
A Comparative Analysis of Various
Regularization Techniques to Solve Overfitting

Problem in Artificial Neural Network

Shrikant Gupta1(✉), Rajat Gupta1, Muneendra Ojha1, and K. P. Singh2

1 Dr. SPM International Institute of Information Technology Naya Raipur, Naya Raipur, India
{shrikant15101,rajat15101,muneendra}@iiitnr.edu.in
2 Indian Institute of Information Technology Allahabad, Allahabad, India

kpsingh@iiita.ac.in

Abstract. Neural networks having a large number of parameters are considered
as very effective machine learning tool. But as the number of parameters becomes
large, the network becomes slow to use and the problem of overfitting arises.
Various ways to prevent overfitting of model are further discussed here and a
comparative study has been done for the same. The effects of various regulari‐
zation methods on the performance of neural net models are observed.

Keywords: Dropout · L1 regularization · L2 regularization · Neural network
Overfitting

1 Introduction

Artificial neural network contains multiple non-linear hidden layers which makes it
possible for them to learn very complicated relationships between inputs and outputs.
One of the problems that occur during neural network training is overfitting which causes
them to perform very poorly. In case of overfitting it is observed that the error at the
time of training the datasets reaches to a very insignificant value, but when new data is
presented to the network the error produced is large. This is so because the network has
learned the training examples, but it has not learned to generalize to new situations.
Regularization is a way to reduce the problem of overfitting. A similar work is also done
previously with respect to dropout by Srivastava et al. [1]. They have improvement in
performance of models using dropout and obtained state-of-the-art results on many
supervised learning tasks.

Performance of different regularization techniques on ImageNet is compared by
Evgeny A. Smirnov et al. in the paper [2]. They have shown empirically that perform‐
ance of Dropout on ImageNet Dataset is better than DropConnect. Implementation
of neural network on Airfoil Noise is also shown by Lau et al. in his paper [3]. Drop‐
Connect is introduced in paper [4] which is a generalization of Dropout. It is used for
large fully-connected hidden layers of the neural network. DropConnect is evaluated
in the paper [4] on a range of datasets and it is observed that for some datasets Drop‐
Connect outperforms Dropout.

© Springer Nature Singapore Pte Ltd. 2018
B. Panda et al. (Eds.): REDSET 2017, CCIS 799, pp. 363–371, 2018.
https://doi.org/10.1007/978-981-10-8527-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8527-7_30&domain=pdf

A brief introduction to various regularization techniques is deliberated in Sect. 2 of
this paper. Section 3 contains the features of the overall model that is used here to train
the datasets. Section 4 of this paper contains the observations and results after training
the datasets using the discussed model. A final conclusion based on observed results has
been drawn in Sect. 5 of this paper.

Artificial Neural Network (ANN) is an inspiration from biological neural networks
of the human brain. ANN can be applied to wide range of field such as pattern recog‐
nition, image processing, financial data, medicine etc. As brain neurons are connected
through synapses similarly nodes in neural network model are connected to each other.
The ANN model contains several layers both hidden and visible. ANN models can
generate a nonlinear function with the help of activation functions. There are different
kinds of neural network based on network topologies and the one used here is the feed-
forward neural network. The other types include Recurrent Neural Network, Convolu‐
tional neural network etc. Hypothesis in a neural network model having weight w, input
x and bias b can be defined as Eq. 1.

h𝜃(x) =
∑

i

wixi + b (1)

2 Regularization Techniques

There are several ways of controlling the problem of overfitting in a neural network.
Some of them are discussed here.

2.1 L2 Regularization

L2 Regularization is one of the most general forms of regularization. It can be imple‐
mented by adding the squared magnitude of all the parameters i.e. weights and biases
in the cost/loss function. This total cost function is further minimized using optimizer.
That is for every weight w we add a term ½ λw2 where λ is the regularization parameter.
A factor of ½ is multiplied to simplify the gradient term. Using the L2 regularization
ultimately means that every weight is decayed linearly towards zero.

L2: 𝜆
2

m∑

i=1

w2
i (2)

364 S. Gupta et al.

2.2 L1 Regularization

L1 is another common form of regularization, where instead of adding the square of the
weights we just add the absolute value of the weights to the cost function.

