
Chapter 6
Synchronization and Exploration
in Basal Ganglia—A Spiking Network
Model

Alekhya Mandali and V. Srinivasa Chakravarthy

Abstract Making an optimal decision could be to either ‘Explore’ or ‘exploit’ or
‘not to take any action,’ and basal ganglia (BG) are considered to be a key neural
substrate in decision making. In earlier chapters, we had hypothesized earlier that
the indirect pathway (IP) of the BG could be the subcortical substrate for explo-
ration. Here, we build a spiking network model to relate exploration to synchrony
levels in the BG (which are a neural marker for tremor in Parkinson’s disease).
Key BG nuclei such as the subthalamic nucleus (STN), Globus Pallidus externus
(GPe), and Globus Pallidus internus (GPi) were modeled as Izhikevich spiking
neurons, whereas the striatal output was modeled as Poisson spikes. We have
applied reinforcement learning framework with the dopamine signal representing
the reward prediction error used for cortico-striatal weight update. We apply the
model to two decision-making tasks: a binary action selection task and an n-armed
bandit task. The model shows that exploration levels could be controlled by STN’s
lateral connection strength which also influenced the synchrony levels in the STN–
GPe circuit. An increase in STN’s lateral strength led to a decrease in exploration
which can be thought as the possible explanation for reduced exploratory levels in
Parkinson’s patients.

6.1 Introduction

Chakravarthy, Joseph, and Bapi (2010) suggested that STN–GPe loop, a coupled
excitatory–inhibitory network in the IP, might be the substrate for exploration
(Chakravarthy et al., 2010). It is well known that coupled excitatory–inhibitory
pools of neurons can exhibit rich dynamic behavior like oscillations and chaos
(Borisyuk, Borisyuk, Khibnik, & Roose, 1995; Sinha, 1999). This hypothesis has
inspired models simulating various BG functions ranging from action selection in
continuous spaces (Krishnan, Ratnadurai, Subramanian, Chakravarthy, &
Rengaswamy, 2011), reaching movements (Magdoom et al., 2011), spatial navi-
gation (Sukumar, Rengaswamy, & Chakravarthy, 2012), precision grip (Gupta,
Balasubramani, & Chakravarthy, 2013), and gait (Muralidharan, Balasubramani,
Chakravarthy, Lewis, & Moustafa, 2013) in normal and Parkinsonian conditions.
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Using a network of rate-coding neurons, Kalva, Rengaswamy, Chakravarthy, and
Gupte (2012) showed that exploration emerges out of the chaotic dynamics of the
STN–GPe system (Kalva et al., 2012). Most rate-coded models, by design, fail to
capture dynamic phenomena like synchronization found in more realistic spiking
neuron models (Bevan, Magill, Terman, Bolam, & Wilson, 2002; Park, Worth, &
Rubchinsky, 2010; Park, Worth, & Rubchinsky, 2011). Synchronization within BG
nuclei had gained attention since the discovery that STN, GPe, and GPi neurons
show high levels of synchrony in Parkinsonian conditions (Bergman, Wichmann,
Karmon, & DeLong, 1994; Bevan et al., 2002; Hammond, Bergman, & Brown,
2007; Tachibana, Iwamuro, Kita, Takada, & Nambu, 2011; Weinberger &
Dostrovsky, 2011). This oscillatory activity was found to be present in two fre-
quency bands, one around the tremor frequency [2–4 Hz] and another in
[10–30 Hz] frequency (Weinberger & Dostrovsky, 2011). Park et al. (2011) report
the presence of intermittent synchrony between STN neurons and its local field
potentials (LFP), recorded using multiunit activity electrodes from PD patients
undergoing deep brain stimulation (DBS) surgery (Park et al., 2011) which is absent
in healthy controls.

