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Chapter 1
Introduction

V. Srinivasa Chakravarthy and Ahmed A. Moustafa

Abstract The area of computational modeling of basal ganglia has seen an
explosive growth in the last couple of decades. In this area, there is currently a
multitude of modeling approaches, each approaching the functions of basal ganglia
in a unique fashion, pursuing a specialized line of investigation. Existing models
fall under certain prominent schools of thought, each successfully explaining a
subset of basal ganglia functions that are amenable to that specific approach, while
ignoring a host of other functions. The aim of this book is to describe a class of the
basal ganglia models that comprehensively accommodates a wide range of the basal
ganglia functions within a single modeling framework. This class of models is
essentially based on reinforcement learning, a currently dominant paradigm for
describing the basal ganglia function. However, the class of computational models
described herein deviate significantly from some of the classical approaches like,
for example, the Go-NoGo interpretation of the functional pathways of the basal
ganglia. This class of models successfully explains a wide variety of motor func-
tions, and some cognitive functions of the basal ganglia, in healthy and pathological
conditions like the Parkinson’s disease and other disorders associated with the basal
ganglia.

It has been more than 20 years since James Houk, Joel Davis, and David Beiser
published their superb book on Basal Ganglia models (MIT Press; ASIN:
B010BF4U9K). Their very well-cited book (Houk, Davis, & Beiser, 1995) covered
a variety of computational approaches to basal ganglia function. For example, Houk
et al. (1995) proposed models that hypothesized that the matrisomes and striosomes
within the basal ganglia subserve different functions. We discuss these in detail in
Chap. 4. Some aspects of this hypothesis were confirmed in subsequent experi-
mental studies (Brown et al., 2002; Wilson, 2004). Houk et al. (1995) have based
their models on the Actor–Critic architecture, which has been repeatedly used in
various experimental and computational studies of the basal ganglia and cortex
(Atallah, Lopez-Paniagua, Rudy, & O’Reilly, 2007; Colas, Pauli, Larsen, Tyszka,
& O’Doherty, 2017; Li, McClure, King-Casas, & Montague, 2006; Moustafa &
Maida, 2007; Moustafa, Cohen, Sherman, & Frank, 2008; O’Doherty et al., 2004;
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Piray et al., 2014). There are, however, some limitations of the collection of models
described in Houk et al. (1995). The models in their book are quite diverse and do
not present a coherent and unified picture of basal ganglia function. Second, the
Houk et al. (1995) book mostly provides conceptual models without simulation
studies to test the plausibility of model assumptions.

In addition, our knowledge on the basal ganglia has changed dramatically over
the last couple of decades. Such diversity and multipolarity in approaches to basal
ganglia function continue to date, though a large number of models are aligning
themselves more and more with the reinforcement learning-based modeling
framework. Within this framework, there is an emerging subclass of basal ganglia
models that highlight the significance of complex dynamics of the indirect pathway
in basal ganglia, and its contributions to exploration, an important ingredient of
reinforcement learning (Balasubramani, Chakravarthy, Ravindran, & Moustafa,
2014, 2015; Mandali, Rengaswamy, Chakravarthy, & Moustafa, 2015;
Muralidharan, Balasubramani, Chakravarthy, Lewis, & Moustafa, 2014). This class
of models of basal ganglia has proven themselves to be capable of explaining a
wide range of basal ganglia functions including action selection, spatial navigation,
gait control, reaching and handwriting, precision grip control, saccade generation
etc.

The purpose of our book is to amend and expand on James Houk’s book by
providing a comprehensive book on computational models of the basal ganglia. Our
book provides a compendium of the aforementioned subclass of models of basal
ganglia, which are partially based on our previously published studies on basal
ganglia modeling (Balasubramani et al., 2014, 2015; Gangadhar, Joseph, &
Chakravarthy, 2008; Gangadhar et al., 2009; Gupta, Balasubramani, &
Chakravarthy, 2013; Helie, Chakravarthy, & Moustafa, 2013; Krishnan,
Ratnadurai, Subramanian, Chakravarthy, & Rengaswamy (2011); Magdoom et al.,
2011; Muralidharan et al., 2014, 2017; Sridharan, Prashanth, & Chakravarthy,
2006; Sukumar, Rengaswamy, & Chakravarthy, 2012). In addition, the models
contained in the book present a coherent picture of basal ganglia. The book presents
a long-awaited synthesis of some the key existent theories of basal ganglia function.
In addition, our book presents computational models of basal ganglia-related dis-
orders, including Parkinson’s disease. For an integrative review on how the basal
ganglia plays a key role in several motor processes, see Moustafa et al. (2016). In
the last chapter, we will highlight the applications of understanding the role of the
basal ganglia to treat neurological and psychiatric disorders. We also provide a
roadmap for future work on basal ganglia modeling, including the simulation of the
action of various neuromodulators in basal ganglia, as well as psychiatric disorders
such schizophrenia. The MATLAB code for some of the simulation studies pre-
sented here is available upon request from the authors. These can be used and
amended to simulate other functions of the basal ganglia, such as working memory,
attention, as well as other basal ganglia-related disorders, such as ADHD.

2 1 Introduction
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Chapter 2
The Molecular, Cellular,
and Systems-Level Structure
of the Basal Ganglia

Alekhya Mandali, V. Srinivasa Chakravarthy
and Ahmed A. Moustafa

Abstract This chapter provides a brief overview of the systems, cellular, and
molecular structure of the various nuclei of basal ganglia (BG) such as striatum,
STN, GPe, GPi, and the SNr including the various neurotransmitters impacting its
function. We start with the system-level connection between cortex and BG and
then cover the various cell types, receptors (such as dopaminergic, acetylcholine)
present on each of the BG nuclei. The effect of Parkinson’s disease on their
dynamics especially the STN–GPe oscillatory network is then discussed. The
dopaminergic systems SNc and VTA are also covered in terms of their architecture
and input–output synaptic projection patterns. Finally, a short intro to the multiple
cortico-BG loops and their functional relevance is discussed. This brief overview
helps provide background on BG structure, which is the basis of several models we
present in this book.

2.1 Anatomical Structure of Basal Ganglia

The Basal Ganglia (BG) are a group of seven subcortical nuclei, involved in various
important functions ranging from motor control to cognitive functions such as
decision making, working memory, and action selection (Chakravarthy, Joseph, &
Bapi, 2010; Chersi, Mirolli, Pezzulo, & Baldassarre, 2013; Gurney, Prescott, &
Redgrave, 2001a, 2001b; Humphries & Gurney, 2002; Schroll, Vitay, & Hamker,
2012; Yucelgen, Denizdurduran, Metin, Elibol, & Sengor, 2012) (Fig. 2.1).

2.1.1 Systems-Level

The anatomical components of BG include the neo-striatum (caudate, putamen, and
nucleus accumbens), Globus Pallidus externa, GPe, and Globus Pallidus interna,
GPi, subthalamic nucleus (STN), and substantia nigra (pars compacta, SNc, and
pars reticulata, SNr). The BG receive inputs from the cortex through the striatum
and STN (Aravamuthan, Muthusamy, Stein, Aziz, & Johansen-Berg, 2007;
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Maurice, Deniau, Glowinski, & Thierry, 1998) and projects through SNr and GPi,
the output nuclei of BG, via thalamus (Albin, Young, & Penney, 1989) to motor
and executive areas of the cortex (Steiner & Tseng, 2010) as well as sensory
association cortex and temporal lobe (Middleton 1996). Classically, the BG
includes two pathways: the indirect pathway (IP) constituting a part of the striatum,
GPe and STN finally projecting to GPi (Gerfen & Surmeier, 2011), and the direct
pathway (DP) constituting the direct projection from the striatum to GPi (Gerfen &
Surmeier, 2011). A third pathway, dubbed the hyperdirect pathway from cortex to
STN, has been added subsequently (Nambu, Tokuno, & Takada, 2002).

2.1.1.1 Multiple Cortico-BG Loops

Earlier studies argued for the presence of a single cortico-BG loop where all the
cortical areas projected to BG. On further investigation using various anatomical
and tracing studies, it has been observed that cortico-BG system indeed consists of
multiple parallel loops, where cortical areas project to distinct and mostly
non-overlapping areas of BG (Alexander, DeLong, & Strick, 1986; DeLong &
Wichmann, 2010; Nakano, 2000). The parallel loops have been primarily segre-
gated into motor (motor and oculomotor), associative (dorsolateral and orbitofrontal
prefrontal cortex), and limbic loops. The projections from each of the cortical areas
to the various BG nuclei in each of the loop are given in Fig. 2.2.

Fig. 2.1 This figure shows the Basal Ganglia with its major nuclei and their synaptic connections.
The glutamatergic input from motor and executive cortices enters both striatum and STN and
leaves through GPi or SNr (not shown in figure) via the thalamus. The dopaminergic input from
SNc modulates the activity of neurons in striatal, STN, GPe nuclei

6 2 The Molecular, Cellular, and Systems-Level Structure …



Although the BG loops are functionally/anatomically segregated, it is important
for these individual loops to interact with one another to ensure learning and
information transfer occurs across motor, cognitive, and emotional domains. Newer
anatomical evidence indeed suggests that there is an interaction among these closed
loops (Haber & Calzavara, 2009).

Various theories proposed to explain the functionality of the multi-BG-cortex
closed loops are explained briefly below. The first hypothesis suggests that infor-
mation transfer across the loops is via the crossing of dendritic arbors from loop to
another. The second is based on the overlap in the smaller BG structures which also
have collaterals between them. This configuration creates an ‘edge’ where the
neurons respond to more than one modality (motor/cognitive) (Yelnik, 2002). The
third is the complex non-reciprocal connections providing directional flow of
information. For example, it has been observed that limbic striatum can influence
the motor output in rodents via striato-nigral pathway where the ventral striatum
influences the dorsal via dopaminergic system (Haber, Fudge, & McFarland, 2000).
The final one is based on ‘hot spots’ where an anatomical region within a structure
receives input from multiple functional areas leading to integrative connectivity
(Haber & Calzavara, 2009).

Fig. 2.2 This figure shows the parallel BG-cortico loops of motor, oculomotor, associative, and
limbic areas with the specific areas M1: primary; SMA: supplementary motor area; FEF: frontal
eye fields; DLC/DLPFC: dorsolateral prefrontal cortex; OFC/LOF: lateral orbitofrontal cortex;
ACA: anterior cingulate area; Gpi: Globus Pallidus internus; SNr: substantia nigra pars reticulata;
STN: subthalamic nucleus; MDpl: medialis dorsalis pars paralamellaris; MDmc: medialis dorsalis
pars magnocellularis; MDpc: medialis dorsalis pars parvocellularis; VAmc: ventralis anterior pars
magnocellularis; VApc: ventralis anterior pars parvocellularis; VLm: ventralis lateralis pars
medialis; VLo: ventralis lateralis pars oralis; VP: ventral pallidum; VS: ventral striatum; c1:
caudolateral; cdm: caudal dorsomedial; dl: dorsolateral; 1: lateral; Idm: lateral dorsomedial; m:
medial; mdm: medialdorsomedial; pm: posteromedial; rd: rostrodorsal; r1: rostrolateral; rm:
rostromedial; vm: ventromedial; vl: ventrolateral
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2.1.2 Cellular Level

In this section, we explain the features of the individual BG nuclei, the types of cells
that constitute the nuclei, and the chemical messengers used by the cells for
signaling.

2.1.2.1 Striatum—The Major Input Gateway

Based on the microanatomical studies, striatal neurons have been classified into two
categories: spiny and aspiny neurons (Kreitzer, 2009). Spiny neurons in striatum,
called the medium spiny neurons (MSNs), which constitute >95% of the population
(Gerfen & Surmeier, 2011) receive projections from layer 5 of all neocortices onto
their spines (Plenz & Kitai, 1998; Reig & Silberberg, 2014). The MSNs, whose
major neurotransmitter is gamma-aminobutyric acid (GABA), have striato-nigral
(direct, i.e., projections to GPi neurons) and striato-pallidal (indirect, i.e., projec-
tions to GPe then to STN then finally to GPi) projections (Gerfen & Surmeier,
2011). MSNs present a distinct compartmental pattern in terms of patch and matrix
when viewed under the microscope. These compartments also have well-defined
projection patterns (Bolam et al., 2006; Kreitzer, 2009). Although both
striato-nigral and striato-pallidal neurons have patch–matrix compartments,
striato-nigral patches predominantly project to SNc instead of SNr (Gerfen, 1984;
Gerfen & Young, 1988).

Electrophysiologically, MSNs are characterized by their hyperpolarized resting
membrane potential, lower input resistance, and bi-stable behavior (Kreitzer, 2009).
This bistability is observed in terms of membrane potential, that is hyperpolarized
(−90 to −70 mv, DOWN state) and depolarized (−60 to −40 mv, UP state) arising
from the intrinsic membrane properties as well as from the glutamatergic input from
cortex and thalamus (Kreitzer, 2009). The DOWN state has been mostly mediated
by AMPA synaptic input, whereas the UP state is also modulated by the slow
NMDA current. The main neuromodulator that affects the MSN’s activity is DA
(Kreitzer, 2009). Anatomically, the dorsal part of striatum receives dopaminergic
projections from SNc (Gerfen & Surmeier, 2011) and ventral from Ventral
Tegmental Area (Nicola, Surmeier, & Malenka, 2000). In the dorsal striatum,
MSNs are the major targets for the dopaminergic projections arising from SNc
targeting the spines and the axons (Surmeier, Ding, Day, Wang, & Shen, 2007;
Surmeier, Song, & Yan, 1996). Using histochemical studies, the striato-nigral
MSNs express D1 class dopaminergic receptors (D1 and D5) whereas
striato-pallidal MSNs express D2 class (subdivided into D2, D3, and D4) (Kreitzer,
2009; Seeman, 1980; Surmeier et al., 2007). Recently, the presence of heteroge-
neous D1/D2 receptor which is a complex of D1 and D2 protomers was also
observed in striatum (Rashid et al., 2007). Physiologically, the effect of dopamine
on D1 and D2 expressing MSNs is opposite in nature when quantified in terms of
firing rate. D1 (D2) receptors enhance (inhibit) the L-type calcium currents, thereby
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increasing (decreasing) the membrane potential eventually increasing (decreasing)
the spiking rate of the MSNs (Kreitzer, 2009). In addition to DA, cholinergic
modulation in MSNs is through the muscarinic ACh receptors for both D1 and D2
type MSNs. This modulation is through the activation of the A-type potassium
currents and makes the neurons more hyperpolarized. However, in the presence of
excitatory drive this A-type potassium current inactivates readily and decreases the
delay in spiking. Experimental recordings show the activity of MSNs to be irregular
and reach a maximum firing rate of 30 Hz (Kreitzer, 2009).

The second category of neurons in striatum is aspiny interneurons, further
classified into fast spiking (FS), low threshold spiking (LTS), and cholinergic
(TAN) neurons (Kawaguchi, 1993). The FS neurons though small in number help
in regulating striatal activity and also receive input from cortex and thalamus. FS
neurons also receive input from cortex and thalamus, not only to regulate their
firing rate but also the cortical inputs received by the MSNs (Mallet, Le Moine,
Charpier, & Gonon, 2005). Anatomical tracing studies show that a single MSN
receives inhibitory synapses from 4 to 27 FS neurons and a single interneuron
projects to 130 MSNs (Koós & Tepper, 1999). The dopaminergic modulation of FS
neurons activity is mediated by D2 (D5) receptors which excite (inhibit) them. An
increase in ACh levels also increases the firing rate of FS through direct depolar-
ization of nicotinic receptors. The other kinds of interneurons are LTS, character-
ized by plateau potentials, and low threshold spikes also receive dopaminergic
(through D5 receptors) and glutamatergic input from SNc and cortical areas
(Kawaguchi, 1993) (Fig. 2.3).

The last ones are the TANs known to be large and constitute 1–2% of striatal
neurons. These neurons are intrinsically active due to sodium and
hyperpolarization-activated cation currents (Bennett, Callaway, & Wilson, 2000).
They primarily receive input from MSNs and sparsely from thalamus and cortex.

Fig. 2.3 This figure shows various types of neurons present in striatum with projections and type
of receptors on them. MSN: medium spiny neurons, FS: fast-spiking interneurons, LTS: low
threshold spiking interneurons, and TAN: tonically active cholinergic interneurons
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They display a unique ability to pause their firing during salient cues including
reward and reward prediction (Graybiel, Aosaki, Flaherty, & Kimura, 1994). TANs
express both D5 and D2 receptors which control the spiking rate in similar way as
in MSNs.

2.1.2.2 The Oscillator Network of BG

The reciprocally connected excitatory–inhibitory, i.e., STN–GPe network, is known
for its active role in cognitive/motor process of healthy controls to pathological
oscillations observed in PD patients (Baunez et al., 2001; Bergman, Wichmann,
Karmon, & DeLong, 1994; Bevan, Magill, Terman, Bolam, & Wilson, 2002;
Brown, 2003; Brown et al., 2001; Chakravarthy et al., 2010; Hammond, Bergman,
& Brown, 2007; Heida, Marani, & Usunoff, 2008; Holgado, Terry, & Bogacz,
2010; Park, Worth, & Rubchinsky, 2010, 2011; Plenz & Kital, 1999). STN is
unique among other nuclei of BG because it is the sole excitatory nucleus among
BG nuclei (Charpier, Beurrier, & Paz, 2010). It is therefore named the ‘driving
force of BG.’ It also receives direct input from cortex forming the hyperdirect
pathway (Nambu et al., 2002), making it the fastest route for the cortico-thalamic
influences to act on BG. STN neuronal activity is generally classified into three
patterns: rhythmic, irregular, and bursting with average firing rate between 18 and
28 spikes/s in awake monkeys (Heida, Marani, et al., 2008). The irregular spon-
taneous spiking pattern is the most commonly observed which is due to large
inward Na+ currents independent of the GABAergic input (Bevan & Wilson, 1999)
(Fig. 2.4).

Fig. 2.4 This figure shows various receptors and channels with lateral connections in STN–GPe
network. Receptors: gamma-aminobutyric acid (GABA), serotonin (5HT), dopamine (D2), kainate
(KAR), a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate
(NMDA), cholinergic (ACh), Channels: calcium-L/T type (Ca++), sodium (Na+), potassium (K+),
hyperpolarized cation inward channel (HCN2), slow Ca++-activated K+ channel (AHP)
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The ability of STN neurons to produce rebound and burst potentials comes from
the presence of low threshold class-3 or T-type Ca2+ calcium channels which are
active only during inhibitory GABAergic and do not participate in spontaneous
behavior (Wilson & Bevan, 2011). STN neurons also display plateau potentials in
response to depolarizing or hyperpolarizing current with sustained activity up to
500 ms (Beurrier, Congar, Bioulac, & Hammond, 1999). To obtain such a neural
response, the ion channel responsible should be inactivated at resting membrane
potential (RMP) and re-inactivated at hyperpolarization which was found to be due
to the L-type calcium currents (Heida, Marani, et al., ). STN neurons also have
dopamine (D2 class), serotonin (5HT), opioid, and cholinergic receptors which
modulate their spiking pattern (Heida, Lakke, 2008& Usunoff, 2008).
Glutamatergic input from the cortex (Kita, Chang, & Kitai, 1983) acts on the STN
through both ionotropic (AMPA, NMDA, and kainite) and G-protein coupled
metabotropic receptors. The main inhibitory influence from GPe (around 30%) is
mediated through GABA (ionotropic and metabotropic) currents.

The GPe is an inhibitory nucleus that receives GABAergic projections from
D2-expressing class of MSNs, through the indirect pathway. The majority of
neurons are aspiny neurons and project to neurons of STN, GPi, and SNr (Kita &
Kita, 1994; Sato, Lavallée, Lévesque, & Parent, 2000). Recent experimental studies
show that around 2% of GPe neurons project to STN creating a strong inhibitory
stimulus which aids in desynchronizing the activity of STN (Baufreton et al., 2009;
Steiner & Tseng, 2010). Single unit recordings in awake monkeys show irregular
firing (with few bursting neurons) around 20–100 Hz with average frequency
around 60 Hz. Due to the presence of hyperpolarized-activated inward current
(HCN2) and Nav1.6 currents, GPe neurons show autonomous firing property and
are also capable of producing long pauses which is estimated to be due to low
threshold Ca2+ or early K+ currents. The major source of excitatory input to GPe
comes from STN (around 20%). Apart from inhibitory striatal current, GPe neurons
also receive collateral GABAergic (mainly GABA-A) inputs from 15% of total
neurons (Steiner & Tseng, 2010).

The STN–GPe loop together has a higher impact on the output of BG than
individually. Experimental recordings of STN–GPe system under physiological
condition show desynchronized activity, whereas under dopamine-deficient con-
ditions, either in MPTP monkeys or PD patients, exhibits synchronized bursts
within and between STN and GPe neurons (Bergman et al., 1994; Gillies,
Willshaw, Gillies, & Willshaw, 1998; Park et al., 2011) (Bergman et al., 1994;
Bevan et al., 2002; Hammond et al., 2007; Tachibana, Iwamuro, Kita, Takada, &
Nambu, 2011; Weinberger & Dostrovsky, 2011) (Bergman et al., 1994, 1998).
Plenz and Kitai (1998) worked on in vitro STN–GPe slices and proposed that they
act as a pacemaker (Plenz & Kital, 1999), a source for generating oscillations in
pathological conditions such as Parkinson’s disease. This oscillatory activity was
found to be present in two frequency bands, one around the tremor frequency [2–4
Hz] and another in beta [10–30 Hz] frequency range (Weinberger & Dostrovsky,
2011). Also, an increase of correlations in firing patterns of STN neurons was
observed in PD state (Benazzouz et al., 2002; Brown, 2003; Brown et al., 2001;
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Foffani, Bianchi, Baselli, & Priori, 2005; Levy et al., 2002; Willshaw & Li, 2002).
Park et al. (2011) report the presence of intermittent synchrony between STN
neurons and its local field potentials (LFP), recorded using multiunit activity
electrodes from PD patients undergoing DBS surgery (Park et al., 2011). They also
calculated the duration of synchronized and desynchronized events in neuronal
activity by estimating transition rates, which were obtained with the help of first
return maps plotted using phase of neurons (Park et al., 2010, 2011).

2.1.2.3 The Output Ports of BG (GPi and SNr)

GPi is the most common output port of BG which receives inhibitory GABAergic
input from D1-expressing striatal MSNs (Gerfen, 1984; Gerfen & Surmeier, 2011;
Surmeier et al., 2007) and GPe (Sato et al., 2000), and excitatory glutamatergic input
from STN (Heida, Marani, et al., 2008); GPi integrates these inputs and influences the
final selection of an action. The physiological characteristics of GPi neurons are very
similar to GPe neurons, but GPi neurons fire at a much higher rate (*60–70 Hz). It
has been observed that irregular spiking activity (of GPi) in physiological condition
changes into bursting, synchronized pulses in PD/MPTP condition (Bergman et al.,
1994; Raz, Vaadia, & Bergman, 2000). It has been hypothesized that it is due to this
bursting activity that there is corruption in the transmission of information back to the
cortex via thalamus (Rubin & Terman, 2004).

SNr, a nucleus in the ventrolateral part of the substantia nigra system, fires at a
much higher rate (20–40 Hz) compared to its counterpart (SNc). It receives input
from D1-expressing striatal MSNs, GPe, STN (Nakanishi, Kita, & Kitai, 1987;
Robledo & Féger, 1990), and dopaminergic cells of SNc (Björklund & Dunnett,
2007) and projects to Superior Colliculus (Deniau, Hammond, Riszk, & Feger,
1978), ventral part of thalamus and SNc (Marsden, 1986; Tepper, Martin, &
Anderson, 1995) via inhibitory GABAergic projections. Electrophysiological
recordings from SNr slices reveal the presence of two types of neurons: type I and II
(Nakanishi et al., 1987). Type I are spontaneous with short action potential intervals
and a strong delayed rectification. Type II are not spontaneous and have large action
potential durations and relatively large post-active hyperpolarization and less
prominent delayed rectification (Nakanishi et al., 1987). At system level, SNr has
been mainly involved during saccadic eye movements due to its projections to
Superior Colliculus (Basso, Powers, & Evinger, 1996).

2.1.2.4 Dopaminergic System (SNc)

SNc, a part of the nigrostriatal pathway, is one of the clusters of dopaminergic cells
in the midbrain. The SNc dopaminergic neurons display different types of activity
ranging from regular/pacemaker (6.5 Hz), irregular/random (4 Hz) to bursting (4.25
Hz) and are classified based on the synchronous activity within themselves (Lee &
Tepper, 2009). The dopaminergic neuron action potential can be divided into four
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components: (1) a slow depolarization, (2) an initial segment spike, (3) a
somato-dendritic spike, and (4) an after hyperpolarization (Grace & Bunney, 1983).
Irregular and bursting activity is often followed by slow after-depolarizations, and a
second short latency action potential was seen riding on the depolarizing after
potential following this first spike. Each of these firing patterns modulates the
amount of dopamine released at their target locations. Inputs from other BG nuclei
such as striatum (D1 receptors MSN), SNr (Björklund & Dunnett, 2007), is mostly
GABAergic except the glutamatergic one from STN (Lee & Tepper, 2009). Apart
from these nuclei, the interneurons within SNc and SNr also modulate the neural
patterns in SNc. Cholinergic projections from pendenculopontine nucleus influ-
enced through nicotinic and muscarinic receptors, as well as metabotropic gluta-
mate receptor are believed to be another source of excitation apart from STN.
Dopaminergic projections from SNc are targeted to multiple areas of brain
including striatum (dorsal), GPe, and STN, specifically in modulating the activity
patterns in GPe and STN. As stated in the earlier sections, the dopaminergic
receptors predominantly come under either D1 family (D1, D5) or D2 family (D2,
D3, D4) (Beaulieu & Gainetdinov, 2011). But recently neurons that express both
D1/D2 receptors (heteromers) have been discovered in striatum, hippocampus, and
cortex (Hasbi, O’Dowd, & George, 2011).

The death of SNc neurons is believed to be the primary cause for Parkinson’s
disease symptoms though the etiology of their death has been debated by multiple
mechanisms (Blandini, 2010; Rodriguez-Oroz et al., 2010; Singleton et al., 2003;
Wood-Kaczmar, Gandhi, & Wood, 2006). Due to the dopaminergic control on the
activity of several BG nuclei and its pathways, multiple abnormalities have been
reported in PD patients in both cognitive (Chaudhuri, Healy, & Schapira, 2006;
Chaudhuri, Odin, Antonini, & Martinez-Martin, 2011; Merello, 2007) and motor
(Brown, 2007; Schrag & Quinn, 2000; Xia & Mao, 2012) domains. A decrease in
the activity of striatal neurons with D1 family receptors and an increase in the
activity of D2-expressing striatal neurons have been observed (Gerfen et al., 1990;
Gerfen & Surmeier, 2011; Gerfen & Young, 1988). Along with this, the excitatory–
inhibitory circuit of BG, the STN–GPe network transits its activity from chaotic
irregularity to synchronous bursting behavior (Brown, 2003, 2007; Fan, Baufreton,
Surmeier, Chan, & Bevan, 2012; Holgado et al., 2010; Plenz & Kital, 1999). This is
believed that loss of DA causes the observed molecular/cellular level changes at
STN–GPe neurons (Brown, 2003, 2007; Fan et al., 2012).

2.1.2.5 Ventral Tegmental Area (VTA)

Apart from SNc, another major source of dopaminergic release is from Ventral
Tegmental Area (VTA) which is located around the midline and the floor of
midbrain and constitutes the mesocorticolimbic system (Yamaguchi et al., 2011).
Due to its heterogeneous cytoarchitecture, VTA is named as the A10 area which is
further divided into four regions, the paranigral nucleus (PN), the parabrachial
pigmented area (PBP), the parafasciculus retroflexus area (PFR), and the
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rostromedial tegmental nucleus (RMTg) (Morales & Margolis, 2017). The PN and
PBP are rich in dopaminergic cells compared to the other regions. Within the VTA
neurons, part of the A10 cells consists of dopaminergic cells which express the
dopamine-producing enzyme tyrosine hydroxylase (TH) and release dopamine.
VTA also has VTA-GABA and VTA-glutamate neurons which not only regulate
the local neuronal activity but also send long-range projections to areas that are
innervated by the dopaminergic neurons (Morales & Margolis, 2017). It is reported
that VTA has combinatorial neurons which co-express dopamine and GABA or DA
and glutamate with the mechanism of the individual neurotransmitter being a hot
topic currently (Morales & Margolis, 2017).

VTA receives inhibitory input from nucleus accumbens (nAcc) on both of its
dopaminergic and GABA neurons. VTA dopaminergic neurons receive projections
from the anterior cortex including the mesial prefrontal cortex (mPFC) and have
reciprocal connectivity to mPFC (Han et al., 2017). Apart from the receiving
projections from external structures, local synaptic projections from VTA-GABA
and VTA-glutamate are also observed. VTA-DA neurons have divergent projec-
tions to various cortical areas, amygdala, nAcc, hippocampus, raphe nucleus locus
coeruleus, mammillary body, lateral habenula (LHb), and the pallidum (Han et al.,
2017; Morales & Margolis, 2017; Swanson, 1982).

Similar to SNc neurons, VTA neurons also respond to reward and shift their
activation to cues that predict reward (Schultz, 1998). The role of DA in the aspect
of motivation has been extensively studied especially with respect to modulating
nAcc activity. It has also been observed that optogenetic stimulation of dopamine
transporter expressing neurons in the dorsal hippocampus improved the recall
accuracy in a complex spatial navigation task (Morales & Margolis, 2017). The
projections from LHb on to the VTA-DA neurons have been implicated in aversive
learning (Stamatakis et al., 2013) which is also being studied extensively in the area
of depression (Lawson et al., 2016). Similarly, projections from raphe nucleus on to
nAcc via VTA also play a major role in reward conditioning by increasing the
dopamine release into nAcc (Morales & Margolis, 2017).

Pathophysiologically, in combination with meso-striatal (SNc) network, VTA
has been involved in a variety of disorders from Parkinson’s disease (Alberico,
Cassell, & Narayanan, 2015), addiction, schizophrenia (Knable & Weinberger,
1997), and attention deficit hyperactivity disorder (Viggiano & Sadile, 2000). One
of the major psychiatric problems that involve nAcc and VTA is addiction (Oliva &
Wanat, 2016) as they are primary targets where the addictive drugs such as opioids,
amphetamine act on.
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Chapter 3
The Motor, Cognitive, Affective,
and Autonomic Functions
of the Basal Ganglia

Ahmed A. Moustafa, Alekhya Mandali,
Pragathi Priyadharsini Balasubramani
and V. Srinivasa Chakravarthy

Abstract The basal ganglia are involved in several processes, ranging frommotor to
cognitive ones. This chapter briefly discusses the role of the basal ganglia in motor
(including reaching, handwriting, precision grip, gait, saccade generation, and
speech), cognitive (action selection, decision making, attention, working memory,
sequence learning, and sleep regulation), mood/emotion (negative and positive
affect), and autonomic (gastrointestinal and cardiovascular) processes. The chapter
summarizes key experimental studies explaining the role of the basal ganglia in all of
these motor, cognitive, and affective processes. Accordingly, this chapter provides a
background on the function of the basal ganglia, which is key information that guides
the reader to understand the following computational modeling efforts to understand
the role of the basal ganglia in several functional processes.

3.1 Motor Processes of the Basal Ganglia

The basal ganglia influence motor control mainly via at least two pathways: the
cortico-thalamic network and the basal ganglia–brainstem networks (Takakusaki,
Tomita, & Yano, 2008).

The BG and Cortico-thalamic Loop: There are multiple loops in the
cortico-basal ganglia network including the cognitive, motor, and limbic loops
which control planned and automatic movements (Hikosaka et al., 1999; Marsden,
1982). The motor cortical areas which project to the putamen in the striatum are
thought to be involved in discrete voluntary movements (Takakusaki et al., 2008).
Similarly, the prefrontal areas projecting to the caudate nucleus regulate complex
visually guided movements (Takakusaki et al., 2008). The parallel nature of the
cortico-basal ganglia networks aids in effective integration of information from
various sensory resources to plan motor actions (Hikosaka et al., 1999; Nakahara,
Doya, & Hikosaka, 2001). In rats, optogenetic stimulation of the indirect pathway
of the BG led to an increase in freezing and bradykinetic movements which was
rescued completely by activating the direct pathway leading to increased
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locomotion (Kravitz et al., 2010). The BG output nuclei also target the brainstem
regions for automatic control of movements and along with these loops evaluate the
necessary motor programs for a given context.

Before we discuss computational models of the basal ganglia, below, we briefly
discuss the motor, cognitive, mood/emotion, and autonomic processes of the basal
ganglia, respectively.

3.1.1 Hand—Reaching, Handwriting, Precision Grip

Hand movements involve reaching, writing, and precision grip, among others. As
we discuss below, the BG plays a role in all of these processes.

Reaching movements reveal key information about how the brain plans and
execute movement. Studies have found that neural activity indicates that the motor
commands of reaching have a causal role on reaching characteristics such as velocity
and arm position (Harris & Wolpert, 1998). The optimal control of any movement-
related activity is found to be through a feedback control methodology (Schaal &
Schweighofer, 2005; Shadmehr & Krakauer, 2008). Especially, the basal ganglia
(BG) are involved in the learning of new actions and sequences of movements
mediated by the midbrain dopaminergic signals (Hikosaka, Nakamura, Sakai, &
Nakahara, 2002). This understanding applies for other sophisticated motor activity
of hand such as handwriting and exerting precision grip. Handwriting activity is an
interesting interplay of accurate reaches, executing a sequence of strokes which
involves scaling of movements while planning for the subsequent ones (Teulings,
Contreras-Vidal, Stelmach, & Adler, 1997). Precision grip, on the other hand, is the
act of gripping objects between forefinger and thumb, and this also incurs high
sensory-motor control, mediated by basal ganglia network (Fellows, Noth, &
Schwarz, 1998; Ingvarsson, Gordon, & Forssberg, 1997; Napier, 1956).