L1: 𝜆
m∑

i=1

||wi
|| (3)

Sometimes both L1 regularization and L2 regularization are applied together (it is
called Elastic-net regularization). L2 regularization generally gives better performance
than L1 regularization. Comparison between L1 regularization and L2 regularization is
done by Ng [5]. In his paper, he compared L1 and L2 regularization and showed how
L1 regularization of parameters grows logarithmically while L2 regularization with
Neural Networks and SVM worst case sample grows linearly in a number of irrelevant
features.

2.3 Dropout

Dropout is a recently introduced regularization technique by Srivastava et al. [1].
Dropout is a simple but extremely effective regularization technique. It prevents
complex co-adaptations on training data in a neural net. The term “dropout” refers to
dropping out hidden units and visible units in a model i.e. both hidden layer and input
layer. The idea behind dropout neural network can be understood by Fig. 1.

Fig. 1. Dropout neural net model (the black circle represents dropped units)

Dropping a unit means temporarily removing the unit along with all its connections
from the network, as shown in Fig. 1. The decision on which unit to drop or remove is
totally random. Generally, each unit in the model is kept with a probability p which is
fixed and independent of other units in the model. The value of p can simply be set to
0.5 while for input units it is usually kept closer to 1 than to 0.5 (nearly 0.8).

At training time, the unit is present with probability p and is connected with weight
w to the units in the next layer while at test time, the units are always present but the

A Comparative Analysis of Various Regularization Techniques 365

weights are multiplied with probability p. Therefore, the output at test time is same as
expected output at the time of training.

3 Setting Up of Overall Model

Before running the model on dataset, the model and data needs to be properly processed
to yield best result. In this section, we have discussed about the overall model after
applying regularization. Following subheading gives a brief info about the additional
design choices regarding data preprocessing, weight initialization, and loss functions.

3.1 Data Preprocessing

The two-common techniques of data preprocessing used here are Mean subtraction and
Normalization. Preprocessing.scale() function of TensorFlow library does both mean
subtraction and normalization.

Mean Subtraction. Mean Subtraction involves subtracting the mean (μ) across every
individual feature i.e. replacing xi with xi − μi. This in turn centralizes the data around
origin and makes the features have approximately zero mean.

xi → xi − 𝜇i (4)

Normalization. Normalization refers to normalizing the data dimensions to bring the
data on the same scale. One way to achieve normalization is by dividing each dimension
by its standard deviation. The scaled data will have zero mean and unit variance.

3.2 Weight Initialization

Before training the model initialization of the parameters is required. It is important to
select appropriate initial values for the weights and biases. A good guess is to initialize
all the parameters to zero but there will be no asymmetry between the neurons as they
will compute same output and same gradient during backpropagation. As a result, they
will go same parameter update and all the neurons will become identical. Therefore, a
good solution is to initialize the parameters with small random numbers close to zero.
This will make all the neurons random and unique.

3.3 Activation Function

Activation function defines the output of a node when an input or set of input is given
to that node. They provide a different type of nonlinearities in the model. There are many
known activation functions like linear, tanh, softmax, sigmoid, relu etc. but the activation
function used in Sect. 3 for observations are relu and softmax.

Relu stands for Rectified Linear Unit. It returns the maximum of input and zero i.e.
if the input of a unit is negative it will output zero else it will pass the input. Relu is used

366 S. Gupta et al.

here in the regression problem (Airfoil dataset) and in the hidden layers of the model
built for MNIST dataset.

Relu(x) =

{
0, x < 0
x, x ≥ 0 (5)

Softmax activation function is used in the output layer of MNIST dataset. It is used
to assign probabilities to the units of output layer in classification problem as they give
us a list of values that are between 0 and 1 and sum up to 1. Softmax is the final layer
in our model for MNIST dataset.

softmax(x)i =
e(xi)

∑
j
e(xj)

(6)

3.4 Regularization

In Sect. 2 various regularization techniques have been discussed. Here we have used
regularization functions present in Tensorflow library for implementing regularization.
Regularization is applied to the loss/cost function to reduce overfitting.