One of the key objectives of the current study is to use a 2D spiking neuron
model to understand and correlate STN–GPe’s synchrony levels to exploration. As
the second objective, we apply the above-mentioned model to the n-armed bandit
problem of Daw, O’Doherty, Dayan, Seymour, and Dolan (2006) and Bourdaud,
Chavarriaga, Galán, and del R Millan (2008) (Bourdaud et al., 2008; Daw et al.,
2006) with the specific aim of studying the contributions of STN–GPe dynamics to
exploration. The proposed model shares some aspects of classical RL-based
approach to BG modeling. For example, dopamine signal is compared to reward
prediction error (Schultz, 1998). Furthermore, DA is allowed to control
cortico-striatal plasticity (Reynolds and Wickens 2002), modulate the gains of
striatal neurons (Hadipour-Niktarash, Rommelfanger, Masilamoni, Smith, &
Wichmann, 2012; Kliem, Maidment, Ackerson, Chen, Smith, & Wichmann, 2007),
and influence the dynamics of STN–GPe by modulating the connections (Fan,
Baufreton, Surmeier, Chan, & Bevan, 2012; Kreiss, Mastropietro, Rawji, &
Walters, 1997).

6.2 Methods

6.2.1 Spiking Neuron Model of the Basal Ganglia

The network model of BG (Mandali, Rengaswamy, Chakravarthy, & Moustafa,
2015) described earlier was used to simulate the binary action selection and n-arm
bandit task. For details of the model and its related equations, refer to earlier
sections. The details of the tasks and the related measures are explained below.
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6.2.2 Binary Action Selection Task

The first task we simulated was the simple binary action selection similar to
Humphries, Stewart, and Gurney (2006), where two competing stimuli were pre-
sented to the model (Humphries et al., 2006). The input firing frequency is thought
to represent ‘saliency,’ with higher frequencies representing higher salience
(Humphries et al., 2006). The response of striatal output to cortical input falls in the
range of a few tens of Hz (Sharott, Doig, Mallet, & Magill, 2012). Therefore, the
frequencies that represent the 2 actions were assumed to be around 4 Hz (stimulus
#1) and 8 Hz (stimulus #2). Spontaneous output firing rate of the striatal neurons
(without input) is assumed to be around 1 Hz (Plenz & Kitai, 1998; Sharott et al.,
2012). Selection of higher salient stimulus among the available choices could be
considered as ‘exploitation’ while selecting the less salient one as ‘exploration’
(Sutton & Barto, 1998). So, the action selected is defined as ‘Go’ if stimulus #2
(more salient) is selected, ‘Explore’ if stimulus #1 (less salient) is selected, and
‘NoGo’ if none of them is selected.

The inputs were given spatially such that the neurons in the upper half of the
lattice receive stimulus #1 and lower half the other (Fig. 6.1). The striatal outputs
from D1 and D2 neurons of the striatum are given as input to GPi and GPe
modules, respectively, with the projection pattern as shown in Fig. 6.1. Poisson
spike trains corresponding to stimulus #1 were presented as input to neurons (1–
1250) and were fully correlated among themselves. Similarly, Poisson spike trains
corresponding to stimulus #2 were presented as input to neurons (1251–2500) and
were fully correlated among themselves. Stimulus #1 and #2 are presented for an
interval of 100 ms between 100 and 200 ms; at other times, uncorrelated spike
trains at 1 Hz are presented to all the striatal neurons.

6.2.3 The N-Armed Bandit Task

We now describe the four-armed bandit task (Bourdaud et al., 2008; Daw et al.,
2006) used to study exploratory and exploitatory behavior. In this experimental
task, subjects were presented with four arms where one among them is to be
selected in every trial for a total of 300 trials. The reward/payoff for each of these
slots was obtained from a Gaussian distribution whose mean changes from trial to
trial with payoff ranging from 0 to 100. The payoff, ri.k associated with the ith
machine at the kth trial, was drawn from a Gaussian distribution of mean li,k and
standard deviation (SD) r0. The payoff was rounded to the nearest integer, in the
range [0, 100]. At each trial, the mean is diffused according to a decaying Gaussian
random walk. The trial was defined as an ‘exploitatory’ trial if highest reward
giving arm was selected else defined as an ‘exploratory’ trial.

