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Abstract We present a cortico-basal ganglia model to study the neural mecha-
nisms behind reaching movements in normal and in Parkinson’s disease conditions.
The model consists of the following components: a two-joint arm model (AM), a
layer of motor neurons in the spinal cord (MN), the proprioceptive cortex (PC), the
motor cortex (MC), the prefrontal cortex (PFC), and the basal ganglia (BG). The
model thus has an outer sensory-motor cortical loop and an inner cortico-basal
ganglia loop to drive learning of reaching behavior. Sensory and motor maps are
formed by the PC and MC which represent the space of arm configurations. The BG
sends control signals to the MC following a stochastic gradient ascent policy
applied to the value function defined over the arm configuration space. The train-
able connections from PFC to MC can directly activate the motor cortex, thereby
producing rapid movement avoiding the slow search conducted by the BG. The
model captures the two main stages of motor learning, i.e., slow movements
dominated by the BG during early stages and cortically driven fast movements with
smoother trajectories at later stages. The model explains PD performance in sta-
tionary and pursuit reaching tasks. The model also shows that PD symptoms like
tremor and rigidity could be attributed to synchronized oscillations in STN–GPe.
The model is in line with closed-loop control and with neural representations for all
the nuclei which explains Parkinsonian reaching. By virtue of its ability to capture
the role of cortico-basal ganglia systems in controlling a wide range of features of
reaching, the proposed model can potentially serve as a benchmark to test various
motor pathologies of the BG.

10.1 Introduction

Reaching movements are for movement science, what the simple pendulum is for
classical mechanics. Reaching movements reveal a lot about how the brain plans
and executes movement kinematics and dynamics, in normal and pathological

© Springer Nature Singapore Pte Ltd. 2018
V. S. Chakravarthy and A. Moustafa, Computational Neuroscience
Models of the Basal Ganglia, Cognitive Science and Technology,
https://doi.org/10.1007/978-981-10-8494-2_10

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8494-2_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8494-2_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8494-2_10&amp;domain=pdf


conditions. Early experiments by Fitts and Morrasso on reaching movements
showed that the hand velocity profile has a bell-shaped distribution providing a
glimpse into the planning of motor trajectories (Fitts, 1954; Morasso, 1981).
However, it was observed that such planning required adaptive feedback mecha-
nisms which could relay the current state of the motor effector and the learning
framework for optimal control (Todorov, 2004). As a result, internal models were
introduced which minimize the error between the target and current arm position by
including the factor of variability which accounts for the noise in movement
(Shadmehr & Krakauer, 2008). According to the optimal feedback control frame-
work, the current state plays a crucial role in determining the future state and
eventually the trajectory and thus probed investigators to modeling reaching with
Baye’s approach as it allows integration of previous knowledge with current sen-
sory information (Schaal & Schweighofer, 2005). Kording and Wolpert showed
that the experimental results of visually guided reaching task in the presence of
noisy feedback and explained using the Bayesian approach how subjects repre-
sented both the statistics of the sensorimotor task and the uncertainty in the task
(Körding & Wolpert, 2004). A neural correlate to Bayesian processing by neurons
was suggested by Knill and Pouget using a computational model by introducing
Poisson noise in the neural activity (Knill & Pouget, 2004).

Though the above computational models provided insights into movement
planning and execution, they do not specify the corresponding neural correlates.
During the same period, experimental groups were studying the roles of various
cortical and subcortical areas in motor learning and execution (Doya, 1999).
Particularly, the basal ganglia (BG) are involved in the learning of new actions and
sequences from cortical projections which are modulated by the midbrain
dopaminergic system (Hikosaka, Nakamura, Sakai, & Nakahara, 2002). Using a
computational model, Nakahara, Doya, & Hikosaka, (2002) showed that parallel
learning occurs in BG-cortical systems through the visual and the motor loop. The
final output is selected by the presupplementary area which acts as a coordinator for
optimal acquisition and execution of well-learned sequences (Hikosaka et al., 2002;
Nakahara, Doya, & Hikosaka, 2001). Chen and colleagues developed a model of
closed-loop control of hand movement, in which a sensory module receives input
from visual/proprioceptive areas and a Motor Module drives a mechanical two-link
arm (Chen & Reggia, 1996). By randomly activating various points in motor cortex,
the arm is driven to various points in the workspace; feedback from the hand is used
to train the proprioceptive cortex, the motor cortex, and the motor neurons of the
spinal cord module. The model is trained by unsupervised learning and was unable
to describe goal-oriented reaching which requires either supervised or reinforce-
ment learning. Izawa, Kondo, and Ito (2004) modeled a two-link arm model with
detailed arm kinematics and included learning using reinforcement learning (Izawa
et al., 2004).

We present a model of reaching that describes the contributions of basal ganglia
(BG) and the sensory-motor cortical pathway to reaching. The model particularly
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highlights the role of BG in motor learning. In the model, the BG system discovers
the desired motor cortical output by processing the reaching error which, we pro-
pose, is coded by nigrostriatal dopamine signals. This desired output is used by the
motor cortex for training. Thus in the model, the BG leads the motor cortex in
learning. The relative contributions of the cortical areas and BG evolve with
learning, with the contribution of BG dwindling with learning. The model explains
reaching movements in normal and Parkinsonian conditions and explores the causes
of the distinct paths of evolution of PD symptoms into tremor-dominant and
rigidity-dominant. The present model is a detailed network version of a simple
lumped model of reaching that we proposed earlier (Magdoom et al., 2011).

10.2 Methods

The cortico-basal ganglia model consists of two major components: the outer loop
which is the sensory-motor cortical loop and an inner loop which is the
cortico-basal ganglia loop (Fig. 10.1). These loops are an integral part for the
execution of controlled movements.

Fig. 10.1 Cortico-basal ganglia model used for simulating the reaching movements. The
architecture is designed to have two loops, a sensory-motor ‘outer’ loop (shown by solid black
arrows) and the cortico-basal ganglia ‘inner’ loop (shown by dashed black arrows). The basal
ganglia is shown to have projections from midbrain dopaminergic (DA) neurons. The motor cortex
receives projections from higher frontal areas which in the model is the prefrontal cortex. The
(m � n) shows the size of the neuronal sheet used for each area in the model (in the basal ganglia
all the nuclei are 15 � 15 in size)
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10.2.1 Arm Model

A simple two-joint kinematic model of an arm is used in the model. Each joint is
controlled by an agonist (Ag) and an antagonist (An) muscle pair innervated by a
pair of motor neurons; the muscles in turn control the position of the arm in the 2D
space. The input to the arm is a four-dimensional vector /MN(t) which represents
the muscle innervations for the agonist–antagonist pair for both the joints. The
activation is then transformed to obtain the joint angles (hS/E

