
Study on Engine Control Software
Testing Based on Hardware-in-the-Loop
Simulation Platform

Wenwen Zeng, Ying Huang, Xuelong Zheng and Wenqiang Zhao

1 Introduction

Traditional ECU development methodologies have been gradually eliminated, and
V-cycle development mode, a model-based development mode mainly including
control function design, rapid control prototyping, target code generation, HIL, and
calibration as shown in Fig. 1, is recently most favored by vehicle developers [1–3].
Typically, off-line simulation and HIL are used as development methodologies
according to different test requirements in different test stages. Normally, the
control logic and control algorithm as well as the switching and coordination
between various engine operation conditions can be verified through off-line sim-
ulation [4]. Different from logical connection in off-line simulation, corresponding
interface programs are used in HIL to connect the real ECU and the digital engine
model in the processor [5]. The virtual engine, which provides actuator signals for
ECU, precisely simulates various sensor signals and to the greatest extent makes the
ECU run in a real working environment of engine.

Notice that the dominant merit of HIL is that it can be used for software testing,
and it is an efficient methodology for testing software functions and achieving
parameter pre-calibration. Besides, software testing is extremely necessary, while
the engine control system becomes increasingly complex [6–8].

Referring to the mature software testing methodology classification, engine
control software testing technique is classified into many types as shown in Fig. 2
[9]. Typically, it is divided into static test technique and dynamic test technique

W. Zeng � Y. Huang (&) � X. Zheng � W. Zhao
College of Mechanical and Vehicle Engineering, Beijing Institute
of Technology, 100081 Beijing, China
e-mail: hy111@bit.edu.cn

W. Zeng
e-mail: 936754111@qq.com

© Springer Nature Singapore Pte Ltd. 2019
Society of Automotive Engineers of China (SAE-China) (ed.), Proceedings of the 19th Asia
Pacific Automotive Engineering Conference & SAE-China Congress 2017: Selected Papers,
Lecture Notes in Electrical Engineering 486, https://doi.org/10.1007/978-981-10-8506-2_67

995

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8506-2_67&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8506-2_67&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8506-2_67&domain=pdf

Fig. 1 V-cycle mode in vehicle development

Software Testing Technique

Static Testing Technique Dynamic testing technique

 C
ode R

eview
C

ode W
alkthrough

D
esktop C

heck
Static A

nalysis

T
echnical R

eview

White Box Testing Testing Technique Combining
Procedures and protocols

Black Box Testing

C
ontrol Flow

 T
esting

Partition T
esting

Sym
bolic E

xecution

Program
 Instruction

M
utation T

esting
D

ataflow
 T

esting

B
oundary V

alue A
nalysis

 O
rthogonal T

esting
D

esign

State T
esting

T
ransaction Flow

T
esting

 D
ecision T

ables

C
ause-E

ffect
D

iagram

 E
quivalence C

lass Partitioning

 B
ranch C

overage
 C

ondition C
overage

D
ecision C

ondition
C

overage

Path C
overage

Sentence C
overage

A
ll- references
C

overage

A
ll- fixed references
V

alue C
overage

A
ll- fixed V

alue
C

overage

Fig. 2 Classification of software testing technique

996 W. Zeng et al.

depending on whether the software runs dynamically, and dynamic test technique is
the most commonly used test methodology [10, 11]. As one of the branches of
dynamic testing technique, black-box testing is divided into methodology of
equivalence class partitioning and methodology of boundary value, etc. [12–14].
When the black-box testing is performed, the whole tested program is regarded as a
sealed black box. To be more specific, the only information available for testers is
the software function specification, and the testing can be accomplished by com-
paring software function specification and the testing results [15, 16].

In this paper, the HIL-based test system was developed by Beijing Institute of
Technology. The engine control software function requirements and test require-
ments were analyzed, and the test items were extracted through considering the
coverage ratio and difficulties such as the limiting and dangerous conditions which
are hard to be achieved in real engine test bench. In the test case distribution
strategy, the reasonable test case distribution of the engine control software
involves two procedures: At the first stage, the first-time test case distribution was
conducted based on the matrix distribution methodology, and then the test results
were analyzed to guide the redistribution of the test cases. For the design of test
cases, appropriate black-box test methods such as methodology of equivalence class
partitioning, methodology of boundary value, and methodology based on scenario
were used. In addition, for the automatic testing of software, the test scripts were
designed according to different test cases. Finally, several test results were analyzed
in detail.