6.2 Methods 99



The payoffs generated by the slot machines are computed as follows,

li;kþ 1 ¼ kmli;k þð1� kmÞhm þ e ð6:1Þ

r0i;k � Nðli;k; r20Þ ð6:2Þ

ri;k ¼ roundðr0i;kÞ ð6:3Þ

where
µi,k is the mean of the Gaussian distribution with standard deviation (r0) for ith

machine during kth trial. km and hm control the random walk of mean (µi,k), and
e * N(0, rd

2) is obtained from Gaussian distribution of mean 0 and standard
deviation rd. ri,k and r0i;k are the payoffs before and after rounding to nearest integer,
respectively. The initial value of mean payoff, µi,0, is set to a value of 50. All the
values for the parameters km, hm, rd, r0 were adapted from (Bourdaud et al., 2008).

To make an optimal decision, the subjects need to keep track of rewards asso-
ciated with each of the four arms. The subject’s decision to either Explore or exploit
would depend on this internal representation which would closely resemble the
actual payoff that is being obtained. It is quite difficult to identify whether the
subject made an exploratory decision or an exploitative one just by observing the
EEG and selected slot data. A subject-specific model is required to classify their
decisions and identify the strategy (Bourdaud et al., 2008; Daw et al., 2006).
Keeping this in mind, Bourdaud et al. (2008) used a ‘behavioral model’ that uses
the softmax principle of RL to fit the selection pattern of human subjects. The
parameter ‘b’ of the behavioral model was adjusted such that the final selection
pattern matches that of individual subjects in the experiment (given below). The
parameter ‘b’ which controls the exploration level in the behavioral model is tuned
to match % exploitation obtained for each of the eight subjects (one subject’s data
were discarded because of artifacts); two out of the eight subjects had similar
exploration levels. Hence, a total of six subjects’ data are taken into account to
check the performance of the proposed spiking BG model.

6.2.3.1 Behavioral Model (Adapted from Bourdaud et al. (2008))

The behavioral model labels each trial as corresponding to either an exploratory or
exploitative decision. The model assumes that the user estimates the mean payoff of
each machine using a Bayesian linear Gaussian rule (i.e., a Kalman filter). Using
these estimations, he/she selects a machine according to a softmax rule. All the
subjects are assumed to share the same model for tracking the payoff means, and
thus, parameters are computed using the entire available data. The parameters of the
model (for both mean tracking and machine selection) are estimated by maximizing
the model likelihood with respect to the subject’s choices.
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At any given trial, the behavioral model provides the mean payoff for all
machines considering previous observations (i.e., the payoff obtained at previous
trials). Comparison between the model’s estimated payoffs for all machines is used
to label that trial as either exploration or exploitation. Those trials in which the user
selects the machine with the highest estimated mean are labeled as corresponding to
exploitative decisions.

The subject strategy for tracking the payoff of each machine is modeled by a
Kalman filter, whose parameters are assumed to remain constant over trials. Once
the jth machine is selected, at the kth trial, the estimated payoff distribution is

updated from its preselection values blpre
j;k ; brpre

j;k

� �2� �
to its post-selection values

blpost
j;k ; brpost

j;k

� �2� �
as follows

blpost
j;k ¼ blpost

j;k þKk rk � blpre
j;k

� �
ð6:4Þ

brpost
j;k

� �2
¼ ð1� KkÞ brpre

j;k

� �2
ð6:5Þ

where

ðKkÞ ¼
brpre
j;k

� �2
brpre
j;k

� �2
þ br0ð Þ2

ð6:6Þ

The mean estimation for the remaining machines does not change as result of the
choice since the user cannot observe the payoff of these machines. That is,