Parkinson’s disease shows impairments in the kinematics of simple reaching
movement (Majsak, Kaminski, Gentile, & Flanagan, 1998) and that contributes to
impaired goal-directed movement or target-tracking in pursuit-related tasks
(Soliveri, Brown, Jahanshahi, Caraceni, & Marsden, 1997). PD may fall short of
reaching the goal and suffer tremor or rigidity. Hypometric behavior and micro-
graphia are common characteristics of handwriting in many PD patients (Broderick,
Van Gemmert, Shill, & Stelmach, 2009; Teulings et al., 1997; Tucha et al., 2006).
Patients on dopamine medication show high precision grip than controls and
OFF-medication patients (Fellows et al., 1998; Ingvarsson et al., 1997; Müller &
Abbs, 1990). Some inferences gained from most of the above-described symptoms
suggest that the damage is beyond mere sensory deficit and is extended to basal
ganglia-related network dysfunction. We see that evaluations based on coordinated
arm, wrist, and finger movements on reaching, handwriting, or gripping contribute
as reliable behavioral markers to quantify the damage caused by dopaminergic
dysfunction in PD.
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3.1.2 Gait

BG and Brainstem Interaction: The BG–brainstem interaction is thought to be
responsible for the control of postural tone and the rhythmicity during gait
(Takakusaki, Saitoh, Harada, & Kashiwayanagi, 2004). The influence of the BG
was found to be through the GABAergic output from the substantia nigra pars
reticulata (SNr), which is one of the output nuclei of the BG, and has dense
projections to the mesenpontine tegmentum (Beckstead, Domesick, & Nauta, 1993;
Inglis & Winn, 1995; Moriizumi, Nakamura, Tokuno, Kitao, & Kudo, 1988), where
the MLR and PPN are present. The introduction of GABAA antagonists into the
ventral part of MLR and PPN induced locomotion and muscle atonia (Takakusaki,
Habaguchi, Ohtinata-Sugimoto, Saitoh, & Sakamoto, 2003). It was observed that a
repetitive stimulation of the SNr region altered locomotion by controlling the MLR
region and decreasing the step cycles and increasing the duration of the stance
phase, which is equivalent to reducing the velocity of locomotion (Takakusaki
et al., 2008). The SNr stimulation also decreased the PPN-mediated muscle tone
inhibition. SNr activation had a considerable effect on the amplitude and duration of
the rhythmic membrane oscillations of both the flexor and extensor motor neurons,
suggesting the role of BG in rhythm modulation (Takakusaki, Ohta, & Harada,
2007). As a whole, the BG outputs suppress the inhibitory mechanisms of loco-
motion and increase the excitatory effects leading to termination of locomotion.

Many features of walking such as stride length and velocity, foot strike pattern,
and the associated postural stability are highly influenced by the functioning of
basal ganglia. This subcortical piece of control over the spinal cord’s central pattern
generators forms an essential neural circuit component for gait, in coordination with
the cortical activity (Sahyoun, Floyer-Lea, Johansen-Berg, & Matthews, 2004;
Takakusaki et al., 2008). Specifically, vision, space, and other context-driven
cortical activity influence the gait (Lewis & Barker, 2009; Maruyama &
Yanagisawa, 2006) in association with the subcortical counterpart (the basal gan-
glia). They are well identified in PD condition that particularly suffers an abnor-
mality of basal ganglia control due to dopaminergic cell loss. Some symptoms
include reduced stride velocity and length, flat foot strike, postural sway and
shuffling steps (Hausdorff, Cudkowicz, Firtion, Wei, & Goldberger, 1998;
Kimmeskamp & Hennig, 2001; Morris, Iansek, Matyas, & Summers, 1998) and the
more debilitating context-driven freezing of gait (Almeida & Lebold, 2010; Cowie,
Limousin, Peters, & Day, 2010).

The freezing of gait phenomenon is context dependent suggesting a definite role
for the cortical and subcortical components in this impairment. They are charac-
terized by start hesitation, destination hesitation and obstacle avoidance (Maruyama
& Yanagisawa, 2006) increased cognitive load caused due to multiple simultaneous
task goals, working memory has been proposed to facilitate freezing of gait; and
poor availability of resource pool containing dopamine has been hypothesized to be
their root cause (Lewis & Barker, 2009). Some studies also show an impaired
connectivity between cortical and subcortical areas including basal ganglia, for
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facilitating freezing of gait (Shine et al., 2013). Medications are shown to improve
the strides and reduce freezing of gait (Almeida & Lebold, 2010; Cowie et al.,
2010). Patients are quite assisted by stimulating some basal ganglia nuclei such as
STN in addition to administration of medications (Faist et al., 2001; Lubik et al.,
2006). Freezing symptoms can manifest in upper limb in few patients.

3.1.3 Saccades

Saccades are rapid movements of both eyes, interspersed by momentary fixation of
the eyes on objects of attention. Cortical substrates of saccade generation include
the frontal eye fields and the lateral intraparietal sulcus, while the subcortical
substrates include the Superior Colliculus (SC) and the BG. The contributions of
the BG to saccade generation seem to be mediated predominantly by the SC. It was
shown that neurons in one of the output ports of the BG, the substantia nigra pars
reticulata (SNr), inhibit SC and maintain high firing levels during periods of fixa-
tion, and pause for some saccades (Basso & Wurtz, 2002; Hikosaka & Wurtz,
1983). Hikosaka et al. (2000) hypothesize that the BG output controls the SC in two
complementary ways: by disinhibiting the SC when the direct pathway is activated,
and inhibiting the saccade when the indirect pathway is activated (Hikosaka,
Takikawa, & Kawagoe, 2000). The role of the SNr in modulating reward-oriented
saccadic tasks was studied by using a one-direction-rewarded version of the
memory-guided saccade task (Sato & Hikosaka, 2002). One study showed that
certain neurons in SNr exhibited positive reward modulation, suggesting that
neurons of the SNr-SC pathway promote reward modulation. Kori et al. (1995)
studied the effects of the unilateral infusion of MPTP into the monkey caudate
nucleus on visually guided and memory-guided saccades (Kori et al., 1995). They
found that saccade latency was prolonged, while the amplitude and velocity are
decreased. The role of the BG in saccade generation is further confirmed by
impaired saccades in PD conditions, both in animals and humans. Studies with
MPTP monkeys showed prolonged saccades, longer reaction times, and smaller
peak velocities and amplitudes. The animals also showed fewer spontaneous sac-
cades (Kato et al., 1995). PD patients exhibited a peculiar class of saccades known
as ‘square wave’ jerks, in which a small saccade of amplitude 0.5°–3° transiently
moved the eye away from the point of fixation, only to return to the original point of
fixation after a couple of hundred milliseconds. Square wave jerks are also found in
other syndromes like Progressive Supranuclear Palsy (PSP) and other multisystem
Parkinsonian syndromes (Rascol et al., 1991).
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3.1.4 Speech and Language

Many imaging and lesion studies (Cappa & Abutalebi, 1999; Svennilson, Torvik,
Lowe, & Leksell, 1960; Van Buren, Li, & Ojemann, 1966) provide substantial
evidences for the role of basal ganglia in language processing and production
(phonology, syntax, lexical semantics, prosody, and pragmatics). Apart from the
motor aspects of language involving Broca’s area’s control of speech production
(Alm, 2004), several cognitive aspects related to the choice sequence of syntax
generation, syntactic processing, and their perception (predictability) from auditory
language (Kotz, Schwartze, & Schmidt-Kassow, 2009; Nenadic et al., 2003) have
been related to the basal ganglia functioning. Some studies relate language pro-
cessing and control to the framework of decision making that is mediated by
cortico-basal ganglia circuits. Further, complex use of language involves working
memory (Grossman, Carvell, Stern, Gollomp, & Hurtig, 1992), which is also
actively controlled by nuclei such as basal ganglia. Selective attention contribution
of the nuclei helps in syntactic processing (e.g., the BG model of (Brown &
Marsden, 1988) as well. PD patients show abnormality in many aspects of language
processing and production (Grossman et al., 2002; Kotz, Frisch, Von Cramon, &
Friederici, 2003; Kotz et al., 2009; Schirmer, 2004). Several studies suggest that
language is evolved from motor processes, which explain why the BG play a role in
speech production (Lieberman, 1991).

Parkinson patients often experience difficulty in orofacial and articulatory
movements that could affect their speech. Symptoms constitute bradykinetic
articulatory movements as well as orofacial hypomimy (Hartelius & Svensson,
1994). The patients show less variability in fundamental frequency, face start or
context-dependent speech hesitations and stuttering, very similar to freezing of gait
(Canter, 1963; Cantiniaux et al., 2010; Harel, Cannizzaro, & Snyder, 2004; Kegl,
Cohen, & Poizner, 1999). Speech velocity is often decreased, and the interpause
speech duration is shortened, just like stride velocity and step length in PD
(Cantiniaux et al., 2010). Oral festinations occur in some patients, and it can be
correlated to gait festinations (Moreau et al., 2007). Studies focusing on the effects
of medications in PD patients did not show much improvement in speech param-
eters (Wolfe, Garvin, Bacon, & Waldrop, 1975) or stuttering (Anderson, Hughes,
Rothi, Crucian, & Heilman, 1999; Benke, Hohenstein, Poewe, & Butterworth,
2000). Studies on deep brain stimulation of the STN may have some negative
effects on the prosody (Santens, De Letter, Van Borsel, De Reuck, & Caemaert,
2003; Wang, Metman, Bakay, Arzbaecher, & Bernard, 2003).
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3.2 Cognitive Processes of the Basal Ganglia

3.2.1 Action Selection/Decision Making

Decision-making process is quite complex as the cue/stimulus should be able to
predict the expected reward based on not only the action but also context/
environment which is continuously changing. In other words, to make an optimal
decision we need to weigh all the available options, compare them with the current
goal, and choose the most rewarding one. The two main components that lead to an
optimal decision making are choosing either the most rewarding choice, play it safe
(i.e., ‘exploit’) or trying something new (i.e., ‘Explore’). The basal ganglia’s
anatomical position and input projections make it the most suitable candidate to be
involved in action selection, which is also supported by evolutionary analysis
(Grillner, Robertson, & Stephenson‐Jones, 2013). The striatum, the major input
structure of BG, receives input from almost all the cortical areas (Packard &
Knowlton, 2002) through the multiple cortico-subcortical functional loops.
Moreover, dopaminergic projections, the key player to reinforce learning, modulate
cortico-striatal plasticity (Kreitzer & Malenka, 2008) which also aids in the
stimulus-response learning.

Generally, the final ‘action selection’ is assumed to be based on the combined
contributions of the basal ganglia direct and indirect pathways at output nuclei
(Packard & Knowlton, 2002; Smith, Beyan, Shink, & Bolam, 1998), whereas the
hyperdirect mainly functions as a global stop signal. Specifically, the direct path-
way of BG acts as facilitator by disinhibiting the excitatory thalamo-cortical cir-
cuitry via reduction of GPi activity giving rise to ‘Go’ scenario. Contrastingly, the
indirect pathway is known to act as inhibitor due to odd number of inhibitory stages
and by increasing the GPi activity (via the STN) leading to ‘NoGo’ situation. In
classical accounts, the effect of dopamine (DA) on BG pathways has been described
in simple Go/NoGo terms (Rogers, 2010). Under low DA conditions, IP is more
active than DP leading to ‘NoGo’ or action inhibition (Frank, 2005), whereas in
high DA conditions DP is more active than IP leading to ‘Go’ or facilitation of
action (Chevalier & Deniau, 1990; Packard & Knowlton, 2002). Early measure-
ments of event-related potentials in PD patients have shown that caudate nucleus
(which is in the dorsal striatum) is activated in response to salient and meaningful
stimuli (Kropotov & Etlinger, 1999). By using fMRI technology, experimental
studies were conducted to understand the individual roles of the BG nuclei. These
studies showed that dorsal striatum activity encodes reward expectation
(O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003; O’Doherty, 2004) and
punishments (Seymour, Daw, Dayan, Singer, & Dolan, 2007). The ventral striatum
also encodes risk anticipation in addition to rewards (Preuschoff, Bossaerts, &
Quartz, 2006). Using fMRI studies, Tanaka et al. (2004) observed that
ventro-anterior part of striatum is involved in predicting immediate rewards and
dorsoposterior regions in future rewards (Tanaka et al., 2004). To understand role of
other BG nuclei in action selection, Kropotov and Etlinger (1999) conducted a digit

26 3 The Motor, Cognitive, Affective, and Autonomic Functions …



recognition task on PD patients where the authors observed that non-recognition of
symbols led to inhibition of GPi activity (Kropotov & Etlinger, 1999). Apart from
this, the authors also observed a selection activation of basal ganglia-thalamic
circuits during set switching.

Although the neural correlates for exploitation–exploration at the cortical level
have been proposed and identified, their counterparts at the subcortical level are still
under debate. Using a modified version of n-arm bandit task and fMRI measure-
ments, Daw and colleagues observed that fronto-polar cortex and intraparietal
sulcus were active during exploratory choices while ventromedial prefrontal cortex
(VmPFC) during exploitative (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006).
They have also suggested that striatum could be the subcortical counterpart of
VmPFC. Jepma and colleagues proposed the role of locus coeruleus–nore-
pinephrine in establishing the Explore–Exploit trade off by measuring the changes
in pupil diameter in human subjects who participated in a utility-based task (Jepma
& Nieuwenhuis, 2011). It has also been suggested that the pallidum, in its inter-
actions with the noradrenergic system, controls the balance between exploration–
exploitation (Aston-Jones, Rajkowski, Kubiak, & Alexinsky, 1994; Doya, 2002;
Russell, Allin, Lamm, & Taljaard, 1992). Monchi, Petrides, Strafella, Worsley, and
Doyon (2006) observed an increase in dorsal striatum (caudate and putamen) during
planning of a set shift, whereas an increase in STN activity was observed during
actual shifting conditions irrespective of its planning (Monchi et al., 2006).

3.2.2 Attention

Various studies show that the basal ganglia play a key role in attentional processes
(Carbon &Marie, 2003; Hayes, Davidson, Keele, & Rafal, 1998; Isoda & Hikosaka,
2008; Moustafa & Gluck, 2011; Nieoullon, 2002; Robbins, 2007; Saint-Cyr, 2003).
The role of BG in attentional processes is evident by many neuropsychological
studies on patients with BG dysfunction, such as PD (Allcock et al., 2009; Botha &
Carr, 2012; Hall et al., 2016; Moustafa et al., 2016; Moustafa, Sherman, & Frank,
2008; Yogev et al., 2005). It is suggested that the BG’s role in attentional processes
includes resisting interference from distractors (Bocquillon et al., 2012).
Specifically, studies found that the STN and GP play a key role in attention
(Schmalbach et al., 2014; Witt, Kopper, Deuschl, & Krack, 2006). In addition,
neural theories and experimental data point to a role for dopamine in attentional
processes (Boulougouris & Tsaltas, 2008; Ungless, 2004). It is argued that stimulus-
locked phasic responses of dopamine neurons are related to the saliency of stimuli
and thus attentional allocation requirements for those stimuli. The exact role of the
basal ganglia direct and indirect pathways is not known; however, it is argued that
the direct pathway plays a role in paying attention to salient stimuli in the envi-
ronment and the indirect pathway in learned inattention, that is, ignoring stimuli that
are task irrelevant. It was also found that the hyperdirect pathway, which includes the
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subthalamic nucleus, plays a role in focused attention (Beck et al., 2017; Bockova
et al., 2011; Schmalbach et al., 2014; Witt et al., 2006). Its exact function is not
known, although it is suggested that it sends a global signal to other structures to
decide whether to pay attention or not.

3.2.3 Working Memory

Working memory, a term that refers to temporary storage of information in the
brain, is often used synonymously with short-term memory. The life of this form of
memory is of the order of seconds. Some of the earliest findings about the neural
substrates of working memory came from the lesion studies of (Jacobsen) who
showed that lesions of prefrontal cortex (PFC) impaired working memory perfor-
mance in monkeys. Subsequently, it was shown that neurons of PFC hold on to
information in the form of sustained activity during the delay period in a delayed
matching task (Fuster, 1973; Goldman-Rakic, 1991). Dopamine projections to PFC
seem to play a key role in working memory functions of PFC since direct appli-
cation of dopamine agonists or antagonists to PFC resulted in degradation of
working memory performance (Sawaguchi & Goldman-Rakic, 1994; Zahrt, Taylor,
Mathew, & Arnsten, 1997). The role of basal ganglia in working memory has been
demonstrated by functional neuroimaging studies (Tomasi, Chang, Caparelli, &
Ernst, 2007). Prefrontal cortex and basal ganglia control access to working memory
(McNab et al., 2008) and animal electrophysiology (Lewis, Dove, Robbins, Barker,
& Owen, 2004; Menon, Anagnoson, Glover, & Pfefferbaum, 2000; Postle &
D’Esposito, 1999). The role of the basal ganglia in working memory is further
confirmed by the fact that working memory performance is impaired in Parkinson’s
patients (Beato et al., 2008; Fallon, Mattiesing, Muhammed, Manohar, & Husain,
2017; Fournet, Moreaud, Roulin, Naegele, & Pellat, 2000; Hodgson, Dittrich,
Henderson, & Kennard, 1999; Lewis, Slabosz, Robbins, Barker, & Owen, 2005;
Moustafa, Bell, Eissa, & Hewedi, 2013; Moustafa, Herzallah, & Gluck, 2013;
Moustafa, Sherman, & Frank, 2008; Owen, Doyon, Dagher, Sadikot, & Evans,
1998). Several studies have shown that working memory is a key function
underlying several other cognitive processes, such as sequential movement (for
discussion, see Moustafa et al., 2016).

3.2.4 Sequence Learning

In sequential arm movements, it was shown that pallidal neurons are selectively
activated for certain components of the movement (Mushiake & Strick, 1995). By
studying hand–eye coordination in trained monkeys, Kermadi and Joseph (1995)
have shown that neurons in the caudate nucleus are tuned to specific sequences of
eye–hand movements (Kermadi & Joseph, 1995). The involvement of both caudate
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and putamen in sequence learning was confirmed in humans using functional
Magnetic Resonance Imaging (Rauch et al., 1997).

Benecke, Rothwell, Dick, Day, and Marsden (1987) have noted impairment in
execution of movement sequences in patients with Parkinson’s disease (Benecke
et al., 1987). By analyzing the interonset and movement durations, the authors
conclude that the peculiar difficulty faced by PD patients can be traced to a deficit in
the capacity to switch from one motor program to another in a motor sequence.
Similar studies were performed by Harrington and Haaland (1991) with PD patients
performing reaction time experiments involving sequential hand movements. PD
patients exhibited more errors and performed slower than controls in executing long
and complex sequences, suggestive of deficit in switching hand postures
(Harrington & Haaland, 1991). It is argued that the basal ganglia learn sequential
movements step by step via dopaminergic projections from the substantia nigra pars
compacta.

3.2.5 Sleep Regulation

Considering the well-known effect of psychostimulants on sleep and wakefulness,
and the link between such drugs and the brain’s reward system, a role for the basal
ganglia in sleep regulation is anticipated. Another reason that points to a link
between BG and sleep regulation is the fact that Parkinson’s disease patients are
typically plagued by sleep disturbances. Studies on rats involving chemical
lesioning of the striatum revealed that the dorsal striatum plays a role in wake-
fulness, whereas the nAcc plays a role in sleep (Lazarus, Chen, Urade, & Huang,
2013). Striatal lesioning also affected the dynamics of sleep leading to fragmen-
tation, which is the amount of movement or restlessness in a sleep period.
Particularly, lesioning of nAcc led to shortened duration of bouts of Non-Rapid Eye
Movement (NREM) sleep. The Nucleus Accumbens Core/Shell plays a role in
Sleep-Wake Regulation and Modafinil-Induced Arousal. Lesioning of GPe resulted
in a radical increase in wakefulness manifesting as insomnia. Dopamine levels in
various brain regions are also known to fluctuate with sleep stages. For example,
extracellular dopamine levels are lower in medial prefrontal (mPFC) and nAcc
during NREM sleep, but higher during waking and Rapid Eye Movement
(REM) sleep (Lena et al., 2005). Consistent with the previous finding, it was shown
that modafinil, a wakefulness-promoting drug, increases extracellular levels of
dopamine in mPFC and nAcc (Murillo-Rodríguez, Haro, Palomero-Rivero,
Millán-Aldaco, & Drucker-Colín, 2007). Similar PD drugs like piribedil and
pramipexole, which are D2R agonists, cause sudden sleep attacks in humans
(Lipford & Silber, 2012; Tan, 2003).
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3.3 Mood and Emotional Processes of the Basal Ganglia

3.3.1 Negative and Positive Affect

In addition to motor and cognitive processes, various studies show that the basal
ganglia also play a key role in emotional processes, including positive and negative
ones (Dannlowski et al., 2013; Eitan et al., 2013; Espinosa-Parrilla, Baunez, &
Apicella, 2013; Levy & Dubois, 2006; Subramanian, Hindle, Jackson, & Linden,
2010). Specifically, it has been shown that the ventral striatum is involved in reward
and positive affective processes (Dannlowski et al., 2013; Moretti & Signori, 2016;
Steele, Kumar, & Ebmeier, 2007) as well negative affective processes (Correia,
McGrath, Lee, Graybiel, & Goosens, 2016; Graham et al., 2016; Reznikov, Binko,
Nobrega, & Hamani, 2016). Similarly, the subthalamic nucleus is also involved in
positive and negative emotional processes (Altug, Acar, Acar, & Cavlak, 2011; Eitan
et al., 2013; Karachi et al., 2005; Schneider et al., 2003) as well as mood processes
(Czernecki et al., 2008; Pinsker, Amtage, Berger, Nikkhah, & van Elst, 2013).

Several studies have also shown that depressive episodes are related to basal
ganglia dysfunction (Laasonen-Balk et al., 1999; Pan et al., 2017). Depression is
not uncommon in PD patients (Herzallah et al., 2010). It has been suggested that
reduced activity in the ventral striatum is related to the occurrence of depression in
PD patients (Remy, Doder, Lees, Turjanski, & Brooks, 2005).

3.4 Autonomic Processes of the Basal Ganglia

The basal ganglia have also been found to play an essential role in autonomous
activity. The classic features of PD symptoms shed light on the autonomic control
of dopaminergic projections and their target nuclei such as the basal ganglia. These
symptoms include autonomic gastrointestinal dysfunction, abnormal salivation,
dysphagia, constipation (Edwards, Quigley, Hofman, & Pfeiffer, 1993), bladder
dysfunction (Murnaghan, 1961; Porter & Bors, 1971), and thermoregulation
(Appenzeller & Goss, 1971; Gubbay & Barwick, 1966). Several cardiovascular and
renal functions are also disturbed in PD, leading to disturbances to heart rate
variability (Goldstein, Holmes, Dendi, Bruce, & Li, 2002; Kallio et al., 2000;
Senard, Brefel-Courbon, Rascol, & Montastruc, 2001) and abnormal blood pressure
regulation. Studies manipulating chemical signals through microinjections at the
striatum have provided direct link between the functioning of basal ganglia to blood
pressure regulation (Pazo & Medina, 1983). The Nucleus Tractus Solitarii projects,
via a set of cortical intermediary stages, to the nAcc, an important nucleus in the
brain’s reward system. Neurons in the Nucleus Tractus Solitarii also receive sen-
sory signals from the circulatory system via vagus and glossopharyngeal nerves.
Such anatomical data are related to the neural hierarchy that controls systemic
circulation; it is compelling to speculate that the brain’s reward network is involved

30 3 The Motor, Cognitive, Affective, and Autonomic Functions …



in regulation of systemic circulation (Cechetto & Shoemaker, 2009; Neafsey, 1991;
Resstel & Correa, 2006; Verberne & Owens, 1998). Further, research using direct
electrical stimulation in the ganglia has provided evidences for the basal ganglia
control of bladder functions (Pazo, 1976).
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Chapter 4
Classical Computational Approaches
to Modeling the Basal Ganglia

Ahmed A. Moustafa and V. Srinivasa Chakravarthy

Abstract There have been several modeling approaches to simulate BG structure and
function. In this chapter, we discuss major modeling frameworks that have been
proposed to simulate many functions of the BG. Many of such modeling studies are
classical approaches in the field of BG modeling, which have been repeatedly to
simulate many BG functions. In short, here we discuss the following model approa-
ches: dimensionality reduction models, action section selection models, Go/NoGo
models, reinforcement learning (RL) models of the basal ganglia, and Actor–Critic
models. Importantly, this chapter mainly provides an overview of main architectures
used to simulate the BG structure and function. In addition, we discuss many other
models, such as those of gait, reaching, and other in the following chapters.

Below we review the following BG models: dimensionality reduction, action sec-
tion selection models, Go/NoGo, reinforcement learning (RL), and Actor–Critic
models.

4.1 Dimensionality Reduction Models

Most of the research on BG’s functionality and anatomy was oriented toward
understanding its role in action selection. This methodology started as the box
diagrams explaining various anatomical areas, pathways, and connections
(Albin, Young, & Penney, 1989; Gurney, Prescott, & Redgrave, 2001a). Bergman
and associates differed from this main track and studied the BG’s role in dimen-
sionality reduction of the information from the cortex using computational methods
which were further validated using the neural activity of the primate BG while
performing behavioral tasks (Bar-Gad, Havazelet-Heimer, Goldberg, Ruppin, &
Bergman, 2000; Bar-Gad, Morris, & Bergman, 2003). The concept of dimension-
ality reduction came from the observation that a very large number of cortical
neurons project to input port, i.e., striatum which is consistent across the species. It
has been reported that around 17 � 106 cortical neurons project to 1.7 � 106

bringing the convergence ratio to 10, and this ratio is even higher in primates
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(571) and humans (347) (Bar-Gad et al., 2003). This trend is further observed
between striatum and pallidal neurons. The GPi and thalamus then project back to
cortex which is similar to divergence. It is highly important for the information to
be preserved, updated via learning and resent back to the cortex without any losses.

To study this aspect, Bergman and associates proposed the reinforcement-driven
dimensionality reduction (RDDR) model which uses the dopaminergic reinforce-
ment signal to modulate the learning between the layers (Bar-Gad et al., 2000). The
basic RDDR model consists of multilayer feedforward representing the cortex,
striatum, and the GPi. The feedforward weights are updated using Hebbian learning
and the lateral connections within the layers use anti-Hebbian learning methodol-
ogy. The input layer has more number of neurons (higher dimension) than the
output layer (lower dimension) to mimic the cortico-BG anatomy. The output
neuron activity is a function of both inputs received from the first layer and the
lateral input within its own layer. The reinforcement signal as a reward modulates
the learning of feedforward weights (Bar-Gad et al., 2000).

Using this network architecture, they studied the activity of each layer during
encoding of the information and finally calculated the reconstruction error which is
the mean-squared difference between the original and reconstructed elements (from
the output layer) overall input patterns (Bar-Gad et al., 2000). The model predicts
no/low correlation in the activity of the output neurons when compared to the input
layer correlation. This model prediction was in agreement with the neural record-
ings from primate’s pallidum which show irregular activity despite a higher cor-
related cortical input. The cause for the irregular and low correlated output layer
activity is attributed to be by the dynamics of lateral connection within the layer.
Since the reinforcing dopaminergic signal modulates Hebbian learning in feedfor-
ward layers in the model, the authors suggest that this dynamics leads to a network
that not only encodes the maximal variability of its input space but also encodes the
variability of the reward-distorted space.

Finally, they propose an advanced RDDR model which overcomes the draw-
backs of the basic model (Bar-Gad et al., 2003). The first and foremost constraint is
restricting the weights to be either positive or negative which was absent in the
basic model. Second, the individual neurons in the basic model were linear but
since most of BG neurons show a nonlinearity in their firing rate, the individual
units were proposed to be changed to sigmoidal nonlinear units. Furthermore, they
plan on including and expanding the model into multiple loop, sparsely connected
system which is more biologically realistic.

4.2 Action Selection Models

Organisms respond to different actions to different sensory stimuli received from
the world. However, when two sensory stimuli are received simultaneously, it is
often impossible to express the two corresponding actions, since the two actions
may be incompatible, for example, flight or fight when facing a predator. Therefore,
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while sensory streams from the external world may be simultaneous, the organism’s
actions in response to those stimuli must first go through a certain arbitration
process that selects the most optimal actions in a given context. By analyzing the
anatomical position of the BG with respect to the sensory-motor cortical pathways,
Gurney and colleagues (Bogacz & Gurney, 2007; Gurney et al., 2001a; Gurney,
Prescott, & Redgrave, 2001b; Humphries, Stewart, & Gurney, 2006) had proposed
that the BG perform some sort of action selection. Along with this line of thinking,
the BG system has been proposed to be the vertebrate solution to the action
selection problem (Redgrave, Prescott, & Gurney, 1999). Several studies suggest
that the basal ganglia play a key role in action selection (Seo, Lee, & Averbeck,
2012).

In an attempt to explain how the BG structures implement the putative action
selection function, Redgrave et al. (1999) proposed that the striatum computes some
sort of salience of multiple action alternatives that influence the motor cortex at a
given instant. Actions with the highest salience win the competition and have the
highest chance to be expressed. Local inhibition among the GABAergic medium
spiny neurons (MSNs) is thought to provide the cellular-level mechanism for
competition among the representations of multiple actions at the level of striatum.
Furthermore, the focused inhibitory projections from the striatum to the GPi
combined with the diffuse excitatory projections from the STN to the GPi are
thought to create a feedforward off-center/on-surround input/output response at the
level of the output nucleus of BG, viz. GPi. Similar proposals have been made by
others as well (Mink, 1996). These ideas have been further substantiated since they
been realized in a robotic system driven by a BG-like control architecture (Prescott,
2002).

The idea that the lateral inhibitory network of MSNs within the striatum can
implement competition among actions has been explored by other researchers also.
For instance, Wickens (1997) investigated the exact topological and other con-
nectivity parameters that enable the striatal network to perform the desired function
of action competition. Another attractive feature of this network model is the
observed change in the dynamics under the condition of Parkinsonian-like reduc-
tion in dopamine. When the dopamine levels are reduced below ‘normal,’ the
network dynamics switched from competition to co-activation, whereby multiple
incompatible actions are selected, a situation that can naturally explain Parkinsonian
motor impairments like rigidity.

Based on the action selection theory of the BG developed by Gurney and others
since the 90s, Humphries et al. (2006) developed a detailed spiking neuron model
of the BG system, incorporating all the major nuclei. The model exhibits action
selection dynamics as has been intuitively proposed and demonstrated in simpler
rate-coded models earlier. Another prominent feature of the model is the syn-
chronized oscillations of STN–GPe system, which can be modulated by dopamine.
In this model, under normal or high dopamine conditions, STN and GPe are
decoupled and exhibit desynchronized oscillations; under reduced dopamine con-
ditions, the two nuclei are dynamically coupled, displaying pathologically syn-
chronized oscillations as under Parkinson’s conditions.
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In one interesting study, Amos (2000) proposes a model that simulates perfor-
mance in the Wisconsin Card Sorting Test (WCST). The model incorporates
interaction between the prefrontal cortex (PFC) and the basal ganglia. The model
provides a computational validity of how patients with PFC disorders show per-
severative errors and patients with basal ganglia disorders show random errors in
performing the WCST, in which the agent learns to categorize cards based on a
certain rule. Further, after making some number of correct trials, the agent must
relearn to sort the cards based on a different rule. The model incorporates closed and
open cortex-basal-ganglia loops. PFC subserves active maintenance of the sorting
rule, while the basal ganglia subserve selecting motor responses. The striatum
subserves integration of information encoded in the cortex and maps cortical
activity into motor responses. The basal ganglia receive input from PFC and sen-
sory association cortex (which encodes represents target and input cards). The
function of basal ganglia input to PFC is to provide feedback that the response
made is correct (not modeled). If the response is not correct, PFC changes its
sorting rule based on feedback from the basal ganglia. Note that this assumption is
different from the assumption that basal ganglia input to PFC subserves gating of
information into WM in that in the former, maintaining of information in WM is not
dependent on the integrity of the basal ganglia. In the Amos model, DA projected to
striatum or PFC is assumed to increase the signal-to-noise ratio (Cohen &
Servan-Schreiber, 1992). That is, DA projected to a striatal or prefrontal neuron
decreases the effect of noise and thus increases neural responses to stimuli. DA
depletion in a brain area is modeled by decreasing the gain of sigmoidal units
representing that area (also see Cohen & Servan-Schreiber, 1992). In this model,
lesioning of brain area is simulated by decreasing the output of neurons repre-
senting that area.

The simulation results show that DA reduction in PFC is associated with the
occurrence of perseverative responses, while DA reduction in the striatum is
associated with the occurrence of random errors. Frontal dysfunction is associated
with the occurrence of perseverative responses because it is only sensory associa-
tion areas that project information to the striatum. Because the representation of the
sorting rule is not maintained in frontal cortex, it is only motor response that is
associated with the striatal unit that has the highest activation is selected in the
entire experiment (I am assuming that noise is fixed throughout the whole exper-
iment; note that there is no learning in the model). The model has some limitations.
It is not trained to perform the task. Also, the basal ganglia indirect pathway is not
incorporated in the model. Also, the model does not account for the finding that
damage to the basal ganglia leads to the occurrence of perseverative responses in
WM tasks, including the WCST.