2 HIL-Based Test System

In order to implement HIL-based software testing, AutoBox, which was developed
by dSPACE Company, was selected as the real-time platform to run the engine
model. When the software testing is performed, the real-time engine model and
electronic control unit (ECU) exchange data through I/O interfaces, which replace
the logical interfaces used in off-line simulation. The HIL system supports the
implementation of various scheduled ECU software testing in a virtual environ-
ment, and the testing results are close to or even equivalent to what is achieved in
engine’s real working environment.

Figure 3 shows the schematic diagram of HIL-based software testing system.
The hardware environment includes PC1, PC2, emulator AutoBox, sensor signal
processing board, actuator signal processing board, and the engine controller. The
software environment includes engine mean-value model, engine control software,
ControlDesk, AutomationDesk, and CANape.

CANape, a software which is used to download the engine control software into
the controller, is installed on PC1. Both software ControlDesk and automatic testing
software AutomationDesk are installed on PC2. ControlDesk is used to download
the engine mean-value model into the real-time emulator, and AutomationDesk is

Study on Engine Control Software Testing Based … 997

used to design and implement test script files. Emulator AutoBox and the engine
controller are used to run engine model and the control software in real time,
respectively. Analog and digital signals generated by AutoBox are transformed into
signals that can be identified by the controller through sensor signal processing
board; meanwhile, the high-voltage and high-current driving signals generated by
the engine controller are transformed into signals that can be identified by
AutoBox via actuator signal processing board. The engine mean-value model,
which has a reasonable fidelity and excellent real-time performance, was built by
MATLAB/Simulink. So did the engine control software. They interact via I/O
interfaces and CAN bus to constitute a real-time closed-loop test system.

3 Test Item Extraction

Test items play an important part in software testing; they correspond to the soft-
ware function points and can be extracted through the test requirement analysis.
Besides, test items ensure the integrity of the software function testing as well as the
test coverage ratio. Typically, the test coverage ratio is divided into test code
coverage ratio and test requirement coverage ratio, and the test coverage ratio is
equivalent to test requirement coverage ratio in terms of software function testing.

PC1 PC2

A
utobox

T
he engine controller

Sensor signal
processing

board

Actuator
signal

processing
board

Analog and digital signals

CANape ControlDesk

AutomationDesk

T
he engine m

odel

T
he control softw

are

High-voltage high-current signals

Fig. 3 Schematic diagram of HIL system

998 W. Zeng et al.

3.1 Extraction Strategy

In general, test requirement coverage ratio is determined by congruent relationship
between software function requirements and test requirements, if all the software
function requirements have been established congruent test requirements, the test
requirement coverage ratio is regarded as 100%. Because the test items are
extracted through test requirement analysis, then the test item coverage ratio will be
100% too.

3.2 Extraction

Figure 4 illustrates the control logic, depending on which the control software can
realize the control functions. Basic control function points include stop condition
control function, start condition control function, idling condition control function,

Start condition
control

Idling condition
control

Normal
condition
control

Air-fuel ratio
limit

Stop condition
control

Stop switch

Start switch

Coolant

Accelerator

Engine
speed

Inlet
temperature

Inlet
pressure

Min

Fig. 4 Diagram of control software function

Study on Engine Control Software Testing Based … 999

normal condition control function, and air–fuel ratio limit function. Besides, analog
signal acquisition function, digital signal acquisition function, fuel injection pulse
function, and data transmission function are also taken into consideration in this study.

Through full analysis for the control software function requirements, the cor-
responding relationship between software function requirements and test require-
ments is established to ensure the full coverage of the all function points.
Nevertheless, test cases extracted directly on test items could hardly satisfy the
detailed test requirements of large-scale or complex function points; most possibly,
there are testing omissions that can affect the test adequacy.

Here, only the signal acquisition function and data transmission function are
relatively simple and no complex control logic is included, so one test point is
enough. However, some large-scale software function points such as start control
function and idling control function need to be subdivided into more test points;
refer to Table 1.

4 Test Case Distribution and Design

After the extraction of test items, specific test cases for each test point need to be
designed, according to which software testing is to be implemented afterward.
Notice that the number of test cases should be reasonable; too many test cases could
result in a waste of labor and financial resources of programmers, but not enough
test cases could lead to testing omissions; thereby, reasonable distribution and
design of test cases is the key to improve testing efficiency. Usually, the optimal
number is determined by the scale of the software as well as the demands of testers
and test time.