8i 6¼ j

blpost
j;k ¼ blpre

j;k ð6:7Þ

brpost
j;k ¼ brpre

j;k ð6:8Þ

Then, the estimations are also evolved according to the diffusion rule:

blpre
j;kþ 1 ¼ bkblpost

j;k þð1� bkÞbh ð6:9Þ

l0prej;kþ 1

� �2
¼ bk2 r0postj;k

� �2
þ r2d ð6:10Þ

The choice of subjects is modeled by a softmax rule; i.e., at each trial k, the
probability of choosing the machine is
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Pi;k ¼
exp bblpre

i;k

� �
P
j
exp bblpre

j;k

� � ð6:11Þ

where ‘b’ is a scaling parameter. Higher values of b drive the system to exploitative

behavior and vice versa. The parameters of the behavioral model r0; bh; bk; brd

� �
are

estimated by maximizing the log likelihood under the following constraints. To

speed up convergence, estimated parameters r; blpre
j;0 & brpre

j;0

� �
are initialized to the

parameters of the original model ðr0; lj;0 & rj;0Þ, respectively. Fixing the last two
parameters does not significantly affect the estimation of the others, because their
influence vanishes quickly within a few trials. Table 6.1 shows the estimated values
of the model, which are consistent with the real values of the machines.

6.2.3.2 Strategy for Slot Machine Selection

To simulate the experiment, we utilized the concepts of RL and combined the
dynamics of BG model to select an optimally rewarding slot in each trial.
Experimental data show that BG receives reward-related information in the form of
dopaminergic input to striatum (Chakravarthy et al., 2010; Niv, 2009).
Cortico-striatal plasticity changes due to dopamine (Reynolds & Wickens, 2002)
were incorporated in the model by allowing DA signals to modulate the Hebb-like
plasticity of cortico-striatal synapses (Surmeier, Ding, Day, Wang, & Shen, 2007).

The architecture of the proposed network model is depicted in Fig. 6.1. The
output of striatum (both D1 and D2 parts) was divided equally into four quadrants
which receive input from corresponding stimulus. The stimuli are associated with 2

weights wD1
i;0 ;w

D2
i;0

� �
initialized with equal value of 50 which represent the

cortico-striatal weights of D1 and D2 MSNs in the striatum. Each of the
cortico-striatal weights represents the saliency (in terms of striatal spike rate) for
that corresponding arm. These output spikes generated from each of the D1 and D2
striatum project to GPi and GPe, respectively. The final selection of an arm is made
as in Sect. 6.2.4. The reward ri,k received for the selected slot was sampled from
Gaussian distribution with mean li,k and SD (r0) (Eq. 6.3).

Table 6.1 Estimation of
parameters of the behavioral
model (Bourdaud et al., 2008)

k h rd r0
Real values 0.9836 50 2.8 4

Estimated values 0.92 51.37 8.12 N/A

Subject
b

1 2 3 4 5 6 7 8

0.37 0.19 0.19 0.29

0.28 0.21 0.29 0.23
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Utilizing the reward obtained for the input ‘i’ and trial ‘k’, the expected value of
the slots, inputs to D1 and D2 striatum are updated using the following equations,

Fig. 6.1 a Computational spiking basal ganglia model with key nuclei such as striatum (D1, D2),
STN, GPe, GPi, and thalamus. Excitatory/inhibitory/modulatory glutamatergic/GABAergic/
dopaminergic projections are shown by green/red/violet arrows. b The BG model and the regions
within each nuclei corresponding to the four decks are indicated
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DwD1
i;kþ 1 ¼ gdkx