Based on prior work, some recent models also show that the dopamine pro-
jection to the striatum plays a key role in action section while dopamine projection
to the prefrontal cortex is key for attentional learning, that is, learning to pay
attention to key information in the environment based on corrective feedback
(Moustafa & Gluck, 2011a, 2011b; Moustafa, Herzallah, & Gluck, 2014).
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There have been several recent models building on the action selection
hypothesis of BG function. For example, a recent extension by Gurney and col-
leagues also showed that the neuropeptide Substance P (SP) and encephalin in the
striatum play a role on action selection and sequential processing (Buxton, Bracci,
Overton, & Gurney, 2017). In another study, the same group has simulated the
relationship between action selection and gamma and beta oscillations (Blenkinsop,
Anderson, & Gurney, 2017).

4.3 Go/NoGo Models

Frank provided a neurocomputational model of how the BG, thalamus, and cortex,
along with DA and other neurotransmitters, interact with reward-based, motor, and
cognitive learning tasks. Frank simulated performance in different motor and
cognitive tasks subserved by the BG, including WM and decision making. Frank’s
framework suggests that the BG modulate both motor and cognitive actions, which
are encoded in the motor and prefrontal cortices (Frank, Loughry, & O’Reilly;
Houk, 2005; O’Reilly & Frank, 2006). In the motor domain, these models assume
that BG output to the premotor cortex is responsible for action selection. Similarly,
in the cognitive domain, the BG modulates representations encoded in the pre-
frontal cortex (Frank et al., 2001; Middleton & Strick, 2000, 2002; O’Reilly &
Frank, 2006).

Most importantly, Frank suggests that DA subserves motor, cognitive, and
reward-based learning and performance in the BG, which is supported by prior
research (Delgado, Miller, Inati, & Phelps, 2005; Schultz, 1998; Schultz, Dayan, &
Montague, 1997; Shohamy, Myers, Geghman, Sage, & Gluck, 2006). DA bursts
and dips facilitate learning to select the most adaptive response and avoid the least
adaptive ones via changes in synaptic plasticity in the BG direct (Go) and indirect
(NoGo) pathways. Subsequent experiments supported a core prediction of the
models, where PD patients off medication were impaired at learning from positive
relative to negative reinforcement, whereas the same patients on medication showed
the opposite pattern of learning bias (Frank, Seeberger, & O’Reilly, 2004). In
Frank’s models, the simulated non-medicated PD condition show enhanced nega-
tive, but not positive, reinforcement learning, and simulated DA medications
reverse this bias (Frank et al., 2004). Frank also confirmed his models’ predictions
in subsequent empirical studies in ADHD patients (Frank, Santamaria, O’Reilly, &
Willcutt), and in normal healthy subjects who were administered dopamine agonists
and antagonists (Frank & O’Reilly, 2006).

More recent extensions of these models explore the specific role of the STN in
decision making. In particular, Frank’s model suggests that the STN provides a
dynamic global NoGo signal on motor and cognitive actions. Empirical evidence
for this hypothesis is reported in an fMRI study with human subjects (Aron &
Poldrack, 2006). Simulation results also suggest that the STN plays an important
role in high-conflict decisions, that is, decisions in which both alternatives are
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equally good or equally bad (Hershey et al., 2004). In Frank’s model, the repre-
sentation of multiple competing responses in premotor and cingulate regions
(Braver et al., 2001; Frank, 2005), by activating the STN, is critical for slowing
responding and preventing premature responding during difficult decisions. In these
models, simulated STN lesions lead to premature responding in choice paradigms,
consistent with evidence for this behavior in STN-lesioned rats (Baunez & Robbins,
1997). Frank’s model suggests that by tonically stimulating the STN at unnaturally
high frequencies, DBS effectively eliminates dynamic functions of the STN (similar
to a lesion) and therefore removes the global NoGo signal (Benazzouz & Hallett,
2000; Limousin et al., 1997; Meissner et al., 2005). Specifically, STN is more
active when response conflict is high (i.e., both responses have similar reinforce-
ment values). This increase in activity slows responding (as evidenced by gradual
thalamic activity increases) and prevents the model from making hasty decisions in
high-conflict conditions. Both intact networks and those with STN–DBS success-
fully learn to select the appropriate response in the training phase. However, in the
test phase, STN–DBS impaired selection in the high-conflict condition, in which the
stimuli have comparable reinforcement values (80% vs. 70%).

Further, the sometimes reported DBS side effects of emotional hyperactivity or
uncontrolled laughter (Czernecki et al., 2002; Funkiewiez et al., 2003; Krack et al.,
2001) or distractibility (Saint-Cyr, Trepanier, Kumar, Lozano, & Lang, 2000) could
result from reduction in NoGo activity possibly due to current spread to the limbic
or associative STN (see Karachi et al., 2005; Krack et al., 2001). Frank’s framework
suggests that distractibility is a higher level cognitive analogue of premature
responding and could occur due to excessive gating of information into the pre-
frontal cortex (Frank et al., 2001). This hypothesis was tested using a cognitive task
known as the AX-CPT. The AX-CPT is a working memory task in which subjects
are presented with sequential letter stimuli (A, B, X, Y; printed in red) and are
instructed to press one of two keys to each letter presentation (Cohen, Barch, Carter,
& Servan-Schreiber, 1999; Servan-Schreiber, Cohen, & Steingard, 1996). Subjects
are to instructed to press key on the right side of the keyboard (‘m’) when A is
followed by X (AX ‘target’ trials) and to press a left key (‘z’) otherwise (AY, BX,
and BY trials). In short, Frank’s modeling framework suggests that the prefrontal
cortex plays a key role in the active maintenance of information in WM, whereas
the BG is key for modulating when and when not to update information into WM, a
function that becomes further.

Beiser and Houk (1998) proposed a gating model which is conceptually similar
to the Frank et al. (2001) model. In both models, input stimuli are transiently
represented in prefrontal cortex and gating of information into WM is subserved by
PFC-basal-ganglia-segregated loops. The Beiser and Houk model simulates per-
formance in a delayed sequence learning task. In this task, the model is presented
with a sequence of key illuminations in some order. After a delay, the simulated
subject is supposed to press the keys in the same order they were presented. The
Beiser and Houk model assumes that the sequences of key illuminations (which are
presented in a temporal order) are spatially represented within PFC. The model
simulates gating of stimuli into WM (termed the encoding problem). The model
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shows that different key illumination sequences have different spatial representa-
tions (i.e., patterns of activity) in PFC. this model hypothesizes that input stimuli
transiently activate PFC neurons, which in turn activate the caudate nucleus. Then,
disinhibition of the thalamus leads to maintenance of the stimulus in frontocorti-
cothalamic loops. The model has some limitations. The Beiser and Houk model
does not simulate how the model presses the keys in the same order they are
presented (termed the decoding problem). Another limitation of this model is that it
is not trained to perform the task. Also, the indirect pathway of the basal ganglia is
not incorporated in the model.

Building on Go/NoGo models of the basal ganglia, one recent model simulated
the role basal ganglia interaction with the spinal cord in action selection (Kim et al.,
2017). Unlike prior models, this model simulates arm reaching in dynamical
environments that involve choosing between multiple actions. One other model also
built on previous Go/NoGo models but further incorporated a two-term Hebb rule
to train synapses in the striatum (Baston & Ursino, 2015).

4.4 RL Models of Basal Ganglia

The most commonly used models to simulate BG function are RL models.
Reinforcement learning (RL) is an unsupervised machine learning approach

which has a large similarity with the mechanism of brain’s functioning. In RL, an
agent (e.g., the BG) in a state (st) at time ‘t’ makes an action (at) and receives a
reward (rt) from the environment. The aim of the agent is to maximize the reward
by choosing an optimal policy. With its roots in the theory of instrumental con-
ditioning in psychology, RL describes the manner in which an agent learns stim-
ulus–response (S-R) relations based on action outcomes: S–R pairs associated with
rewarding outcomes are reinforced while those that result in punishment are
attenuated. Typically, since there is a delay between an action and its outcomes, RL
theory proposes a surrogate to reward, known as value, which is used by the actor in
selecting a potentially rewarding action (Sutton & Barto, 1998). Schultz’s seminal
experiment where dopaminergic activity was recorded from macaques has shown
that DA codes for reward prediction error. This error term was similar to the
temporal difference error (‘d’) in RL. Experimental data show that BG receives
reward-related information in the form of dopaminergic input to striatum
(Chakravarthy, Joseph, & Bapi, 2010; Niv, 2009). Dopamine has also been known
to induce cortico-striatal plasticity changes which (Reynolds & Wickens, 2002)
modulate the Hebb-like plasticity of cortico-striatal synapses (Surmeier, Ding, Day,
Wang, & Shen, 2007). Based on these observations, a considerable body of the
modeling literature has grown around the notion that BG uses this reward-related
information from DA neurons to perform various cognitive functions such as
decision making and sequence generation (Chakravarthy et al., 2010; Niv, 2009).
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Many models dealt before just focus on the action selection strategies in the
basal ganglia (Bar-Gad et al., 2003; Gurney et al., 2001a; Humphries, Khamassi, &
Gurney, 2012). The essential reinforcing properties of dopamine were not fully
utilized in such models. Plenty of evidences relate dopamine activity to long-term
potentiation and depression of synapses (Schultz, 1998; Wickens, Horvitz, Costa, &
Killcross, 2007; Wise, 2004; Wise & Rompre, 1989). Perhaps, the three-factor rule
for synapse learning has dopamine as one important factor along with pre- and
post-synaptic information to control the synaptic strength and their learning
(Wickens & Kötter, 1995). Furthermore, the classic experiments by Schultz and
colleagues, and models by Houk and colleagues (Houk, Adams, & Barto, 1995;
Schultz, 1998), show that dopamine does not just have rewarding aspects, but also
reward prediction properties. Detailed experiments prove that a mathematical
quantity called reward prediction error (Sutton & Barto, 1998) well matches the
signaling of dopaminergic neurons.

The experimental evidences begin with the classic one by Schultz and colleagues
(Schultz, 1998) that show dopaminergic neurons increase their firing at the time of
reward, ‘r’. If we denote their activity as variable, ‘d’, then

d / r

Bringing in the concept of rewards for learning and decision making begs the
necessity to impart the ideas of reinforcement learning (Sutton & Barto, 1998).
Reinforcement learning is a branch of machine learning, where the agent updates
knowledge about the environment and makes efficient decisions, by sampling
rewards for his/her actions in a state. The goal is to maximize the rewards obtained
in a state.

More specifically, dopamine was found not just to respond to rewards alone, but
to reward predictions. Reward predictions are tracked by a function called ‘value’ in
reinforcement learning. It is defined as

QðtÞ ¼
X1

i¼tþ 1

ri

The above formula can be improvised by accounting for the discounting of
future rewards using a factor, c:

QðtÞ ¼ rtþ 1 þ crtþ 2 þ c2rtþ 3 þ � � � þ cn�1rtþ n

Serotonergic neurons are suggested to correlate with the discount factor, c
(Tanaka et al., 2007). Updating the value function happens by:

Qðtþ 1Þ ¼ QðtÞþ gQdt

The algorithm can be defined to explain state-action-reward-next state-next
action (SARSA) as a sequence, and Q function can be written as Q(st, at), where ‘st’
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is the state at time ‘t’, ‘at’ is the action performed at time ‘t’, and ‘ηQ’ is the learning
rate of the action value function (0 < ηQ < 1). The temporal difference (TD) error
measure of DA is defined by dt in the following equation for the case of immediate
reward problems (c = 0).

dt ¼ rt � Q st; atð Þ

This is called reward prediction error, and the quantity closely matches with the
dopaminergic firing than just the reward or reward prediction value. It also repre-
sents Rescorla Wagner’s (RW) rule that brings about an association of uncondi-
tioned stimulus (reward, US) and the conditioned stimulus (states, CS). In case of a
nonzero discount factor, the temporal prediction (TD) is defined as:

dt ¼ rt þ cQ stþ 1; atþ 1ð Þ � Q st; atð Þ

The striatal neurons are suggested to compute and keep track of value functions
and reward prediction-related quantities (Balleine, Delgado, & Hikosaka, 2007;
Delgado, 2007; O’Doherty et al., 2004; Samejima, Ueda, Doya, & Kimura, 2005).
In RL language, this approximates to the function of critic module (Joel, Niv, &
Ruppin, 2002).

A companion to critic is called actor module. This module uses the evaluations
of states and actions as computed by the critic, for executing a choice selection.
Action selection could be exploratory or exploitatory (Sutton & Barto, 1998). The
function that decides the amount of randomness in making a choice is called policy,
p. Some famous policies in RL include epsilon greedy—where at any time for a
state, random action is executed with probability, �; soft-max, where there is a
temperature parameter, b, controlling exploration. Lower values of b less differ-
entiate value function, Q and result in more exploration than higher values of b.

pa1 ¼ e�bQa1

e�bQa1 þ e�bQa2

Here, pa1 denotes the probability of choosing action, a1, from a state, s, at time,
t. The policy equivalent in the basal ganglia composes the dynamics executed by
the direct and indirect pathways.

Actor–Critic Models

Actor–Critic models, on the other hand, focus on simulating (perceptually- and
memory-guided) motor actions. These BG models simulate behavior in motor
learning tasks, such as instrumental conditioning (e.g., Houk, 1995a), S-R (e.g.,
Berns & Sejnowski, 1996; Khamassi, Girard, Berthoz, & Guillot, 2004; Suri,
Bargas, & Arbib, 2001), sequence learning (Suri & Schultz, 1998), and
delayed-response tasks (Suri & Schultz, 1999).

Actor–Critic models dissociate motor learning from reward prediction learning
in motor tasks (Houk, 1995b; O’Doherty et al., 2004). In an instrumental
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conditioning task, for example, the animal is triggered (e.g., by illumination of a
light or presentation of an auditory signal) to make a certain motor response in order
to receive a reward. Actor–Critic models assume that in these tasks, the animal
learns (a) that the trigger stimulus predicts the occurrence of a reward (reward
prediction) and (b) how to make the motor response that is followed by the reward.

In the Actor–Critic architecture (Fig. 4.1), the Critic is responsible for learning
how to predict a reward, while the Actor is responsible for adapting motor actions
based on instructions from the Critic (Barto, 1995, 2003). The Critic sends a
learning signal (also known as reinforcement or prediction error signal) to the Actor
informing it whether the motor response it has made had rewarding consequences.
A positive signal informs the Actor to increase the likelihood of making (i.e.,
reinforce) the action it has just made, whereas a negative one informs the Actor not
to make the motor response it has just made. The Critic, on the other hand, does not
receive a signal from the Actor (Fig. 4.1). However, it is informed whether the
motor response that the Actor made had rewarding consequences.

The Houk and colleagues models

Houk and colleagues (Houk, 1995a; Houk et al., 1995) provided perhaps the first
model to suggest that the basal ganglia are structurally and functionally similar to
an Actor–Critic architecture (Joel et al., 2002). They suggested that the basic
structure of the Actor–Critic architecture can be mapped onto the striatum. They
suggested that the striosomes (and their efferent targets) are functionally equivalent
to the Critic. This is based on the fact that (a) the striosomes are reciprocally
connected to the SNc (a brain area subserving reward-based learning) and

Environment

Critic

Actor

Reward

Learning signal

Input

Input

Action

Fig. 4.1 Actor–Critic
architecture. Both the Actor
and Critic receive inputs from
the environment (which
includes the experimenter).
The Actor is responsible for
making motor responses. If it
makes the correct motor
response, the model is
rewarded. The Critic is
responsible for reward
prediction learning. The Critic
receives a reward from the
environment and sends a
learning signal to the Actor,
informing it whether the
action made has rewarding
consequences or not (Barto,
2003)
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(b) synaptic modification in the cortex-striosome pathway is DA-dependent, pre-
sumably subserving reward-based learning. Houk et al. also suggested that the
matrisomes (and their efferent targets) are functionally equivalent to the Actor. This
is based on the fact that matrisomes (via the GPi and thalamus) send projections to
motor cortex.

Houk et al. (1995) proposed a conceptual model (i.e., without simulation studies)
that simulates behavior in an instrumental conditioning task. In this task, the
monkey learns to press a lever in order to receive a reward. A stimulus (CS) triggers
the monkey to make a motor response. The model assumes that learning to predict
the US is subserved by the cortex, striosomes, and SNc. The model also assumes
that learning to make the motor response (pressing the lever) is subserved by the
matrisomes, cortex, GPi, and thalamus. Most importantly, Houk et al. (1995) argue
that the striosomes–SNc pathways compute the TD error. The inhibitory pathway,
the excitatory pathway, and lateral hypothalamus input to SNc, respectively,
compute Pðt � 1Þ;PðtÞ;RðtÞ.

The Houk et al. (1995) model has some limitations. One limitation is that the
model does not explain the role of corticocortical connectivity in learning instru-
mental conditioning tasks (though it is depicted). Similarly, the model does not
explain the role of the basal ganglia indirect pathway in learning to perform motor
tasks. Also, the model is a conceptual, rather than a simulation, model. Houk et al.’s
assumptions that the striosomes are functionally equivalent to the Critic, while the
matrisomes are functionally equivalent to the Actor, are incorporated in models
simulating functions subserved by the basal ganglia, such as S-R learning
(Khamassi et al., 2004; Suri et al., 2001), a spatial delayed-response task (Suri &
Schultz, 1999), and sequence learning tasks (Suri & Schultz, 1998; Tian, Arnold,
Sejnowski, & Jabri, 2003).

The Suri and Colleagues Models

Suri and Schultz (1998) propose an Actor–Critic model that simulates behavior in a
sequence learning task. In this task, the model is trained to sequentially associate
the presence of different stimuli (A, B, C, D, E, F, and G) with making different
motor responses (Q, R, S, T, U, V, and W). In other words, on each trial, the model
learns to associate the presentation of A with making response Q, the presentation
of B with making response R, and so on. Similar to the Houk et al. model, this
model assumes that the striosomes subserve reward prediction learning, while the
matrisomes subserve action learning. Each compartment is simulated using a
one-layer network. The cortex connectivity to the matrisomes and striosomes is
fully connected. The model assumes that action selection (Selection in this study is
construed as choosing an action from several, potential actions) is achieved in the
matrisomes. A WTA network, presumably simulating lateral inhibition between
matrisomal units, selects the unit with the highest activity. Each matrisomal unit
corresponds to an action.

The Suri and Schultz (1998) model is trained using the TD algorithm. To my
knowledge, there are no recording studies from DA neurons while the animal is
performing a sequence learning task. The model, however, assumes that DA phasic
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signal shifts to the time of CS’s, until it reaches the earliest CS. This assumption is
based on the fact that DA phasic responses move back in time in DRTs (Schultz,
Apicella, & Ljungberg, 1993) and instrumental conditioning tasks (Schultz et al.,
1997).

They also studied the effect of training the model using an unconditional rein-
forcement signal, which means that the DA signal does not shift to the time of
conditioned stimuli and always associated with the reward whether predicted or not
—hence its name. Simulation results suggest that non-shifting of the DA signal is
associated with impaired learning, providing evidence that shifting of the DA
phasic signal is associated with enhanced learning to perform the task. Tian et al.
(2003) propose an Actor–Critic model, which is conceptually similar to the Suri and
Schultz (1998) model. The Tian et al. model simulates a sequence learning task and
is applied to the field of robotics. One limitation of the model is that it assumes the
model will make actions only when a stimulus is presented. This is not plausible
because animal studies show that during learning, animals sometimes make motor
responses before or much after the trigger presentation.

Suri and Schultz (1999) propose another Actor–Critic model that simulates
behavior in a spatial DRT (Schultz et al., 1993). This model’s assumptions are
similar to those of the Suri and Schultz (1998) model. This model simulates
memory-guided motor responses. The model assumes that memory-guided motor
responses are subserved by the PFC-basal ganglia pathway. It also assumes that
learning to make memory-guided motor responses is subserved by DA projections
to the striatum. Suri and Schultz (1999) also simulated the occurrence of preser-
vative responses in PD patients. They assumed that striatal DA reduction in PD
leads to non-shifting of the DA phasic signal to the time of conditioned stimuli.
They trained their model using an unconditional reinforcement signal. Their model
suggested that inappropriate time shifting of the DA phasic signal is responsible for
the occurrence of perseverative responses in PD. Simulation results also show that
not presenting the predicted reward after learning leads to behavioral extinction.
The Suri and Schultz (1999) model has some limitations. This model does not
simulate how input information is gated into WM. Further, this model does not deal
with the presentation of distractors.

Suri et al. (2001) propose another Actor–Critic model that simulates behavior in
a S-R task, namely a T-maze task. In this task, the rat learns to associate turning
right or left, with facing the green or red stimuli, respectively. The rat is rewarded if
it turns right and reaches the green stimulus. The rat is not rewarded if it turns left.
The assumptions of this model are similar to those of Suri and Schultz (1998,
1999), though it is more physiologically detailed.

As conceptually similar to the Suri and Schultz (1998) model, Baldassarre and
colleagues proposed Actor–Critic models that simulate performance in a foraging
task (Baldassarre, 2002; Baldassarre & Parisi, 2000). In this task, an agent searches
for many food pellets put in a two-dimensional board (The task modeled in the
Baldassarre and Parisi (2000) study is slightly different from that used in the
Baldassarre (2000) study in that in the former, ten reward objects are used while
only three reward objects are used in the latter). The model assumes that the basal
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ganglia subserve S-R learning. It is trained using the TD algorithm. A WTA net-
work selects the action that has the highest activation. The Actor is modeled using
sigmoidal units with noisy threshold. The model uses a unit, called a matcher,
which computes the motivation of the model, such as move when hungry and food
is present. The underlying biological mechanism of the matcher is not specified

The simulation studies show that the Actor–Critic architecture is powerful
enough to simulate a relatively complex task. In this task, the model learns to make
many correct motor responses before receiving a reward (i.e., to move in the
direction of food). The results show that the model learns to find food in about 30
steps (randomly it takes about 100 steps). One limitation of these models is that one
is trained for 200,000 trials and the other for 10,000 trials to perform the task.

The Berns and Sejnowski (1996) Model

Berns and Sejnowski (1996) proposed an Actor–Critic model that assumes that the
basal ganglia subserve action selection. Similar to the Houk et al. (1995) model, in
this model the striosomes subserve the reward-based learning aspect of the task,
while the matrisomes subserve making motor processes. Neurons are simulated
using sigmoidal units. The model is trained using the TD algorithm. The model
assumes that both the VTA and SNc projection to the striatum subserve TD
learning; this, however, did not add any computational power to the model than that
of Suri and Schultz’s models which only uses the SNc.

The neural substrate of action selection in this model is different from that of
Suri and colleagues (see above). Suri and colleagues assume that lateral connec-
tivity of matrisomal neurons (simulated by a WTA network) subserve action
selection. In this model, however, action selection is achieved in the GPi. The Berns
and Sejnowski model assumes that both the striatal and STN input to the GPi
subserve action selection. The Berns and Sejnowski model uses the term
winner-lose-all instead of winner-take-all because the winning GPi unit is inhibited,
not stimulated. In this model, the striatum is sparsely connected to the GPi, while
the STN sends excitatory, diffuse projections to the GPi. The model assumes that
each GPi unit subserves making a different motor response. In this model, the STN
prevents all but the winning GPi unit from being inhibited. The simulation results
found—and actually predicted—that damage to the STN leads to inability to stop
selected actions. They modeled perseveration as related to DA reduction. However,
it is not known how DA reduction is simulated. Or what kind of perseveration they
modeled.

One limitation of this model is that it does not incorporate in the model. Another
limitation of the model is that it assumes that the same striatal neurons send pro-
jections to both the GPe (the indirect pathway) and GPi/SNr. Wilson (2004) noted
that this is not biologically plausible.

O’Reilly (2003) proposed a model very similar to that of Berns and Sejnowski
(1996). The model simulates performance in the 1-2-AX task. This task is an
extension of the AX–CPT task (described above), in which the agent (human sub-
jects or computer model) learns to maintain two items in working memory. The
model incorporates interactions between the basal ganglia and PFC. The model is
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trained using a combination of temporal difference and supervised learning (Leabra)
algorithms. The model assumes that the basal ganglia subserve action selection. This
model did not simulate gating of information into WM, though earlier work by the
same author assumes that the basal ganglia subserve gating of information into WM.
Following this work, one model has incorporated the role of the basal ganglia in both
action section and gating of information into WM (Moustafa & Maida, 2007).

Several recent models have incorporated reinforcement learning methods to
simulate various functions of the basal ganglia. For example, Shivkumar,
Muralidharan, and Chakravarthy (2017) have proposed a model to solve
context-based RL processes. The model assumes that the striosomes control the
function of matrisome by selecting most optimal action. The model made several
predictions that can be tested in future experimental studies. Stocco (2017) has also
extended RL and action selection function of the basal ganglia to simulate more
complex decision-making tasks that cannot be simulated using simpler RL models.
Importantly, most RL models of the BG focus on action learning but often ignore
the representation of time. Accordingly, a recent study has incorporated a
time-sensitive action selection mechanism. This model accounts for interval timing
processes, which is the perception of time duration (Gershman, Moustafa, &
Ludvig, 2014). For similar work on representation of time in RL models, see
Moustafa, Cohen, Sherman, and Frank (2008).

4.5 Conclusions

The modeling approaches described here show some promises in simulating some
of BG functions. However, they have many limitations as they are there many
functions supported by the BG that cannot be simulated by these models. In the
following chapter, we discuss a somewhat novel modeling approach that can be
used to simulate most, if not all, BG functions. Further, in the next few chapters, we
discuss several other BG models that build on the neural architectures presented
here.
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Chapter 5
The Basal Ganglia System as an Engine
for Exploration

V. Srinivasa Chakravarthy
and Pragathi Priyadharsini Balasubramani

Abstract One of the earliest attempts at building a theory of the basal ganglia
(BG) is based on the clinical findings that lesions to the direct and indirect pathways
of the BG produce quite opposite motor manifestations (Albin et al., in Trends
Neurosci 12(10):366–375, 1989). While lesions of the direct pathway (DP),
affecting particularly the projections from the striatum to GPi, are associated with
hypokinetic disorders (distinguished by a paucity of movement), lesions of the
indirect pathway (IP) produce hyperkinetic disorders, such as chorea and tremor. In
this chapter, we argue that describing the two BG pathways as having mutually
opponent actions has limitations. We argue that the BG indirect pathway also plays
a role in exploration. We should evidence from various motor learning and
decision-making tasks that exploration is a necessary process in various behavioral
processes. Importantly, we use the exploration mechanism explained here to sim-
ulate various processes of the basal ganglia which we discuss in the following
chapters.

5.1 Introduction

Subsequent investigations into the function of the direct and indirect pathways
seemed to confirm this dual effect of the two pathways on the output nuclei of the
BG. Neurons of the output nuclei of the BG (GPi and SNr) exhibit tonically high
firing patterns. Under normal, resting conditions, the output nuclei of the BG tend to
inhibit the thalamus and further on the motor cortex, thereby inhibiting movement.
However, when inhibitory inputs (GABA) from the striatum, acting via the direct
pathway, suppress the activity of the BG output nuclei, the baseline inhibition of the
motor cortex by the BG output nuclei is released, and movement is enabled. On the
contrary, if the indirect pathway, particularly the STN, is activated, it excites the
output nuclei further, thereby inhibiting the movement. These findings let to the
thinking that activation of the direct pathway facilitates movement, earning it the
name of Go pathway. Contrarily, the indirect pathway was dubbed the NoGo
pathway since its activation typically inhibits movement.
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The idea of a simple complementarity between the direct and indirect pathways
is further supported by the manner in which dopamine affects striatal neurons. The
projection neurons of the striatum, viz. the medium spiny neurons (MSNs) express
D1- and D2-type dopamine receptors. To quote from Chap. 43 in the classic
neuroscience book by Kandel, Schwartz, and Jessell (2000) ‘striatal neurons that
project directly to the two output nuclei have D1 dopamine receptors, while those
that project in the indirect pathway have D2 receptors that reduce transmission.’
Thus under low dopamine conditions in the striatum, the cortico-striatal inputs are
allowed to pass directly via the direct pathway, while at lower dopamine levels the
cortical inputs are routed via the indirect pathway.

Such descriptions that reinforce the simple complementarity between the two
functional BG pathways are now commonly found in clinical, neurobiological, and
computational accounts of BG (Houk, Davis, & Beiser, 1995; Kandel et al., 2000).

However, the attempt to describe the two BG pathways as having simple
mutually opponent actions on the BG targets has its limitations. There is a tendency
in classical neuroscience to describe interactions among brain areas in simple binary
terms: Area A excites area B, or area A inhibits area B. But the developments in
computational neuroscience that occurred over the last three decades offer a rich
repertoire of dynamical concepts, at single neuronal and network level—attractors,
chaos, synchronization etc.,—that can be used to describe brain function. By
applying these notions to attempt to understand the functional architecture of BG,
we notice a certain weakness in some of the popular accounts of function of the
indirect pathway. Let us consider, for example, an explanation of why the activation
of the indirect pathway inhibits movement, presented in chapter on BG (Chap. 43,
in Kandel, Schwartz, & Jessel, 2000). ‘…phasic activation of the indirect pathway
transiently increases inhibition of the thalamus, as can be determined by consid-
ering the polarity of connections between the striatum and the external pallidal
segment, between the external segment and the subthalamic nucleus, and between
the subthalamic nucleus and the internal pallidal segment.’ The essence of the
argument is as follows: Since the projections from the striatum to GPe are inhibitory
(GABA), those from GPe to STN are inhibitory (GABA), STN to GPi are exci-
tatory (glutamate) and the output projections of GPi are also inhibitory (GABA), an
odd number of inhibitory projections have an inhibitory net effect, and activation of
the indirect pathway inhibits movement. However, the argument omits an important
anatomical fact related to the indirect pathway: the feedback projection from STN
to GPe. The STN–GPe system becomes an excitatory–inhibitory loop that is cap-
able of exhibiting a rich variety of neural dynamics, with important functional
implications. These ideas will be discussed in greater detail further on in this
chapter (Fig. 5.1).

Another component of the BG functional anatomy that does not easily lend itself
to simplified ‘binary’ descriptions is the firing activity of the mesencephalic
dopamine neurons. Since dopamine is not a neurotransmitter, but a neuromodulator,
capable of modulating synaptic strength, its action on target structures cannot be
easily reduced to excitation or inhibition. An elegant line of experiments performed
by Schultz and colleagues (Schultz, Dayan, & Montague, 1997) on the firing
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properties of mesencephalic dopamine cells revealed a novel informational sig-
nificance of dopamine firing. Although activities of dopaminergic cells have been
linked to reward sensing for a long time, experiments by Schultz et al. (1997)
specifically showed that dopamine neurons of Ventral Tegmental Area
(VTA) respond to unexpected rewards (food or juice). Furthermore, when a sensory
stimulus (like a sound or a light flash) consistently precedes the appearance of
reward, such that the stimulus is predictive of the reward, then dopamine cells fire
significantly in response to the stimulus and not so much in response to the reward.
Furthermore, dopamine firing rate actually dropped when the reward was omitted at
the time when the animal was expecting the reward. Such findings led to the insight
that dopamine cell activity is analogous to a quantity known as temporal difference
error (TD error) (Montague, Dayan, & Sejnowski, 1996) which appears in rein-
forcement learning (RL) theory, a branch of machine learning (Sutton, & Barto,
1998). The recognition of the analogy between mesencephalic dopamine signals
and TD error signal of RL had inspired a much larger effort to draw parallels
between other elements of RL theory and anatomical components of BG. Although
the effort to explain various functions of BG using RL concepts is a story in the
making, it is believed that RL holds the promise to create a comprehensive theory
of BG in long term (Chakravarthy, Joseph, & Bapi, 2010).

Fig. 5.1 Schematic showing
the direct and indirect
pathways of basal ganglia
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5.1.1 The Indirect Pathway and Exploration

Now let us consider the elements of RL in simple terms, as a pedagogic exercise, and
make an attempt to superimpose those elements onto the anatomy of BG circuit.
Figure 5.2 shows a simple schematic of learning by reinforcement. The aim of RL is
to perform actions that maximize rewards from the environment. In Fig. 5.2a, the
system, representing an organism, receives a stimulus S+ and responds with an action
A+, which results in a (positive) reward feedback. Therefore, RL leads to further
reinforcement of the connection between S+ and A+. In Fig. 5.2b, the system receives
a stimulus S−, responds with A−, and receives a punishment (or negative reward).
This time the connection between S− and A− is attenuated.

Thus, the system that must learn by RL needs to have access to three types of
information: stimulus, action, and reward/punishment. Now consider the simplified
schematic of the BG circuit with respect to the cortex and the dopaminergic pro-
jections from SNc (Fig. 5.3). Note that the input port of the BG, the striatum,
conveniently receives inputs related to the sensory-motor state from the corre-
sponding cortical areas via the cortico-striatal projections, and the reward-related
information via the nigrostriatal projections from the SNc. The putative role of BG
in RL can be given a preliminary justification by invoking its anatomy (Fig. 5.3).