Table 1 Test item extraction

Test Items Test points

Analog signal
acquisition

Data acquisition

Digital signal
acquisition

Data acquisition

Start condition Data acquisition, look-up table function, logical judgement

Idling condition Data acquisition, look-up table function, logical judgement, complex
calculation

Normal condition Data acquisition, look-up table function, logical judgement, complex
calculation

Stop condition Data acquisition, logical testing function

Air–fuel ratio limit Data acquisition, look-up table function, logical judgement, complex
calculation

Fuel injection pulse Data acquisition, look-up table function

Data transmission Data acquisition

1000 W. Zeng et al.

4.1 Test Case Distribution Strategy

In this study, assuming that the number of test cases grows linearly with the
software scale, the complexity and other factors of the engine control software are
neglected, only the scale of the software is taken into account. The distribution of
the test case number is based on matrix distribution methodology. Specifically,
when test cases are distributed preliminarily, test items such as data transmission,
fuel injection pulse, air–fuel ratio limit, idling condition control, and signal
acquisition are taken as rows of the matrix, and the basic test points such as look-up
table function, logic judgement, complex calculation, and data acquisition are taken
as columns of the matrix. The total number of test cases required is calculated using
Eq. (1):

QA ¼
X

Si � Ri ð1Þ

where QA is the total number of test cases, i (i = 1,…,n) is the number of function
modules after software partition, Si is the scale of the ith function module, and Ri is
the test case density of the ith function module. In general, test case density varies
with number of testing participants, permitted time as well as testing scales. The
number of test case predicted by the cells in row i and column j of the matrix is
calculated using Eq. (2):

QCij ¼ Si � Ri �Wij ð2Þ

where QCij is the number of test cases in row i and column j of the matrix, Wij is the
weight of basic test point in column j for row i of the matrix. Notice that the sum of
the weight of all basic test points for each row is 100%, and each weight of the
basic test points in each row can be different. In addition, values of Si and Ri are
equivalent to the values defined in the model. Through matrix distribution
methodology, the number of test cases can be distributed reasonably.

4.2 Test Case Distribution

The first-time distribution of test cases was shown in Table 2, the total number is
calculated by matrix distribution methodology according to software scale and test
case density of each test item.

In this study, after the implementation of test cases designed according to test
points, the failed test cases were filled into the failed cases matrix, which has the
same structure with the first-time distribution matrix. Figures 5 and 6 show the
proportion represented by failed test cases based on the rows and columns of
the matrix, respectively.

Study on Engine Control Software Testing Based … 1001

The first-time distribution of test cases is based on software scale and test case
density; however, this simple distribution is not enough for a full-scale software
testing. The redistribution of test cases is based on the error distribution charac-
teristics which determine whether to continue testing after the first-time distribution.
If the test case increase is necessary, the redistribution strategy based on the
analysis results can be utilized to determine the distribution of increased test cases.

Taking the engine speed acquisition function testing as an example, the engine
speed acquisition is based on a wide engine speed range, from low speed to high
speed. In essence, in the process of engine speed acquisition, the speed is calculated
by only one CPU frequency division in the bottom program of the engine con-
troller, resulting in obvious accuracy variant in different speed segments. Thus, for
the detailed testing of speed accuracy calculation function in each speed segment,
extra test cases are introduced to speed acquisition function to make the test cases
cover all speed segments.

Table 2 First-time distribution of test cases

Test items Scale Density Total number Data acquisition

Accelerator pedal 10 0.1 1 1
Coolant temperature 10 0.1 1 1
Inlet temperature 10 0.1 1 1
Inlet pressure 10 0.1 1 1
Crankshaft signal 150 0.01 2 2
Camshaft signal 100 0.01 1 1
Start condition 50 0.1 5 2
Idling condition 100 0.09 9 3
Normal condition 100 0.07 7 2
Stop condition 30 0.2 6 3
Air–fuel ratio limit 60 0.1 6 2
Fuel injection pulse 80 0.05 4 2
Data transmission 120 0.01 2 2
Test items Logical

judgement
Look-up table
function

Complex
calculation

Accelerator pedal
Coolant temperature
Inlet temperature
Inlet pressure
Crankshaft signal
Camshaft signal
Start condition 2 1
Idling condition 4 1 1
Normal condition 2 1 2
Stop condition 3
Air–fuel ratio limit 2 1 1
Fuel injection pulse 2
Data transmission

1002 W. Zeng et al.

4.3 Test Case Design Strategy

Since the engine control software testing is a kind of function testing, the detailed
realization process of software function could be completely ignored, so the
black-box testing technique is adopted in this paper. Three typical testing methods
of black-box testing technique used in this paper are illustrated as follows.