JA (t)) for shoulder and the
elbow joint using Eqs. (10.1) and (10.2), respectively.

hJAS tð Þ ¼ /MN
Ag tð Þ � /MN

An tð Þ
� � p

2
þ p

2
ð10:1Þ

hJAE tð Þ ¼ /MN
Ag tð Þ � /MN

An tð Þ
� � p

2
þ p

2
ð10:2Þ

The arm covers a given set of targets in the workspace, restricted by the range of
movements of the joints. The joint angle measures are subsequently used to
determine the lengths (lE and lS) of each muscle [Eqs. (10.3), (10.4), (10.5), and
(10.6)].

lSAg tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2S þ b2S þ 2aSbS cos hJAS

� �q
ð10:3Þ

lSAn tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2S þ b2S � 2aSbS cos hJAS

� �q
ð10:4Þ

lEAg tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2E þ b2E þ 2aEbE cos hJAE

� �q
ð10:5Þ

lEAn tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2E þ b2E � 2aEbE cos hJAE

� �q
ð10:6Þ

These muscle lengths form the four-dimensional vector (ML = [lAg
S lAn

S lAg
E

lAn
E ]) which is used to develop a sensory (proprioceptive) map of the arm.

Furthermore, the end effector position (Xarm = [x1
arm x2

arm]) is also estimated in
Eqs. (10.7) and (10.8).

xarm1 ¼ lS � aSð Þ cos hJAS
� �þ lE cos hJAS þ hJAE

� � ð10:7Þ

xarm2 ¼ lS � aSð Þ sin hJAS
� �þ lE sin hJAS þ hJAE

� � ð10:8Þ
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10.2.2 The Sensory-Motor Cortical Loop

Sensory and Motor Maps

The sensory-motor cortical loop comprises of the arm, the proprioceptive cortex
(PC), i.e., the proprioceptive area of the primary somatosensory cortex, the motor
cortex, and the spinal motor neurons. PC is modeled as a self-organizing map
(SOM) of size NPC � NPC (Kohonen, 1990). In order to develop a sensory map of
the arm which we will from now on refer to as the proprioceptive map/cortex (PC),
the muscle length vector (ML(t)) received from the arm is used as feature vector to
train the PC. The activation of a single node i in the PC is given by Eq. (10.9).

Pi tð Þ ¼ exp
� ML tð Þ �WPC;i

���� 2

r2PC

 !
ð10:9Þ

where WPC,i is the weight connection between the muscle length vector of the arm
and the ith node of the PC, and rPC is the width of the Gaussian response.

The motor cortex (MC) is modeled as a combination of a continuous attractor
neural network (CANN) (Trappenberg, 2003) and a SOM of size NMC � NMC. This
represents two distinct characteristics of cortical areas which are known to have
low-dimensional representation of the input space and dynamics based on the
connectivity in these areas. The CANN architecture is characterized by short-range
excitation and long-range inhibition. Its weight kernel (WMC

C ) is parameterized by
the strength of the excitatory connections (Alat

C ), the radius of the excitatory con-
nections (rlat

C ), and the global inhibition constant (KC). A dynamic model like the
CANN is used to model MC, instead of a static model like SOM, so as to be able to
dynamically integrate the afferent inputs coming from the PC, BG, and the pre-
frontal cortex (PFC). The PC activity is used as the input to generate the
low-dimensional feature maps at the level of the MC. The MC uses this sensory
map information to develop a motor map of the arm. This is done by giving the
output of PC, a matrix of size NPC � NPC, converted into a vector of size NPC

2 � 1,
as input vector to the SOM part of MC. Training of this SOM is performed by the
standard SOM algorithm (Kohonen, 1990). Output of the PC (GPC), in addition to
two other inputs, is presented as input to the CANN part of the MC (IMC). The
network is fully connected from the arm to the PC; similarly, every PC neuron
projects to every neuron in MC. The activation of a node i in the SOM part of the
MC is given by Eq. (10.10).

GPC;i tð Þ ¼ exp
� P tð Þ �WMC;i
�� ��2

r2MC

 !
ð10:10Þ

Here, WMC,i is the weight connection between the PC and the ith node of the
SOM part of MC and rMC is the width of the Gaussian response. The MC activation
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via the attractor dynamics is driven by the PC, the BG, and the PFC. Therefore, the
total input coming into the MC is IMC tð Þ ¼ APCGPC tð ÞþABGGBG tð Þþ
APFCGPFC tð Þ, where APC, ABG, and APFC are the respective gains of the PC, BG, and
PFC networks. With these inputs, the activation dynamics of the MC is given in
(10.11).

sMC
dgMC

dt
¼ �gMC þWC

MC � Gþ IMC ð10:11Þ

where gMC is the internal state of the MC neurons, WMC
C is the weight kernel given

by WC
MC;i;j ¼ AC

lat exp
� ðiMC�ihÞþ ðjMC�jhÞk k2

2 rClatð Þ2
� 	

� KC which determines the local

excitation/global inhibition dynamics, [iMC, jMC] are the locations of the nodes in
MC, and [ih, jh] corresponds to the central node. The output activity of the MC (G
(t)) is obtained by performing a divisive normalization [Eq. (10.12)], which is done
often to produce biologically realistic activity bumps (Pouget & Latham, 1999).

G tð Þ ¼ g2MC

1þ 2p
N2
MC

� �
bMC

P
g2MC

ð10:12Þ

Neurons of the motor cortex project to the motor neuronal layer (MN). The
motor neurons—there are just four of them—in turn project one each to the four
muscles of the arm as described by Eq. (10.13).

/MN tð Þ ¼ AMNWMC!MNG tð Þ ð10:13Þ

In order to close this loop, i.e., to train the connections between the MC and the
MN (WMC!MN) layers [Eq. (10.14)], we initially provide the input at the MN layer
as the desired activation for the arm (uD

MN(t)). This produces a sensory activity in
the PC which in turn generates a motor activity in the MC (G(t)). The weights
between the MC and the MN layers are trained in a supervised manner by com-
paring the network-derived MN activation uMN(t) to the desired activation
uD
MN(t) (Eq. 10.14). This gives a loop which is consistent in mapping the external

arm space to the neuronal space and vice versa.

DWMC!MN ¼ gMC!MN /MN
D tð Þ � /MN tð Þ� �

G tð Þ ð10:14Þ

10.2.3 Training the Cortical Loop

The training schema for the entire model is shown in Fig. 10.2. The steps for
training the sensory-motor loop are as follows.
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1. Randomly generate n different muscle activations of the arm, which result in
n-arm configurations. Each configuration of the arm provides a feature vector of
muscle lengths, ML.

2. The feature vector of muscle lengths, ML, is presented as input to the PC layer,
which is trained using the SOM algorithm.