3.5 Loss Functions

Mean Squared Error (MSE). To calculate loss, the sum of squares of the difference
between predicted value and the actual value is taken for all the training example and it
is further reduced by taking mean. Squaring the difference makes the error positive as
we do not want to add negative error in our cost function. Another benefit is that it results
in a function which has a single local minimum i.e. its global minima is same has local
minima.

J(𝜃) =
1
m

m∑

i=1

(
h𝜃

(
x(i)

)
− y(i)

)2
(7)

Where,

h𝜃

(
x(i)

)
− Predicted output

y(i) − Actual value

Cross-Entropy Error Function. During the process of learning, the neural network
model goes through stages in which the reduction of error may become extremely slow.
This stagnation period can impact learning time. In order to resolve this problem a better
way is to replace the mean squared error (MSE) by cross-entropy function. The bounds
of the squared error and cross entropy are further compared by Pavel et al. [6]. They
have presented an investigation on the properties of the cross-entropy (CE) and mean
squared error (MSE) criteria for training models in Neural net.

A Comparative Analysis of Various Regularization Techniques 367

J(𝜃) = −
∑

i

h𝜃

(
x(i)

)
log

(
y(i)

)
(8)

The optimizers are used to compute the gradients for loss and apply those gradients
to the weights and biases. The optimizers used in this paper are Gradient Descent opti‐
mizer and Adam optimizer. Gradient descent optimizer applies the gradient descent
algorithm which is a well-known algorithm in machine learning field. On the other hand,
Adam optimizer implements Adam algorithm. Both optimizers require a learning rate
α to train the data which should neither be too large or too small. Taking a small learning
rate will make the algorithm very slow while a large learning rate will result into an
algorithm which will never reach to minima. The mathematics behind Adam optimizer
is introduced in the paper by Kingma et al. [7].

3.6 Model Evaluation

Error Analysis. Percentage relative error is used for the comparison between different
models. The absolute error for each testing example i.e. the |predicted value – true value|
is divided by true value and it is then converted it into percentage form. The overall
mean of error for each testing example is obtained which gives us the final % error of
the model.

|Predicted Value − Actual Value|
|Actual Value| × 100 (9)

Accuracy. To figure out that we predicted the label correctly argmax function of
TensorFlow is used which gives the index of the highest entry in a tensor along some
axis. This function is applied to both actual values and predicted values and the outputs
of the function are compared using the equal function in TensorFlow. The Equal function
generates a Boolean output which is further cast into float value and its mean is taken.

In Sect. 4 the Airfoil Dataset is a regression problem so the model is evaluated using
percentage relative error while MNIST is a classification problem and is evaluated using
the accuracy of the model.

4 Implementation on Datasets

4.1 Airfoil Self-noise Data Set

Airfoil Self Noise Dataset is taken from UCL Machine Learning Repository Donated
by Thomas et al. [8].

In Air dataset initially preprocessing was done to bring the features on the same scale.
Two hidden layers of 100 and 10 units were used respectively. Relu activation function
is applied to the hidden layers while the output layer is linearly activated. The model is
trained for 10000 epochs with a learning rate of 0.01. Optimizer used for optimizing the
cost is Adam Optimizer and the error function used is Mean Squared error (MSE). For
evaluating the model error analysis is done by comparing percentage relative error.

368 S. Gupta et al.

On applying various regularization technique in air dataset, it is observed that the
performance of L2 Regularization is better when applied to both weights and biases.
The percentage relative error of various regularization techniques is shown in Fig. 2.
Dropout here yield maximum error percentage and therefore is not suitable for datasets
with fewer attributes.

1.13319

0.979106

1.08638

1.13314

1.46515

No Regulaization

L2 on Weights & Biases

L2 on Weights only

L1

Dropout

Percentage Relative error

Fig. 2. Percentage relative error in different regularization technique

The performance of the model was further tested on L2 regularization by varying
the regularization parameter lambda. It was observed that the best performance was
shown by the model on 𝜆 = 0.0001 and on decreasing the value performance degrades
(Fig. 3).