Fig. 5 Failed test case distribution based on test items

Fig. 6 Failed test case distribution based on test points

Study on Engine Control Software Testing Based … 1003

4.3.1 Methodology of Equivalence Class Partitioning

As one of the typical black-box testing methods, methodology of equivalence class
partitioning ignores the internal structure of the program and partitions the inputs
according to the software specification. To be specific, it divides all possible input
data into a number of disjoint subsets, and then selects a small number of repre-
sentative data from each equivalence class subset as test cases. In this manner, the
test points can be remained in a small scale, avoiding heavy workload for software
testers.

4.3.2 Methodology of Boundary Value

Different from the methodology of equivalence class partitioning, the methodology
of boundary value, which aims at boundary values instead of any internal element
within the input and output range of equivalence classes, selects the boundary value
of the equivalent class to design the test cases. Besides, it is a supplement of
equivalence class partitioning since errors often occur near boundary values.
Figure 7 shows the schematic of methodology of equivalence class partitioning and
methodology of boundary value.

4.3.3 Methodology Based on Scenario

The scenario is actually the flow of affairs, including elementary streams and
alternative streams as shown in Fig. 8. The transaction-driven approach is used to
drive the software, and the scenario is developed once the scene is triggered by an
event.

From the view of software users, testers simulate ideas of designers by analyzing
the design, imagine the operation order to use the software in practice, and list such
possibilities as test points one by one; in this way, defects of the software are easier
to be found out.

Fig. 7 Schematic of equivalence class partitioning and boundary value

1004 W. Zeng et al.

4.4 Test Case Design of Idling Control Function

A complete test case contains the test item name, test methodology, test content, test
input, expected output, and judgement criteria. Combined with the test requirement
analysis, the test case design of idling control is taken as an example.

The control strategy for idling condition control function is relatively compli-
cated as shown in Fig. 9. The controller judges whether the engine is running at the
idling condition according to the accelerator pedal position signal collected from
accelerator pedal position sensor and the engine speed signal collected from engine
speed sensor. The basic values of the target idling speed, which decrease as the
coolant temperatures increase, is obtained by looking up MAP using coolant
temperature. Furthermore, the application layer obtains the difference between
engine speed and target idling speed via speed contrast, and then inputs it into the

Fig. 8 Schematic of methodology based on scenario

Coolant
temperature

sensor

Engine speed
sensor

Pedal position
sensor

Target
idling
speed

Idling
condition
judgment

Speed
contrast PID Fuel mass

Fig. 9 Control strategy for idling conditions

Study on Engine Control Software Testing Based … 1005

PID module, through which can calculate out the fuel mass and adjust the engine
speed stabilized near the target idling speed.

In this case, the methodology based on scenario is suitable, and test case scenario
of idling condition control function is determined by the combination of elementary
streams and alternative streams. Fig. 10 shows the flowchart of the test case. First,
start the engine, check if the engine status is 2 (i.e., the engine is running at idling
condition) when the speed is higher than 500 r/min; if so, check if the target idling
speed value is consistent with the expected idling value; and if so, check whether
the fuel mass calculated by the PID algorithm is correct; and if so, check whether
the error between engine speed and the target idling speed is reasonable when the
engine speed is stabilized. Notice that the allowable error between engine speed and
the target idling speed is less than 10 rpm, and the test failed if any of the steps
above not passed.

As for the detailed testing of look-up table function, both methodology of
equivalence class partitioning and methodology of boundary value are indispens-
able. Notice that the range of input coolant temperature is 0–100 °C in the MAP,
and nine values are selected, namely −50, −1, 0, 1, 50, 99, 100, 101 and 150 °C,
which include the invalid values, valid values, and near boundary values, covering
all the possibilities. In the process of testing, the inputs are set as the values defined
above, respectively, and then the output target idling speed values are measured
whether they are consistent with expected idling values.