Let us proceed further and present arguments in favor of the role of the BG
circuit as an elaborate RL engine. To this end, consider an animal faced with the
challenge of pressing two buttons: a white one and a black one. The white button
when pressed leads to reward in the form of delivery of a drop of juice, whereas the

Fig. 5.2 A schematic
diagram that shows how
stimulus–action relationships
can be learnt by reinforcement
learning. a If the action (A+)
performed in response to a
stimulus (S+) leads to reward,
the S+–A+ relationship is
reinforced. b If the action
(A−) performed in response to
a stimulus (S−) leads to
punishment, the S−–A−

relationship is attenuated
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black button gives a punishment of a brief electric shock. Initially, the animal is in a
‘naïve’ state about the two choices that it is facing; therefore, its ‘weightages’
(wwhite and wblack) about the reward giving potential of the two actions are the same
(say, wwhite = 0.5 = wblack). Imagine the animal presses white first and duly gets its
juice reward. Its ‘weightage’ for ‘white’ now increases to, say, 0.7. It then presses
the black button and is shocked by the punitive feedback. Its weightage for the gray
drops to, say, 0.3. As it presses the two buttons a few more times, its attraction for
the white button is reinforced, leading to further increase in wwhite, whereas its
aversion to the black is also strengthened, leading to further reduction in wblack.
Thus, the ‘weightages’ (wwhite and wblack) that the animal had learnt from its
experience, will aid the animal in making an informed choice in the future: prefer
the button with higher weightage, and avoid the one with a smaller weightage. The
weightages, thus, act as some sort of surrogates to reward or punishment. Since
rewards or punishment arrive after the actions are performed, and the animal has an
obvious need to know, a priori, what is going to happen after it presses a certain
button, it consults the weightages to make a decision. Notice that these ‘weightages’
are simply the values that were more formally defined earlier in Sect. 5.4 of
Chap. 4.

Imagine that a third button, a gray one, is introduced into the experiment at this
point. The animal can now adopt one of two strategies. Keep pressing the white,
avoiding the black forever; or try out the new gray. The curious animal chooses to
press gray and discovers, to its delight, that the choice fetches it a large piece of

Fig. 5.3 A schematic of the anatomical location of the BG with respect to the cortex. See text for
explanation
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apple. In RL terms, making a choice corresponding to the highest value, as far as
the current knowledge goes, is called exploitation; choosing an action whose value
is either unknown, or not the optimal, is known as exploration. Note the similarity
between the above informal account and a more formal treatment of exploration (in
terms of epsilon-greedy and softmax policies) earlier in Sect. 5.4 of Chap. 4.

The question of substrates for exploration in BG does not seem to have been
given adequate attention. In Actor–Critic models of BG, the Actor and Critic
components in the striatum are often identified and discussed (Joel, Niv, & Ruppin,
2002); dopamine signal is also in the limelight thanks to its role in training the
Actor–Critic components. Thus, although exploitation and exploration are com-
plementary processes, the yin and yang, so to speak, of reinforcement learning,
substrates for exploitation in the BG were eagerly sought but not so much the
substrates corresponding to exploration. Such omission is perhaps not surprising
since, in the Actor–Critic framework itself (see Chap. 4 for discussion), the Actor
and Critic are recognized explicitly as modules, while exploration is merely a
mechanism, a ‘noise term’ in RL equations. Since noise is ubiquitous in the brain,
either arising due to thermal noise or chaotic neural dynamics, perhaps no need was
felt to search for a specific substrate for exploration in BG. Or alternatively,
exploration is modeled by invoking the stochastic softmax policy, but it remains to
be explained how exactly the neural dynamics of the brain implements the stochastic
dynamics of the softmax policy.

Interestingly, even the experimental literature reflects the same partial view of
the neural substrates of RL components in the BG. Cortical substrates for both
exploitation and exploration have indeed been discovered: value computations in
orbitofrontal cortex (Knutson, Adams, Fong, & Hommer, 2001); exploration in
anterior frontopolar cortex and intraparietal sulcus (Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006). Functional imaging studies in humans suggest that the
anterior cingulate cortex (ACC) could be involved in balancing between
exploitation and exploration (Rushworth & Behrens, 2008). Similar fMRI studies
by Yoshida and Ishii (2006) found activation in prefrontal cortex and ACC when
subjects are exploring a maze (Yoshida & Ishii, 2006). When it comes to subcor-
tical substrates, imaging studies by O’Doherty and colleagues suggest that the
ventral and dorsal striata correspond to the Critic and Actor, respectively
(O’Doherty, Dayan, Schultz, Deichmann, Friston, & Dolan, 2004). Thus, though
both cortical and subcortical substrates of exploitation have been discovered, no
corresponding subcortical substrates for exploration have been found.

However, is there a compelling reason for subcortical substrates of exploration
to exist? It was shown that decorticated kittens can exhibit exploratory and
goal-oriented behavior (Stein, Grillner, Selverston, & Stuart, 1997). STN-lesioned
rats were shown to exhibit perseverative behavior, or reduced exploration of new
options (Baunez et al., 2001). When bicuculine, an antagonist of GABA, was
injected into anterior GPe, it elicited stereotypic movements, while injections into
dorsolateral GPe produced hyperactivity which includes exploratory or foraging
movements (Grabli et al., 2004).
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Thus, it appears compelling that the STN–GPe system, which constitutes the IP
of BG, might be the subcortical substrate for exploratory behavior. The STN–GPe
system and its intriguing oscillatory activity do not seem to occupy a prominent place
in Actor–Critic class of the modeling literature. The STN–GPe oscillations have
assumed a special significance since they have been linked to Parkinsonian tremor
(Hurtado, Gray, Tamas, & Sigvardt, 1999). There is a line of modeling work that
presents the STN–GPe system as a pacemaker in the brain, in reference to the strong
oscillatory activity of this system (Terman, Rubin, Yew, & Wilson, 2002). Using a
simplified model of STN–GPe system, Gillies et al. (Willshaw & Li, 2002) showed
that removal of the cortical input to STN results in increased firing rates. They also
studied the importance of the balance between the cortical input to STN and striatal
input to GPe in determining the STN oscillatory activity. A higher inhibition from the
striatal input onto GPe is predicted to produce oscillations in STN and GPe even with
a weaker excitatory drive from the cortex. Similarly, a model of STN–GPe using
Izhikevich spiking neurons accounted for spiking dynamics seen in the system by
using variables that code for the membrane voltage, activation of K+ ionic currents,
and inactivation of Na+ ionic currents (Michmizos & Nikita, 2011). But the afore-
mentioned STN–GPe models are not based on RL and therefore do not address
RL-related features like value computation in striatum and dopamine signaling.
However, these models have been able to explain behavioral effects of pathological
oscillations of STN–GPe, in connection with Parkinsonian tremor (Hurtado, Gray,
Tamas, & Sigvardt, 1999; Terman et al., 2002).

Under dopamine-deficient or Parkinsonian conditions, the firing patterns of
neurons of both STN and GPe were found to show dramatically increased corre-
lation, though unaccompanied by significant decrease in firing rate (Bergman,
Wichmann, Karmon, & DeLong, 1994; Brown et al., 2001). Since exploration is
driven by noise in RL models, a brain region that drives exploration is expected to
be a source of noise, generated perhaps by the complex neural dynamics of that
region. Thus, considering the neural activity with low correlation found in STN–
GPe under normal conditions, and an increase in correlation, or loss of complexity,
found in pathological conditions, it is plausible to assume that the STN–GPe is a
subcortical substrate for exploration.

In the subsequent chapters of this book, we will be presenting a line of BG
models that embody the idea that STN–GPe system is a subcortical substrate for
exploration. We have outlined how by extended application of RL concepts it is
possible to build comprehensive models of BG in which the value computations of
striatum, and the exploitative dynamics subserved by the DP, can be combined with
the oscillations of STN–GPe that drive exploratory behavior (Chakravarthy et al.,
2010). Thus emerges a view that while DP supports exploitation, IP subserves
exploration. Such a view seems to be at variance to the classical view that describes
the DP and IP as Go and NoGo pathways, respectively. We will show in this
chapter that the exploitation (DP) versus exploration (IP) view can be reconciled
with Go (DP) versus NoGo (IP) view, by inserting a third regime dubbed the
Explore regime, corresponding to exploration, between the older Go and NoGo
regimes (Kalva, Rengaswamy, Chakravarthy, & Gupte, 2012). A series of BG
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models based on this view have been developed to account for a wide variety of
BG-related motor and cognitive behaviors [such as spatial navigation, saccades,
reaching, reward–punishment learning (Gangadhar, Joseph, & Chakravarthy, 2008;
Krishnan, Ratnadurai, Subramanian, Chakravarthy, & Rengaswamy, 2011;
Magdoom et al., 2011; Pragathi Priyadharsini, Ravindran, & Srinivasa
Chakravarthy, 2012; Sridharan, Prashanth, & Chakravarthy, 2006; Sukumar,
Rengaswamy, & Chakravarthy, 2012)].

The outline of the chapter is as follows: Sect. 5.2 presents a simple network
model of BG. In this model, the STN and GPe modules are modeled as an exci-
tatory–inhibitory loop, capable of producing oscillations. Dynamics of STN–GPe
system is characterized in terms of correlations of neural activity, as parameters that
control strengths of the connections within the loop are varied. In Sect. 5.3, the
model of Sect. 5.2 is applied to a series of action selection problems, starting with
discrete action selection, moving on to continuous action spaces. A discussion of
the entire work is presented in the final section.

5.2 The Basic Model

The intuitive ideas outlined in the previous section are now embodied in a simple
mathematical model of BG. This essential model captures structural aspects of BG
—it explicitly represents striatum, STN, GPe and GPi, the DP, IP. Consistent with
Actor–Critic models of BG, it identifies the nigrostriatal dopamine signal with TD
error and uses this error to train cortico-striatal connections by RL. It models, in an
elementary form, the action of dopamine in switching between DP and IP, via the
differential action of dopamine on the D1 and D2 receptors of striatal medial spiny
neurons. It exhibits oscillations in the STN–GPe system and also captures some of
the known conditions in which these oscillations are produced. It shows how value
computation occurs in the striatum. It displays the classical Go and NoGo behaviors
with the explore behavior in addition.

Salience-based action selection is considered to be one of the primary functions
of BG (Gurney, Prescott, & Redgrave, 2001; Redgrave, Prescott, & Gurney, 1999).
We now present equations of the above-mentioned BG model and apply the model
first to the simple problem of binary action selection.

5.2.1 Striatum

The binary action selection problem presently considered consists of choosing
between two inputs based on their magnitude which represents their ‘salience.’
Thus, the input, which represents the cortico-striatal afferents, consists of a
two-dimensional vector, Iext. This input is presented to the striatum which consists
of two 1D layers of medium spiny neurons (MSNs) of striatum (Fig. 5.4). The first
layer represents neurons that express D1-type dopamine receptors, whereas the
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second layer represents D2-expressing neurons. The D1- and D2-expressing neu-
ronal layers project to GPi and GPe, respectively; they also receive dopaminergic
projections from SNc. Each component of Iext is uniquely connected to one neuron
each in D1 and D2 layers. Each neuron in D1 and D2 layers combines the dopamine
signal (d) with their respective inputs. Responses of D1 (D2) neurons, which
increase (decrease) with increasing dopamine levels, are defined as follows:

VD1 Str
i ¼ Iexti kD1 ð5:2:1:1Þ

VD2 Str
i ¼ Iexti kD2 ð5:2:1:2Þ

where

VD1 Str
i

outputs of D1 neurons of striatum;

VD2 Str
i

outputs of D2 neurons of striatum; d

Fig. 5.4 Schematic flow of
the signal in the network
model
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kD1 and kD2 they are weighting factors that represent the effect of dopamine, d, on
the responses of D1 and D2 neurons, respectively. A similar
approach to modeling dopamine modulation of MSN firing output
was adopted in Humphries and Gurney (2002), Humphries and
Prescott (2010).

Increased striatal dopamine levels increase the activation of D1 neurons while
reducing the activation of D2 neurons. Therefore, we model kD1 and kD2 as
functions of dopamine (d) as follows:

kD1 ¼ 1
1þ ea1ðd�hD1Þ

� �
ð5:2:1:3Þ

kD2 ¼ 1
1þ ea2ðd�hD2Þ

� �
ð5:2:1:4Þ

Since kD1 and kD2 are increasing and decreasing functions of d, it is easy to see
that a1 < 0 and a2 > 0; hD1 and hD2 are bias terms.

5.2.2 Modeling the STN–GPe System

5.2.2.1 Modeling STN–GPe Neuron Pair

STN and GPe form a loop with excitatory projections from STN to GPe and
inhibitory projections in the reverse direction. Dynamics of a single STN–GPe
neuron pair is given as,

ss
dxSTN

dt
¼ �xSTN þUSTN � wgsxGPe þ IHDP þKSTN ð5:2:2:1Þ

USTN ¼ tan h kSTNxSTN
� � ð5:2:2:2Þ

sg
dxGPe

dt
¼ �xGPe þwsgU

STN � ID2 Str ð5:2:2:3Þ

ID2 Str ¼ WGPe
Str VD2 Str ð5:2:2:4Þ

VD2 Str output of D2 striatum
WGPe

Str weight from Str to GPe
IHDP cortical input to STN arriving via the hyperdirect pathway
xSTN internal state of STN neuron
KSTN a constant bias current given to STN neuron
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USTN output of the STN neuron
xGPe internal state (and the output) of the GPe neuron
wsg strength of the connection between STN to GPe
wgs strength of the connection between GPe to STN.

The above system (Eqs. 5.2.2.1–5.2.2.4) represents a Lienard system and is
capable of producing limit cycle oscillations for appropriate parameter values (see
Appendix). Similar models of STN and GPe neural dynamics have been proposed
(Gillies, Willshaw, Atherton, & Arbuthnott, 2002).

Note that the output of D2 striatum is introduced with a negative sign (−ID2) in
Eq. (5.2.2.3) in order to represent the inhibitory (GABAergic) projection from D2
striatum to GPe. Likewise, the cortical input via HDP to STN is introduced in
Eq. (5.2.2.1) with a positive sign (+IHDP) to represent the excitatory (glutamatergic)
HDP projections.

Consider the effect of ID2 and IHDP on STN–GPe activity. Let IHDP = 0 and
ID2 = 0.5. Other parameters are: KSTN = −1, wsg = wgs = 1. The STN–GPe neuron
pair shows fixed point behavior (Fig. 5.5a), a property that is reflected in the
corresponding phase plot (Fig. 5.5b). But oscillations are seen when ID2 is raised to
0.9, keeping IHDP = 0 (Fig. 5.6a). In this case, the two nullclines intersect in the
middle branch of the STN nullcline (Fig. 5.6b). Thus in the above simple STN–GPe
cell pair model, oscillations are elicited by increased striatal input to GPe, a
property that is corroborated by electrophysiological data (Flores-Hernandez et al.,
2002). Kravitz et al. (2010) observed that increased firing of D2 MSNs in the
striatum induces a state similar to Parkinson’s disease, with motor symptoms like
freezing, bradykinesia, and difficulty in movement initiation (Kravitz et al., 2010).

A similar pattern of dynamics is seen when ID2 is fixed and IHDP is varied.
Figures 5.7b and 5.8b show the nullclines for IHDP = 0.5 and 0.9, respectively (with
ID2 = 0), and Fig. 5.7a, b shows the corresponding neural dynamics. Note that
increasing cortical input to STN triggers STN–GPe oscillations. It may be seen
from Eqs. (5.2.2.1, 5.2.2.3) that there is a simple complementarity between ID2 and
IHDP. Decreasing IHDP in Eq. (5.2.2.1) lowers the xSTN-nullcline, just as increasing

Fig. 5.5 a Neural activation and b phase plot for IHDP = 0 and ID2 = 0.5, wsg = wgs = 1
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Fig. 5.6 a Neural activation and b phase plot for IHDP = 0 and ID2 = 0.9, wsg = wgs = 1

Fig. 5.7 a Neural activation
and b phase plot for
IHDP = 0.5 and ID2 = 0,
wsg = wgs = 1
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the inhibition to GPe (ID2) lowers the xGPe-nullcline. Therefore, as inhibitory input
to GPe is increased, the amount of excitation to be given to STN in order to produce
oscillations is also reduced. A similar complementarity between cortical input to
STN and striatal input to GPe was exhibited by a lumped model of STN–GPe
interactions proposed by Gillies et al. (2002). The effect of cortical input to STN on
STN–GPe oscillations has been borne out by electrophysiological studies that show
that ablation of cortical areas that project to STN largely abolished the
low-frequency oscillations in STN and GPe (Magill, Bolam, & Bevan, 2001).

The third factor that controls oscillations in STN–GPe system is dopamine.
There is experimental evidence that the STN–GPe system exhibits low-frequency
oscillations under dopamine-deficient conditions as in those of Parkinson’s disease
(Plenz & Kital, 1999). It appears that reduction of dopamine strengthens the cou-
pling between STN and GPe triggering oscillations. The effect of dopamine on
STN–GPe synaptic strengths can be accounted for in terms of the presence of
D2-type dopamine receptors on the two nuclei (Steiner & Tseng, 2010). D2
receptors are present on the axon terminals of glutamatergic cortical projections to
STN and GABAergic projections from GPe to STN. Therefore, the effect of
increased dopamine on these connections is to effectively reduce their strength. Let
us now consider the effect of reducing the coupling strengths between STN and
GPe (wgs and wsg) in Eqs. (5.2.2.1, 5.2.2.3). When wsg = wgs = 1, ID2 = 0.9, and
IHDP = 0, we have seen that oscillations are produced (Figs. 5.6 and 5.8), but the
oscillations disappear when wsg = wgs = 0.5, with the current inputs remaining the
same (Fig. 5.9a, b).

Thus, we have seen, using the simple cell pair model of Eqs. (5.2.2.1–5.2.2.4),
that STN–GPe oscillations can be triggered by (1) inhibitory striatal input to GPe,
(2) excitatory cortical input to STN, and (3) strengthening of STN–GPe interactions
by dopamine reduction. A complete phase-plane analysis of Eqs. (5.2.2.1–5.2.2.4)
would reveal monostability and bistability in addition to limit cycle behavior that
corresponds to STN–GPe oscillations. But since the above-mentioned behaviors are
particularly relevant to our subsequent presentation, we chose to highlight them,
while passing over a more exhaustive analysis in this context. For more exclusive
analysis of similar two-variable models of STN–GPe, the reader may consult
(Gillies et al., 2002).

5.2.2.2 Network Model of STN–GPe System

We now present a network model of the STN–GPe system. In the model, STN and
GPe layers have equal number of neurons, with each neuron in STN uniquely
connected bidirectionally to a neuron in GPe. Both STN and GPe layers are further
assumed to have weak lateral connections within the layer. Dynamics of STN and
GPe interactions is described as:
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ss
dxSTNi

dt
¼ �xSTNi þ

Xn
j

WSTNLat
ij USTN

j � wgsx
GPe
i ð5:2:2:5Þ

USTN
i ¼ tan h kSTNxSTNi

� � ð5:2:2:6Þ

sg
dxGPei

dt
¼ �xGPei þ

Xn
j¼1

WGPeLat
ij xGPej þwsgU

STN
i � VD2

i ð5:2:2:7Þ

‘n’ size of STN or GPe layer
xGPei internal state (same as the output) of the ith neuron in GPe
xSTNi state of ith neuron in STN
WGPeLat

ij lateral connections within GPe are defined as

Fig. 5.8 a Neural activation
and b phase plot for
IHDP = 0.5 and ID2 = 0,
wsg = wgs = 1
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WGPeLat
ij ¼ �eg, for all i and j (i *= j), where eg is a small positive number, and the

connections within STN are defined as:
WSTNLat

ij ¼ es, for all i and j (i *= j), where es is a small positive number.

We assume that both STN and GPe have complete internal connectivity, where
every neuron in the nucleus is connected to every other neuron in the nucleus, with
the same connection strength. That common lateral connection strength for STN is
es, and for GPe it is eg. Likewise, STN and GPe neurons are connected in a
one-to-one fashion—ith neuron in STN is connected to ith neuron in GPe and vice
versa. The common connection strength for STN ! GPe connections is wsg,
whereas the GPe ! STN connection strength is wgs.

Fig. 5.9 a Neural activation
and b phase plot for IHDP = 0
and ID2 = 0.9,
wsg = wgs = 0.5
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A key dynamic property of the STN–GPe system, which is often observed in
pathological conditions, is synchronized oscillation between STN and GPe. We
now examine synchronization in STN–GPe network model as various connectivity
parameters are varied. We use correlation as a measure of synchronization.
Particularly, we vary the within (e = es = eg) and across (w = wsg = −wgs) nuclei
connection parameters and study their effect on correlation between neural activity
within individual nuclei and across the two nuclei.

We simulate the above system (Eqs. 5.2.2.5–5.2.2.7) where the number of
neurons in STN (GPe) is n = 20. The slope parameter kSTN in Eq. (5.2.2.6) is 3.
There are no external currents presented to STN and GPe. Note that the bias term
KSTN in Eq. (5.2.2.1) is not present in the corresponding network model
(Eq. 5.2.2.5). We calculate correlations—within STN (CSTN), within GPE (CGPe),
and between STN and GPe (CSTN_GPe). Correlations are calculated only when at
least one neuron in the network is in the oscillatory mode, since correlation between
neural activities in fixed point mode is not particularly informative. Presence of
oscillations was determined as follows: Every STN and GPe neuron activity were
analyzed for 150 time steps. If the standard deviation of the activity during the
interval [75:150] steps exceeds 0.2, then it is labeled to show oscillatory activity.

Figures 5.10 and 5.11 show the range of parameters (�s, wsg) for which the STN–
GPe network oscillates—the ‘oscillatory region’—which happens to be a nearly
triangular patch in the (�s, wsg) space, where �s varies over the range [0, 0.05] and
w varies over the range [0, 1]. It appears that there is some sort of competition
between wsg and �s in producing oscillations. Larger values of wsg tend to produce
oscillations, while larger values of �s inhibit them. Therefore, within the domain of
interest (�s 2 [0, 0.05] and wsg 2 [0, 1]), oscillations occur for small �s and large wsg,
mostly in the triangular region shown in Figs. 5.10 and 5.11. However, oscillations
do occur at sparsely distributed points outside the triangular region of Figs. 5.10
and 5.11. CSTN is found by calculating mean of the correlation coefficients for every
pair of the n neurons within the STN. The self-connections/correlations are not

Fig. 5.10 Regions of
parameter space (�s, wsg) over
which STN exhibits
oscillations. The above figure
projects the probability of
oscillation as a function of (�s,
wsg), when run for 50
instances
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taken into account. A similar approach is taken for computing, CGPe, which denotes
correlations within GPe. For internucleus correlational analysis between STN and
GPe, every neuron in STN is analyzed for correlation to every neuron of GPe.
Finally, the mean of the coefficients is taken as the CSTN−GPe value. The test used
for correlations is Pearson’s linear correlation analysis, and the coefficients are
reported with p value < 0.05 for within STN (CSTN), within GPe (CGPe), and
between STN and GPe (CSTN−GPe). Figures 5.12, 5.13, and 5.14 report the test
results as a function of �s and wsg that broadly show a rising trend of correlation
with increasing �s and wsg.

If the STN–GPe system is to serve as a source of exploration, one would expect
the activity of STN, which projects to GPi, to possess high spatiotemporal com-
plexity. We presently quantify that spatiotemporal complexity using pair-wise
correlations among neural activity. Kalva et al. (2012) calculated Lyapunov

Fig. 5.11 Regions of
parameter space (�s, wsg) over
which GPe exhibits
oscillations. The above figure
projects the probability of
oscillation as a function of (�s,
wsg), when run for 50
instances

Fig. 5.12 CSTN over the
parameter space (�s, wsg)
averaged for 50 instances. For
given values of parameter pair
(�s, wsg), correlation is
calculated only when there is
at least one oscillating neuron
in STN

5.2 The Basic Model 75



exponents to characterize STN dynamics in terms of chaos and showed how chaos
can drive exploration. In this chapter, we exploit the ability of �s to control cor-
relation within STN and show that �s can be used to control the level of exploration
in the proposed BG model.

5.2.3 GPi

GPi combines the GABAergic striatal outflow via DP with glutamatergic STN
output from IP. There is evidence to believe that this combination of DP and IP
outflows in GPi is modulated by dopamine projections to GPi. Kliem et al. (2007)
show that when D1 receptors in GPi, which are primarily located on the axons of

Fig. 5.13 CGPe over the
parameter space (�s, wsg)
averaged for 50 instances. For
given values of parameter pair
(�s, wsg), correlation is
calculated only when there is
at least one oscillating neuron
in GPe

Fig. 5.14 CSTN_GPe over the
parameter space (�s, wsg)
averaged for 50 instances. For
given values of parameter pair
(�s, wsg), correlation is
calculated only when there is
at least one oscillating neuron
in GPe and STN
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GABAergic striato-pallidal projections, are activated, firing levels of GPi neurons
are reduced (Kliem et al., 2007). Since D1 receptors are activated at increased
dopamine levels, this implies that at higher dopamine levels, DP outflow is facil-
itated over IP, consistent with the nature of switching facilitated by dopamine in the
striatum. Assuming a complementary action of dopamine on the glutamatergic
STN–GPi projections (the weights denoted by wSTN GPe), we compute the GPi
output, UGPi

i , as follows:

_UGPi
i ¼ �kDPVD1 Str

i þwSTN GPikIPUSTN
i þCGPi

i ð5:2:3:1Þ

We model kD1i and kD2i as functions of dopamine (d) as follows:

kDP ¼ 1
1þ ea3ðd�hDPÞ

� �
ð5:2:3:2Þ

kIP ¼ 1
1þ ea4ðd�hIPÞ

� �
ð5:2:3:3Þ

CGPi
i is a constant bias term.
Since kDP and kIP are increasing and decreasing functions of d, respectively, it is

easy to see that a3 < 0 and a4 > 0.

5.2.4 Action Selection in Thalamus

There is a body of the BG modeling literature that posits that the reward processing
machinery of the nigrostriatal system computes the salience associated with com-
peting actions (Chakravarthy et al., 2010; Joel et al., 2002; Redgrave et al., 1999).
Adding to this idea, in the present model we propose that the STN–GPe system
provides the exploratory drive. These two elements are combined downstream
either in GPi, or further along in the thalamic nuclei which receive afferents from
GPi. The competitive neural dynamics of the reticular complex of the thalamus is
thought to subserve the attentional spotlight (Crick, 1984). This competitive
dynamics of neurons of thalamic reticular complex has been used by Humphries
and Gurney (2002) to model action selection (Humphries & Gurney, 2002). We
implement an elementary form of action selection in the thalamic part of the model.

GPi neurons project to thalamus over inhibitory connections. Hence, the thala-
mic afferents, IThali , can be expressed simply as,

IThali ¼ �UGPi
i ð5:2:4:1Þ
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These afferents activate thalamic neurons as follows,

dxThali

dt
¼ �xThali þ IThali ð5:2:4:2Þ

where xThali is the state of the thalamic neuron. Action selection is done as follows:
If xThali ðtÞ[ xth for some i, at some time t, then ‘i’th action is selected and the

states of all the thalamic neurons are immediately reset, i.e., xThali ðtÞ ¼ 0; if all
xThali ðtÞ fail to reach xth, then no action is selected, a case that is considered to be
‘NoGo.’

Note that there are parallel channels linking the cortico-striatal afferents to the
thalamic region in the model. Each neuron in the striatum has one-to-one con-
nections to thalamic neurons via the DP, and via the IP. In the present formulation,
the only interactions occur in the STN and GPe, in the form of weak lateral
connections (see Eqs. 5.2.2.5 and 5.2.2.7).

5.3 Simulation Experiments

5.3.1 Binary Action Selection

The model described in the previous section is now used to simulate a simple binary
action selection task. The cortico-striatal input, Iexti , i = 1, 2, represents two possible
actions, and the magnitudes of Iexti represent the saliencies associated with the
actions. The selected action is denoted by the winning neuron in the thalamus. Due
to the complex dynamics of the STN–GPe system, it is not necessary that the
winning action is always the one with greater saliency. There can also be no winner
at all. We thus have three types of final outcomes, classified as ‘Go,’ ‘Explore,’ and
‘NoGo’ as follows:

‘Go’—when the winning neuron has greater salience.
‘Explore’—when the winning neuron has lesser salience.
‘NoGo’—when there is no winner and therefore no action selection.

We now consider the effect of d, or dopamine, in determining the type of action
selection. From classical depictions of BG function, we know that striatal dopamine
level switches the transmission between DP and IP, with high dopamine activating
DP and therefore selecting Go, and low dopamine activating IP resulting in a NoGo
(Frank, 2005). But since the new Explore regime is the focus of the present study,
we wish to see how and if dopamine, d, has any effect on the Explore regime. Note
that the model of action selection we are considering at the moment is not based on
RL and d is not TD error. In fact, there is no output error, or learning in the model
described at the moment. The immediate objective is to see the effect of dopamine,
d, as defined in Eqs. (5.2.1.3, 5.2.1.4), on action selection.
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To this end, we simulate a network with the following parameters:
The number of neurons in STN (GPe) is n = 20. The values of parameters are

a1 = −1, hD1 = 0.1 in Eq. (5.2.1.3); and a2 = 1, hD2 = 0 in Eq. (5.2.1.4); and
wsg = wgs = 0.91 in Eqs. (5.2.2.7) and (5.2.2.5), respectively. wSTN_GPi is taken as
0.3 (Eq. 5.2.3.1), and the threshold used in action selection at thalamus is xth =
0.715. Taking dt = 0.01, ss is set to be 0.1 (Eq. 5.2.2.5), and sg is 0.3 (Eq. 5.2.2.7).
Figure 5.15 shows the probability of selection of Go/Explore/NoGo regimes as a

function of dopamine (d). Consistent with the classical picture, the Go regime is
selected with high probability for large d, and the NoGo regime for small d. But the
Explore regime is also selected, in addition to NoGo, for smaller values of d, with
the regime attaining a peak for moderate values of d. There is no sharp boundary
between regimes, but different regimes dominate for different ranges of d. Since
exploration is highest for moderate values of d, we depict the Explore regime as
though it occurs between Go and NoGo, as in Fig. 5.15.

We have shown in Sect. 5.2.2 that increasing �s increases correlation among
STN neurons. We have also suggested the intuitive idea that higher correlations
among STN neurons should result in weaker exploration. Analogous to Figs. 5.12
and 5.16 shows the Go/Explore/NoGo or GEN profiles, and also as a function of d
for �s = 0.001, 0.05, and 0.95 (Fig. 5.16a, b, c). Note the progressive reduction in
the Explore regime with increasing �s (Fig. 5.16d).

In this section, we demonstrated the emergence of the Explore regime and
showed how the output of the BG model engaged in binary action selection can be
depicted by the GEN profile (Fig. 5.15). We also showed the effect of the dopamine
level, d, and STN dynamics as controlled by �s, on the GEN profile (Fig. 5.16).

We now extend the above binary action selection model to the full n-armed
bandit problem. To achieve such an extension, we add concepts from RL like the
Critic, Critic training, and TD error, to the model described in the preceding section.

Fig. 5.15 a Probability of selection of Go/Explore/NoGo; b Schematic: Go occurs for higher
range of d, Explore for intermediate range, and NoGo for lower range
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5.3.2 Modeling the N-Armed Bandit Problem

The n-armed bandit problem consists of n slot machines each of which delivers a
fixed reward (deterministically or probabilistically) when selected. The agent has to
determine which machines to play, and how many times, so as to maximize total
reward received. The n-armed bandit problem is a natural extension of the binary
action selection problem described in the previous section. Therefore, we now
extend the BG model of Sect. 5.3.1 and apply it to the n-armed bandit problem.

In the previous section, the BG model had to select between two inputs based on
their magnitudes interpreted as saliencies. But now the BG model has n outputs,
representing n actions, one of which has to be selected. Thus, the binary output
vector has a single output that equals 1, while the rest are zeros. The input to BG
model is also a n-dimensional binary (0/1) vector, where only a single component
equals 1. Whereas the output vector represents the action to be selected, or the next
action, the input vector represents the previous action.

We now describe the computations in each module of the BG model.

Fig. 5.16 Probability of selection of Go/Explore/NoGo regimes as: a a function of d for
�s = 0.001; b a function of d for �s = 0.05; c a function of d for �s = 0.95; d a function of �s
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5.3.2.1 Computations in the Striatum

Let,

x: binary vector that denotes the cortical input that selects an arm. xi = 1, if the ith
arm is selected, xj = 0 for j *= i.
w: cortico-striatal weights. Each cortical input is connected to a striatal neuron via a
single cortico-striatal connection.

Value is computed in the striatum as,

V ¼
Xn
i¼1

wixi ð5:3:2:1Þ

Striatum has D1R- and D2R-expressing neurons, respectively. Striatal neurons
expressing D1R project via the direct pathway to GPi, while striatal neurons
expressing D2R project to the GPe. Since D1Rs are activated at higher DA levels,
and D2R at lower levels, the effect of DA on striatal D1R and D2R-expressing cells
is modeled as follows,

VStrD1
i ¼ kD1wixi ð5:3:2:2Þ

and

VStrD2
i ¼ kD2wixi ð5:3:2:3Þ

where

VStrD1
i is the output of the ith striatal D1 neuron

VStrD2
i is the output of the ith striatal D2 neuron.