3. The output state of PC layer is then presented as input to MC. Output of MC is
presented as input to MN layer via a weight stage (WMC!MN). WMC!MN are
trained by the following procedure. A random activation vector (uMN) is given
to the MN layer. The output of the MN layer then activates the arm and puts it in
an equilibrium configuration. Starting from the muscle lengths from the arm, we
track the signal flow via the PC, MC, and back to MN layers. Output of the MN
layer, ideally, must be equal to the random activation vector (uMN) given to the
arm. The matrix of the sensory activations is then passed on to the MC layer
(SOM) to evolve the motor map of the arm.

4. Finally, the loop is closed by training the weight connection between the MC
and the MN layers by generating a desired MN activity (uD

MN(t)) and approxi-
mating the network-derived MN activity uMN(t) as in Eq. (10.14).

Fig. 10.2 Training schema in the cortico-basal ganglia model. It initially starts with (a) training
the arm to PC connections, followed by (b) training the PC-to-MC connections, and finally closing
the loop by (c) training the MC-to-MN weights. Then, the BG module is introduced and the
PFC-to-MC connections are trained (d). In every figure, the dashed arrows indicate the
connections that are being trained
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10.2.4 The Basal Ganglia

The BG module has the following components: the striatum, the Globus Pallidus
internal and external segments (GPi and GPe), the subthalamic nucleus (STN), and
the thalamus (Fig. 10.3a). The output of the BG modulates the MC activity to
provide the appropriate control signal for the arm to reach the target. We begin with
an outline of learning and operation of the BG module. In line with our earlier
models of BG, in the proposed model, the BG module is trained by reinforcement
learning to choose the optimal actions (Balasubramani, Chakravarthy, Ravindran, &
Moustafa, 2014; Chakravarthy & Balasubramani, 2015; Chakravarthy, Joseph, &
Bapi, 2010; Gupta, Balasubramani, & Chakravarthy, 2013; Magdoom et al., 2011;
Muralidharan, Balasubramani, Chakravarthy, Lewis, & Moustafa, 2013). The BG,
acting via the cortical loop, drives the arm so that the hand reaches the desired target
(Fig. 10.3b). Prefrontal inputs which represent the target or the goal position and
the current hand position information from the sensory cortex are thought to be
combined in the BG to compute a value function that codes for the error between
the desired and the actual hand position (Fig. 10.3c). The output of the BG per-
forms a form of stochastic hill-climbing over the value function (Magdoom et al.,
2011). Thus, by way of searching for the maxima in the value function, in the early
stages of learning, the BG module drives the motor cortex to make reaching
movements to the target. In the model however this value computation (Varm (t)) is
not a result of training; value is presented as an explicit function of distance
between the end effector (Xarm) and the goal position (Xtarg) in Eq. (10.15). The rV
term defines the spatial range over which the value function is sensitive for that
particular target.

V arm tð Þ ¼ exp
� X targ � Xarmk k2

r2V

 !
ð10:15Þ

Stochastic Hill-Climbing

The input to the striatum comes from the motor cortex in the form of a difference
vector. We hypothesize that this difference vector which is the change in the motor
cortical activity (DG(t)) is the drive for the sustenance of motor activity. This
information is then modulated via the direct (projections from D1-expressing
neurons in the striatum) and the indirect (projections from D2-expressing neurons
in the striatum) pathways as a function of the dopamine signal [Eqs. (10.17) and
(10.18)]. From previous studies (Chakravarthy & Balasubramani, 2015; Magdoom
et al., 2011), we have shown that this switching between direct and indirect
pathways can be carried out using a form of the temporal difference signal called
the value difference [Eq. (10.16)].
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dV ¼ V arm tð Þ � V arm t � 1ð Þ ð10:16Þ

The quantity dv in Eq. (10.16) is called the value difference, which is subtly
different from the temporal difference error. We proposed earlier that value dif-
ference also correlates with dopamine signals just as TD error has been suggested to
be represented by dopamine signals (Chakravarthy & Balasubramani, 2015;
Magdoom et al., 2011; Muralidharan et al., 2013). Value difference signals are
thought to be carried by nigrostriatal connections to the striatum, where they
modulate the responses of striatal projection neurons to cortical inputs as follows:

yD1 ¼ 1
1þ exp �kD1 dV � tD1ð Þð ÞDG tð Þ ð10:17Þ

Fig. 10.3 Basal ganglia and value function. The network of the basal ganglia (a) which receives
cortical input, DG(t), and via the direct and indirect pathways computes DG(t + 1). The indirect
pathway has a 2D sheet of reciprocally connected STN–GPe neurons whose dynamics is governed
by the lateral (neighborhood Gaussian connectivity, green STN, red GPe) and interconnectivity in
these layers. The two-link arm (b) represented by blue lines for the links and green circle for the
end effector, approaching a goal position (red circle) and computing the value function which
peaks at the target location (c) in this case is a target at [0 0]. The BG dynamics essentially
constitutes a stochastic hill-climbing mechanism that seeks to maximize the value function in order
to reach the target
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yD2 ¼ 1
1þ exp �kD2 dV � tD2ð Þð ÞDG tð Þ ð10:18Þ

where yD1 and yD2 represent the outputs of D1R- and D2R-expressing medium
spiny neurons (MSNs), respectively. In the nonlinearity, kD1 and tD1 and kD2 and
tD2 are the gains and the thresholds of the direct and indirect pathways, respectively.
Also kD1 = −kD2 which suggests that when dv is positive (negative), the direct
(indirect) pathway is selected. Since D2R-expressing MSNs of the striatum project
to the GPe, yD2 influences GPe neural dynamics, which in turn influences STN
neural dynamics, as shown below.

sGPe
dxGPe
dt

¼ �xGPe þ eg
XX

WglatxGPe þwsgySTN þ yD2 ð10:19Þ

sSTN
dxSTN
dt

¼ �xSTN þ es
XX

W slatySTN � wgsxGPe ð10:20Þ

ySTN ¼ tan h kSTNxSTNð Þ ð10:21Þ

kSTN controls the slope of the sigmoid, thus the STN output. sSTN and sGPe are
the respective timescales of STN and GPe. The weight parameters that control the
connection strengths between the STN and GPe are wsg and wgs, and the weights
that control lateral connections within both the STN and the GPe layer are Wslat and
Wglat with connection strengths �s and �g, respectively, which have a Gaussian
neighborhood as defined in (10.22).

Wglat=slat
i;j;k;l ¼ exp � ig=s � kg=s

� �2 þ jg=s � lg=s
� �2

rg=slat

� �2
0
B@

1
CA ð10:22Þ

The indirect pathway consisting of the STN and GPe forms a coupled excita-
tory–inhibitory pair of neuronal pools [Eqs. (10.19) and (10.20)]. Such excitatory–
inhibitory pairs of neuron pools are known to exhibit complex oscillations (Kalva,
Rengaswamy, Chakravarthy, & Gupte, 2012). The dynamics of these oscillators is
highly dependent on the input, which constitutes the projections from the
D2-expressing neurons of the striatum. The STN layer in the model exhibits cor-
related activity for high striatal input, and uncorrelated oscillatory activity for low
striatal inputs (see Appendix in Chap. 5). The uncorrelated oscillations of the STN
are a key source of exploratory drive that randomly pushes the arm around in the
workspace.