Start

Speed>500r/min

The engine
state=2

Look up the target idling
value in MAP according
to coolant temperature

Test failed

Calculate the fuel
mass through PID

The error between the engine
speed and the target idling

speed is reasonable

Test passed

Test failed
The target idling

speed= expected idling
value

Test failed

Fig. 10 Flowchart of idling control based on scenario methodology

1006 W. Zeng et al.

5 Automatic Software Testing

HIL testing is a critical step in the development and validation of controller,and the
aim of function testing is to find out defects in software system. Usually, manual
and automatic software testing methods are both used; however, because the con-
stantly improving complexity and frequently updating versions of the software
bring heavy and repetitive workload to manual testing, the automatic software
testing is used more.

5.1 Development of Automatic Test Scripts

AutomationDesk, a software tool based on dSPACE, is used to design the test
scripts. This software tool can not only ensure the consistency of test cases in
the regression test but also avoid the repetitive workload in manual testing.

Test condition
initialization

 Data acquisition
condition judgment

 action execution

Data processing

Test status reset

Fig. 11 Test script of automatic testing

Study on Engine Control Software Testing Based … 1007

Figure 11 shows the test script of idling condition control function, and each test
script basically includes test condition initialization, data acquisition, condition
judgement, action execution, data processing, and test status reset.

5.2 Automatic Testing and Result Analysis

On the basis of the automatic test scripts developed, the automatic testing is
implemented and testing reports are generated. The detailed testing and analysis of
digital signal acquisition function, analog sensor signal acquisition function, idling
condition control function, and normal condition control function are introduced as
follows. And the testing analysis contains all the four categories of test points
mentioned in Chap. 3.

5.2.1 Testing and Result Analysis of Digital Signal Acquisition
Function

The engine speed, which is a typical kind of digital signal, is taken as an example
for digital signal acquisition function. Engine speed is obviously a significant
parameter for describing engine conditions, and it can be seen from Chap. 4 that
most of the control parameters in the control strategy are related to engine speed.
Besides, the engine speed accuracy directly determines whether the relevant engine
control function can be achieved correctly. Figure 12 shows the testing results of
engine speed acquisition function; notice that the allowable acquisition error of
speed in this testing is less than ±3%.

It is shown in Fig. 12 that the speed acquisition errors are all within the
allowable error range; that is to say, the test passed.

Fig. 12 Function testing of engine speed acquisition

1008 W. Zeng et al.

5.2.2 Testing and Result Analysis of Analog Signal Acquisition
Function

Likewise, the analog signal acquisition is important in the realization of engine
control function. In this paper, the accelerator pedal position signal acquisition is
taken as an example; also, the allowable acquisition error is less than ±3%. The
judgement criterion is filled in the automatic testing script; the test passes if the
collected signal meets the criterion. However, the test failed when the test script was
executed for the first time. The results show that the error is a constant. Given this,
the reason for the failure emerges: There is a zero drift in the acquisition circuit of
controller, which was out of consideration in the development process of software.

In order to solve the problem, the zero drift of the hardware is corrected at the
software layer. The correction algorithm is shown in Fig. 13. The voltage signal (0–
5 V) collected by voltage signal input module is converted to digital signal (0–
5000). The value of Constant1 is set to 50 to eliminate linearity deviation of zero
drift. The function of the remaining part is to turn digital signal (0–5000) into the
corresponding throttle opening (0–100%).

Figure 14 shows the contradistinction between set value and collected value of
the corrected accelerator pedal position. Apparently, the two lines coincide per-
fectly, particularly when the throttle opening is small; meanwhile, the maximal
error is less than 3%, and the test passed.

5.2.3 Testing and Result Analysis of Idling Condition Control
Function

(1) Target idling speed control function

The target idling speed control function is taken as an example for look-up table
function. As was analyzed in Chap. 4, in order to test the target idling speed control
function, the input coolant temperature was divided to nine values, namely −50, −1,
0, 1, 50, 99, 100, 101 and 150 °C; thereafter, corresponding test cases and test
scripts were designed.

When the testing was implemented, the input coolant temperature was set as the
eight values in turns, and the output target idling speed values were all equal to the
expected values; the test passed.

