other methods shows
the advantages of our system. In future work, we plan to combine local methods
with global methods for a faster and more accurate system.
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