The gain terms, kD1and kD2, are similar to those defined in Eqs. (5.3.2.2, 5.3.2.3)
and are defined as a function of dopamine (dv) as follows:

kD1 ¼ 1
1þ ej1ðdV�hD1Þ

� �
ð5:3:2:4Þ

and

kD2 ¼ 1
1þ ej2ðdV�h2Þ

� �
ð5:3:2:5Þ

kD1and kD2 are gain functions that model the effect of dopamine (dV) on the
D1R- and D2R-expressing neurons in striatum, respectively. Since kD1 and kD2 are
increasing and decreasing functions of dV, respectively, we have j1 < 0 and j2 > 0.
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Note that we denote dopamine by dv in Eqs. (5.3.2.4, 5.3.2.5) above and not by
the usual d, which denotes TD error. We introduce dv as a novel quantity, as the
temporal gradient of value function, V, expressed as,

dV ðtÞ ¼ VðtÞ � Vðt � 1Þ ð5:3:2:6Þ

This new dopamine-related variable, dv, has a crucial role in exploration, an idea
that will be elaborated upon shortly.

5.3.2.2 Computations in STN–GPe System

Dynamics of the STN–GPe system in the n-armed bandit model is identical to
Eqs. (5.2.2.5–5.2.2.7) described earlier. The outputs of the D2R-expressing neurons
in the striatum are presented as input to GPe. Thus, VD2

i in Eq. (5.2.2.7) is set to be
equal to VStrD2

i in Eq. (5.3.2.3) above. Output of the STN, USTN, is presented as
input to the GPi.

5.3.2.3 Computations in GPi

Information flowing in from the D1R-expressing neurons of the striatum and STN
is combined by the GPi, analogous to Eq. (5.2.3.1), as follows.

UGPi
i ¼ �kD1VStrD1

i þwSTN GPikD2USTN
i þ c ð5:3:2:7Þ

where the gain functions kD1 and kD2 are as in Eqs. (5.2.3.2, 5.2.3.3), and c is a
constant. In the n-armed bandit model, we focus only on the arm selected and
average reward obtained; reaction time is not a focus of the present model.
Therefore, we simplify the action selection process in this case and omit the inte-
gration step as in Eq. (5.2.4.2). Action selected in the thalamus, as represented by
the vector, x, is computed as follows:

x ið Þ ¼ 1; if �UGPi
j [ � UGPi

i 8j 6¼ i

x ið Þ ¼ 0; i 6¼ j
ð5:3:2:8Þ

Ideally, action must be selected based on the thalamic neuron with the highest
activation. Since GPi neurons have inhibitory projections into thalamus, if we
assume one-to-one connections between GPi and thalamus, the thalamic neuron
with the highest activation will be the one that receives input from the GPi neuron
with the smallest activation. Therefore, in Eqs. (5.3.2.7, 5.3.2.8) above, we do not
explicitly model the thalamic neuron, but select the action based on the GPi neuron
with the smallest activation. Furthermore, note that the NoGo regime is disallowed
in the above mechanism of action selection, since some action must be selected in

82 5 The Basal Ganglia System as an Engine for Exploration



every cycle. The selected action must be fed back to the striatum for the next cycle.
If NoGo is allowed, then the same input needs to be presented repeatedly until some
action is selected in the output. To avoid this trivial difficulty, NoGo is disallowed
in the present version of the BG model.

Note that the action thus selected, x, at the output of the BG, may be different
from the original arm selected, represented by the input vector, x. To distinguish the
two, we denote the arm selected in Eq. (5.3.2.8) above as xpost. The new arm
selected, xpost, is fed back to the striatum, and the cycle continues.

5.3.2.4 Reward and Learning

The jth arm selected as per xpost results in reward rj. Value corresponding to xpost is
computed as,

Vpost
j ¼

Xn
i¼1

wix
post
i ð5:3:2:9Þ

Instantaneous error, d, is defined as,

d ¼ rj � Vpost
j ð5:3:2:10Þ

Note that d in Eq. (5.3.2.10) above may be identified with temporal difference
(TD) error (5.3.2.11) in RL for discount factor, c = 0. Here, ‘V’ denotes the value
function, ‘t’ the time, and ‘r’ the reward.

d ¼ rðtÞþ cVðtþ 1Þ � VðtÞ ð5:3:2:11Þ

This d is used to update the cortico-striatal connections as,

Dwi ¼ gdxposti ð5:3:2:12Þ

We now describe the rationale of the operation of the BG model just described.
Figure 5.1 shows a schematic of the signal flow in the model. The D1 neurons of
striatum compute value, using standard RL (Eq. 5.3.2.9). Note that the weights
used to compute the value function (Eq. 5.3.2.12) are the same as those used to
compute the outputs of D1 (Eq. 5.3.2.2) and D2 neurons (Eq. 5.3.2.3). Therefore,
the weight, wi, associated with ith D1 (or D2) neuron, is the expected reward or
value associated with ith action. If a certain weight, wi, is high, then the magnitude
of VStrD1

i is likely to be high, if the corresponding input equals 1 (i.e. xi = 1)
(Eq. 5.3.2.2). In addition, if dv is a large positive number, the contribution of DP to
GPi will dominate that of STN, and therefore, the ith action is likely to be selected
at the output. Thus for high dopamine levels (dv), the output of GPi is dominated by
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DP. In such a situation, the action selected will have a tendency to remain the same
as the previous section.

On the contrary, for large negative values of dv, D1 neurons have small acti-
vation, and D2 neurons are more active. Furthermore, in Eq. (5.3.2.7), the response
of GPi neurons is dominated more by the output of STN than the output of D1
neurons. Due to the complex oscillatory activity of STN, the action selected is
likely to be random, unrelated to the input to the BG.

Let us now consider what makes dv positive or negative. When the value
obtained in a cycle is greater than the value of previous cycle, dv is positive.
Assuming the value estimates are accurate, it means that a more rewarding arm is
selected in this cycle than the previous cycle. Thus when the values obtained in two
successive cycles show an increasing trend, there is a low probability of changing
the action selected. On the other hand, when successive values show a decreasing
trend, there is a significant chance that the next action is selected randomly.

Let us now apply the above model to a numerical n-armed bandit problem.

5.3.2.5 N-Armed Bandit—A Simulation Study

Equations (5.3.2.1–5.3.2.8) describe the BG model applied to the n-armed bandit.
We now simulate a large number of n-armed bandit problems (n = 5), on the lines
described in Chap. 2 of Sutton and Barto (1998). The simulations are repeated for
different values of model parameters. Results obtained by averaging over 500
instances are reported. Each instance is simulated for 1000 steps. The rewards are
generated by the following distribution: ri = i/n + A * m, where ri is the reward of
the ith arm, m is a random variable uniformly distributed over [0, 1], and A = 0.3.

The first variable considered is �s, which represents the weight of STN lateral
connections (Eq. 5.2.2.5). Results described in Sect. 5.2.2 show that increasing �s
increases the correlation among neural activities within STN and between STN and
GPe. We now show that �s serves as a kind of an inverse of the exploration
parameter, �, used in �-greedy methods (Sutton, & Barto, 1998). Increasing �s
corresponds to weaker exploration. Figure 5.17a shows variation of average reward
with iterations for different values of �s. Figure 5.17d shows the dependence of
steady-state reward (obtained by averaging the reward profiles from Fig. 5.17a over
the interval [900–1000] iterations) on �s. Note that highest rewards are obtained at
an intermediate level of �s, beyond which average reward drops rapidly. The η used
in Eq. (5.3.2.12) is 0.01; j1 = −0.05 and j2 = 5 in Eqs. (5.3.2.4) and (5.3.2.5),
respectively, with hD1 and hD2 = 0. wsg = wgs = 0.91; wSTN_GPi = 0.3 in the
Eqs. (5.2.2.4), (5.2.2.5), and (5.3.2.7), respectively. With the change in time dt =
0.01: ss = 0.1 (Eq. 5.2.2.5); sg = 0.3 (Eq. 5.2.2.7); η = 0.01 (Eq. 5.3.2.12); The
resulting trend is similar to what is observed in standard approaches to n-armed
bandit problems like the �-greedy method.

By way of confirmation, we applied the �-greedy method to the above set of n-
armed bandit problems. Figure 5.17b shows average reward profiles (each of them
averaged over 500 instances). Figure 5.17d shows that the highest reward is
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obtained at � = 0.07, with average reward falling rapidly for higher values. We also
applied softmax policy (Sutton, & Barto, 1998) to the same n-armed problem, and
the average rewards over iterations for various b-values are given in Fig. 5.17b,
with the steady-state average reward values plotted against b of range [0, 10]
normalized to [0, 1] (Fig. 5.17d).

5.3.3 Climbing Value Gradient Using dV

In the previous section, we have shown how the proposed BG network model can
be applied to the n-armed bandit problem. A novel feature of the model is the
introduction of an additional dopamine-related variable called dv in addition to the
classical TD error, d. The TD error was used, as in classical RL-based BG models,
for value training (Eqs. 5.3.2.9, 5.3.2.10, 5.3.2.12). But the new dv is used to switch

Fig. 5.17 Five-arm bandit task averaged over 500 instances: The mean reward versus iterations
obtained for a different �s using GEN policy, b different � values using �-greedy policy, c different
b-values using softmax policy, and d steady-state reward (averaged from 900 to 1000 iterations)
versus � of �-greedy, b in range [0 10] of softmax normalized to [0 1], �s of GEN policy
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between DP and IP since it controls the gain function of D1 and D2 MSNs in
striatum (Eqs. 5.3.2.2–5.3.2.5). The quantity dv is simply value gradient
(Eq. 5.3.2.6). As noted earlier, it is different from TD error in that there is no reward
term, and c = 1 (Eq. 5.3.2.11). From Eqs. (5.3.2.1–5.3.2.8), we note that, for
positive values of dv, since DP is selected, there is a tendency to repeat the previous
action, and for moderate or negative values of dv, since IP is selected, there is a
tendency to select a random action. Due to this effect of dv on the value,
Eqs. (5.3.2.7–5.3.2.8) appear to perform some sort of hill-climbing on the value
function. In fact, the aforementioned effect of dv on value is strongly reminiscent of
simulated annealing, a form of stochastic optimization (Kirkpatrick, Jr. & Vecchi,
1983). A primitive form of simulated annealing can be expressed as follows:

Let,

– E(x) be the cost function that must be maximized
– x(t) = i is the current state
– j = one of the neighboring states of i

DE ¼ E tþ 1ð Þ�E tð Þ ð5:3:3:1Þ

The decision whether to switch from the state ‘i’ to state ‘j’ is made by the
following rule:

If E ið Þ\E jð Þ
X tþ 1ð Þ ¼ j; að Þ
else
X tþ 1ð Þ ¼ j; with probability P ¼ exp � E jð Þ � E ið Þð Þ=Tð Þ; bð Þ
X tþ 1ð Þ ¼ i; with probability 1� P cð Þ

ð5:3:3:2Þ

Here, (a) denotes the switch to state ‘j’ with probability 1, if E(j) is larger than E(i);
(b) describes the switch to state ‘j’ with probability, P, if E(i) is larger than E(j); and
(c) represents the stay in the previous state with probability 1 − P.

DE in the above case of simulated annealing is analogous to dv, and E is
analogous to the value function, in the BG context.

In this section, we focus on the mechanism of hill-climbing of value function,
driven by dv. Unlike the previous sections, where we considered discrete action
spaces, we show how the above mechanism can perform hill-climbing in contin-
uous action spaces. However, in the present section we do not consider the full RL
problem with continuous state and action spaces.

From the binary action selection problem of Sect. 5.3.1, we saw that the BG
model exhibits three behaviors depending on dv: (1) Go regime for large positive dv,
(2) Explore regime for intermediate values of dv, and (3) NoGo regime for large
negative values of dv. In other words, repeat the previous action for large positive
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dv; select a random action for moderate dv; and take no action for large negative dv.
These regimes inspire a simple mechanism for hill-climbing as follows:

Let

– V(x) = value function
– x = n-dimensional state vector (x 2 S, where S � Rn)
– dv = V(t) − V(t − 1)
– Dx = x(t) − x(t − 1)

Dx is updated by the following equations:

if dv [Dhið Þ
Dx tþ 1ð Þ ¼ DxðtÞ �``Go'' ðaÞ

else if dv [Dlo ^ dvðtÞ�Dhið Þ
Dx tþ 1ð Þ ¼ / �``Explore'' ðbÞ

else dv�Dloð Þ
Dx tþ 1ð Þ ¼ 0 �``NoGo'' ðcÞ

ð5:3:3:3Þ

The three cases of Eq. (5.3.3.3) represent the Go, Explore, and NoGo regimes,
respectively, and may be interpreted as follows: (a) Go regime repeats the last
update in state, (b) Explore regime updates ‘x’ in a random direction, and (c) NoGo
regime does not update state. Dhi > 0, Dlo < 0, / is a random vector whose each
component, /i, is given as,

/i ¼ G 0; 1ð Þ exp �d2v=r
2� � ð5:3:3:4Þ

where G(0, 1) is a Gaussian random variable with mean 0 and standard deviation 1.
From purely algorithmic point of view, the last Eq. (5.3.3.3c) seems wasteful

since there is no state update in that case. Whenever the NoGo regime is selected,
since there is no state update, we have dv = 0. In the next iteration, therefore,
Explore regime is selected since Dhi > 0 > Dlo. To make the computation more
efficient, Eq. (5.3.3.3c) can be altered slightly as follows:

if dv �Dloð Þ
Dx tþ 1ð Þ ¼ �Dx tð Þ ``NoGo'' ðcÞ

Now, in NoGo regime, the state x is updated in an opposite direction compared
to the previous update. Thus, the Eq. (5.3.3.3a, b, c) may be expressed in modified
form as follows:
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if dv [Dhið Þ
Dx tþ 1ð Þ ¼ Dx tð Þ �“Go” ðaÞ

else if dv [Dlo ^ dvðtÞ�Dhið Þ
Dx tþ 1ð Þ ¼ / �“Explore” ðbÞ

else ðdv �DloÞ
Dxðtþ 1Þ ¼ �DxðtÞ �“NoGo” ðcÞ

ð5:3:3:5Þ

In Eq. (5.3.3.5) above, the Go, Explore, and NoGo regimes are depicted as
discrete, disjoint regimes demarcated by thresholds—Dhi and Dlo. But the regimes
as observed in the binary action selection simulations of Sect. 5.3.1 are not disjoint,
with multiple regimes occurring for a given dv. In this section, we combine the
Eq. (5.3.3.5a, b, c) in a single update equation so that the three regimes smoothly
overlap.

Let us begin by reformulating the three regimes of Eq. (5.3.3.5a, b, c) in a single
equation as follows:

Dxðtþ 1Þ ¼ step dV tð Þ � Dhið ÞDxðtÞ
þ/pulse dV ðtÞ;Dhi;Dloð Þ
� step Dlo � dVðtÞð ÞDxðtÞ

ð5:3:3:6Þ

where step(.) is the step function or the Heaviside function defined as,

step xð Þ ¼ 1, for x� 0

¼ 0, elsewhere
ð5:3:3:7Þ

and pulse(x, a, b) is defined as,

pulse xð Þ ¼ 1, for b� x� a

¼ 0, elsewhere
ð5:3:3:8Þ

The functions step(x) and pulse(x) may be approximated for j3 > 0 and j4 < 0
by their continuous versions as sigmoid and Gaussian functions, respectively. The
update rule is thereby rewritten as,

Dxðtþ 1Þ ¼ log sig j3 dV tð Þ � Dhið Þð ÞDxðtÞ
þw exp �d2V tð Þ�r2E� �
� log sig j4 dV tð Þ � Dloð Þð ÞDxðtÞ

ð5:3:3:9Þ

The expansion of log sig is provided in Eq. 5.3.3.10.

log sig xð Þ ¼ 1
1þ exp �xð Þ ð5:3:3:10Þ
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Thus, Eq. (5.3.3.9) describes a map between the current state update, Dx(t), to
the next state update, Dx(t + 1). For large positive dV, Dx(t + 1) is nearly in the
same direction as Dx(t); for large negative dV, Dx(t + 1) is nearly in the same
direction as −Dx(t); for intermediate values of dV, Dx(t + 1) is random. Note that the
map of Eq. (5.3.3.9) is stochastic due the middle term on the right-hand side. The
map of Eq. (5.3.3.9) is depicted in Fig. 5.18, for two-dimensional input space. Dx
(t) = [1, 0].

The parameters of Eq. (5.3.3.9) are as follows: j3 = −j4 = 1; r = 0.5. The
distribution of Dx(t) for dV = 0.6, 0, and −0.6 is shown by blue, green, and red
circles, respectively.

Normalized DX(t + 1) is shown on the unit circle. The distribution of Dx(t) for
dV = 0.6, 0, and −0.6 is shown by blue, green, and red circles, respectively.

A Numerical Example:

We now apply the GEN algorithm (Eq. 5.3.3.9a, b, c) to a simple optimization
problem and study the effect of GEN parameters like Dhi, Dlo, and r on the number
of iterations required to find the maximum.

The function to be maximized is E(x) = −||x − xT||
2 where n = 10 and x 2 Rn.

Dhi and Dlo are linked as Dhi = −Dlo = w. The value of r, which arises in calcu-
lation of the random variable / (in Eq. 5.3.3.9b), is also linked to w as follows:
r = 0.2 * w. The idea behind linking w with r in the above fashion is that a large
difference between the thresholds Dhi and Dlo implies a broad Explore regime and
therefore consistent with a larger standard deviation of Gaussian in Eq. (5.3.3.6).

Now that the three GEN parameters (Dhi, Dlo, and r) are expressed in terms of w,
it is easy to sweep the w-space for the w-value for which one obtains the most
efficient search. Figure 5.19 shows the number of steps necessary to find the

Fig. 5.18 An illustration of
the map of Eq. (5.3.3.9)
taking j3 = −j4 = 1; r = 0.5.
Dx(t) = (1, 0)
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maximum of the cost function, E(x), as a function of w. The upper limit for the
number of steps is 1000, beyond which the search is aborted (averaged over 100
instances). Note that fastest searches were obtained for intermediate values of w:
The search was abortive for both very large exploration and very limited
exploration.

5.4 Discussion

In this chapter, we extend the perspective of the BG system as an RL engine, by
hypothesizing that the indirect pathway does not merely inhibit action selection,
but, by virtue of its complex dynamics, provide the exploratory drive necessary for
the system to learn by reinforcement. Thus, our perspective takes a significant
departure from the classical Go-NoGo interpretation of the functional anatomy of
BG pathways (Albin, Young, & Penney, 1989). This simplified binary view,
although useful, cannot explain how the BG circuit can perform its greater role as a
complete RL engine. Experiments by Schultz and colleagues (Hollerman &
Schultz, 1998; Schultz et al., 1997) that identify mesencephalic dopamine signals
with TD error had inspired an extensive effort to use concepts of RL to describe BG
function. A lot of attention was directed to the role of ventral striatum in value
computation, which is natural since value computation occupies a central place in
RL formalism. Optimal action policy can be implemented by climbing the value
gradient, a process known as exploitation. However, exploration, the

Fig. 5.19 Number of steps
taken to reach the maximum
of E(x) as a function of w
averaged over 100 instances
(x is a 10-dimensional vector).
The goal xT is taken as the
origin. A random vector of
length 5 is taken as an initial
value for x. The search is
stopped when
(x − xT)

2 � 0.1. Parameters
in Eq. (5.3.3.9) are set as:
j3 = −j4 = 10. The
maximum step length allowed
is 0.2; that is, the output of
Eq. (5.3.3.9) is multiplied by
0.2, before the state update
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complementary process to exploitation, does not seem to have been given sufficient
attention by BG models. Even in the standard RL literature, exploration is typically
represented simply by a noise term, or by introduction of stochasticity in action
selection, and not explicitly by a module in the manner of an Actor or a Critic. The
Go/NoGo picture of BG can explain discrete action selection using RL mecha-
nisms, but not in continuous state and action spaces.

The Go/NoGo theory of the BG function is supported by a simplistic interpre-
tation of the functional neurochemistry of the two BG pathways (Albin et al., 1989;
Contreras-Vidal & Stelmach, 1995). There are two inhibitory stages along the direct
pathway, making the pathway effectively excitatory or disinhibitory; there are three
inhibitory stages on the indirect pathway making it effectively inhibitory. These
arguments hide an important anatomical detail, viz. presence of excitatory feedback
connections from STN to GPe. Presence of feedback connections in IP makes the
simple ‘overall inhibitory’ argument null and void and also compels us to study the
consequences of the rich dynamics of the excitatory–inhibitory loop of neuronal
populations (Brunel, 2000). The STN–GPe loop has been dubbed as the ‘pace-
maker’ of BG considering its role in generating pathological oscillations associated
with Parkinsonian tremor (Hurtado et al., 1999; Terman et al., 2002). The fact that
neurons in this system exhibit uncorrelated firing patterns in normal conditions, and
highly correlated and synchronized firing under dopamine-deficient pathological
conditions, seems to offer an important clue to the possible role of this circuit in the
overall BG function.

We hypothesize that, by virtue of its complex dynamics, the STN–GPe system is
in the best position to serve as an explorer, thereby supplying the missing piece in
the RL machinery of BG. The aim of this chapter is to develop this theme and
demonstrate using a series of models the role of IP in exploration.

We begin with a simple network model of BG in Sect. 5.2. The model has
representations for the striatum, GPe, STN, and GPi. The striatum has D1- and
D2-expressing MSNs that project to GPi and GPe, respectively. A single pair of
STN and GPe neurons is shown to produce limit cycle oscillations. When two pools
of STN and GPe neurons are connected, the network produced complex oscilla-
tions. It was shown that correlations within and across STN and GPe can be
controlled by varying the lateral connections in STN. At this stage of model for-
mulation, there is no RL or any other form of learning. There are no cortico-striatal
connections. There is a parameter, d, that represents striatal dopamine, but not
linked to TD error.

The network defined in Sect. 5.2 is applied to binary action selection problem in
Sect. 5.3. Two inputs are presented to the network. Magnitude of the inputs rep-
resents their saliency. Go, Explore, and NoGo regimes are first defined here with
respect to the action selected by the network. Go corresponds to selection of the
more salient input, Explore corresponds to that of the less salient input, and NoGo
corresponds to non-selection of any input. The effect of d parameter on the three
regimes is studied. It was observed that the Go regime is predominant for larger
values of d, the Explore regime for intermediate values, and the NoGo regime for
smallest values. Thus, the simple BG model of Sect. 5.2, while confirming the
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classical Go/NoGo depiction of BG, goes beyond and suggests the presence of an
Explore regime between the two older regimes. It is also shown that the Explore
regime arises from the dynamics of STN–GPe system: Strengthening the lateral
connections in STN, a change that increases correlations within STN, attenuates
Explore regime.

The network model of Sect. 5.2.2 is next placed within the larger framework of
RL, and the expanded model is applied to n-armed bandit problem in Sect. 5.3.2.
Two dopamine-related signals are distinguished in this model: (1) TD error denoted
by d, and (2) value gradient denoted by dV. Whereas TD error is used for value
training, or training of cortico-striatal connections, as in classical Actor–Critic
models of BG (Joel et al., 2002), the value gradient is used for switching between
DP and IP in the striatum. The quantity dV drives action selection in such a way that
the network progressively selects arms with higher expected payoff. In other words,
dV is used for hill-climbing over the value function.

Hill-climbing of the value profile, and the role played by the quantity dV therein,
is the focus of Sect. 5.3.3. In this section, the Go/Explore/NoGo regimes observed
empirically in Sect. 5.3.1, are formulated into an algorithm, and dubbed the GEN
policy, that represents a mechanism for climbing the value gradient. Later, in
Sect. 5.3.3, the GEN policy is presented, not just as a policy for climbing the value
profile, but as a general algorithm for optimization. The GEN algorithm is applied
to optimization of a quadratic function in 10 dimensions. The number of steps taken
to reach the maximum is taken as a measure of efficiency of the algorithm.
Simulations in Sect. 3.3 show that the number of steps depends critically on the
width of the Explore regime: If the width of the regime is too narrow, exploration is
inadequate, whereas if the regime is too wide, the search does not settle down. The
simulation demonstrates the need for an Explore regime that is optimal for a given
problem. The GEN algorithm which was formulated as three separate equations in
Eq. (5.3.3.5) is reformulated as a single update equation (Eq. 5.3.3.9).

The GEN algorithm is comparable to a standard optimization alvrithm like
simulated annealing, where a given change in state is accepted stochastically
depending on the change in the cost function brought about by the change in state.
However, a more formal comparison of the two algorithms, paying attention to the
analogous roles of the temperature parameter, T, in simulated annealing and w
parameter (Sect. 3.3) that determines the width of Explore regime, would provide
useful insights into GEN algorithm.

Thus, we begin with a dynamic network model of BG in Sect. 2.2 and pro-
gressively characterize it and reduce it to a lumped model—the GEN policy.

In this chapter, we have shown the presence of three regimes—Go, Explore, and
NoGo—using a simplified network model of BG. Recently, this Go-Explore-NoGo
model was extended to a BG network model consisting of Izhikevich neurons
(Mandali & Chakravarthy, 2016; Mandali, Rengaswamy, Chakravarthy, &
Moustafa, 2015). Even in the spiking version of the BG model, it was possible to
recover and identify the three regimes. It would be a logical next step to search for
the three regimes in a more realistic, biophysical model of BG. In the next few
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chapters, we use the Go-Explore-NoGo regime to simulate several BG functions,
including reaching and gait (Muralidharan et al., 2017; Muralidharan,
Balasubramani, Chakravarthy, Lewis, & Moustafa, 2014).

Appendix

The system of equations for single oscillator is given by,

dx
dt

¼ �xþ v� sþ I ðiÞ

v ¼ tan h kxð Þ ðiiÞ
ds
dt

¼ �sþ v ðiiiÞ

Differentiating (i)

d2x

d2t
¼ � dx

dt
þ k sec h2 kxð Þ dx

dt
� ds

dt
ðivÞ

Substituting (ii) and (iii) in (iv)

d2x

d2t
¼ � dx

dt
þ k sec h2 kxð Þ dx

dt
� �sþ tan h kxð Þð Þ ðvÞ

Substituting (i) and (ii) in (v)

d2x

d2t
¼ � dx

dt
þ k sec h2 kxð Þ dx

dt
� dx

dt
þ x� v� Iþ tan h kxð Þ

� �

on rearranging

d2x

d2t
þ dx

dt
2� k sec h2 kxð Þ� �þ x� Ið Þ ¼ 0 ðviÞ

is similar to Lienard’s equation d2
x

d2
t
þ dx

dt f xð Þþ g xð Þ ¼ 0 where

f xð Þ ¼ 2� k sec h2 kxð Þ, and gðxÞ ¼ x� I.
Checking for the Lienard’s conditions, let us assume I = 0.

1. Both f ðxÞ and gðxÞ are continuously differentiable for all x.
2. gð�xÞ ¼ �gðxÞ for all x (i.e., gðxÞ is an odd function).
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3. gðxÞ[ 0 for x[ 0.
4. For all x(i.e., f ðxÞ is an even function); The odd function

FðxÞ ¼ R x
0 f ðuÞdu = 2x� tan h kxð Þ has exactly one positive zero at x ¼ xo, is

negative for 0\x\xo, is positive and non-decreasing for x[ xo, and FðxÞ !
1 as x ! 1 (one can estimate xo from graph of FðxÞ). So the system has a
unique stable limit cycle surrounding the origin in the phase plane.
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Chapter 6
Synchronization and Exploration
in Basal Ganglia—A Spiking Network
Model

Alekhya Mandali and V. Srinivasa Chakravarthy

Abstract Making an optimal decision could be to either ‘Explore’ or ‘exploit’ or
‘not to take any action,’ and basal ganglia (BG) are considered to be a key neural
substrate in decision making. In earlier chapters, we had hypothesized earlier that
the indirect pathway (IP) of the BG could be the subcortical substrate for explo-
ration. Here, we build a spiking network model to relate exploration to synchrony
levels in the BG (which are a neural marker for tremor in Parkinson’s disease).
Key BG nuclei such as the subthalamic nucleus (STN), Globus Pallidus externus
(GPe), and Globus Pallidus internus (GPi) were modeled as Izhikevich spiking
neurons, whereas the striatal output was modeled as Poisson spikes. We have
applied reinforcement learning framework with the dopamine signal representing
the reward prediction error used for cortico-striatal weight update. We apply the
model to two decision-making tasks: a binary action selection task and an n-armed
bandit task. The model shows that exploration levels could be controlled by STN’s
lateral connection strength which also influenced the synchrony levels in the STN–
GPe circuit. An increase in STN’s lateral strength led to a decrease in exploration
which can be thought as the possible explanation for reduced exploratory levels in
Parkinson’s patients.

6.1 Introduction

Chakravarthy, Joseph, and Bapi (2010) suggested that STN–GPe loop, a coupled
excitatory–inhibitory network in the IP, might be the substrate for exploration
(Chakravarthy et al., 2010). It is well known that coupled excitatory–inhibitory
pools of neurons can exhibit rich dynamic behavior like oscillations and chaos
(Borisyuk, Borisyuk, Khibnik, & Roose, 1995; Sinha, 1999). This hypothesis has
inspired models simulating various BG functions ranging from action selection in
continuous spaces (Krishnan, Ratnadurai, Subramanian, Chakravarthy, &
Rengaswamy, 2011), reaching movements (Magdoom et al., 2011), spatial navi-
gation (Sukumar, Rengaswamy, & Chakravarthy, 2012), precision grip (Gupta,
Balasubramani, & Chakravarthy, 2013), and gait (Muralidharan, Balasubramani,
Chakravarthy, Lewis, & Moustafa, 2013) in normal and Parkinsonian conditions.
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Using a network of rate-coding neurons, Kalva, Rengaswamy, Chakravarthy, and
Gupte (2012) showed that exploration emerges out of the chaotic dynamics of the
STN–GPe system (Kalva et al., 2012). Most rate-coded models, by design, fail to
capture dynamic phenomena like synchronization found in more realistic spiking
neuron models (Bevan, Magill, Terman, Bolam, & Wilson, 2002; Park, Worth, &
Rubchinsky, 2010; Park, Worth, & Rubchinsky, 2011). Synchronization within BG
nuclei had gained attention since the discovery that STN, GPe, and GPi neurons
show high levels of synchrony in Parkinsonian conditions (Bergman, Wichmann,
Karmon, & DeLong, 1994; Bevan et al., 2002; Hammond, Bergman, & Brown,
2007; Tachibana, Iwamuro, Kita, Takada, & Nambu, 2011; Weinberger &
Dostrovsky, 2011). This oscillatory activity was found to be present in two fre-
quency bands, one around the tremor frequency [2–4 Hz] and another in
[10–30 Hz] frequency (Weinberger & Dostrovsky, 2011). Park et al. (2011) report
the presence of intermittent synchrony between STN neurons and its local field
potentials (LFP), recorded using multiunit activity electrodes from PD patients
undergoing deep brain stimulation (DBS) surgery (Park et al., 2011) which is absent
in healthy controls.

One of the key objectives of the current study is to use a 2D spiking neuron
model to understand and correlate STN–GPe’s synchrony levels to exploration. As
the second objective, we apply the above-mentioned model to the n-armed bandit
problem of Daw, O’Doherty, Dayan, Seymour, and Dolan (2006) and Bourdaud,
Chavarriaga, Galán, and del R Millan (2008) (Bourdaud et al., 2008; Daw et al.,
2006) with the specific aim of studying the contributions of STN–GPe dynamics to
exploration. The proposed model shares some aspects of classical RL-based
approach to BG modeling. For example, dopamine signal is compared to reward
prediction error (Schultz, 1998). Furthermore, DA is allowed to control
cortico-striatal plasticity (Reynolds and Wickens 2002), modulate the gains of
striatal neurons (Hadipour-Niktarash, Rommelfanger, Masilamoni, Smith, &
Wichmann, 2012; Kliem, Maidment, Ackerson, Chen, Smith, & Wichmann, 2007),
and influence the dynamics of STN–GPe by modulating the connections (Fan,
Baufreton, Surmeier, Chan, & Bevan, 2012; Kreiss, Mastropietro, Rawji, &
Walters, 1997).

6.2 Methods

6.2.1 Spiking Neuron Model of the Basal Ganglia

The network model of BG (Mandali, Rengaswamy, Chakravarthy, & Moustafa,
2015) described earlier was used to simulate the binary action selection and n-arm
bandit task. For details of the model and its related equations, refer to earlier
sections. The details of the tasks and the related measures are explained below.
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6.2.2 Binary Action Selection Task

The first task we simulated was the simple binary action selection similar to
Humphries, Stewart, and Gurney (2006), where two competing stimuli were pre-
sented to the model (Humphries et al., 2006). The input firing frequency is thought
to represent ‘saliency,’ with higher frequencies representing higher salience
(Humphries et al., 2006). The response of striatal output to cortical input falls in the
range of a few tens of Hz (Sharott, Doig, Mallet, & Magill, 2012). Therefore, the
frequencies that represent the 2 actions were assumed to be around 4 Hz (stimulus
#1) and 8 Hz (stimulus #2). Spontaneous output firing rate of the striatal neurons
(without input) is assumed to be around 1 Hz (Plenz & Kitai, 1998; Sharott et al.,
2012). Selection of higher salient stimulus among the available choices could be
considered as ‘exploitation’ while selecting the less salient one as ‘exploration’
(Sutton & Barto, 1998). So, the action selected is defined as ‘Go’ if stimulus #2
(more salient) is selected, ‘Explore’ if stimulus #1 (less salient) is selected, and
‘NoGo’ if none of them is selected.