Here, rlat
g/s is the spread of the lateral connections, respectively, for the STN–GPe

network. So for a given neuron i, j the weights represent a 2D Gaussian whose
maximum is centered on (i, j). The output of the STN is combined in the GPi with
the signal arriving via the direct pathway from the D1R-expressing MSNs in the
striatum as follows:

176 10 A Cortico-Basal Ganglia Model to Understand the Neural …



yGPi ¼ AD1yD1 � AD2ySTN ð10:23Þ

At the level of the GPi, the DP output, i.e., yD1 and the STN output (ySTN) are
combined (Eq. 10.23) and then passed on to the thalamus. The thalamus is modeled
as a continuous attractor network which is necessary to integrate as well as filter
information from the GPi output.

10.2.5 Prefrontal Cortex—Information of Goal Position

The motor command is thought to arise from the PFC, in the sense that the goal of
the movement is represented in the PFC (Asplund, Todd, Snyder, & Marois, 2010;
Matsumoto, Suzuki, & Tanaka, 2003). The PFC specifies information regarding the
position of the goal to be reached. Similar to the PC and the MC layers, the PFC
layer is trained like a SOM with weights WPFC, but the input features are the spatial
locations that the arm could reach in the model. Training in the model occurs in
weights linking the PFC and the MC. The weights between the PFC and the MC
(WPFC!MC) are trained as follows. A target, Xtarg = [x1

targ x2
targ] activates corre-

sponding neurons in the PFC with activation U(t) using Eq. (10.24).

Ui tð Þ ¼ exp
� X targ tð Þ �WPFC;i

���� 2

r2PFC

 !
ð10:24Þ

The arm initially makes reaching movements which are driven by dynamics
aided by a stochastic hill-climbing procedure called ‘Go-Explore-NoGo (GEN)’
applied to the value function (Chakravarthy & Balasubramani, 2015). Furthermore,
whenever the arm reaches the target position, the connections from PFC and MC
are also trained, so that the motor command can directly activate the motor cortex,
thereby producing rapid movement, without the slow search conducted by the BG.
In this case, the training is initiated only when the arm reaches the target, i.e., the
end effector is within a small radius, n (=0.1 units) of the target location. Similar to
the MC and MN layer weights, the WPFC!MC are trained in a supervised fashion
(Eq. 10.25). Let GPFC be the activity that PFC activation induces in MC; let Gtarg be
the activity in MC that drives the arm to the target location. Therefore, Gtarg serves
as a target vector for GPFC. The weights from PFC to MC are therefore trained as
follows:

DWPFC!MC ¼ gPFC!MC Gtarg tð Þ � GPFC tð Þ� �
U tð Þ ð10:25Þ

Here, GPFC(t) is the PFC-driven MC activity and as this learning progresses, the
arm reaches the goal position faster and faster. Therefore, the model exhibits two
stages of motor learning: Slow movements dominated by the BG are seen in the
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early stages, while the cortically driven fast movements dominate the later stages.
The PFC contribution increases as a function of the reaching error as in Eq. (10.26).

APFC ¼ APFC þ ft
re

ð10:26Þ

Here, ft is a factor for controlling the speed of growth of APFC and re is the
reaching error estimated as average distance to the target.

10.2.6 Timescales of Motor Movement in the Cortex
and the BG

Reaching movements, like several other behavioral events, involve dynamics at
multiple timescales: the neuronal activity which is generally in milliseconds, and
the actual movement which unfolds over the order of seconds. In the model, the
cortical loop is assumed to run slightly slower than the BG module. The integration
time step used is 1 ms. As the dynamics of the STN–GPe loop in the indirect
pathway needs some time to settle, we run this loop for 50 iterations, before sending
the output to the MC. Thus, a single update of the MC activity happens after every
50 ms during which the BG dynamics run. All the results presented are at the
timescale of the MC.

10.2.7 Simulating Pathology—Parkinsonian Condition

The value difference term ‘dv’, as we have mentioned earlier, is a correlate of the
dopamine signal. To simulate the dopamine-deficient state of PD in the model, the
‘dv’ term is clamped to a lower value. Thus if [dlow dhigh] represents the normal
range of the dopamine signal exhibited by the control subjects, then PD OFF
conditions are simulated having a smaller range [dlow dv

*], where dv
* denotes the

clamped limit that is lesser than dhigh [Eq. (10.27)]. In addition to this, PD ON
conditions could also be simulated [Eq. (10.28)] in the model by adding a constant
additive term which we call the medication factor to the value difference (dv

med).

PD OFF :
If dV [ d�V
dV ¼ d�V

ð10:27Þ

PD ON :

If dV [ d�V
dV ¼ d�V þ dmed

V
else

dV ¼ dV þ dmed
V

ð10:28Þ
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Furthermore, the degeneration of the SNc neurons is not the only pathology
linked with PD. Others areas of the BG such as the STN and GPe are shown to have
pathological synchronized oscillations in the PD patients (Weinberger, Hutchison,
& Dostrovsky, 2009). Pathological b-band oscillations in these loops have also
been linked to PD tremor and rigidity (Mallet et al., 2008; Weinberger et al., 2009).
Therefore, in addition to clamping dv, we also investigated other parameters such as
the lateral connection strengths in STN and GPe neurons (Wslat & Wglat), the
interconnection strengths wsg and wgs, and the relative contributions of the direct
and the indirect pathways on the final motor action. Finally, there is definitely an
influence of dopamine on the excitability of the cortical neurons. As a result to
study these effects, we also introduced a variable for tonic dopamine levels (dton),
which is updated using the value difference using Eq. (10.29), to understand the
effect of dopamine depletion in the higher cortical areas.

ston
ddton
dt

¼ �dton þAtondV ð10:29Þ

This gives an estimate of the averaged gradient information or the value func-
tion, which controls the dynamics of the MC. We made the tonic dopamine variable
dton control the strength of connectivity in the MC, i.e., Alat

C which controls the
strength of lateral connectivity within the attractor network of MC using
Eq. (10.30).

sMC
dAC

lat

dt
¼ �AC

lat þ f kton dton � htonð Þð Þþ k ð10:30Þ

where f is a sigmoid function f �ð Þ ¼ 1
1þ exp ��ð Þ

� �
, with slope kton and threshold hton

and k is a constant to maintain baseline values of Alat
C .