Fig. 13 Correction algorithm of accelerator pedal position sensor

Study on Engine Control Software Testing Based … 1009

(2) Idling speed control function

Likewise, idling condition is important for engine control, and it is rather
complex. In Chap. 4, the test item of idling condition is divided into four test
points. The PID control is used in the idling speed control function and is taken as
an example for complex calculation. Several representative target idling speed
values, namely 600, 800, 1000, 1500, and 2000 r/min, were selected for PID
control function testing. The test passes only when the error between speed cal-
culated by PID and the set speed is less than 10 r/min. Despite the fact that the PID
control function passed the testing in the off-line simulation, it did not work cor-
rectly in the HIL. Figure 15 shows the testing result of speed at 800 r/min; the test
failed due to the high fluctuation of approximately 150 r/min when the engine
speed was stabilized 40 s later.

The reason is that the real-time performances of the model vary in different
platforms, and the parameters calibrated before may not be suitable for the HIL
platform. As a consequence, CANape, the online calibration software produced by
Vector, is used to re-calibrate parameters in PID module. Figure 16 shows the
online calibration interface.

0 10 20 30 40

0

20

40

60

80

100

Pe
da

l p
os

iti
on

 (%
)

Time (s)

 Collected value
 Set value

Fig. 14 Contrast diagram
after correction of zero drift

0 10 20 30 40 50 60
0

500

1000

1500

En
gi

ne
 sp

ee
d

(r
/m

in
)

Time (s)

Fig. 15 Testing result of PID
control function

1010 W. Zeng et al.

Moreover, regression testing is executed after re-calibration; Fig. 17 shows the
testing result; apparently, after re-calibration, the idling speed stabilizes near the
target speed (800 r/min) in about 2 s with a speed error of less than 2 r/min, and the
test case passed.

5.2.4 Testing and Result Analysis of Normal Condition Control
Function

The correct judgement of engine status determines whether the controller could
calculate out the right control signals. The judgement of engine status in normal
condition function is taken as an example for logical judgement function.

Fig. 16 Online calibration
interface

0 10 20 30 40
0

200

400

600

800

1000

En
gi

ne
 sp

ee
d

(r
/m

in
)

Time (s)

Fig. 17 Testing result of PID
control function after
re-calibration

Study on Engine Control Software Testing Based … 1011

The controller determines whether the engine is running at normal conditions
according to the accelerator pedal signal. When the position of the accelerator pedal
is greater than 4%, the status of the engine will be 3; meanwhile, the engine will
turn into the normal control condition. In order to test this logic judgement test
point in normal condition, the engine was started to enter idling condition, when the
speed was stable and the accelerator pedal opening was increased to over 4%, check
whether the engine status was 3. When the engine was running at normal condition
stably, the controller will take the corresponding judgements and control based on
the collected accelerator pedal position. When the accelerator pedal position is less
than 3%, the engine will switch from normal condition to idling condition; at that
time, the engine status will be 2. Figure 18 shows the test result.

As shown in Fig. 18, at the 13th second, the accelerator pedal position was
greater than or approximately equal to 4%, the engine status switched from 2 to 3,
and the engine entered into normal condition. At probably the 35th second, the
accelerator pedal position was less than 3%, the engine status switched from 3 to 2,
and simultaneously, the engine switched from normal condition to idling condition;
the test case passed.

When the engine speed drops suddenly, the controller will make corresponding
change based on speed value, when the speed is decreased to less than 100 rpm, the
engine condition will be switched from normal condition to stop condition,
meanwhile the engine status will switch from 3 to 0, and the fuel supply will be cut
off. The test result was shown in Fig. 19.

When the engine was running in normal condition, the load torque suddenly
increased at the 43rd second, leading to a sudden drop of engine speed. At the 43rd
second, the engine speed decreased to 100 rpm, the engine status switched from 3
to 0, and the engine turned into stop condition. As shown in Fig. 19, this control
function was realized correctly, and the test case passed.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

0

2

4

6

8

10

En
gi

ne
 s

ta
tu

s

Time (s)

 Engine status
 Accelerator pedal position(%)

Ac
ce

le
ra

to
r p

ed
al

 p
os

iti
on

(%
)

Fig. 18 Logical judgement testing result

1012 W. Zeng et al.

6 Conclusions

In this study, based on the HIL simulation technology, the integrated test platform
of hardware and software was developed for the engine ECU; meanwhile, the
automatic testing of various functions of the engine control software was accom-
plished in the semi-physical simulation environment. Moreover, the test case dis-
tribution was optimized based on the matrix distribution methodology, and the test
case redistribution strategy was applied based on the error distribution character-
istics which contributed to a tremendous enhancement of testing efficiency. Besides,
the engine control software test cases were designed and the automatic testing
scripts were developed using the methodology of equivalence class partitioning,
methodology of boundary value, and the methodology based on scenario. The
developed automatic testing script library lays the foundation for reuse in subse-
quent software testing and improvement of testing efficiency. Application on engine
control software testing shows that the HIL-based platform can not only test the
software function and real-time performance, but also find the further software
problems related to the hardware. It was noticed that problems found in the engine
control software testing mainly exist in the software relating to hardware circuit
such as the zero drift in the controller acquisition circuit. This will be valuable
experience for future software testing using HIL-based platform.