The inputs were given spatially such that the neurons in the upper half of the
lattice receive stimulus #1 and lower half the other (Fig. 6.1). The striatal outputs
from D1 and D2 neurons of the striatum are given as input to GPi and GPe
modules, respectively, with the projection pattern as shown in Fig. 6.1. Poisson
spike trains corresponding to stimulus #1 were presented as input to neurons (1–
1250) and were fully correlated among themselves. Similarly, Poisson spike trains
corresponding to stimulus #2 were presented as input to neurons (1251–2500) and
were fully correlated among themselves. Stimulus #1 and #2 are presented for an
interval of 100 ms between 100 and 200 ms; at other times, uncorrelated spike
trains at 1 Hz are presented to all the striatal neurons.

6.2.3 The N-Armed Bandit Task

We now describe the four-armed bandit task (Bourdaud et al., 2008; Daw et al.,
2006) used to study exploratory and exploitatory behavior. In this experimental
task, subjects were presented with four arms where one among them is to be
selected in every trial for a total of 300 trials. The reward/payoff for each of these
slots was obtained from a Gaussian distribution whose mean changes from trial to
trial with payoff ranging from 0 to 100. The payoff, ri.k associated with the ith
machine at the kth trial, was drawn from a Gaussian distribution of mean li,k and
standard deviation (SD) r0. The payoff was rounded to the nearest integer, in the
range [0, 100]. At each trial, the mean is diffused according to a decaying Gaussian
random walk. The trial was defined as an ‘exploitatory’ trial if highest reward
giving arm was selected else defined as an ‘exploratory’ trial.
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The payoffs generated by the slot machines are computed as follows,

li;kþ 1 ¼ kmli;k þð1� kmÞhm þ e ð6:1Þ

r0i;k � Nðli;k; r20Þ ð6:2Þ

ri;k ¼ roundðr0i;kÞ ð6:3Þ

where
µi,k is the mean of the Gaussian distribution with standard deviation (r0) for ith

machine during kth trial. km and hm control the random walk of mean (µi,k), and
e * N(0, rd

2) is obtained from Gaussian distribution of mean 0 and standard
deviation rd. ri,k and r0i;k are the payoffs before and after rounding to nearest integer,
respectively. The initial value of mean payoff, µi,0, is set to a value of 50. All the
values for the parameters km, hm, rd, r0 were adapted from (Bourdaud et al., 2008).

To make an optimal decision, the subjects need to keep track of rewards asso-
ciated with each of the four arms. The subject’s decision to either Explore or exploit
would depend on this internal representation which would closely resemble the
actual payoff that is being obtained. It is quite difficult to identify whether the
subject made an exploratory decision or an exploitative one just by observing the
EEG and selected slot data. A subject-specific model is required to classify their
decisions and identify the strategy (Bourdaud et al., 2008; Daw et al., 2006).
Keeping this in mind, Bourdaud et al. (2008) used a ‘behavioral model’ that uses
the softmax principle of RL to fit the selection pattern of human subjects. The
parameter ‘b’ of the behavioral model was adjusted such that the final selection
pattern matches that of individual subjects in the experiment (given below). The
parameter ‘b’ which controls the exploration level in the behavioral model is tuned
to match % exploitation obtained for each of the eight subjects (one subject’s data
were discarded because of artifacts); two out of the eight subjects had similar
exploration levels. Hence, a total of six subjects’ data are taken into account to
check the performance of the proposed spiking BG model.

6.2.3.1 Behavioral Model (Adapted from Bourdaud et al. (2008))

The behavioral model labels each trial as corresponding to either an exploratory or
exploitative decision. The model assumes that the user estimates the mean payoff of
each machine using a Bayesian linear Gaussian rule (i.e., a Kalman filter). Using
these estimations, he/she selects a machine according to a softmax rule. All the
subjects are assumed to share the same model for tracking the payoff means, and
thus, parameters are computed using the entire available data. The parameters of the
model (for both mean tracking and machine selection) are estimated by maximizing
the model likelihood with respect to the subject’s choices.
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At any given trial, the behavioral model provides the mean payoff for all
machines considering previous observations (i.e., the payoff obtained at previous
trials). Comparison between the model’s estimated payoffs for all machines is used
to label that trial as either exploration or exploitation. Those trials in which the user
selects the machine with the highest estimated mean are labeled as corresponding to
exploitative decisions.

The subject strategy for tracking the payoff of each machine is modeled by a
Kalman filter, whose parameters are assumed to remain constant over trials. Once
the jth machine is selected, at the kth trial, the estimated payoff distribution is

updated from its preselection values blpre
j;k ; brpre

j;k

� �2� �
to its post-selection values

blpost
j;k ; brpost

j;k

� �2� �
as follows

blpost
j;k ¼ blpost

j;k þKk rk � blpre
j;k

� �
ð6:4Þ

brpost
j;k

� �2
¼ ð1� KkÞ brpre

j;k

� �2
ð6:5Þ

where

ðKkÞ ¼
brpre
j;k

� �2
brpre
j;k

� �2
þ br0ð Þ2

ð6:6Þ

The mean estimation for the remaining machines does not change as result of the
choice since the user cannot observe the payoff of these machines. That is,

8i 6¼ j

blpost
j;k ¼ blpre

j;k ð6:7Þ

brpost
j;k ¼ brpre

j;k ð6:8Þ

Then, the estimations are also evolved according to the diffusion rule:

blpre
j;kþ 1 ¼ bkblpost

j;k þð1� bkÞbh ð6:9Þ

l0prej;kþ 1

� �2
¼ bk2 r0postj;k

� �2
þ r2d ð6:10Þ

The choice of subjects is modeled by a softmax rule; i.e., at each trial k, the
probability of choosing the machine is
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Pi;k ¼
exp bblpre

i;k

� �
P
j
exp bblpre

j;k

� � ð6:11Þ

where ‘b’ is a scaling parameter. Higher values of b drive the system to exploitative

behavior and vice versa. The parameters of the behavioral model r0; bh; bk; brd

� �
are

estimated by maximizing the log likelihood under the following constraints. To

speed up convergence, estimated parameters r; blpre
j;0 & brpre

j;0

� �
are initialized to the

parameters of the original model ðr0; lj;0 & rj;0Þ, respectively. Fixing the last two
parameters does not significantly affect the estimation of the others, because their
influence vanishes quickly within a few trials. Table 6.1 shows the estimated values
of the model, which are consistent with the real values of the machines.

6.2.3.2 Strategy for Slot Machine Selection

To simulate the experiment, we utilized the concepts of RL and combined the
dynamics of BG model to select an optimally rewarding slot in each trial.
Experimental data show that BG receives reward-related information in the form of
dopaminergic input to striatum (Chakravarthy et al., 2010; Niv, 2009).
Cortico-striatal plasticity changes due to dopamine (Reynolds & Wickens, 2002)
were incorporated in the model by allowing DA signals to modulate the Hebb-like
plasticity of cortico-striatal synapses (Surmeier, Ding, Day, Wang, & Shen, 2007).

The architecture of the proposed network model is depicted in Fig. 6.1. The
output of striatum (both D1 and D2 parts) was divided equally into four quadrants
which receive input from corresponding stimulus. The stimuli are associated with 2

weights wD1
i;0 ;w

D2
i;0

� �
initialized with equal value of 50 which represent the

cortico-striatal weights of D1 and D2 MSNs in the striatum. Each of the
cortico-striatal weights represents the saliency (in terms of striatal spike rate) for
that corresponding arm. These output spikes generated from each of the D1 and D2
striatum project to GPi and GPe, respectively. The final selection of an arm is made
as in Sect. 6.2.4. The reward ri,k received for the selected slot was sampled from
Gaussian distribution with mean li,k and SD (r0) (Eq. 6.3).

Table 6.1 Estimation of
parameters of the behavioral
model (Bourdaud et al., 2008)

k h rd r0
Real values 0.9836 50 2.8 4

Estimated values 0.92 51.37 8.12 N/A

Subject
b

1 2 3 4 5 6 7 8

0.37 0.19 0.19 0.29

0.28 0.21 0.29 0.23
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Utilizing the reward obtained for the input ‘i’ and trial ‘k’, the expected value of
the slots, inputs to D1 and D2 striatum are updated using the following equations,

Fig. 6.1 a Computational spiking basal ganglia model with key nuclei such as striatum (D1, D2),
STN, GPe, GPi, and thalamus. Excitatory/inhibitory/modulatory glutamatergic/GABAergic/
dopaminergic projections are shown by green/red/violet arrows. b The BG model and the regions
within each nuclei corresponding to the four decks are indicated
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DwD1
i;kþ 1 ¼ gdkx

inp
i;k ð6:12Þ

DwD2
i;kþ 1 ¼ �gdkx

inp
i;k ð6:13Þ

The expected value (Vk) for kth trial is calculated as

Vk ¼
X4
i¼1

wD1
i;k � xinpi;k ð6:14Þ

The received payoff (Rek) for kth trial is calculated as

Rek ¼
X4
i¼1

ri;k � xinpi;k ð6:15Þ

The error (d) for kth trial is defined as

dk ¼ Rek � Vk ð6:16Þ

where wD1
i;k are the cortico-striatal weights of D1 striatum for ith machine in kth trial,

wD2
i;k are the cortico-striatal weights of D2 striatum for ith machine for kth trial, ri,k is

the reward obtained for the selected ith machine for kth trial, xinpi;k is the binary input
vector representing the four slot machines, e.g., if the first slot machine is selected
xinpi;k = [1 0 0 0], η (=0.3) is the learning rate of D1 and D2 striatal MSNs, Rek is the
received payoff for selected slot for kth trial, and Vk is the expected value for
selected slot for kth trial.

The cortico-striatal weights are updated (Eqs. 6.12 and 6.13) using the error term
‘d’ (Eq. 6.16). The reward-related information in the form of dopaminergic input to
striatum has been correlated to the error (d) (Chakravarthy et al., 2010; Niv, 2009).
The d calculated from Eq. (6.16) has both positive and negative values with no
upper and lower boundaries but the working DA range in the model was limited to
small positive values (0.1–0.9). Hence, a mapping from d to DA is defined as
follows:

DA ¼ sigðk � dkÞ ð6:17Þ

where
DA is the dopamine signal within range of 0.1–0.9, k is the slope of sigmoid

(=0.2), dk is the error obtained for kth trial (Eq. 6.16), and sig () is the sigmoid
function.
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6.2.4 Measures

6.2.4.1 Synchronization

The phenomenon of neural synchrony has attracted the attention of many compu-
tational and experimental neuroscientists in the recent decades (Hauptmann & Tass,
2007; Kumar, Cardanobile, Rotter, & Aertsen, 2011; Park et al., 2011; Pinsky &
Rinzel, 1995; Plenz & Kital, 1999). It is believed that partial synchrony helps in the
generation of various EEG rhythms such as alpha and beta (Izhikevich, 2007).
Studying synchrony in neural networks has been gaining importance due to its
presence in normal functioning (coordinated movement of the limbs) and in
pathological states (e.g., synchronized activity of CA3 neurons in the hippocampus
during an epileptic seizure) (Pinsky & Rinzel, 1995). Plenz and Kital (1998) pro-
posed that STN–GPe might act as a pacemaker (Plenz & Kital, 1999), a source for
generating oscillations in pathological conditions such as Parkinson’s disease. Park
et al. (2011) report the presence of intermittent synchrony between STN neurons
and its local field potentials (LFP), recorded using multiunit activity electrodes from
PD patients undergoing DBS surgery (Park et al., 2011). They also calculated the
duration of synchronized and desynchronized events in neuronal activity by esti-
mating transition rates, which were obtained with the help of first return maps
plotted using phase of neurons (Park et al., 2010, 2011). To observe how dopamine
changes synchrony in STN–GPe, we calculated the phases of individual neurons as
defined in (Pinsky & Rinzel, 1995).

The phase of jth neuron was calculated as follows:

;j tð Þ ¼ 2 � p � Tj;k � tj;k
� �
tj;kþ 1 � tj;k
� � ð6:18Þ

Rsync tð Þ � eih tð Þ ¼ 1
N

XN
j¼1

ei;j tð Þ ð6:19Þ

where
tj,k and tj,k+1 are the onset times of kth and k + 1th spike of the jth neuron

Tj;k 2 tj;k; tj;kþ 1
� 	

, ;j tð Þ = phase of jth neuron at time ‘t’, Rsync is the synchro-
nization measure 0 � Rsync � 1, h = average phase of neurons, N = total number
of neurons in the network.

6.2.5 Action Selection Using the Race Model

Action selection is modulated by BG output nucleus GPi which projects back to the
cortex via the thalamus. We have used the race model (Vickers, 1970) for the final
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action selection where an action is selected when temporally integrated neuronal
activity of the output neurons crosses a threshold (Frank, 2006; Frank, Samanta,
Moustafa, & Sherman, 2007; Humphries, Khamassi, & Gurney, 2012).

The dynamics of the thalamic neurons is as follows:

dzk tð Þ
dt

¼ �zk tð Þþ fGpikðtÞ ð6:20Þ

f 0Gpik ¼
1

ðN � NÞ=k
XT
t¼1

XN
i¼1

XN=k
j¼1

SGPikij ðtÞ
 !

fGPik ¼
fmax
GPi � f 0Gpik

fmax
GPi

ð6:21Þ

where
zk (t) = integrating variable for kth stimulus, fGPik (t) = normalized and reversed

average firing frequency of GPi neurons receiving kth stimulus from striatum,
fmax
GPi = highest firing rate among the GPi neurons, SGpikij = neuronal spikes of GPi
neurons receiving kth stimulus, N = number of neurons in a single row/column of
GPi array (=50), and T = duration of simulation.

The first neuron (zk) among k stimuli to cross the threshold (=0.15) represents the
action selected. All the variables representing neuron activity are reset immediately
after each action selection.

6.3 Results

We start with results of neural dynamics (STN–GPe) as a function of DA and then
present with decision-making results.

6.3.1 Neural Dynamics

Pathological oscillations of STN and GP have been associated with various PD
symptoms (Brown, 2003; Plenz & Kital, 1999). Correlated neural firing patterns in
STN and GPi can be seen in both experimental conditions of dopamine depletion
and in Parkinsonian conditions. In the present model, we show increased syn-
chronized behavior under conditions of reduced dopamine, resembling the situation
in dopamine-deficient conditions of Parkinson’s disease. The effect of DA on the
synchronization of STN and GPe neurons was studied by estimating the values of
Rsync
STN, R

sync
GPeR

sync
STNGPe for increasing values of DA (0.1–0.9).
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The three ‘Rsync’ (Eq. 6.19) values showed a decrease in amplitude with an
increase in DA level (Fig. 6.2a–c). Under low DA conditions, GPe activity follows
STN activity (Plenz & Kital, 1999), thus forming a pacemaker kind of circuit,
which could be the source of STN–GPe oscillations Fig. 6.2d. One of the suspected
reasons of bursting activity in STN is the decreased inhibition from GPe neurons
(Plenz & Kital, 1999) at low DA levels. This feature is captured by the model since
GPe firing rates are smaller for lower DA levels. The STN neurons showed
oscillations around the frequency of 10 Hz at low DA but were absent at high DA
level (Kang & Lowery, 2013).

Fig. 6.2 Change in the three synchronization values Rsync
STN (a), Rsync

GPe (b) and R
sync
STNGPe (c) oscillatory

activity in STN neurons (d) frequency content with the value of DA (0.1–0.9). Simulations show
reduced synchronization within STN and GPe networks, and also between STN and GPe
networks, as DA is increased
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6.3.2 Decision Making

After the model’s performance was quantified at neural level, we studied the role of
BG in decision making using two tasks especially in explorative and exploitative
dynamics. This work is in continuation to our earlier hypothesis that the source for
exploration comes from STN–GPe dynamics (Kalva et al., 2012). The first task was
a simple binary action selection similar to Humphries et al., (2006), where two
competing stimuli were presented to the model. The input firing frequency is
thought to represent ‘saliency,’ with higher frequencies representing higher sal-
ience. Selection of stimulus with the higher salience between the two available
choices could be considered as ‘exploitation’ while selecting the less salient one as
‘exploration’ (Sutton & Barto, 1998). So the action selected is defined as ‘Go’ if
stimulus #2 (more salient) is selected, ‘Explore’ if stimulus #1 (less salient) is
selected, and ‘NoGo’ if none of them is selected. Simulations were run for 100
trials, and the percentage of actions selected under each regime (Go, Explore, and
NoGo) was calculated for dopamine levels ranging from low (0.1) to high (0.9)
(Fig. 6.3). We may note that the probability of NoGo, where no action is selected,
decreases with increase in dopamine; probability of Go increases with dopamine;
the peak of exploration is found at intermediate levels of dopamine (Fig. 6.3). The
range of DA where a peak in exploration was observed is the same where STN and
GPe network showed chaotic activity.

Fig. 6.3 Percentage of action selection observed in the Go, NoGo, and Explore regimes averaged
over 200 trials with DP and IP weight values at wSTN!GPi = 1.15 & wStr!GPi = 0.8. We ran the
simulation for 100 trials and segmented into 4 bins (25 trials each). We then calculated the
variance of each regime across all DA levels
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The second task was a four-armed bandit task (Bourdaud et al., 2008; Daw et al.,
2006) which is similar to a real-world decision-making scenario. In this task, the
subjects are presented with four arms where one among them is to be selected in
every trial for a total of 300 trials. The reward/payoff for each of these slots was
obtained from a Gaussian distribution whose mean changes from trial to trial with
payoff ranging from 0 to 100. The model’s performance (% exploitation) was
compared with behavioral model, which represents the experimental data in the
n-armed bandit task (Fig. 6.4). The parameter ‘b’ of the behavioral model which
controls the Exploit–Explore balance was adjusted to match the performance of
individual subjects in the experiment. Exploration in the model can be obtained by
either increasing the IP weight (influence from STN) or decreasing DP weight
(influence from striatum).

Fig. 6.4 Compares the performance of BG model with the behavioral model. a The percentage
exploitation obtained for each of the six subjects from BG and behavioral model. The relationship
between betas (b) of the behavioral model and DP weights (wStr!GPi) with a constant wSTN!GPi

value (=0.75) used to attain (a) are shown in (c). b The relationship between betas (b) of the
behavioral model and IP weights (wSTN!GPi) of BG model with a constant wStr!GPi value of (=5)
used to attain (b) are shown in (d). Y-axis represents percentage exploitation, and X-axis represents
a subject which is a specific beta value (b) in behavioral model and the IP or DP weight in the BG
model
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6.4 Discussion

The synchrony results tally with the general observation from electrophysiology
that at higher levels of dopamine, the STN–GPe system shows desynchronized
activity and under dopamine-deficient conditions of PD exhibits synchronized
bursts (Bergman et al., 1994; Gillies, Willshaw, Gillies, & Willshaw, 1998; Park
et al., 2011). We observed that STN activity showed oscillatory activity with a
frequency (=10 Hz) which falls under the beta frequency range observed in
experimental PD study (Weinberger & Dostrovsky, 2011). One of the aims of the
present work is also to show that the complex dynamics of STN–GPe system
contributes to exploration. To this end, we first simulated the binary action selection
task [similar to Humphries et al., (2006)] where saliency was coded in the firing
rate. The selection of higher one was defined as ‘exploitation/Go’ and lesser one as
‘exploration/Explore’ and not selecting any of the inputs as ‘NoGo’. The model
showed NoGo at low DA levels (0.1–0.3) and Go at high DA levels (0.7–0.9)
consistent with the classical picture of BG function. Along with this, a peak in
‘Explore’ at intermediate levels of DA (0.4–0.6) was also observed (Fig. 6.3). To
check whether any other module in the network is influencing exploration in the
system, we removed the STN to GPi connection (which effectively eliminated the
IP). This omission rendered the system to display only Go and NoGo regimes (no
exploration, results not included). We then moved to simulating the n-armed bandit
task, where the performance of model was compared with experimental result. The
results obtained from BG model closely match with the behavioral model (Fig. 6.4)
reinforcing the idea that STN–GPe could be a source for exploration at subcortical
level.
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Chapter 7
A Basal Ganglia Model of Freezing of Gait
in Parkinson’s Disease

Vignesh Muralidharan, Pragathi Priyadharsini Balasubramani,
V. Srinivasa Chakravarthy and Ahmed A. Moustafa

Abstract Freezing of gait (FOG) is a mysterious clinical phenomenon seen in
Parkinson’s disease (PD) patients, a neurodegenerative disorder of the basal ganglia
(BG), where there is cessation of locomotion under specific contexts. These con-
texts could include motor initiation, i.e., when starting movement, passing through
narrow passages and corridors, while making a turn and as they are about to reach a
destination. We have developed computational models of the BG which explains
the freezing behavior seen in PD. The model uses reinforcement learning frame-
work, incorporating Actor–Critic architecture, to aid learning of a virtual subject to
navigate through these specific contexts. The model captures the velocity changes
(slowing down) seen in PD freezers upon encountering a doorway, turns, and under
the influence of cognitive load compared to PD non-freezers and healthy controls.
The model throws interesting predictions about the pathology of freezing sug-
gesting that dopamine, a key neurochemical deficient in PD, might not be the only
reason for the occurrences of such freeze episodes. Other neuromodulators which
are involved in action exploration and risk sensitivity influence these motor arrests.
Finally, we have incorporated a network model of the BG to understand the net-
work level parameters which influence contextual motor freezing.

7.1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder which arises due to a loss
of dopaminergic neurons in the brain, specifically in a region called substantia nigra
pars compacta (SNc), an integral part of a subcortical circuit called the basal ganglia
(BG) (Hughes, Daniel, Kilford, & Lees, 1992). The BG system is involved in
several crucial functions such as reward-based learning, action selection, motor
preparation, and motor planning (Chakravarthy, Joseph, & Bapi, 2010). The BG
circuit is part of a reward-processing system where the neuromodulator, dopamine,
plays a significant role. Dopamine deficiency due to loss of SNc cells in PD
manifests as a wide variety of motor, cognitive, and affective symptoms.

One of the defining features of PD pathology is the presence of gait disorders,
where there is impairment in locomotion in a subset of the patients (Shine,
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Moustafa, Matar, Frank, & Lewis, 2013). Parkinsonian gait is often characterized
by shuffling steps, also called festinating gait. Several spatiotemporal changes are
observed in PD gait including reduced walking speeds, lower step lengths,
increased cadence (steps/time), and higher double-support times (time during both
feet are touching the ground) (Hughes et al., 1990; Morris, Iansek, Matyas, &
Summers, 1998). In addition to these features, a more debilitating aspect of PD gait
is known as freezing of gait (FOG) (Giladi et al., 2001). It is an episodic phe-
nomenon where there is a sudden and paroxysmal cessation of locomotion, often
triggered by certain environmental contexts which include approaching narrow
doorways/passages, turns, and also during movement-related scenarios such as
movement initiation and dual-tasking (Schaafsma et al., 2003). One consequence of
freezing is the increased rate of falling and an overall decrease in quality of life
(Latt, Lord, Morris, & Fung, 2009). There have been several hypotheses which try
to explain the factors contributing to freezing behavior, ranging from a defect in
lower level areas such as spinal mechanisms leading to improper gait execution
(Chee, Murphy, Danoudis, Georgiou-Karistianis, & Iansek, 2009) to improper
communication among different cortico-subcortical (mainly cortico-basal ganglia)
networks ultimately leading to motor arrests (Lewis & Barker, 2009).

The contextual triggers for freezing which usually include turning environments,
and narrow doorways, among others suggest that there might be an inherent
problem of evaluating space underlying FOG. We have modeled the cortico-BG
network to understand the influence of the specific contexts that lead to FOG
(Muralidharan et al., 2017; Muralidharan, Balasubramani, Chakravarthy, Lewis, &
Moustafa, 2014). Thus, modeling freezing is approached as a problem where the
environment being navigated by an agent (simulated subject) is successfully
negotiated by building a function which computes the ‘value of space.’ The
meaning of this ‘value of space’ may be explained as follows. If a region of space in
the proximity of an animal has high value, it means that moving into that space is
beneficial, safe, or rewarding to that animal. A spatial region with low value means
that it is probably unsafe or unrewarding. Thus, the notion of evaluation of space,
which is explored in this chapter in the context of Parkinsonian gait, is proposed as
a key guiding principle underlying spatial navigation. This value of space is a
notion borrowed from reinforcement learning literature where it is called the value
function, which estimates the expected reward from a given state (Sutton & Barto,
1998). Thus by building a value function over space, the motor machinery would be
able to use this information to guide the agent successfully through a given envi-
ronment. The different scenarios considered for modeling include understanding the
influence of doorways and narrow passages on gait, studying the role of cognition
in freezing, influence of turning on gait. Importantly, freezing is known not to be
limited just to gait movements and could be a global movement deficit affecting
hand movement and speech (Nieuwboer et al., 2009; Park et al., 2009, 2014;
Ricciardi et al., 2016). Accordingly, we also developed a network model of the
cortico-BG network to study freezing of arm movements.
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7.2 Motivation, Objective, and Scope

In this chapter, we aim to achieve the following objectives:

• Build a cortico-BG-spinal model, taking into account the different levels of
motor control, to understand the influence of environment contexts like door-
ways, narrow passages, and turns on the gait of PD subjects.

• Understand the role of cognition on FOG, by considering the interaction among
multiple cortico-BG loops (motor and cognitive loops) and elucidate the motor
arrests seen during dual-tasking.

• Extend the existing approach to a network model of the cortico-BG circuitry and
study the network parameters that lead to freezing.

• Elucidate the neurobiological correlates of key model parameters, to gain better
insights into the mechanism of FOG.

7.3 Methods and Results

7.3.1 The Influence of Doorways on FOG

The proposed model (Fig. 7.1) has two stages of control: (1) the higher level of
control representing the cortico-basal ganglia system and (2) the spinal level central
pattern generators (CPGs) that translate the higher level gait commands such as
velocity into gait rhythm. The BG model is essentially simulated using the Actor–
Critic architecture, with the difference that the Actor is modeled by the Go/Explore/
NoGo (GEN) model (Chakravarthy et al., 2010; Kalva, Rengaswamy, Chakravarthy,
& Gupte, 2012; Magdoom et al., 2011). The spinal CPGs are modeled by networks
of Hopf oscillators (Righetti, Buchli, & Ijspeert, 2006). Our model is used to sim-
ulate the results of two PD gait studies (Almeida & Lebold, 2010; Cowie, Limousin,
Peters, & Day, 2010). The model simulates the approach of a subject to a doorway
and computes the velocity profile along the track leading to the doorway. The agent
repeatedly approaches a doorway, walking along a short track. The agent aims at
passing through the doorway without bumping into the sides of the doorway. Due to
the well-known trade-off between accuracy and speed in motor function (Bradshaw
& Sparrow, 2000; Duarte & Latash, 2007; MacKay, 1982), rapid approaches to the
doorway are more likely to result in a collision. Therefore, in our model, the agent
learns to reduce its speed in the vicinity of the doorway, which it does using RL
mechanisms.

The Critic in the network approximates the value, V(t), which is a function of the
view vector, /, as
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VðtÞ ¼ tanh
X

Wi(t)/i(t)
� �

ð7:1Þ

where W are the weights updated using the temporal difference (TD) error d ¼
rðtÞþ cVðtÞ � Vðt � 1Þ which is a correlate of dopamine signaling (Schultz, 2010).
Here r(t) is the reward obtained at time t, and c is the discount factor. The Actor/
GEN policy performs stochastic hill-climbing over the value function using gra-
dient information also called value difference (dV ¼ VðtÞ � Vðt � 1Þ)

DXðtÞ ¼ AGsigðkGdVÞ DXðt � 1ÞþAEv expð�d2V=r
2
EÞ � ANsigðkNdVÞ DXðt � 1Þ

ð7:2Þ

DX represents the velocity of the agent which the GEN updates using dV. Here
dV which is also thought to represent a form of dopamine signal, similar to the TD
error (Schultz, 2010), can switch between different regimes of action selection, that
is, Go, Explore, and NoGo which is thought to be implemented by the BG circuitry.
sig is a nonlinear sigmoid function. AG/N and kG/N represent the gain and sensitivity
of Go/NoGo. rE is the exploratory parameter.

Fig. 7.1 Block diagram detailing the cortico-basal ganglia system and the central pattern
generator module used in our study. The arrow on the critic represents the module training. The
figure also projects the cortico-BG system, CPG, and locomotor apparatus in the shades of blue,
brown, and violet, respectively
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Using these concepts, we simulated performance in two experimental studies,
that investigated the gait pattern of PD patients as they approach a doorway
(Almeida & Lebold, 2010; Cowie et al., 2010). The task setup in these experiments
involved three subject groups: healthy controls, PD freezers, and PD non-freezers,
to pass through a doorway of a specific width while monitoring their gait param-
eters as they performed the task. The study of Cowie et al. shows a sharp dip in
velocity as a PD patient approaches the doorway, a dip that becomes sharper in the
case of narrower doorways; this effect was more pronounced in PD patients (ON
and OFF freezers with and without dopaminergic medication) than in healthy
controls. Almeida and Lebold (2010) consider a similar setup but compare the gait
patterns of PD freezers with non-freezers in terms of step lengths and its variability.

The velocity profile obtained from the model of Cowie et al. (2010) for controls
and the PD condition is as shown in Fig. 7.2a, b, respectively. In controls, there
seems to be a reduction in velocity on approaching the doorway which is

Fig. 7.2 Normalized velocity profile for controls and PD freezers in a experiment (Cowie et al.,
2010) and b simulation under different doorway conditions. 100% velocity in the experimental
results represents the velocity profile under a no-door condition. In simulation results, the velocity
profiles are normalized by an average velocity far before (5–6 m) from the doorway
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exaggerated in PD conditions, thus capturing the experimental results. The velocity
near the doorway is normalized by the average velocity calculated far before the
doorway (5–6 m). Additionally, our simulation results show a certain door-size-
dependent scaling of velocity in case of PD subjects.

The simulated stride length profile for controls, PD ON, and PD OFF, under
different doorway sizes is shown in Fig. 7.3b, and that of the experiments (Cowie
et al., 2010) in Fig. 7.3a. The average stride length of controls is higher than that of the
PD patients. In the model, we also found that simulated PD ON condition has higher
mean velocities than PD OFF, in agreement with experimental data. Our simulation
results also show that there is a significant difference in stride lengths between the
wide/medium door and the narrow door conditions in both PDONand PDOFF states.
Almeida andLebold in their study showdifferences in gait patterns between PDON—
freezers and non-freezers. The experiments conducted in theON condition (Fig. 7.3c)
report that the PD freezers produce significantly lower step lengths, compared to
non-freezers and controls. This reduction in step lengths is further amplified in the
case of reduced door sizes and the model captures this effect (Fig. 7.3d).

The simulations lead to the conclusion that dopamine reduction, modeled here
by clamping the temporal difference error (d), alone cannot replicate the gait pat-
terns seen in the experiments (Almeida & Lebold, 2010; Cowie et al., 2010) and the
involvement of several other factors including exploration in the GEN policy
represented by the parameter rE and discount factor (c) is necessary to produce the
observed effect of freezing.

Fig. 7.3 Mean stride lengths and standard errors for controls, PD ON and PD OFF under different
doorway conditions in a experiments (Cowie et al., 2010) and b simulations, reported with
p < 0.005. Mean and standard deviation of step length profiles for PD freezers and non-freezers
under wide, medium, and narrow door conditions in c experiments (Almeida and Lebold, 2010),
and d simulations. PD freezers show significantly reduced step lengths compared to non-freezers
(p < 0.05) and control (p < 0.005) under all door conditions (N = 50)
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7.3.2 The Role of Cognition in FOG

Experimental data show that perceptual cues can either exacerbate or ameliorate
FOG in PD patients. For example, simple visual stimuli like stripes on the floor can
alleviate freezing, whereas complex stimuli like narrow doorways can trigger it.
Competitive interactions among the cortico-basal ganglia loops are thought to be a
major factor for triggering freezing (Lewis & Barker, 2009). We model the behavior
of PD subjects, freezers and non-freezers on a virtual reality (VR) gait paradigm.
These behavioral experiments used a modified version of the Stroop task (Treisman
& Fearnley, 1969) where there is an association of a color-word stimulus to a
specific motor action (i.e., to walk or to stop) while subjects navigate a series of
doorways. These VR tasks, which assess gait performance quantified in terms of
step latency (time between two consecutive steps), require effective interaction
between the cortico-basal ganglia circuits (Matar, Shine, Naismith, & Lewis, 2013;
Shine et al., 2013).

We developed a cortico-basal ganglia model that simulates the interaction
between the motor and cognitive loops (using a ‘Motor Module’ and ‘Cognitive
Module’) essential to understand the influence of cognition on gait. Both the
Cognitive and Motor Modules of the proposed BG model are based on the Actor–
Critic architecture, each having its respective Critic and Actor. Evidence from the
two modules is combined to produce the final output. These two modules build
their respective evidences based on different sensory stimuli—the Motor Module
based on visual appearance of the doorway and the Cognitive Module based on the
word cue. The first evidence (EI) involves the Cognitive Module identifying the
salience of a word cue upon its presentation (Fig. 7.4). The second evidence
(EII) involving the Motor Module takes the visual appearance of the doorway as
input and computes the direction of the step as well as the latency associated with it
as outputs. EII is computed at every time step. In this case the GEN policy, which is
the Actor, adopts hill-climbing over the utility (a different learning framework)
landscape to calculate the velocity of the agent. The evidences of the two modules
are combined subsequently to compute the step latency.