10.3 Results

10.3.1 Mapping of the Joint Configurations in the PC
and MC

The sensory-motor cortical loop is initially tested (Fig. 10.4a) as a stand-alone
network, and the MC is activated to investigate the range of movements of the arm
in the workspace. Activation to the MC is given as IMC = IPFC + IBG + IPC + Iapp
where IPFC = IBG = IPC = 0 and Iapp is a Gaussian current and a matrix of size
NMC � NMC in which is centered on random nodes to activate different regions of
the MC. In Eq. (10.31), iMC and jMC represent the nodes in the MC and ir and jr are
random nodes over which the Gaussian current is centered.
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Iapp ¼ exp � iMC � irð Þ2 þ jMC � jrð Þ2

rg=slat

� �2
0
B@

1
CA ð10:31Þ

We observe that the arm is capable of reaching most of the positions in the
output space (Fig. 10.4b), suggesting a consistent mapping of arm configurations in
the feature space. Furthermore, to understand the loop’s ability to represent arm
positions uniquely, the activity generated upon probing the MC and the activity
generated via the loop, i.e., arm ! PC ! MC are compared and are found to be
the same. In addition, the activity of the PC and MC is mapped back onto the joint
configuration space which produces map structures shown in Fig. 10.4c, d. In case
of the PC map, the joint configuration space is fairly uniform and topography is
well maintained, whereas just one level above in the MC the map starts to become
more complex with both regions of continuous change in the configuration space
and areas of fractures or discontinuities. The regions of overlapping representations
seem to have increased from the PC map to the MC map.

Fig. 10.4 Sensory and motor maps. The sensory-motor loop is probed at the level of the MC
(a) and the mapping of the end effector positions approximated by the network is compared to all
possible positions in the arm workspace (b). The joint configuration maps formed for both the PC
(c) and the MC (d) layers, where blue lines indicate the two links and the green dot denotes the end
effector position
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10.3.2 Reaching Movements of the Arm

We initially tested the model by providing multiple targets to reach and to test if the
arm reaches these areas. Figure 10.5a (1–6) shows a snapshot of the network in
action as the arm reaches the target. The MC activity corresponds to the arm
configuration that has successfully reached the target. The PFC activity codes for
the goal position (represented by the red star). Initial movements of the arm are
solely driven by the gradient information present in the value function (Eq. 10.15).
The indirect pathway of the BG provides activity with low correlation under certain
parametric conditions of STN–GPe connections (see BG column, STN–GPe in
Table 10.1) to enable sufficient exploration of the arm in the workspace
(Chakravarthy & Balasubramani, 2015). This in turn leads to training the con-
nections between the PFC and the MC (Eq. 10.25). The PFC input to the MC
specifies the activity that the motor cortex should evolve in order to reach the target.
The GPi activity, which forms the input to the thalamus from the BG, is integrated
in the thalamus. It is important to note that, when the MC activity and the PFC input
into MC are the same, it means that the network has learned to approximate the
activity needed to reach the target (Eq. 10.25). There are 50 trials in total in the
simulation, where the initial 20 trials are used for learning the target location and
the trajectory to follow for a successful reach, during which the amplitude of PFC
input is increased as per Eq. (10.26) and the PFC-to-MC connections (WPFC!MC)
are trained. In the next 30 trials, the arm is tested for its performance. For each trial,
the arm is initialized to a starting position and provided with a specific target (the
target position is kept constant for all trials) to reach. A successful reach is signified
by the arm coming within at least n units of distance from the target. The trial is
then terminated in two cases: (a) when the arm reaches the target successfully or
(b) when the target is not reached and the simulation crosses the maximum time
limit.

The end effector trajectories become smoother as learning progressed in controls
and, furthermore, there is decrease in hand path variability as learning progresses
(Fig. 10.5b). Here, the spatial variance is represented as ellipses (Georgopoulos,
Kalaska, & Massey, 1981) and we see that the variance decreases with trials. We
investigated the velocity profiles of the arm while performing the reach, and the
characteristic of bell-shaped curve is observed in the profile (Fig. 10.5c).
Additionally, it is known from previous work that these velocity profiles fit well to a
delta-lognormal distribution (Plamondon, 1998), with the two lognormal compo-
nents corresponding to the agonist and the antagonist bursts, respectively. We
found that the reaching profiles obtained in the model fit well to this distribution
(Fig. 10.5c). The performance of the arm also improves with trials seen as a
decrease in the time taken to reach the target (Fig. 10.5d). There is a reduction in
the variance of the time to reach across blocks of trials suggesting lower motor
variability upon learning (Fig. 10.5d).
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10.3.3 Velocity Profiles of Controls and PD Patients

Majsak and colleagues (Majsak, Kaminski, Gentile, & Flanagan, 1998) performed
reaching experiments in both healthy controls and PD subjects at self-determined
speeds to estimate changes in kinematics of the subjects under conditions where the
objects are stationary and moving. The PD subjects were on their dopamine
medication (Sinemet®) and performed six trials in each case (a) when object was

Fig. 10.5 Reaching behavior in controls. The simulation snapshot of the model while performing
the reaching task (a) and the activities of multiples areas in the model (a.1–6). The end effector
trajectories (b) obtained in the case of controls for reaching three different targets (represented by
three different colors—blue, green, and red) across trials as the learning of the PFC-to-MC
connections (WPFC!MC) takes place. The ellipses show the spatial ± SD as the model performs
reaching across 50 trials. The velocity profiles during a reach (blue line) compared to the
lognormal distribution (LN Fit, green dotted line) (c). Performance of the model in control
conditions as a function of the time to reach target location (d) and the variability in reach times
(e) through trials (here each block refers to 10 trials)
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stationary, (b) moving, and (c) stationary again. In the model however we compared
the performance of the arm in the stationary case to compare the basal-level
activities. The PD ON condition in the model is simulated using Eqs. (10.27) and
(10.28) where the clamped dopamine limit, dV

*, is set to 0.1 and the medication
factor (dV

med) to 0.5. In order to account for the slowness and reduced velocity in PD
movement, the tonic dopamine variable (dton) is introduced via Eq. (10.29) and
affects the MC dynamics using Eq. (10.30).

The dton values in controls and PD condition reveal that the controls show
increase in the levels of tonic dopamine as the task progresses, whereas it is much
smaller in case of PD (Fig. 10.6a). This affects the attractor dynamics of the MC,
where the values of Alat

C are always high for the PD case compared to the control
case where after some time the value falls due to the increase in dton (Fig. 10.6b).