inp
i;k ð6:12Þ

DwD2
i;kþ 1 ¼ �gdkx

inp
i;k ð6:13Þ

The expected value (Vk) for kth trial is calculated as

Vk ¼
X4
i¼1

wD1
i;k � xinpi;k ð6:14Þ

The received payoff (Rek) for kth trial is calculated as

Rek ¼
X4
i¼1

ri;k � xinpi;k ð6:15Þ

The error (d) for kth trial is defined as

dk ¼ Rek � Vk ð6:16Þ

where wD1
i;k are the cortico-striatal weights of D1 striatum for ith machine in kth trial,

wD2
i;k are the cortico-striatal weights of D2 striatum for ith machine for kth trial, ri,k is

the reward obtained for the selected ith machine for kth trial, xinpi;k is the binary input
vector representing the four slot machines, e.g., if the first slot machine is selected
xinpi;k = [1 0 0 0], η (=0.3) is the learning rate of D1 and D2 striatal MSNs, Rek is the
received payoff for selected slot for kth trial, and Vk is the expected value for
selected slot for kth trial.

The cortico-striatal weights are updated (Eqs. 6.12 and 6.13) using the error term
‘d’ (Eq. 6.16). The reward-related information in the form of dopaminergic input to
striatum has been correlated to the error (d) (Chakravarthy et al., 2010; Niv, 2009).
The d calculated from Eq. (6.16) has both positive and negative values with no
upper and lower boundaries but the working DA range in the model was limited to
small positive values (0.1–0.9). Hence, a mapping from d to DA is defined as
follows:

DA ¼ sigðk � dkÞ ð6:17Þ

where
DA is the dopamine signal within range of 0.1–0.9, k is the slope of sigmoid

(=0.2), dk is the error obtained for kth trial (Eq. 6.16), and sig () is the sigmoid
function.
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6.2.4 Measures

6.2.4.1 Synchronization

The phenomenon of neural synchrony has attracted the attention of many compu-
tational and experimental neuroscientists in the recent decades (Hauptmann & Tass,
2007; Kumar, Cardanobile, Rotter, & Aertsen, 2011; Park et al., 2011; Pinsky &
Rinzel, 1995; Plenz & Kital, 1999). It is believed that partial synchrony helps in the
generation of various EEG rhythms such as alpha and beta (Izhikevich, 2007).
Studying synchrony in neural networks has been gaining importance due to its
presence in normal functioning (coordinated movement of the limbs) and in
pathological states (e.g., synchronized activity of CA3 neurons in the hippocampus
during an epileptic seizure) (Pinsky & Rinzel, 1995). Plenz and Kital (1998) pro-
posed that STN–GPe might act as a pacemaker (Plenz & Kital, 1999), a source for
generating oscillations in pathological conditions such as Parkinson’s disease. Park
et al. (2011) report the presence of intermittent synchrony between STN neurons
and its local field potentials (LFP), recorded using multiunit activity electrodes from
PD patients undergoing DBS surgery (Park et al., 2011). They also calculated the
duration of synchronized and desynchronized events in neuronal activity by esti-
mating transition rates, which were obtained with the help of first return maps
plotted using phase of neurons (Park et al., 2010, 2011). To observe how dopamine
changes synchrony in STN–GPe, we calculated the phases of individual neurons as
defined in (Pinsky & Rinzel, 1995).

The phase of jth neuron was calculated as follows:

;j tð Þ ¼ 2 � p � Tj;k � tj;k
� �
tj;kþ 1 � tj;k
� � ð6:18Þ

Rsync tð Þ � eih tð Þ ¼ 1
N

XN
j¼1

ei;j tð Þ ð6:19Þ

where
tj,k and tj,k+1 are the onset times of kth and k + 1th spike of the jth neuron

Tj;k 2 tj;k; tj;kþ 1
� 	

, ;j tð Þ = phase of jth neuron at time ‘t’, Rsync is the synchro-
nization measure 0 � Rsync � 1, h = average phase of neurons, N = total number
of neurons in the network.