Fig. 7.4 A schematic of the model. There are two modules (cognitive and motor) each computing
its evidence. The two evidences are combined subsequently to compute step latency
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The Utility formulation is ideal to study cognitive load as it combines the value
function (Q), that is expected reward, with the risk function (h), which represents
reward variance (Bell, 1995; d’Acremont, Lu, Li, Van der Linden, & Bechara,
2009). In recent work, it has been shown that the utility function formulation can be
effectively used to model the interactions between dopamine and serotonin in BG
(Balasubramani, Chakravarthy, Ravindran, & Moustafa, 2014, 2015). The utility
function is given as

U(t) ¼ Q(t)� a sign(Q(t))
ffiffiffiffiffiffiffi
h(t)

p
ð7:3Þ

where a controls the risk sensitivity. The term a was correlated to the functioning of
serotonin (5HT) in the BG and the sign(Q) term in Eq. (7.3) represents the non-
linear risk sensitivity (Balasubramani, Chakravarthy, Ravindran, & Moustafa,
2014).

The Effect of Conflict The model simulates the result of Matar and colleagues
(Matar et al., 2013) to understand the effect of cognitive cues on motor activity (See
Table 7.1 for the cues used). Modal latency, which is basically the preferred step
latency, in Fig. 7.5a shows no change in the latency among controls, PD
non-freezers, and PD freezers, similar to experimental results. This suggests that the
preferred walking speeds for all subject groups are nearly similar and freezing is an
intermittent effect. The experimental results (Fig. 7.5b) show that cues like GREEN
(green) which have an implicit salience for ‘walk’ response, evoke little or no
change in the step latency for PD freezers. The RED (red) cue which has an implicit
salience to ‘stop’ response seems to increase the step latency of the PD freezers.
The model replicates this effect where the BLUE (blue) and RED (red) cues pro-
duced maximum footstep latency (MFSL) in the freezers in comparison with
controls and non-freezers (Fig. 7.5c).

The Effect of Cognitive Load The effect of cognitive load on motor responses is a
result of the ability of the subject to map cues to appropriate actions, depending on
the nature of the cues. In this respect, simple cues are easily associated with their
corresponding actions—walking or stopping. This is different for complex cues as

Table 7.1 List of cues used in the virtual reality paradigm and the actions associated with their
appearance as used in the experiments and the model

Type Cues Actions References

Simple WALK, STOP, WALK, 
STOP

Direct associations

Complex Congruent: RED, 
GREEN, BLUE

Walk
Walk/stop

Matar et al. (2013)
Shine et al. (2013)

Incongruent: RED, 
GREEN, BLUE, RED, 

GREEN, BLUE

Stop
Stop/walk

Matar et al. (2013)
Shine et al. (2013)
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mapping to actions is not straightforward. In the Shine et al. (2013) experiment,
non-freezers and freezers PD patients were presented with cues both in the OFF and
the ON medication conditions. The trials were also counterbalanced among the
patients such that a congruent cue is associated with ‘walk’ and incongruent to
‘stop’ and vice versa. According to the experiments, which were conducted on both
PD freezers and non-freezers, the outcome of loading is evident from the number of
motor arrests observed. The experiments were conducted with patients ON and
OFF their dopamine medications. The PD freezers (OFF) showed the highest
number of motor arrests (Fig. 7.6c), with the tendency of freezing about 2.7 times
more than the non-freezers. Though PD freezers were generally more likely to
suffer a motor arrest (both OFF and ON) compared to the non-freezers, the high
load situation triggered more arrests in the PD freezers. Similar to the previous
experiment, there were also no significant differences in the modal latency between
the PD freezers and the non-freezers.

In the model, a similar strategy is imposed and the trials including the low and
high load cues are extracted. The number of motor arrests is estimated using the
distribution of the step latency (Fig. 7.6a, b). A motor arrest is any event with step

Fig. 7.5 Experimental (Matar et al., 2013) and modeling data of modal latency (a) observed in
controls, PD non-freezers and PD freezers. The maximum-scaled footstep latency (MFSL)
exhibited on the presentation of the congruent cues as seen in the Matar et al. experiment (b) and
the model (c). It illustrates that PD freezers show increased latencies on the high-conflict cues like
RED (red) compared to the low-conflict case GREEN (green). (##—p < 0.005)
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latency that is twice the modal (preferred) step latency of the subject. The PD
freezers seem to have higher frequency of higher step latency events especially in
the regions of 30–50 in Fig. 7.6b. The modeling results are similar to experimental
results (Fig. 7.6d), where under high load scenario, the PD freezers OFF medication
show maximum motor arrests, which is comparatively less in the low load case.

The involvement of the Cognitive Module in motor arrests can be ascertained by
analyzing the utility of the Cognitive and Motor Modules at the time of a motor
arrest (Fig. 7.7a). It is clear that the average values of the utility of walking Ucog

w

� �

of the Cognitive Module are much lower than utility of the Motor Module (Umot) in
the case of PD freezers compared to non-freezers. This strengthens the claim that
there is a shift to more cognition-based decision during a freeze episode and
understanding the role of these areas would lead to further insights into the
phenomenon.

The contribution of risk sensitivities from each module (amot and acog) to the
motor arrests also reveals several trends (Fig. 7.7b). Although lower amot values are
used to simulate PD freezer conditions and are the optimal range for accounting for
the experimental data, the trends suggest that higher amot would lead to a high
number of motor arrests. The role of acog to elicit motor arrests seems to be more
effective under conditions of low amot values where there is an increase in the
number of motor arrests as acog increases. The model thus predicts an increase of
acog to differentiate a control from a non-freezer but an increase in amot to increase
the number of motor arrests. Medications are also found to play a role in decreasing
the number of motor arrests, and in particular, a case of low amot is shown to better
respond to medications (Fig. 7.7c).

Fig. 7.6 Frequency distributions of step latency observed from the model for the PD non-freezers
(a) and the PD freezers where * represents the modal points (b). Motor arrests seen in PD freezers
and non-freezers under low and high levels of cognitive load in experiments (c) and the model (d).
The PD freezers (OFF) show a large number of motor arrests, which comes down under medicated
conditions. PD non-freezers show no significant changes in the both the loads as well as the
medication. (Abbreviation NFR: Non-freezer, FR: Freezer) (##—p < 0.005)
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7.3.3 Influence of Turning on FOG

Turning is another scenario which induces freezing in PD (Giladi et al., 2001;
Schaafsma et al., 2003). As in the case of doorways, an environment with a turn is
considered for simulating the motion of an agent. Our model simulates performance
in the VR turning task where healthy controls and PD subjects (both freezers and
non-freezers) execute locomotion in a virtual reality environment as described in
the previous section, with the introduction of turns in the task (Gilat et al., 2015).
The subjects involved in the study, including healthy controls, PD non-freezers, and
PD freezers, performed alternate pressing of foot pedals led to forward motion in
the VR task. There were an average of 23 turns in the task, and the subjects did not
perform a different motor pattern to navigate the turn. So as the subjects pedaled
toward a turn the change of the visual scene indicated the execution of a turn. Step
latency again was taken as the behavioral output of the subject.

We adopt a similar strategy as the previous models, and the model architecture is
similar to the motor-cognitive model, wherein the Motor Module step latency is
estimated. The deviation from the previous models is the absence of the cognitive

Fig. 7.7 Average utility (a) for both the PD non-freezers and the PD freezers during events of
motor arrests triggered upon the presentation of a word cue. (##—p < 0.005). The normalized
motor arrests in the model (b) seen in PD freezers for different values of amot and acog. c The trend
for the motor arrest as a function of the medication factor (dmed) for two cases (Case 1 amot = 0.1;
acog = 7 and Case 2 amot = 7; acog = 7)
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loop (as word cues were not considered in the experiments), and the risk term is not
considered. On simulating the performance of healthy controls, PD non-freezers
and PD freezers, we see that modal latency estimated for the subjects groups reveals
no significant differences (Fig. 7.8a). In the model, we consider the latency values
at all other points except for the turn. The maximum footstep latency (MFSL) is
again estimated in the experiment as the largest latency exhibited whenever the
subject encounters a turn, and the same method is adopted in the model as well. In
Fig. 7.8b, we see that the PD freezers show higher MFSL compared to controls and
PD non-freezers which is also captured by the model (Fig. 7.8c). There was no
significant change in the MFSL for PD subjects in the ON and OFF medicated
states, and the same is seen in the model as well.

7.3.4 Freezing in Other Modalities

Freezing is known to be triggered not only during gait movements but can occur in
other motor movements as well. It is seen that freezing occurs in upper limb
movements, also referred to as freezing of upper limb (FOUL) (Vercruysse et al.,
2013). We utilized an approach to model the areas involved in general motor

Fig. 7.8 a Modal latency of controls, PD non-freezers and PD freezers in the experiments and the
model. The experimental (b) and model (c) maximum footstep latency (MFSL) of the three subject
groups while encountering a turn with PD freezers showing the higher MFSL in both the ON and
OFF cases. (##—p < 0.005)
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control and developed a network level model which performs arm reaching
movements. The objective was to study freezing of arm and understand the network
parameters which give rise to this behavior. Although it is seen that FOUL occurs
mostly in bimanual tasks, we here aim to understand how the velocity profiles of the
arm changes while moving through a passage, similar to that of navigating through
a doorway as all our modeling strategy has been concentrated on building value
function over space. Accordingly, we simulate a task where an arm moves through
a passage of different sizes and understand whether the same slowing down of hand
would happen close to the passage.

We consider two cases: a narrow (0.2 m) and a wide passage (0.4 m) and a
target which is placed beyond this passage that the arm tries to reach (Fig. 7.9a, b).
The reward given for a successful reach and punishment is delivered if the arm hits
the barriers. The velocity profile of the arm is tracked in the model for both controls
and PD conditions. We observe that the velocity while passing through the passage
for PD in both cases (narrow and wide) is lower than the controls (Fig. 7.9c–e)
exemplifying the same effect seen in doorways and turns. Average velocity at the
passage indicates that the variability in PD in the case of a narrow doorway is
higher than the controls, which also conforms to the experimental results of higher
gait variability in freezers close to a doorway (Almeida & Lebold, 2010).

7.4 Conclusions

We used cortico-basal ganglia models to understand FOG in PD patients and
studied the influence of environment (doorways and turns), the effect of cognitive
cues on motor freezing and even arm freezing through passages. To our knowledge,
there are no prior computational models explaining the FOG in PD. We attempt to
capture this by carefully considering the impact of different levels of control on gait.
The cortico-BG module uses RL concepts for learning the environment in which the
agent is placed (for e.g., navigating through doorway). The BG dynamics is
modeled through GEN that has been tested in many of our earlier studies (Kalva
et al., 2012; Magdoom et al., 2011; Sridharan, Prashanth, & Chakravarthy, 2006).
This module outputs a higher level control parameter such as velocity of gait to be
passed on to the next level of control.

From all of our modeling studies, we found that just by modulating d, the
dopamine correlates representing the TD error did not capture the results seen in the
behavioral studies. Since dopamine deficiency is generally considered the crucial
factor, the ‘star of the show’ (LeWitt, 2012), responsible for PD-related impairment,
RL-based computational models of BG function typically propose TD error (a
dopamine correlate) as the key variable that controls normal and pathological
function. We saw that three other parameters r, which controls the extent of
exploration in the actor, c, which discounts future rewards, and a, which controls
risk sensitivity were also crucial in explaining freezing.
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There was an attempt to accommodate the function of different neuromodulators
—dopamine, serotonin, and norepinephrine—in an unified theoretical framework
based on RL (Doya, 2002). According to this view, dopamine represents TD error,
norepinephrine represents exploration denoted by the temperature parameter, b, and
serotonin represents discount parameter, c. Specifically, within the BG circuitry, it
was suggested that Globus Pallidus (GP) is the substrate for exploration (Doya,
2002). The Globus Pallidus is also known to have high levels of norepinephrine
(Russell, Allin, Lamm, & Taljaard, 1992). The chaotic dynamics of STN–GPe
system qualifies to serve as a source of exploratory drive, an idea that has been

Fig. 7.9 Arm along with the a narrow and the b wide passages. The averaged velocity profile of
the arm while reaching the target through the c narrow and d wide passage (represented by the
black line in plots). e The velocity at the passage between controls, and PD shows increased
variability in PD when passing through it. (#—p < 0.05, ##—p < 0.005)
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investigated extensively using computational models (Kalva et al., 2012; Sridharan
et al., 2006). In the model, the exploration parameter, r, denotes the extent of
exploration and therefore may be described as a neural correlate for norepinephrine
in the BG. Similarly, serotonin has been linked to the discount factor, c, or the
timescale of reward integration, with larger values of c corresponding to higher
levels of serotonin (Tanaka et al., 2007). Low levels of serotonin were associated
with impulsivity, a behavior that may be thought to be a result of short-term reward
seeking (Rogers, 2011). Based on the arguments just described, we adjust both c
and r that represent serotonin and norepinephrine, respectively, in addition to dlim
and dmed that are related to dopamine levels, in the present model to capture
PD-related gait changes.

Additionally, when cognitive load comes into play, the parameters amot and acog

which correspond to risk sensitivity in each module seem to bring about the
behavioral differences between controls, non-freezers, and freezers. Modeling
efforts suggest that risk sensitivity correlates with the levels of serotonin in the
motor areas (Balasubramani, Chakravarthy, Ravindran, & Moustafa, 2014, 2015).
The concentration of serotonin and its derivatives in PD have been shown to be
lower in the cerebrospinal fluid, with a strong correlation with freezing of gait
(Tohgi, Abe, Takahashi, Takahashi, & Hamato, 1993). Therefore, besides dopa-
mine, the modeling efforts suggest the need to understand the role of other neu-
romodulators in PD when it comes to FOG.
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Chapter 8
Modeling Precision Grip Force
in Controls and Parkinson’s Disease
Patients

Ankur Gupta and V. Srinivasa Chakravarthy

Abstract Precision grip (PG) is the ability to hold an object between forefinger and
thumb. Lifting objects in PG require delicate finger grip force (GF) control. Healthy
controls modulate GF depending on size, weight, surface curvature, and friction.
The difference between the actual GF generated and the minimum GF required to
prevent the object from slipping is known as safety margin (SM). Published results
suggest that OFF-medicated Parkinson’s disease (PD) patients generated average
SM identical to that of controls with increased SM variance. PD patients on
medication demonstrated higher average SM with SM variance identical to that of
controls. Previously known computational models provide an insight on how the
GF is generated and controlled but are unsuitable for modeling the GF in PD
patients. In this chapter, we present a Go/Explore/NoGo (GEN) algorithm in a
utility-based decision-making framework to explain the SM generated by healthy
controls and PD patients both during ON and OFF medication. The study suggests
that PD GF is a result of dopamine-level-dependent suboptimal decision-making-
based force selection and the suitability of the GEN algorithm to model
decision-making tasks.

Development of an opposable thumb in primates has been seen as a very crucial
evolutionary step (Almecija, Moya-Sola, & Alba, 2010). It bestowed upon the
organism the ability to develop complex tools and effectively use it as early as
2.5 million years ago (Panger, Brooks, Richmond, & Wood, 2002) to obtain/extract
food, execute offensive/defensive strategies, and attract peers (Van Schaik, Deaner, &
Merrill, 1999). Evidence also suggests that themanufacture and use of tool shaped the
brain development in primates, specifically the motor system (Calvin, 1982).

In daily life, we interact and manipulate multiple objects, many of which require
grasping. Due to difference in the object’s shape, size, and the task requirement, the
movement strategy changes. Movements are broadly classified into two groups—
prehensile and non-prehensile movements. Prehension is derived from Latin word
prehendere that means ‘to grasp.’ Hence, prehensile movements are the ones in
which the object is secured by hand/fingers wrapping around the object. Napier
(1956) further classified the prehensile movements based on the grasping strategy
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and task objectivity, mainly power and precision grip. Power grip is the grasping
strategy (formed by enveloping the object in the palm) employed when task requires
large inaccurate forces. The precision grip (PG) is the prehensile strategy employed
to generate small yet accurate forces with enhanced control. The grip is classified as
a PG when the object is held between the opposable thumb and a finger. PG-lift tasks
are noninvasive tools to understand the motor system integration and their effect on
behavior. Thus, PG has been employed in multiple studies ranging from
Huntington’s disease (Gordon, Quinn, Reilmann, & Marder, 2000), dystonia
(Nowak & Hermsdörfer, 2005), sensory impairments (Witney, Wing, Thonnard, &
Smith, 2004) to Parkinson’s disease (PD) (Ingvarsson, Gordon, & Forssberg, 1997;
Fellows, Noth, & Schwarz, 1998).

The precision grip lift task (PGLT) is an experimental task requiring the object to be
grasped between index finger and thumb and lifting it to the experimenter specified
height. The index finger and thumb (referred to as fingers for simplicity in the
remaining text) generate two forces on the object: one for gripping the object (referred
as grip force, GF) and one for lifting (referred as lift force or load force, LF). Both the
GF and LF interact with the object through the boundary of finger–object friction.
The GF couples the fingers to the object, and a sufficiently high GF is required to
prevent the object from slipping (critical force, CF), where slip is defined as relative
motion between the finger and the object. Studies have also shown that the GF
generated is dependent on size (Gordon, Forssberg, Johansson, & Westling, 1991;
Gordon, Forssberg, Johansson, Eliasson, & Westling, 1992), weight (Johansson and
Westling, 1988a, 1988b, Forssberg et al., 1992), surface curvature (Jenmalm,
Goodwin, & Johansson, 1998), and friction (Johansson & Westling, 1984; Westling
& Johansson, 1984; Forssberg, Eliasson, Kinoshita, Westling, & Johansson, 1995;
Saels, Thonnard, Detrembleur, & Smith, 1999). LF, when coupled with a GH higher
than critical slipping force, lifts the object. It might appear that the GF and LF are
independent of each other; however, there is a very intimate coordination between the
two forces in PGLT. In case of low LF, the fingers would fail to lift the object from the
table on which the object rests and a very high LFwould cause the object to overshoot
the target position. In addition, if the optimal LF is generated before the GF reaches
CF, the fingers would slip past the object, thereby causing the task to end in failure.
One of the strategies employed to prevent slip is to sense the slip through the
mechanoreceptors and increase the GF in an ongoing task. This is followed by gen-
eration of the updated GF for the new trial (Wolpert, Ghahramani, & Jordan, 1995;
Wolpert & Flanagan, 2001; Davidson&Wolpert, 2003; Flanagan, Vetter, Johansson,
& Wolpert, 2003; Nowak, Glasauer, & Hermsdörfer, 2004; Schmitz, Jenmalm,
Ehrsson, & Forssberg, 2005).

The grip force profile (Fig. 8.1) shows an initial peak known as peak grip force
(PGF) and a steady-state or stable grip force (SGF) that is defined as the average
grip force generated between 3.5 and 4.5 s after the lift onset. The minimum
amount of force required to prevent the object from slipping is known as slip force
or critical force (Fslip). The difference between the SGF and Fslip is the safety
margin (SM).
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SM is a crucial aspect of the GF profile. For a task like PGLT employing a low
SM could lead to task failure if a small perturbation is encountered. However, a
large SM could cause muscle fatigue. Therefore, subjects generate SM in a small
range. Interestingly, PD patients are known to generate higher SM compared to
healthy controls (Ingvarsson et al., 1997; Fellows et al., 1998). Understanding how
the GF is generated and controlled in PD pathology could provide valuable insights
to develop a framework and suggest robust algorithms for future research in motor
control and disorders.

This chapter focuses on illustrating the neural control of precision grip force
generation, models developed for grip force production, and a utility-based
decision-making model for grip force production in healthy controls and PD patients.

8.1 Precision Grip Force Neural Control

The grip force production, similar to other motor control process, follows percep-
tion–action cycle paradigm (Warren, 2006; Newman-Norlund, van Schie, van
Zuijlen, & Bekkering, 2007). Before the initial contact with the object, vision
conveys approximate information about the weight, surface texture, surface curva-
ture, and size of the object. This information is then used to determine the potential
GF and LF that could be used for successful lifting the object. However, after a
contact with the object and during the lifting process, this information is updated.

Fig. 8.1 An illustration of the grip force profile showing the peak grip force (PGF), stable grip
force (SGF), and safety margin (SM). Fslip is the minimum amount of force required to prevent the
object from slipping. SGF is computed as the average grip force generated between 3.5 and 4.5 s.
Modified from Gupta et al. (2013a, 2013b)
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The neuromuscular spindle, Golgi tendon, and the mechanoreceptors in the finger-
tips (Ruffini and Pacinian corpuscles) convey information pertaining to muscle
length, muscle tension, and joint configurations, respectively. This sensory infor-
mation is then transmitted to the dorsal root ganglion in spinal cord. These signals
then travel through medulla, pons, and midbrain to reach thalamus. Thalamus relays
the information received from spinal cord and basal ganglia (BG) to primary
somatosensory cortex (S-I) that contains four-key Brodmann’s area (BA) 1, 2, 3a,
and 3b. BA3a and BA3b receive the signals from thalamus and project to BA1 and
BA2 (Strick, 1976). The neurons from BA 1, 2, 3a, and 3b project individually to the
secondary somatosensory cortex (S-II). S-II innervates project to temporal lobe (for
temporal memory) via insular cortex. S-I also projects to association areas in pos-
terior parietal cortex (BA5 and BA7) (Kandel, Schwartz, & Jessell, 2000). BA5 and
BA7 relay the information to premotor areas which in turn projects to supplementary
motor area and primary motor cortex. The premotor areas are involved in motor
preparation by sensory and motor planning. Transient virtual lesion study suggests
that the ventral premotor area (PMv) is involved in correct finger placement on the
object and sequential recruitment of fingers, whereas impaired dorsal premotor area
(PMd) affects grasping and lifting (Davare, Andres, Cosnard, Thonnard, & Olivier,
2006). The primary motor cortex sends the muscle control signals to muscles via
cortico-spinal tract (Muir & Lemon, 1983; Lemon, Johansson, & Westling, 1995).
The overall neural control mechanism is illustrated in Fig. 8.2. Primary motor cortex
also projects to basal ganglia, which is a key aspect of our model presented here.
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Fig. 8.2 Neural control of grip force generation
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8.1.1 Role of BG in PGLT

An in-depth description of the basal ganglia anatomy and function is provided in
Chaps. 2 and 3. This subsection contains information about the contribution of
various neural substrates to specific GF components.

The GF generation requires GF planning and GF modulation. These two aspects
are separately controlled by different neural components. Initial force selection
requires identification of a constant or a variable force level or switching between
the force levels based on the trial requirement. Vaillancourt, Yu, Mayka, and
Corcos (2007) found that constant GF amplitude activated caudate, putamen, GPe,
GPi, and STN, whereas, the force selection showed anterior BG, i.e., caudate,
anterior putamen, and GPe activation. Anterior BG was also found to be responding
to force switching and not for timings and in constant force tasks (Pope, Wing,
Praamstra, & Miall, 2005). One of the crucial aspects of lifting the object is pre-
dicting the optimal GF for the trial. Putamen and caudate show scaled activations
for GF predictability (Wasson, Prodoehl, Yu, Corcos, & Vaillancourt, 2007).
Anterior BG was also shown to be involved in predictability (Boecker et al., 2005).

During the initial parameter selection, the rate of GF and LF and the amplitude
of GF are determined. STN and GPi show scaled activations for GF rate, and GPe
and putamen show increased activity for increased duration of the task
(Vaillancourt, Mayka, Thulborn, & Corcos, 2004; Prodoehl, Yu, Wasson, Corcos,
& Vaillancourt, 2008). Ehrsson, Fagergren, Johansson, and Forssberg (2003) found
that the ipsilateral fronto-parietal area, contralateral fronto-parietal area, and sub-
cortical motor structures are simultaneously activated in PGLT. During heavy
object lifting, putamen shows increased activations whereas switching between the
object weights shows contralateral putamen and thalamus activations (Kinoshita,
Oku, Hashikawa, & Nishimura, 2000). GPi and STN are shown to be involved in
force scaling, but GPe, putamen, and caudate do not show increased activations
during the same task (Spraker, Yu, Corcos, & Vaillancourt, 2007).

Therefore, anterior BG (caudate, anterior putamen, and GPe) is involved in
planning, that is, prediction and selection of initial GF, whereas posterior BG
(posterior putamen, GPi, and STN) controls the dynamic aspects like GF scaling
and rate of force control.

Various attempts have also been made to model the GF production to understand
pathology or develop gripping systems with performance similar to that of humans.

8.2 Computational Models of Precision Grip

8.2.1 Kim and Inooka (1994)

Kim and Inooka (1994) developed a computational model for robotic hand force
control. The model featured contact dynamics between the finger and the object,
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and thus, the GF generated was function of frictional force between the object and
the finger. If the grip force was sufficiently high, there would be no relative
acceleration between the finger and the object. However, in cases when the object
slipped, the grip force was increased proportional to the difference between the
acceleration of the finger and the object. This simple yet elegant model was suc-
cessful in demonstrating the grip force control for no-slip lifting of object, but failed
to explain the reasons (and model the same) for stable grip force generation (SGF).

8.2.2 de Gruijl, van der Smagt, and De Zeeuw (2009)

de Gruijl et al. (2009) proposed an olivocerebellar computational model for
anticipatory GF control. The granule cells received information about various
physical and kinematic parameters (arm position, acceleration, surface texture, slip
force, and noise). The granule cell to Purkinje cell projections inhibited deep
cerebellar nucleus and inferior olive. Deep cerebellar nucleus controlled the GF
output. The difference between the experimentally obtained GF and simulated GF
serves as the input to the granule cells. These inputs update the state information
and weights of inferior olive through Purkinje cells. This study incorporated error
correction mechanism to determine optimal GF; however, the model lacked a
detailed finger–object interaction module that could be used to make more realistic
GF predictions.

8.2.3 Ulloa, Bullock and Rhodes (2003)

Ulloa et al. developed a computational model that involved the cerebellar component
as error corrector. The model comprised of multiple modules for arm transport, grip
aperture, slip error, load error, Go signaling, and cerebellar error correction. The arm
transport module moved the arm in position for grasping the object, whereas the grip
aperture module generated the grip aperture required to grasp the object. The slip
error component generated the slip information based on the motion between the
fingers and the object, whereas the load error component generated error based on
the actual load force required and the simulated load force. Both the slip error and the
load error modules were dependent on the weight of the object and the friction
between the object and fingers lifting it. Cerebellar component was involved in the
reactive and anticipatory performance error correction based on the Go component’s
signal to initiate the movement. The model generated forces that were sensitive to
object’s weight and friction. One of the major limitations of this study was the
inability of the model to generate realistic GF as observed in Johansson andWestling
(1984, 1988a, 1988b), Forssberg, Eliasson, Kinoshita, Johansson, and Westling
(1991), Forssberg et al. (1992), Johansson, Riso, Hager, and Backstrom (1992),
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Johansson and Cole (1994), Forssberg, Eliasson, Kinoshita, Westling and Johansson
(1995), Flanagan and Wing (1997), Flanagan, Bowman, and Johansson (2006)
probably due to the absence of finger–object contact dynamics component.

8.2.4 Fagergren, Ekeberg, and Forssberg (2000)

Fagergren et al. (2000) modeled the GF profile as a second-order system to model
active and reactive responses. The transfer function for active components (when
the subjects increased the GF in steps) and reactive component (when the object
was suddenly loaded) was combined to account for both active and reactive
components. The GF developed was similar to the ones generated by healthy
humans, but the lack of finger–object interaction model provided limited insight to
the GF selection mechanism.

8.2.5 Fagergren, Ekeberg, and Forssberg (2003)

Fagergren et al. (2003) presented a modified model of Fagergren, Ekeberg et al.
(2000) study that included a hand–object interaction component. The physical
properties for weight (0.3 kg) and hand–object friction coefficient (lstatic,
sandpaper = 1.21, lstatic, silk = 0.35) were borrowed from Johansson and Westling
(1984). The authors assumed ldynamic = 0.8* lstatic. Model generated neural GF and
LF that in turn generated GF and LF with GF updated based on the sensory
feedback. The model further described the GF [similar to Fagergren et al. (2000)]
using the transfer function to propose the GF–LF delay was involved in slip pre-
vention. This model though suggested how the LF–GF coordination prevented slips
but in limited capacity explained how the GF was selected; thereby, the study was
unsuitable to model PD condition.

8.2.6 Kim, Nakazawa, and Inooka (2002)

Handing over a small object in precision grip from one person to another requires
dynamic regulation of finger forces. Kim et al. (2002) modeled the GF regulation in
a smooth transfer task between the human and robotic fingers. The model featured a
simple slip–GF relationship where the presence of slip increased the GF propor-
tional to the slip and the GF developed was friction-dependent. The model was
successful in smooth handling of the object but lacked an approach for the iden-
tification of forces produced in Parkinson’s patients.
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8.2.7 Grip Force During Transient Friction Change
(Gupta et al., 2013a, 2013b)

Previous studies failed to present a consolidated model to explain the grip force
variability that can be used to explain the abnormalities demonstrated in PD
patients. The following model provide a more comprehensive GF production
mechanism under friction changes in healthy subjects that serves as a backbone for
the modeling the GF in PD patients and hence discussed in detail.

As discussed earlier, the GF and LF produced are tightly coupled to the size,
weight, texture, surface curvature of the object, and the friction (between the object
surface and interacting finger boundary). In a controlled experimental setup, the
physical properties of the object are kept constant and the only sources of variation
are the object–finger friction and neural control.

Therefore, a model of PGLT was developed to account for the GF and LF
variability due to subjective friction differences in healthy subjects (Gupta et al.,
2013a, 2013b).

Gupta et al. (2013a, 2013b) proposed a computational model to demonstrate the
GF–LF variability in high friction (when the grip formed was using dry fingers) and
low friction (when the fingers were wetted >2 min, as described by Johansson and
Westling (1984) to prevent l changes) conditions. The model (Fig. 8.3) comprised
of two PID force controllers—FG controller and FL controller—that generate FG

and FL, respectively. The FG controller received slip information as the error input,
where slip is defined as the relative motion between the finger and the object.
Therefore, any velocity difference between the fingers and the object led to an
increase in FG that in turn tries to prevent the slip. The lift force controller receives
difference between the target position and the actual object position as the input.
The dynamics of the object–finger interaction is modeled in plant that generates the
acceleration, velocity, and position profiles for both the finger and the object.

Fig. 8.3 An overview of the Gupta et al. (2013a, 2013b) model. The grip force controller (FG

controller) receives the slip information (as absolute difference between the finger velocity and
object velocity) to generate a grip error (EG) that is converted to the grip force (FG). The lift force
controller (FL controller) receives the difference between the target position and the current
position as the input and outputs the lift force (FL). Finger–object interaction module based on the
FG and FL generates the position, velocity, and accelerations for both finger (subscript fin) and
object (subscript o). Modified from Gupta et al. (2013a, 2013b)
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The FL controller receives EL as the input, that is, the difference between the
target position (Xref) and the current position (Xo).

EL ¼ Xref � Xo ð8:1Þ

Based on EL the PID controller generates a force

FL;PID¼ KP;LEL + KI;L

Zs

0

EL sð ÞdsþKD;L
dEL

dt
ð8:2Þ

To prevent discontinuities in the force production, a smoothing function was
used with a smoothing factor sF,L.

sF;L
dFL

dt
¼ �FL þFL;PID ð8:3Þ

Since the slip causes an increase in FG produced, the error received by the
controller is always positive; that is, the difference between the finger velocity
(dXfin/dt) and the object velocity (dXo/dt) is always positive. Hence, EG is defined as

EG ¼ dXfin

dt
� dXo

dt

� �2

ð8:4Þ

The error was first smoothened to prevent large controller outputs that desta-
bilized the system.

sE;G
dEG

dt
¼ �EG þ dXfin

dt
� dXo

dt

� �2

ð8:5Þ

This smoothened error then served as the input to the PID controller.

FG;PID ¼ KP;GEG þKI;G

Zs

0

EGðsÞdsþKD;G
dEG

dt
ð8:6Þ

Similar to the FL controller’s output, the output of FG controller was also
smoothened.

sF;G
dFG

dt
¼ �FG þFG;PID ð8:7Þ

The object–finger interaction module (Fig. 8.4) comprises of an object
(mass = Mo) gripped with two fingers (mass = Mfin). The fingers generate both the
grip force (FG) and lift force (FL) that interacts to the object through a frictional
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force (Ff). Since two fingers are employed in isometric force generation, each of the
fingers generates half of the total frictional force on the object. When the object is
resting on the table, a normal force (Fn) equivalent of the weight of the object (Mog)
acts perpendicular to the surface of the table to prevent the net movement.

The net force acting on finger is a resultant of the FL and Ff and force generated
on finger as an action of gravity.

Ffin ¼ FL � Ff �Mfing ð8:8Þ

The net force on the object is a result of Ff, normal force Fn, and force generated
on object due to gravity.

Fo¼ Ff þFn �Mog ð8:9Þ

Since there are two fingers involved, the slip force (Fslip) is modeled as

Fslip ¼ 2lFG ð8:10Þ

When no-slip condition is observed, both the object and finger move with the
same velocity.

Fnoslip ¼ MoMfin

Mo þMfin

FL

Mfin
� Fn

Mo

� �
ð8:11Þ

Ff computation is based on the numerical values of the Fslip and Fnoslip.

Fig. 8.4 Free body diagram showing the various forces acting on the object and the fingers.
Fin = finger; FG = grip force; FL = lift force; Fn = normal force; Ff = frictional force,
Mfin = mass of finger; Mo = mass of object; g = acceleration due to gravity. Modified from
Gupta et al. (2013a, 2013b)
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Ff ¼ Fnoslip; ifFnoslip\Fslip

Fslip; otherwise

�
ð8:12Þ

And Fn is determined as

Fn ¼ Mog; if Xo ¼ 0 and Mog[Ff

0; otherwise

�
ð8:13Þ

Ffin and Fo are determined using second law of motion.