Table 10.1 Parameter values used for simulating the cortico-basal ganglia model

MC BG PFC PC MN Arm

SOM Value function/

DA

SOM SOM MC ! MN net Kinematics

NMC 15 NPFC 15 NPC 15

rMC 1 rV 2 rPFC 0.1 rPC 0.02 AMN 0.01 aS 0.04

CANN Aton 3 PFC ! MC net ηMC!MN 0.1 bS 0.07

APC 0.1 kton −50 ηPFC!MC 0.1 aE 0.03

ABG 1 hton 0.5 bE 0.08

APFC 0.1 − APFC
T* k 9 lS 0.3

Alat
C 10 Striatum lE 0.3

rlat
C 2 kD1 50

KC 0.5 kD2 −50

bMC 0.5 tD1 0.05

sMC 0.005 tD2 0

STN–GPe

�g 1

�s 1

wsg 1

wgs 1

rlat
g/s 1

sSTN/GPe 0.005

GPi

AD1 15

AD2 1
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Lower values of Alat
C lead to easy translation of the neural activity bump over the

neural space, and high values make it difficult for the BG to trigger movements as a
result of the local excitation and global inhibition dynamics. The velocity profiles of
the subject groups for a self-determined speed are shown in Fig. 10.6c. The sim-
ulated controls reach the target faster than in the PD case, and their peak velocities
are also higher. The kinematic variables of the reach task are shown in Fig. 10.6d–f.
A significant difference is seen in the movement time between the controls and the
PD subjects, suggesting slow or bradykinetic movements in the PD case.

Fig. 10.6 Stationary target reaching task. The evolution of the tonic dopamine variable (dton)
(a) and the MC dynamics variable (Alat

C ) (b) for the entire task duration (50 trials) for controls, PD1
and PD2. Here, PD1 and PD2 refer to different clamped dopamine levels (dV

*), which is 0.1 (blue
line) and 0.01 (red line), respectively. Kinematics of reaching movements with velocity profiles of
controls and PD (c), time to peak velocity (d), peak velocity (e), and movement time (f) from
experiment (adapted from Majsak et al., 1998) and the corresponding model performance
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10.3.4 Model Performance on the Pursuit Task

Another set of experiments captured by the model included the pursuit task con-
ducted by Soliveri and group where they tracked the ability of PD subjects to
pursue a moving target using a manipulandum (Soliveri, Brown, Jahanshahi,
Caraceni, & Marsden, 1997). In the model, this task is abstracted to the arm trying
to reach for a series of continuously changing target positions. The target moves
back and forth in a straight line in a sinusoidal fashion with a frequency of 0.25 Hz,
thereby making it predictable. There were three blocks in the experiment each
including 10 trials. The behavioral variable measured both in the experiment and
model is percentage of time on target which is defined as the time spent on the
target using the manipulandum (experiment) or arm (model). As previously
described, in the model the arm is thought to be on the target if the distance to the
target is within n (=0.1) units. The PD subjects included in the study were on their
DA medication. In the model, we designed the target to move similarly as in the
experiment, in a sinusoidal fashion. As the target shifted, the activation in the PFC
also changed at every instant of time as it codes for the target location. This meant
that the peak of the value function (Eq. 10.15) also changes continuously with time
giving the arm the necessary information to track the moving target. The dV

* is set to
−0.2 and the dV

med to 0.01. From Fig. 10.7a, it is evident that the controls are
capable of pursuing the moving target more efficiently than PD ON subjects which
the model captures (Fig. 10.7b), even though both subject groups showed learning
as the trials progressed. This phenomenon is also observed in the experiment where
the PD subjects also learn the task across blocks (Fig. 10.7c, d). The last block in
the experiment suggests a performance drop in both the control and PD subjects
which the authors attribute to fatigue. This is not captured in the model as we did
not take into account the factor of fatigue in the muscle model. See Table 10.1 for
parameter values used for simulating the experimental conditions.

10.3.5 Motor Initiation with the Cortico-BG Loop

The relative strengths of the BG along with the PFC inputs into the MC are
analyzed to understand the dynamics of the cortico-basal ganglia loop on movement
initiation. The arm was initialized to a starting configuration, and the PFC input is
provided as pulses of duration (50 ms) with varying amplitudes. The displacement
of the arm from its starting position is tracked. In the presence of only PFC (i.e.,
ABG = 0), the amplitude of PFC input to initiate sufficient movement has to be high
(APFC > 0.9). The introduction of the BG with varying degree of strengths
(ABG = 0.01, 0.05, 0.1, and 0.2) leads to movement at lower amplitude of PFC
input, thus making motor initiation easier, though with higher contribution of BG
the movement variability increases (Fig. 10.8a). With the introduction of PD
condition (dV

* = 0, dV
* = −1 and wsg = wgs = 3, which causes synchronized
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oscillations of the STN–GPe loop), keeping ABG constant, we again see a tendency
toward higher input strengths of PFC required to initiate movement (Fig. 10.8b).
We observe that there needs to be compensation from higher cortical areas in
disease conditions for reaching movement and could be interpreted as a deficiency
in voluntary movement initiation due to the impaired BG.

10.3.6 PD Symptoms

The model is further extended to understand several motor symptoms commonly
seen in PD. In the model, three cardinal symptoms of PD movement are simulated:
tremor, rigidity, and bradykinesia. Initially to simulate PD condition, the value
difference is clamped, but that alone does not reproduce all the above symptoms in
the model. Other parameters also must be varied as shown below.

Tremor, Rigidity, and Bradykinesia

PD symptoms start appearing in the model when the dopamine signal (dV
* = −1) is

clamped and the connection strengths between the STN and GPe (wsg and wgs) and
the lateral connection strengths in the STN (�s) are manipulated. In all the symptom
cases, the interconnections, i.e., wsg and wgs are increased from the control levels
(wsg and wgs = 1 in controls, wsg and wgs = 3 in PD). Controls have a smooth

Fig. 10.7 Pursuit reaching task. The performance of subjects on the pursuit task (adapted from
Soliveri et al., 1997) and the differences observed in control and PD behavior in experiment (a and
c) and the model (b and d)
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trajectory to the target (Fig. 10.9a), and tremor starts to appear initially with just the
increase in the connection strength between STN and GPe, i.e., wsg and wgs

(Fig. 10.9b). Rigidity and bradykinesia seem to coexist in the model and start to
emerge upon decreasing the contribution of the lateral connections within the STN
(�s) compared to the tremor case (Fig. 10.9c) (for rigidity �s = 0.7). We estimated
the frequency spectrum of the velocity of the arm during the reaching task and in
the tremor case (Fig. 10.9e). There is increased power in the 4–10 Hz range which
is seen clinically in PD patients as well (Jankovic, 2008). This also brings about
differences in the spectrogram of the average STN activity in the tremor and rigidity
scenarios compared to control scenario. In the control case, the STN activity
remains sufficiently decorrelated (Fig. 10.9g). However in both the symptomatic
cases, power of the spectrum seems to be concentrated within a narrow frequency
range: tremor (frequency range = 10–40 Hz) and rigidity (frequency range = 20–
55 Hz) (Fig. 10.9h, i). Various studies have observed pathological oscillations in

Fig. 10.8 Motor initiation in the cortico-BG loop. The displacement of the arm from a starting
position with varying degree of the PFC and BG input strengths (APFC, ABG) (a) and the effect of
PD condition (b) on motor initiation

10.3 Results 187



the indirect pathway especially in the STN–GPe loop and are generally related to
the symptoms observed in the PD patients (Hammond, Bergman, & Brown, 2007;
Mallet et al., 2008; Weinberger et al., 2009). These pathological oscillations are in
the b-band (13–30 Hz), and this is seen in the model where the frequency spec-
trogram of the average STN activity shows increased power in the b-range. In the
rigidity case, the spectrum shifts to higher frequency band compared to
Parkinsonian tremor. This shift in the spectrum seems to result in the arm restricted
to a very small part of the state space, thereby reflecting movements that are slower
and more rigid.