References

1. Roche M, Mammetti M (2015) An innovative vehicle behaviour modeling methodology for
model-based development. SAE Technical Papers

2. Xu H, Niimi Y, Ono T (2013) Virtual development of engine ECU by modeling technology.
Lect Notes Electr Eng 67:66–71

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

 E
ng

in
e

st
at

us

En
gi

ne
 s

pe
ed

 (r
/m

in
)

Time (s)

 Engine status
 Engine speed (r/min)

Fig. 19 Engine status testing
result

Study on Engine Control Software Testing Based … 1013

3. Haukap C, Rӧpke K, Barzantny B (2006) Hardware-in-the-Ioop simulation (HIL) for
production engine development. Elsevier Inc.

4. Piscaglia F, Ferrari G (2007) Development of an offline simulation tool to test the on-board
diagnostic software for diesel after-treatment systems. SAE Technical Papers

5. Li JW, Dong HG, Wang Y et al (2014) Research on the dynamic model and ECU HIL
simulation system of electronic-controlled engine. Adv Mater Res 889–890:962–969

6. Allen J, Dhaliwal A, Warra J (2011) A novel approach to implementing HIL systems for ECU
validation and verification for commercial vehicle applications. Chem Nat Compd 7(6):
840–841

7. Mazhari SA, Nampoothiri S (2013) PSO tuned vehicle climate system model for HIL based
ECU testing. SAE Technical Papers, 2

8. Ni J, Li X, Shi X et al (2014) Design of host program for engine ECU HIL system based on
NI PXI platform. Automobile Technology

9. Vegas S, Basili V (2005) A characterisation schema for software testing techniques. Empirical
Softw Eng 10(4):437–466

10. Gupta A, Jalote P (2008) An approach for experimentally evaluating effectiveness and
efficiency of coverage criteria for software testing. Int J Softw Tools Technol Transfer 10(2):
145–160

11. Chen TY, Kuo FC, Liu H et al (2013) Code coverage of adaptive random testing. IEEE Trans
Reliab 62(1):226–237

12. Katyal RK, Srinath S (2011) Virtualization for ECU platform software testing in automotive
embedded. SAE Technical Papers

13. Conrad M, Sadeghipour S, Wiesbrock HW (2005) Automatic evaluation of ECU software
tests. SAE Technical Papers, No. 4, pp 595–599

14. Barrett S, Bouchez M (2015) Addressing engine ECU testing challenges with FPGA-based
engine simulation. SAE Technical Papers

15. Bryce R, Kuhn R (2014) Software testing. Computer 47(2):21–22
16. Godefroid P, De Halleux P, Nori AV et al (2008) Automating software testing using program

analysis. IEEE Softw 25(5):30–37

1014 W. Zeng et al.

	67 Study on Engine Control Software Testing Based on Hardware-in-the-Loop Simulation Platform
	1 Introduction
	2 HIL-Based Test System
	3 Test Item Extraction
	3.1 Extraction Strategy
	3.2 Extraction

	4 Test Case Distribution and Design
	4.1 Test Case Distribution Strategy
	4.2 Test Case Distribution
	4.3 Test Case Design Strategy
	4.3.1 Methodology of Equivalence Class Partitioning
	4.3.2 Methodology of Boundary Value
	4.3.3 Methodology Based on Scenario

	4.4 Test Case Design of Idling Control Function

	5 Automatic Software Testing
	5.1 Development of Automatic Test Scripts
	5.2 Automatic Testing and Result Analysis
	5.2.1 Testing and Result Analysis of Digital Signal Acquisition Function
	5.2.2 Testing and Result Analysis of Analog Signal Acquisition Function
	5.2.3 Testing and Result Analysis of Idling Condition Control Function
	5.2.4 Testing and Result Analysis of Normal Condition Control Function

	6 Conclusions
	References