6.2.5 Action Selection Using the Race Model

Action selection is modulated by BG output nucleus GPi which projects back to the
cortex via the thalamus. We have used the race model (Vickers, 1970) for the final
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action selection where an action is selected when temporally integrated neuronal
activity of the output neurons crosses a threshold (Frank, 2006; Frank, Samanta,
Moustafa, & Sherman, 2007; Humphries, Khamassi, & Gurney, 2012).

The dynamics of the thalamic neurons is as follows:

dzk tð Þ
dt

¼ �zk tð Þþ fGpikðtÞ ð6:20Þ

f 0Gpik ¼
1

ðN � NÞ=k
XT
t¼1

XN
i¼1

XN=k
j¼1

SGPikij ðtÞ
 !

fGPik ¼
fmax
GPi � f 0Gpik

fmax
GPi

ð6:21Þ

where
zk (t) = integrating variable for kth stimulus, fGPik (t) = normalized and reversed

average firing frequency of GPi neurons receiving kth stimulus from striatum,
fmax
GPi = highest firing rate among the GPi neurons, SGpikij = neuronal spikes of GPi
neurons receiving kth stimulus, N = number of neurons in a single row/column of
GPi array (=50), and T = duration of simulation.

The first neuron (zk) among k stimuli to cross the threshold (=0.15) represents the
action selected. All the variables representing neuron activity are reset immediately
after each action selection.

6.3 Results

We start with results of neural dynamics (STN–GPe) as a function of DA and then
present with decision-making results.

6.3.1 Neural Dynamics

Pathological oscillations of STN and GP have been associated with various PD
symptoms (Brown, 2003; Plenz & Kital, 1999). Correlated neural firing patterns in
STN and GPi can be seen in both experimental conditions of dopamine depletion
and in Parkinsonian conditions. In the present model, we show increased syn-
chronized behavior under conditions of reduced dopamine, resembling the situation
in dopamine-deficient conditions of Parkinson’s disease. The effect of DA on the
synchronization of STN and GPe neurons was studied by estimating the values of
Rsync
STN, R

sync
GPeR

sync
STNGPe for increasing values of DA (0.1–0.9).
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The three ‘Rsync’ (Eq. 6.19) values showed a decrease in amplitude with an
increase in DA level (Fig. 6.2a–c). Under low DA conditions, GPe activity follows
STN activity (Plenz & Kital, 1999), thus forming a pacemaker kind of circuit,
which could be the source of STN–GPe oscillations Fig. 6.2d. One of the suspected
reasons of bursting activity in STN is the decreased inhibition from GPe neurons
(Plenz & Kital, 1999) at low DA levels. This feature is captured by the model since
GPe firing rates are smaller for lower DA levels. The STN neurons showed
oscillations around the frequency of 10 Hz at low DA but were absent at high DA
level (Kang & Lowery, 2013).

Fig. 6.2 Change in the three synchronization values Rsync
STN (a), Rsync

GPe (b) and R
sync
STNGPe (c) oscillatory

activity in STN neurons (d) frequency content with the value of DA (0.1–0.9). Simulations show
reduced synchronization within STN and GPe networks, and also between STN and GPe
networks, as DA is increased
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6.3.2 Decision Making

After the model’s performance was quantified at neural level, we studied the role of
BG in decision making using two tasks especially in explorative and exploitative
dynamics. This work is in continuation to our earlier hypothesis that the source for
exploration comes from STN–GPe dynamics (Kalva et al., 2012). The first task was
a simple binary action selection similar to Humphries et al., (2006), where two
competing stimuli were presented to the model. The input firing frequency is
thought to represent ‘saliency,’ with higher frequencies representing higher sal-
ience. Selection of stimulus with the higher salience between the two available
choices could be considered as ‘exploitation’ while selecting the less salient one as
‘exploration’ (Sutton & Barto, 1998). So the action selected is defined as ‘Go’ if
stimulus #2 (more salient) is selected, ‘Explore’ if stimulus #1 (less salient) is
selected, and ‘NoGo’ if none of them is selected. Simulations were run for 100
trials, and the percentage of actions selected under each regime (Go, Explore, and
NoGo) was calculated for dopamine levels ranging from low (0.1) to high (0.9)
(Fig. 6.3). We may note that the probability of NoGo, where no action is selected,
decreases with increase in dopamine; probability of Go increases with dopamine;
the peak of exploration is found at intermediate levels of dopamine (Fig. 6.3). The
range of DA where a peak in exploration was observed is the same where STN and
GPe network showed chaotic activity.