The three symptomatic conditions are also presented as a function of distance to
the target position (Fig. 10.10a). On further exploration of the entire range of values

Fig. 10.9 Emergence of PD symptoms in the model. Movement trajectories (dark green trace) of
the arm during reaching a target (red dot) in controls (no dV

*, wsg and wgs = 1, �s = 1) (a), PD
tremor (dV

* = −1, wsg and wgs = 3, �s = 1) (b), and PD rigidity (dV
* = −1, wsg and wgs = 3, �s = 0.7)

(c) conditions. The frequency spectrograms of movement in controls (d), PD tremor (e), and PD
rigidity (f), where PD tremor shows increased power in the 4–10 Hz regions. The spectrogram of
the averaged STN activity in controls (g), during PD tremor (h), and rigidity (i). The spectrum
shows a shift into higher frequencies in case of the PD symptoms (rigidity > tremor)
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for the STN–GPe interconnections (wsg and wgs) and the intraconnections (�s), the
regimes of disease states seem to appear (Fig. 10.10b). In Fig. 10.10b, the values
are obtained as mean of the Fourier spectrum of the arm velocity for each condition.
Therefore, higher mean values of the Fourier spectrum suggest more tremor-like
behavior and the lower values suggest more rigid and bradykinetic movements.
Intermediate values could be control-like behavior with more a balanced frequency
spectrum as shown in Fig. 10.9d. It suggests that at a given wsg the range of �s at
which tremor or rigidity appears is different. This could be a reason for high
symptom variability among PD patients and the bias toward development of certain
symptoms earlier in the disease compared to later. However, the general trend
suggests that decrease in the lower lateral strengths in the STN may be a major
causative reason for rigidity and higher interconnection strength for tremor.

10.4 Discussion

We present a cortico-basal ganglia model that performed reaching tasks. By
inducing PD conditions in the model, we are able to simulate the impairments seen
in PD reaching movements. There are two different loops in the model: the
sensory-motor cortical loop and the cortico-basal ganglia loop. So the model is on
the lines of optimal control theory and closed-loop control where the sensory-motor
integration provides the necessary feedback mechanisms for control; the
cortico-basal ganglia loop sets the optimality criterion to maximize performance
(Todorov, 2004). In this case, the criterion becomes the value function: Stochastic

Fig. 10.10 Influence on network parameters on PD symptoms. PD symptoms viewed as a
function of the distance to the target position (a). The analysis of the strength of interconnections
within STN–GPe (wsg and wgs) and the lateral connection strength within the STN (�s) and their
effect on the type of symptoms manifested in PD is represented as the expected value of the
Fourier spectrum of velocity (b). The blue and red range represents rigidity/bradykinetic, and
tremor movements, respectively. The control regime lies in the green range
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gradient descent dynamics executed by the BG model essentially drives the
reaching movements of the arm toward a target. One of the assumptions in the
model is that this value function may be readily available to the BG module by the
top-down information from higher cortical areas. A plausible mechanism could be
the prefrontal cortical connections to the ventral striatum (Alexander, Crutcher, &
DeLong, 1991; Botvinick, 2008), which code the goal information in the form of
value function at the level of ventral striatum. Alternatively, it is not essential to
assume that such a value function can be constructed readily from the goal infor-
mation; the value can also be constructed in the ventral striatum by the plasticity of
cortico-striatal connections that combine the goal information from the prefrontal
cortex with the sensory-motor information from the sensory-motor cortical pro-
jections to the ventral striatum.

The acquisition of motor skill requires learning at several levels (Hikosaka et al.,
2002). One of the key points of the model is during the early phase of learning,
when the movements are slower and more dynamic, the BG is dominant. As the
cortical learning progresses, specifically PFC-to-MC training in the model, the
movements become quicker and more directed toward the target location. This
phenomenon is actually seen in monkeys performing associative learning tasks,
where initially the neuronal activity is higher in the striatal areas, suggesting
responses to rewards, and a slow increase in the activity of the prefrontal cortex
(Pasupathy & Miller, 2005). These studies also suggest that the output of BG trains
the higher cortical areas and this is precisely captured in the model. There is a
significant contribution of striatum during initial stages of learning, and as the
cortical systems start to take over, actions become habitual and automatic (Ashby,
Turner, & Horvitz, 2010). The initial slower movements in the model are driven by
climbing the value function (i.e., dopamine-dependent), and as the PFC contribu-
tion increases, it can activate other cortical areas like MC which can directly
influence spinal motor neurons for faster movements.

10.4.1 Cortico-Basal Ganglia Loop as an Attractor Network

The proposed model highlights the idea that the final hand position due to reaching
is an attracting state of the cortico-basal ganglia dynamics. Therefore, the attractor
dynamics of the cortico-basal ganglia loop must be well understood in order to
understand reaching dynamics in normal and Parkinsonian conditions. The attractor
dynamics that drives the reaching movements in the model arises from three
sources: (1) the lateral connections in the CANN model of MC, (2) the
sensory-motor cortical loop dynamics, and (3) the cortico-basal ganglia loop
dynamics. The attractor dynamics of the CANN model has been explored exten-
sively in other studies (Gupta et al., 2013; Jankovic, 2008). The attractor dynamics
of the sensory-motor cortical loop, even in the absence of the cortico-basal ganglia
loop, is demonstrated in Fig. 10.8a, where it is shown that the PFC input to MC
must exceed a threshold to move the hand from its current state. Addition of the
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cortico-basal ganglia loop seems to lower the threshold; it is easier initiate the hand
movement for a given PFC activation, if there is assistance from the cortico-basal
ganglia loop. This result explains the relative difficulty observed in PD patients in
initiating hand movements (Chen & Reggia, 1996). In Fig. 10.8b, the PD pathology
is investigated slightly differently. Instead of removing the BG input to MC, the dV
term, which represents dopamine projections to the striatum, is clamped at two
levels (clamp value, dV

* = 0, and dV
* = −1; wsg = wgs = 3). These parameter settings

suppress the dopamine signal (dV) and also change the dynamics of STN–GPe loop
to synchronized dynamics, emulating PD conditions (Chakravarthy &
Balasubramani, 2015). Under these conditions also, it can be seen that it is harder to
initiate movement, even though the strength of BG input to MC is unaffected. These
results show that the dynamics of the cortico-basal ganglia loop amplifies the output
of MC, thereby facilitating movement in normal condition. This amplification is
suppressed in PD conditions, due to reduced dopamine levels and increased syn-
chronization of the STN–GPe loop. These results resonate well with the model of
the role of BG in willed action proposed in (Chakravarthy, 2013).