1.0048 0.979106
1.18874

0.01 0.001 0.0001

Pe
rc

en
ta

ge
 R

el
at

iv
e

Er
ro

r

Regularization Parameter

Fig. 3. Variation of error with regularization parameter in L2 regularization

4.2 MNIST Dataset

MNIST Dataset is an image dataset consisting the images of handwritten digits from 0–9.
It has 28 × 28 matrix and 10 classes. That means the total number of features are 784 and
labels are of shape 1 × 10 in one hot form. Dataset is taken from THE MNIST DATA‐
BASE of handwritten digits [9].

MNIST Dataset does not need to be preprocessed as the features are nearly on the
same scale. The model consists of three hidden layers with 500 units in each of the
hidden layers. As MNIST is a computer vision dataset of images of handwritten digits
so the possible outcome can be a number from 0–9. Therefore the output class consists
of 10 units which output the probability of each number. Relu is applied to all the hidden
layers while in the output layer softmax is applied as we want to the probabilities to add

A Comparative Analysis of Various Regularization Techniques 369

up to one. The Gradient descent optimizer is used here to optimize the cost and it is
trained for 10 epochs. The accuracy of the model is measured using the inbuilt function
of TensorFlow as discussed in Sect. 3 As the dataset is very large the inputs are given
in batches (Fig. 4).

95.53

96.43

96.03

No
Regulaization

L2 on
Weights only

L1

Accuracy

Fig. 4. Accuracy in different regularization techniques

On training the model on MNIST Dataset it was observed that performance of L2
Regularization is better than L1. The performance increased after applying L1 regula‐
rization as compared to a model with no regularization (Fig. 5).

0.9643 0.9536

0.8758

0.001 0.01 0.1

Ac
cu

ra
cy

Regularization Parameter

Fig. 5. Variation of accuracy with regularization parameter

On L2 Regularization the effect of regularization parameter 𝜆 was investigated and
it was observed that it works best when 𝜆 is near 10−3.

5 Conclusion

The paper described a detailed overview of a neural network model and its working.
The problem of overfitting and its solutions were also discussed and further compared
with respect to their performance. In this work, we find that models having less number
of features perform comparatively better with L2 Regularization. Regularization param‐
eter in L2 regularization also plays a significant role and yields the better result when

370 S. Gupta et al.

its value is kept small. Dropout and DropConnect can be preferred when the numbers
of features are high.

References

1. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple
way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

2. Smirnov, E.A., Timoshenko, D.M., Andrianov, S.N.: Comparison of regularization methods
for imagenet classification with deep convolutional neural networks. AASRI Procedia 6, 89–
94 (2014)

3. Lau, K., López, R., Oñate, E.: A neural networks approach to aerofoil noise prediction. In:
International Centre Numerical Methods Engineering, vol. CIMNE No-3 (2009)

4. Wan, L., Zeiler, M., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural networks using
dropconnect. In: ICML, no. 1, pp. 109–111 (2013)

5. Ng, A.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Twenty-First
International Conference Machine Learning - ICML 2004, p. 78 (2004)

6. Golik, P., Doetsch, P., Ney, H.: Cross-entropy vs. squared error training: a theoretical and
experimental comparison. In: Interspeech, vol. 13 (2013)

7. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:
1412.6980 (2014)

8. Lopez, R., Brooks, T.F., Pope, D.S., Marcolini, M.A.: Airfoil self-noise data set. UCI Machine
Learning Repository (2008)

9. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. In: Proceedings of IEEE, vol. 86, no. 11, pp. 2278–2324 (1998)

A Comparative Analysis of Various Regularization Techniques 371

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

	A Comparative Analysis of Various Regularization Techniques to Solve Overfitting Problem in Artifici ...
	Abstract
	1 Introduction
	2 Regularization Techniques
	2.1 L2 Regularization
	2.2 L1 Regularization
	2.3 Dropout

	3 Setting Up of Overall Model
	3.1 Data Preprocessing
	3.2 Weight Initialization
	3.3 Activation Function
	3.4 Regularization
	3.5 Loss Functions
	3.6 Model Evaluation

	4 Implementation on Datasets
	4.1 Airfoil Self-noise Data Set
	4.2 MNIST Dataset

	5 Conclusion
	References