Fig. 6.3 Percentage of action selection observed in the Go, NoGo, and Explore regimes averaged
over 200 trials with DP and IP weight values at wSTN!GPi = 1.15 & wStr!GPi = 0.8. We ran the
simulation for 100 trials and segmented into 4 bins (25 trials each). We then calculated the
variance of each regime across all DA levels
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The second task was a four-armed bandit task (Bourdaud et al., 2008; Daw et al.,
2006) which is similar to a real-world decision-making scenario. In this task, the
subjects are presented with four arms where one among them is to be selected in
every trial for a total of 300 trials. The reward/payoff for each of these slots was
obtained from a Gaussian distribution whose mean changes from trial to trial with
payoff ranging from 0 to 100. The model’s performance (% exploitation) was
compared with behavioral model, which represents the experimental data in the
n-armed bandit task (Fig. 6.4). The parameter ‘b’ of the behavioral model which
controls the Exploit–Explore balance was adjusted to match the performance of
individual subjects in the experiment. Exploration in the model can be obtained by
either increasing the IP weight (influence from STN) or decreasing DP weight
(influence from striatum).

Fig. 6.4 Compares the performance of BG model with the behavioral model. a The percentage
exploitation obtained for each of the six subjects from BG and behavioral model. The relationship
between betas (b) of the behavioral model and DP weights (wStr!GPi) with a constant wSTN!GPi

value (=0.75) used to attain (a) are shown in (c). b The relationship between betas (b) of the
behavioral model and IP weights (wSTN!GPi) of BG model with a constant wStr!GPi value of (=5)
used to attain (b) are shown in (d). Y-axis represents percentage exploitation, and X-axis represents
a subject which is a specific beta value (b) in behavioral model and the IP or DP weight in the BG
model
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6.4 Discussion

The synchrony results tally with the general observation from electrophysiology
that at higher levels of dopamine, the STN–GPe system shows desynchronized
activity and under dopamine-deficient conditions of PD exhibits synchronized
bursts (Bergman et al., 1994; Gillies, Willshaw, Gillies, & Willshaw, 1998; Park
et al., 2011). We observed that STN activity showed oscillatory activity with a
frequency (=10 Hz) which falls under the beta frequency range observed in
experimental PD study (Weinberger & Dostrovsky, 2011). One of the aims of the
present work is also to show that the complex dynamics of STN–GPe system
contributes to exploration. To this end, we first simulated the binary action selection
task [similar to Humphries et al., (2006)] where saliency was coded in the firing
rate. The selection of higher one was defined as ‘exploitation/Go’ and lesser one as
‘exploration/Explore’ and not selecting any of the inputs as ‘NoGo’. The model
showed NoGo at low DA levels (0.1–0.3) and Go at high DA levels (0.7–0.9)
consistent with the classical picture of BG function. Along with this, a peak in
‘Explore’ at intermediate levels of DA (0.4–0.6) was also observed (Fig. 6.3). To
check whether any other module in the network is influencing exploration in the
system, we removed the STN to GPi connection (which effectively eliminated the
IP). This omission rendered the system to display only Go and NoGo regimes (no
exploration, results not included). We then moved to simulating the n-armed bandit
task, where the performance of model was compared with experimental result. The
results obtained from BG model closely match with the behavioral model (Fig. 6.4)
reinforcing the idea that STN–GPe could be a source for exploration at subcortical
level.
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