10.4.2 Indirect Pathway for Exploration and Emergence
of PD Symptoms

The STN–GPe loop modeled as a network of coupled oscillators induces
exploratory dynamics in the model [Eqs. (10.19), (10.20), and (10.21)]. We have in
previous studies substantiated the role of the indirect pathway as an Explorer that
performs random search over the action space which is necessary when viewing
basal ganglia as a reinforcement learning engine (Chakravarthy & Balasubramani,
2015). The exploration in the model comes from the fact that there is a stochastic
drift in the activity of MC, influenced by the complex dynamics of the STN–GPe,
thereby driving the arm to visit all possible arm configurations. As a result, the
indirect pathway becomes very important in the initial trials to drive arm move-
ments where the movement variability is also high (Fig. 10.5d, e). In the initial part
of a reaching trial, value difference (dV) is small which makes the striatal output to
GPe and GPi low. Therefore, in the initial part of a trial, the output of BG is
dominated by the output of the STN–GPe loop, which facilitates movement initi-
ation. However, once movement begins, dV changes significantly strongly reflecting
the gradient of the value function. In the PD case, the clamping of the value
difference (dv) in the model enhances the outputs of D2R neurons in the striatum
and amplifies the contributions of the indirect pathway to BG output. Thus, in PD
conditions, the BG output depends on the dynamics of the STN–GPe loop, with
altered dynamics of STN–GPe manifesting as impaired movement (Table 10.2).

Table 10.2, which summarizes the results from Fig. 10.9, shows the parameters
of STN–GPe loop under control and PD conditions. Particularly, it shows that the
internucleus connections (wgs and wsg) are high compared to the control for both the
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symptom categories (rigidity and tremor). Furthermore, in case of rigidity, the STN
lateral connectivity strength (�s) is lower than in case of tremor. It is known that
symptoms in PD could be correlated with synchronized oscillations in the STN,
which is often seen in the b-range (Mallet et al., 2008; Weinberger et al., 2009).
Studies show that the oscillatory activity in the STN ranges from the low frequency
3–7 Hz to beta (13–30 Hz) in the more dorsal regions to even gamma (30–100 Hz)
in the ventral areas (Zaidel, Spivak, Grieb, Bergman, & Israel, 2010). The model
concurs with this where we see the STN activity ranging from desynchronized in
control case (Fig. 10.9g) to synchronized beta in tremor (Fig. 10.9h) condition and
high beta (20.5–28 Hz), bordering on gamma (25–100 Hz) during rigidity
(Fig. 10.9i). There is not much evidence on how such pathological oscillations give
rise to both tremor and rigidity. An interesting observation from the model was that
both tremor and rigidity were associated with different frequency bands of the STN
activity (as shown in Fig. 10.9h, i), with rigidity associated closer to the gamma
range compared to the tremor. It remains to be verified whether such firing patterns
exist in the basal ganglia under conditions of rigidity and tremor.

10.4.3 Effect of Dopamine on Motor Performance

In the model, the dopamine signal (dv) aids in switching between the direct and the
indirect pathways of the BG. In order to model the effect of dopamine on the motor
cortex, we define the tonic dopamine variable, dton, [Eq. (10.29)], which controls
the lateral inhibition in the CANN component of the MC. This tonic dopamine
variable is a local-time-averaged version of phasic dopamine (Eq. 10.29). There
seems to be a higher degree of intracortical inhibition with the application of
dopamine agonists to the motor cortex and a significant decrease in this inhibition
upon the administration of dopamine antagonist (Ziemann, Tergau, Bruns,
Baudewig, & Paulus, 1997). In PD ON subjects, the peak velocity of reaching and
the acceleration of movement are higher and the time spent in deceleration is lower
compared to the OFF case suggesting its benefit in reducing bradykinesia
(Castiello, Bennett, Bonfiglioli, & Peppard, 2000). In the model, these effects are
reproduced by making the Alat

C parameter in MC a function of the tonic dopamine
variable dton. The Alat

C parameter modulated by the tonic dopamine affects the
intrinsic excitability of the CANN component of MC (Fig. 10.6b), where larger
values of Alat

C make the CANN dynamics more stable and resistant to any changes in
the input that comes from areas, viz. BG, PC and PFC.

Table 10.2 STN–GPe
parameters and relation to PD
symptoms (rigidity and
tremor)

wgs (=wsg) �s dv
*

Controls 1 1 No bound on dv
*

Tremor 3 1 −1

Rigidity 3 0.7 −1
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10.4.4 Limitations and Future Directions

The immediate limitation of the model is the lack of a distinct striatal module;
instead we have used striatal activation functions to modulate the cortical input
entering the BG. Since the arm used is a 2D kinematic model (it could be extended
to 3D naturally), the introduction of nonlinear muscle model with force dynamics
would aid in understanding the agonist–antagonist interaction during movement. In
future, we would like to extend the model as a test bench to analyze reaching
movement impairments in other basal ganglia pathologies like Huntington’s chorea,
ballismus, dystonia, and even drug-induced dyskinesias (Jankovic, 2008). Since the
model is generalized in its approach, by involving different end effectors, like
locomotor apparatus or articulators, we can understand motor behavior such as gait
and speech, respectively (Canter, 1963; Hausdorff, Cudkowicz, Firtion, Wei, &
Goldberger, 1998). One of the interesting results from the model is that with BG
impairment, movement initiation becomes difficult and would require more vol-
untary effort to do so. This could be tested by stimulating motor areas using
techniques like TMS (transcranial magnetic stimulation) in PD patients and see
whether movement initiation requires more amplitude of stimulation than controls.
This would also enhance the theory of the BG as an active player in regulating
willed action (Chakravarthy, 2013). We show that shift in PD symptoms from
tremor to rigidity could be caused by an increase in the correlated activity of the
STN neurons. Experiments could target the changing activity in the STN and look
for similar changes in movement behavior. Finally, the attractor dynamics, local
excitation and global inhibition, of the MC in the model could be manipulated by
using DA agonist and antagonists to see which aspects of these dynamics does
dopamine have an influence on.
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