Fo ¼ Mo
d2Xo

dt2
ð8:14Þ

Ffin ¼ Mfin
d2Xfin

dt2
ð8:15Þ

The entire model comprises of nine parameters KP,L, KI,L, KD,L, KP,G, KI,G,
KD,G,sF,G, sE,G, sF,L. The model was trained for no-slip condition when the FG is
high (10 N) for optimizing the cost function CL.

CL ¼ rx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�XO;M � XrefÞ2

q
Xref

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmax(XO;MÞ � XrefÞ2

q
Xref

ð8:16Þ

The above cost function for the FL controller was designed to prevent the object
position variability (rx = object position standard deviation), minimizing the dif-
ference between the object position (�Xo;M = average object position between 3.5
and 4.5 s) and the target position (Xref), and to minimize the overshoot.

Following determining the FL parameters, FG controller was trained with the
obtained FL parameters using cost function CG. CG was designed to minimize the
difference between model values (subscript M) and the experimental values (sub-
script E) for PGF and SGF and to minimize the slip.

CG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGFM � PGFEð Þ2

q
PGFE

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SGFM � SGFEð Þ2

q
SGFE

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXo � XfinÞ2

q
ð8:17Þ

All the PID parameters were obtained using the genetic algorithm.
The friction coefficient (l) from the experimental data was determined using

standard slip method with the FG at which the object slips given by (Fcrit).

l ¼ Mog
2Fcrit

ð8:18Þ
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The model was first trained on dry friction condition (when the fingers were not
artificially wet) and then on wet condition (when the fingers were saturated with
water after immersion in water >2 min).

The results demonstrated that the FG output of the model is friction-sensitive and
could be used to model the PD pathology.

8.2.8 Utility-Based Decision-Making Model of Grip Force
Generation in Parkinson’s Patients (Gupta,
Balasubramani, & Chakravarthy, 2013c)

As discussed earlier, an optimal GF is necessary to manipulate the object. A low GF
causes a poor coupling between the fingers and the object that prevents the object
from lifting from initial rest, or if the object was already lifted, it slips from the
fingers. Contrary to this, excessive GF might damage the fragile object and pro-
longed enhanced force production could result in fatigue that may in turn com-
promise the task.

Healthy subjects generate grip force greater than the minimum GF required to
prevent slip (Fcrit), at the same time, they abstain from generating excessive amount
to prevent damage to the object, hence a narrow GF range of operation. The
difference between the actual FG generated and Fcrit is the safety margin (SM). SM
is essential to prevent the object slips due to perturbations.

Interestingly, SM in PD patients is much higher compared to the healthy subjects
(Ingvarsson et al., 1997; Fellows & Noth, 2004). Recent evidences attribute cog-
nitive and motor performance decline on impaired decision making in PD patients
(Moustafa, Chakravarthy, & Phillips, et al., 2016; Moustafa, Chakravarthy, Phillips,
& Gupta, et al., 2016). Therefore, in Gupta, Balasubramani, et al. (2013c), higher
SM generation was considered as a DM problem. It is also worth noting that PD is a
BG disorder with BG also a site for DM.

In an experimental condition with a constant object constant mass, the GF
variability is a resultant of the friction between the finger–object interface and due
to the output (in this case GF) selection criteria (decision making) by the brain.

In their model, Gupta, Balasubramani, et al. (2013c) modified the FG controller
to a second-order system from PID controller (Gupta et al., 2013a, 2013b). The
controller output for step input is given by Eq. (8.18).

FG ¼ x2
n

s2 þ 2xnfsþx2
n

ð8:19Þ

where the xn is the natural frequency and f is the damping factor. The response
peak is given by Mp, and time to peak is given by Tp.
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Mp ¼ e
�fxn

xd

� �
p ð8:20Þ

Tp ¼ p
xd

ð8:21Þ

where the damped frequency is given as xd ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
:

The FL controller and the finger–object interaction module remained unchanged
(Fig. 8.5) from the previous study (Gupta et al., 2013a, 2013b).

The FL controller was optimized similar to Gupta et al. (2013a, 2013b) by
keeping the FG = 10 N to prevent the object from slipping while lifting the object.
The performance of the trial was evaluated using cost function CE that considers
the total slip and overshoot encountered in the trial based on which the FL controller
parameters were updated.

CEðFGrefÞ ¼ 00:5
�Xfin � �Xo

�Xfin

� �2

þ 00:5
Xref � �Xo

Xref

� �2

ð8:22Þ

Interestingly, if both the FL and FG controllers are used together in a trial, the
object experiences small amount of slip during the FG development. Therefore, the
performance of the lift was obtained by repeatedly simulating the trial for FGref and
l-dependent uniform noise as the input to the controller given as

FGref;noisy ¼ FGref þ 3 10:44� lð Þ ð8:23Þ

The CE obtained for the noisy FGref was converted to a performance variable,
Per, as

Per(FGref;noisyÞ ¼ e�CEðFGref;noisyÞ ð8:24Þ

Since humans and primates show neural correlates for computing value, risk,
and risk sensitivity (d’Acremont, Lu, Li, Van der Linden, & Bechara, 2009; Wu,
Delgado, & Maloney, 2009; Schultz, 2010; Zhang, Maddula, & Maloney, 2010;

Fig. 8.5 Overall model architecture showing the grip force controller (FG controller), FL

controller (FL controller), and the finger–object interaction module. The inputs to the model are the
reference grip force (FGref) and target position (Xref), EL is the input error to the FL controller, the
Xfin is finger position, and Xo is the object position. Modified from (Gupta, Balasubramani et al.,
2013c)
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Lakshminarayanan, Chen, & Santos, 2011; Leathers & Olson, 2012; Wolpert &
Landy, 2012), a utility-based decision-making paradigm was applied to the model.

The mean (V) and variance (h) in performance were evaluated.

V FGrefð Þ ¼ Per FGref;noisy
� 	 ð8:25Þ

h FGrefð Þ ¼ var Per FGref;noisy
� 	� 	 ð8:26Þ

A radial basis function neural network (RBFNN) with learning capabilities
(n = 60, range = [0.1 12] in 0.2 steps, spread = 0.7) was designed to approximate
the mean and variance of the performance for the given FGref. The output of the
RBFNN for the given trial, tr, is given as

q FGref trð Þð Þ ¼
Xn
i¼1

wV/m FGref trð Þð Þ ð8:27Þ

/m FGref trð Þð Þ ¼ e�
FGref trð Þ�RBFcent;mð Þ2

RBFspr;m ð8:28Þ

where RBFcent,m is the center and RBFspr,m is the spread of the basis function for
mth basis function.

The weights of the RBF are updated for ηV = 0.1.

DwV ¼ gVDVCE FGrefð Þ/ FGrefð Þ ð8:29Þ

where

DVCE FGrefð Þ ¼ e�CE F̂Gref;noisyð Þ � e�CE FGrefð Þ ð8:30Þ

Risk prediction error is determined as the variance in DVCE for the risk, h,

n FGrefð Þ ¼ DVCE FGrefð Þð Þ2� h FGrefð Þ ð8:31Þ

With the weights for the risk, wh (for learning rate ηh = 0.1) is updated as

Dwh ¼ ghn FGrefð Þ/ FGrefð Þ ð8:32Þ

The trained RBFNN outputs the approximated estimates of value, V(FGref), and
risk, h(FGref), using the following equations.

V FGref trð Þð Þ ¼ wV/ FGref trð Þð Þ ð8:33Þ

h FGref trð Þð Þ ¼ wh/ FGref trð Þð Þ ð8:34Þ

A modified utility, U, equation was used to determine the utility of the trial for
value, risk, and risk sensitivity (Pragathi Priyadharsini, Ravindran & Srinivasa
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Chakravarthy, 2012). This formulation enables risk aversion for gains and risk
seeking for losses—a behavior similar to that of human decision making
(Kahneman, 1979).

U trð Þ ¼ V trð Þ � a sign V trð Þð Þ
ffiffiffiffiffiffiffiffiffiffi
h trð Þ

p
ð8:35Þ

In the current context, the utility was determined as

U FGref trð Þð Þ ¼ V FGref trð Þð Þ � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h FGref trð Þð Þ

p
ð8:36Þ

This formulation enables choosing the decisions based on maximizing the utility
U(FGref(tr)) with an increase in a making the decisions more risk aversive and risk
seeking otherwise. This was coupled with the stochastic hill-climbing process ‘Go/
Explore/NoGo’ (GEN) (Chakravarthy, Joseph, & Bapi, 2010; Magdoom et al.,
2011; Kalva, Rengaswamy, Chakravarthy, & Gupte, 2012), a modification of the
classical Actor–Critic model for BG modeling (Joel, Niv, & Ruppin, 2002).

DFGref trð Þ ¼
DFGref tr � 1ð Þ; “Go” dv trð Þ[DAhi

w; “Explore” dv trð Þ[DA^
lodvðtrÞ[DAhi

DFGref tr � 1ð Þ; “NoGo” dv trð Þ�DAlo

8<
:

ð8:37Þ

The above equations were combined into a single equation in Sukumar,
Rengaswamy, and Chakravarthy (2012) as follows:

DFGrefðtrÞ ¼
AGlogsig kGdu trð Þð ÞDFGref tr � 1ð Þ

þ AEwe^ð�d2U trð Þ=r2E
�ANlogsig kNdu trð Þð ÞDFGref tr � 1ð Þ

ð38Þ

where AG, AE, AN are the gains for Go, Explore, and NoGo components, respec-
tively; kG and kN are sensitivities of the Go and NoGo components, respectively; w
is random noise between [−1 1]; and rE is standard deviation for the explorer.

dU trð Þ ¼ U FGref trð Þð Þ � U FGref tr � 1ð Þð Þ ð39Þ

logsig(n) ¼ 1
1þ e�n ð40Þ

For modeling the PD condition, force selection was considered as an outcome of
decision making by healthy and PD patients. In healthy controls, the dopamine
availability is unconstrained (between the range [a, b] with a < b); PD patients
show a limited dopamine production due to loss of dopaminergic cells in SNc
(range between [a, dLim] with dLim < b); and in PD ON condition in addition to the
limited dopamine available, there is a contribution of the L-DOPA medication that
increases the basal levels of dopamine (range between [a + dMed, dLim + dMed]), for
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illustration, see Fig. 8.6. In the model similar to Magdoom et al. (2011) and
Sukumar et al. (2012), dU was interpreted as the dopamine levels; hence, dU is
defined as follows:

dUðtrÞ ¼
a; b½ �; for controls
a; dLim½ �; for PD OFF
aþ dMed; dLim þ dMed½ �; for PD ON

8<
: ð41Þ

To determine the parameter values (AG, AE, AN, kG, kN, rE) of Eq. (8.38),
CEGEN was developed to minimize the mean and the standard deviation of the
experimentally and model values.

CEGEN ¼ 2 SGFexpt � SGFsim
� 	2 þ rexpt � rsim

� 	2 ð42Þ

where SGF is defined as the average FG generated during 4–5 s. r is the standard
deviation obtained, and subscripts expt and sim are experimental and simulated
values, respectively.

The parameters were obtained using genetic algorithm using 20 as population
size, 0.8 as crossover fraction, 4 as elite count, 1000 as generation time, and 10−6 as
tolerance.

The model was subjected to multiple conditions reported in the published lit-
erature (Ingvarsson et al., 1997; Fellows et al., 1998): friction (l = 0.44 for silk and
0.94 for sandpaper) and dopamine levels (controls, PD OFF, and PD ON), object
mass [Mo = 0.33 for Fellows et al. (1998) and 0.3 for Ingvarsson et al. (1997)], and
friction coefficient dependent noise (m 2 [−3, 3] for silk and [−1.5, 1.5] for sand-
paper). A detailed list of parameters is presented in Table 8.1.

Fig. 8.6 An illustration of the limiting dU assumed to represent dopamine levels. Healthy controls
have the entire range of dopamine available [a, b]. PD OFF condition has dopamine levels clamped
[a, dLim]. In PD ON condition due to the medication, the range gets modified to [a + dMed,
dLim + dMed]
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The results (Fig. 8.7) from the simulation show that the model could success-
fully generate the average SGF and the standard deviation SGF with low errors for a
plethora of different conditions.

It was also found that the PD patients have lower a compared to controls. For
Fellows et al. (1998), a was obtained as 0.7 for controls and 0.312 for PD ON
condition (with dLim = −0.5 and dMed = 0.427). Similar results were also obtained
for Ingvarsson et al. (1997), where the value of a was found to be 0.5 for controls
and 0.30 for both PD ON (dLim = 0.5 and dMed = 0.005) and PD OFF (dLim = 0.5
and dMed = 0) conditions. Therefore, PD patients exhibit risk sensitivity different
than controls.

Table 8.1 Parameters used in simulations. Modified from (Gupta, Balasubramani, et al., 2013c

Study (Gordon et al., 1997) (Ingvarsson et al.,
1997)

(Fellows et al.,
1998)

Object surface Silk surface Sandpaper surface Silk surface

Mo (in kg) 0.3 0.3 0.33

l 0.44 0.94 0.44

Noise type Uniformly distributed Uniformly distributed Uniformly
distributed

m [−3, 3] [−1.5, 1.5] [−3, 3]

Conditions
simulated

Controls, PD OFF, PD
ON

Controls, PD OFF, PD
ON

Controls, PD ON

Fig. 8.7 Comparison of the experimental and simulated for a Ingvarsson, Gordon et al. (1997)
silk surface, b Ingvarsson, Gordon et al. (1997) sandpaper surface, and, c Fellows, North et al.
(1998). In Ingvarsson et al. (1997), grip force data for three dopaminergic levels (controls,
PD OFF, and PD ON) were collected. In Fellows et al. (1998), only the grip force for only controls
and in PD ON conditions was obtained
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The model shows a robust performance for various experimental conditions,
thereby suggesting the suitability of the Go/ Explore/NoGo in utility formulations
for decision-making motor tasks.

One of the limitations of the current model (Gupta, Balasubramani, et al., 2013c)
is the non-inclusion of cerebellum in the model. The role of cerebellum goes
beyond motor control (Manto et al., 2012) and affects sensory acquisition and
discrimination (Gao et al., 1996) processes as well. A recently published study
suggests PD pathology-related cerebellar changes in the brain (Wu & Hallett,
2013). The authors went on to further state that the knowledge of the relationship
between PD and cerebellum is very limited (Wu & Hallett, 2013). Since PD is
primarily considered as a BG disorder and due to lack of evidences suggesting a
strong link between the PD and cerebellum, the model assumes that the cerebellar
function is unaffected in the PD. Hence, the Go/Explore/NoGo approach seems to
be a resilient tool for modeling variety of motor control tasks including precision
grip in healthy controls and PD patients.
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Chapter 9
Go-Explore-NoGo (GEN) Paradigm
in Decision Making—A Multimodel
Approach

Alekhya Mandali, S. Akila Parvathy Dharshini and V. Srinivasa
Chakravarthy

Abstract In this chapter, we built a hybrid model using the combination of
biophysical and Izhikevich neurons and validated our earlier hypothesis about
Go-Explore-NoGo (GEN) mechanism in BG. The hybrid model consists of
Hodgkin–Huxley type model for STN, GPe, and GPi and spiking model for
striatum. To capture the effect of dopamine (DA) on the BG nuclei dynamics, the
synaptic weights between STN–GPe and the T-type calcium current in STN known
to induce bursting behavior were modulated by DA. We compared the results from
hybrid model with spiking Izhikevich model and rate-coded model for binary action
selection task. The results from the hybrid model further reinforced the theory of
GEN showing exploration levels are dependent on the level of DA. The results from
n-arm bandit task also show that by decreasing the striatum (D1) to GPi weight in
the spiking model, we can increase the exploration level in the system reflected as
the decreased average reward obtained by the model. The n-arm bandit results were
compared with the results from rate-coded and lumped softmax model.

9.1 Introduction

We had suggested earlier that the STN–GPe loop, a coupled excitatory–inhibitory
network in the indirect pathway (IP), might be the substrate for exploration
(Chakravarthy, Joseph, & Bapi, 2010). It is suggested that coupled excitatory–in-
hibitory networks have an ability to exhibit rich dynamic behavior like oscillations
and chaos (Borisyuk, Borisyuk, Khibnik, & Roose, 1995; Sinha, 1999). Simulation
studies suggest that between the Go and NoGo regimes of classical models of BG,
there exist a third regime, the Explore regime. This Explore regime, which is effec-
tively a stochastic regime, actually arises out of the chaotic dynamics of STN–GPe
system. This hypothesis has inspiredmodels simulating variousBG functions ranging
from action selection in continuous spaces (Krishnan, Ratnadurai, Subramanian,
Chakravarthy, & Rengaswamy, 2011), reaching movements (Magdoom et al., 2011),
spatial navigation (Sukumar, Rengaswamy, & Chakravarthy, 2012), precision grip
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(Gupta, Balasubramani, & Chakravarthy, 2013), and gait (Muralidharan,
Balasubramani, Chakravarthy, Lewis,&Moustafa, 2013) in normal and Parkinsonian
conditions.

We earlier showed using a network of rate-coding neurons that exploration
emerges out of the chaotic dynamics of the STN–GPe system (Kalva, Rengaswamy,
Chakravarthy, & Gupte, 2012). Most rate-coded models, by design, fail to capture
dynamic phenomena like synchronization found in more realistic spiking neuron
models (Bevan, Magill, Terman, Bolam, & Wilson, 2002; Choongseok Park,
Worth, & Rubchinsky, 2010; Park, Worth, & Rubchinsky, 2011). The synchro-
nization within the BG nuclei had gained attention since the discovery that STN,
GPe, and GPi neurons show high levels of synchrony in Parkinsonian conditions
(Bergman, Wichmann, Karmon, & DeLong, 1994; Bevan et al., 2002; Hammond,
Bergman, & Brown, 2007; Tachibana, Iwamuro, Kita, Takada, & Nambu, 2011;
Weinberger & Dostrovsky, 2011).

In this chapter, we show using approaches at multiple scales that STN–GPe
chaotic dynamics is the source of exploration. We present two models
(1) Izhikevich spiking neuron networks and (2) biophysical neural network. At each
level, the models consistently reveal the emergence of an Explore regime between
the classical Go and NoGo regimes. We also show the role of DA in controlling the
exploration–exploitation tradeoff using a binary action selection paradigm. We
further incorporate learning into the models and show how the three models can
learn the n-armed bandit task, which we will explain in detail below.

9.2 Methods

In this section, we present two models of BG at multiple scales that exhibit the Go,
Explore, and NoGo regimes and also preform action selection. The first model has
neurons that are Izhikevich spiking neurons, calibrated to reproduce the firing rates
of various BG nuclei, and the second model uses conductance-based neuron
models. The models are applied to (1) the binary action selection problem and
(2) the n-armed bandit problem, where the network is required to choose the most
salient one of several inputs with different levels of salience. A ‘tonic dopamine’
signal modulates the response of the D1R and D2R expressing medium spiny
neurons (MSNs) in the striatum. In classical accounts of BG function, striatal
dopamine is thought to switch transmission between DP and IP, whereby higher
dopamine leads to ‘Go’ behavior, while the ‘NoGo’ behavior is elicited at lower
dopamine levels. However, all the three aforementioned models exhibit a novel
stochastic regime, known as the Explore regime, between the Go and NoGo
regimes. All the networks have a common architecture as shown in Fig. 9.1.
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9.2.1 Spiking Izhikevich Two-Variable Neuron Model

The first one is a network model of BG (Fig. 9.1) was built using two-variable
Izhikevich spiking neurons (Izhikevich, 2003) where each nucleus was modeled as
a lattice with (= 50 � 50 neurons) of neurons. Equations related to the Izhikevich
spiking neuron model are described in (Mandali & Chakravarthy, 2015; Mandali,
Rengaswamy, Chakravarthy, & Moustafa, 2015). The basic Izhikevich equations
used in the model are described below, and the details of the model with equations
are explained in Chap. 6.

dvxij
dt
¼ 0:04 vxij

� �2
þ 5vxij � uxijþ 140þ Ixijþ Isynij ð9:1Þ

Fig. 9.1 Figure 9.1 shows the common architectures of three models of the basal ganglia.
Information from the cortex is projected to the basal ganglia through the striatum (D1R and
D2R-expressing MSNs) which is directed to direct (GPi) and indirect pathway (GPe ! STN),
respectively. The output system GPi receives input from D1 striatum and STN. The synaptic
projections from striatum, GPe, and GPi were modeled as GABAergic and from STN as
glutamatergic
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duxij
dt
¼ a bvxij � uxij

� �
ð9:2Þ

if vxij� vpeak
vxij  c
uxij  uxijþ d

� �
ð9:3Þ

where vxij = membrane potential, uxij = membrane recovery variable, Isynij = total
synaptic current received, Ixij = external current applied to neuron x at location (i, j),
vpeak = maximum voltage set to neuron (+30 mv) with x being STN or GPe or GPi
neuron.

The synaptic connectivity between the nuclei (STN and GPe) is modeled as,

sRecep �
dhx!y

ij

dt
¼ �hx!y

ij tð Þþ Sxij tð Þ ð9:4Þ

Ix!y
ij tð Þ ¼ Wx!y � hx!y

ij tð Þ � ERecep � Vy
ij tð Þ

� �
ð9:5Þ

where sRecep = decay constant for synaptic receptor, ERecep = receptor associated
synaptic potential (Recep = AMPA/GABA/NMDA), Sxij = Spiking activity of
neuron ‘x’ at time ‘t,’ hx!y

ij = gating variable for the synaptic current from ‘x’ to ‘y,’
Wx!y = synaptic weight from neuron ‘x’ to ‘y,’ Vy

ij = membrane potential of the
neuron ‘y’ for the neuron at the location (i, j).

9.2.2 Hybrid Biophysical Model

The second BG model is a combination of spiking and conductance-based neural
network model. The striatal MSNs (both D1R and D2R-expressing) were modeled
as Izhikevich neurons (Eqs. 9.9–9.11) and STN, GPe, and GPi using
conductance-based neuron models (Rubin & Terman, 2004; Terman, Rubin, Yew,
& Wilson, 2002). Each of the nuclei has ten neurons, and their synaptic connec-
tivity pattern is given in Table 9.1.

Table 9.1 Table 9.1 shows
the connectivity pattern
between STN, GPe, and GPi
neurons

Connection Type of connection

1STN ! 2GPi Excitatory

1GPe ! 2STN Inhibitory

1GPe ! 1GPi Inhibitory

1STN ! 1GPe Excitatory

1GPe ! 2GPe Inhibitory

1STN ! 2STN Excitatory
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9.2.2.1 STN Neurons

We have adapted the biophysical model by Rubin & Terman, (2004) which was
capable of showing multiple firing patterns observed experimentally in STN.

Cm
dVSTN

m

dt
¼ �IL � IK � INa � ICaL � ICaT � IAHP � IGS � ILat ð9:6Þ

where VSTN
m is membrane potential of STN neurons, Cm is the membrane capaci-

tance, IL is the leakage current, INa is the leakage current, ICaL is the long-lasting
calcium current, ICaT is the transient calcium current, IAHP is the after hyperpo-
larization current, IGS is the inhibitory GABAergic current from GPe neurons, and
ILat is the excitatory glutamatergic lateral current from neighboring STN neurons.

9.2.2.2 GPe Neurons

Furthermore, the GPe, GPi membrane potential was modeled utilizing same ion
channels equivalent to STN. Additionally, output from striatum was also presented
as input to GPe and GPi neurons.

Cm
dVGPe

m

dt
¼ �IL � IK � INa � ICaL � ICaT � IAHP � ISG � ILat � ID2 ð9:7Þ

where VGPe
m is membrane potential of GPe neurons, Cm is the membrane capaci-

tance, IL is the leakage current, INa is the sodium current, ICaL is the long-lasting
calcium current, ICaT is the transient calcium current, IAHP is the after hyperpo-
larization current, ISG is the excitatory glutamatergic current from STN neurons, ILat
is the inhibitory GABAergic lateral current from neighboring GPe neurons, and ID2
is the inhibitory GABAergic lateral current from D2 striatal MSNs calculated to that
described similar to Eqs. (12, 13).

9.2.2.3 GPi Neurons

Cm
dVGPi

m

dt
¼ �IL � IK � INa � ICaL � ICaT � IAHP � ISGi � IGeGiþ ID1 ð9:8Þ

where VGPi
m is membrane potential of GPi neurons, Cm is the membrane capaci-

tance, IL is the leakage current, INa is the leakage current, ICaL is the long-lasting
calcium current, ICaT is the transient calcium current, IAHP is the after hyperpo-
larization current, ISGi is the excitatory glutamatergic current from STN neurons,
and ID1 is the inhibitory GABAergic lateral current from D1 striatal MSNs calcu-
lated as described in Eqs. (12, 13). The modulation of DA on to the striatal activity
was not included in this level of modeling.
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DA plays an important role in maintaining the firing pattern of STN, GPe, and
GPi neurons. Dopamine depletion leads to bursting behavior in STN and reduction
in GPe firing rate in the Parkinson condition. To simulate the effect of dopamine,
the conductance of T-type calcium channel and synaptic strength between
STN ! GPe, GPe ! STN, STN ! GPi and GPe ! GPe was varied as a func-
tion of dopamine to exhibit the pathological oscillatory behavior.

9.2.2.4 Synaptic Currents

The synaptic currents between STN, GPe, and GPi neurons were modeled based on
the equations described below

Ix!y ¼ gx!y vx � Ex!y
� �X

j

s jx ð9:9Þ

s0x ¼ Ax 1� sx½ �H1 vx � hxð Þ � Bxsx ð9:10Þ

where Ix!y is the synaptic current from neuron ‘x’ to ‘y,’ gx!y is the synaptic
conductance from neuron ‘x’ to ‘y,’ vx is the membrane potential of neuron x, Ex!y

is the receptor potential for that synapse, sx is the synaptic variable for the neuron
‘x.’ The values for Ax, Bx, hx, H are adapted from Rubin & Terman, (2004).

9.2.2.5 Dopaminergic Modulation

Based on the observation that DA modulates the synaptic strength between STN,
GPe, and GPi neurons and between laterals, the synaptic conductance variable ‘g’
(Eq. 9.17) was made a function of DA.

gnewGPe!STN ¼ 5 � 1:1� DAð Þ � goldGPe!STN ð9:11Þ

gnewSTN!GPi ¼ 20 � 1:1� DAð Þ � goldSTN!GPi ð9:12Þ

It is well known that the bursting activity in STN neurons is attributed to the
activity of T-type calcium channels (Heida, Marani, & Usunoff, 2008; Tai, Yang,
Pan, Huang, & Kuo, 2011) which is observed in PD. Recently, the influence of DA
on calcium channel and its probable role in therapy (Yang, Tai, Pan, & Kuo, 2014)
has been studied both by experimental and computational techniques (Dovzhenok
& Rubchinsky, 2012; Heida et al., 2008; Loucif, Woodhall, Sehirli, & Stanford,
2008; Ramanathan, Tkatch, Atherton, Wilson, & Bevan, 2008; Tai et al., 2011).
Bearing these observations in mind, we made the ‘T’-type calcium conductance in
STN neurons a function of DA.

158 9 Go-Explore-NoGo (GEN) Paradigm in Decision …



gnewCaT ¼ 9 � 1:1� DAð Þ � goldCaT ð9:13Þ

where goldGPe!STN, g
old
STN!GPi, and goldCaT are the conductance values taken from (Rubin

& Terman, 2004; Terman et al., 2002) and DA is the dopamine level ranging from
(0.1 to 1).

In all the three models (rated-coded, spiking and hybrid), the final action
selection was performed using the race model (Mandali et al., 2015).

9.2.3 Tasks

9.2.3.1 Binary Action Selection Task

The first task we simulated was the simple binary action selection similar to
Humphries, Stewart, and Gurney (2006), where two competing stimuli were pre-
sented to the model (Humphries, Stewart, & Gurney, 2006). The saliency of the
input was represented in terms of their frequency. In a classical reinforcement
learning paradigm, selection of higher salient stimulus among the available choices
could be considered as ‘exploitation’ while selecting the less salient one as ‘ex-
ploration’ (Sutton & Barto, 1998). So the action selected is defined as ‘Go’ if
stimulus #2 (more salient) is selected, ‘Explore’ if stimulus #1 (less salient) is
selected, and ‘NoGo’ if none of them is selected. The simulation was run various
values of DA, and the corresponding selected action was recorded. We also varied
the lateral connection strengths in STN and observed its effect on exploration.

9.2.3.2 n-Arm Bandit Task

We then simulated the classical n-arm bandit problem, where the model is expected
to learn and select the slot that delivers the maximum reward on its selection. The
rewards obtained from the arm could be deterministic/probabilistic in nature, and
the final goal is to learn and select the maximum reward giving arm. Experiments
have showed the effect of DA on cortico-striatal weights which are similar to LTP/
LTD behavior. Based on the classical experiment by Schultz, analogy between the
temporal difference error term (d) in reinforcement learning and DA has been
established.

The saliency of each slot was represented by the cortico-striatal weights which
was updated using the ‘d’ term

DwD1
i;kþ 1 ¼ gdkx

inp
i;k ð9:14Þ

DwD2
i;kþ 1 ¼ gdkx

inp
i;k ð9:15Þ
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The expected value and the actual reward obtained for the kth trial are given as

Vk ¼
Xn
i¼1

wD1
i;k � xinpi;k ð9:16Þ

Rk ¼
Xn
i¼1

ri;k � xinpi;k ð9:17Þ

ri;k ¼ i
4
þ 0:3 � e

� 	
; e�N ð9:18Þ

The temporal difference term ‘d’ for the given trial was calculated as

dk ¼ Rk þ cVkþ 1 � Vk ð9:19Þ

where wD1
i;kþ 1, w

D2
i;kþ 1 were the cortico-striatal weights of D1 and D2 striatum for

k + 1th trial, η is the learning rate, dk is the temporal difference error calculated for
kth trial, Vk+1, Vk are the expected values for k + 1th and kth trial, and c is the
discount factor (=0).

9.3 Results

We present the results from each of the two models starting from both binary action
selection and n-arm bandit task. The results from the GEN model (Chap. 5) are also
included for comparison.

9.3.1 Binary Action Selection

These are results from the binary action selection problem described in
Sect. 9.2.3.1. We highlight the concept of Explore regime along with Go and NoGo
regime which have been explained in the classical picture of basal ganglia. The task
was simulated by the two models by changing the dopamine level and observing the
action that was selected (Fig. 9.2). The results obtained from the two models
(Izhikevich and hybrid) along with the rate-coded one from earlier chapter are
presented in Fig. 9.2a–c.
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We then increased the strength of lateral connections in STN, i.e., (wss in
rate-coded model from last chapter and As in spiking model) and observed action
selection in binary action selection task (Fig. 9.3). We observed that the amount of
exploration decreased as the lateral strength was increased, and this result was
consistently observed from both the results.

9.3.2 N-Arm Bandit Task

The next set of simulation involved the implementation of the simple n-arm bandit
task. For this task, the total number of slots was defined to be four with the average
reward as given in Eq. 9.18. The results were compared between rate-coded (earlier
chapter), lumped (e-greedy), and spiking models. The results from hybrid model are
not included because of computational limitations.

Fig. 9.2 Figure 9.2 shows the probability of selection of stimulus in the binary action selection
where red indicates ‘NoGo’ which means no action, pink shows Explore, i.e., less salient stimulus
and green indicates ‘Go’ the salient stimulus when the dopamine (d/DA) was varied. a Rate-coded
model (from Chap. 5) b Spiking model c hybrid model with an illustration of the three regimes
with change in DA
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9.4 Discussion

In this chapter, we show the consistency in our ‘Go-Explore-NoGo’ theory of BG
using computational models at multiple levels of abstraction. The results from the
two models (spiking, hybrid) for binary action selection task and n-arm bandit task
were compared.

Fig. 9.3 Figure 9.3 shows the probability of action selection when the laterals strength in STN
neurons was increased. The subfigures a, b, c are the results obtained from rate-coded model for
lateral strengths (wss = 0.001, wss = 0.05, wss = 0.95). The figures d, e, f were the results from
spiking model (ASTN = 0.15, ASTN = 0.2, ASTN = 0.3).
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The first task, binary action selection task was used to test the presence of
Explore regime when dopamine levels were varied in the model (Fig. 9.2). All the
three models showed the presence of ‘NoGo’ regime at lower DA levels, ‘Go’ at
higher levels, and ‘Explore’ at intermediate levels. The model showed selection of
no input at low DA due to very high activation of NoGo pathway and higher salient
stimulus due to predominant influence of direct pathway. In between the two
extremes, the models showed selection of lower salient stimulus (Explore) which is

Fig. 9.4 Figure 9.4 shows the average reward obtained from the n-arm bandit task from each of
the models a average reward obtained from rate-coded model when the lateral connections were
varied which control the exploration; b average reward obtained from lumped model for different
values of ‘e’; and c average reward obtained from spiking model for various values of synaptic
weight (wstr) which controls the amount of exploration
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hypothesized to be due to the STN–GPe dynamics. To further understand this
aspect, we studied the correlation and synchrony levels (Mandali & Chakravarthy,
2015) in STN and GPe neurons and observed an increase in synchrony at low DA
levels. The desynchronous dynamics of STN–GPe neurons observed normally
change to more synchronous one at low DA levels [for results please refer to
(Mandali et al., 2015)]. We also observed that an increase in the synaptic strength of
STN collaterals resulted in increased synchrony in the STN–GPe network
(Fig. 9.3).

To further verify that the STN–GPe system influences exploration, we integrated
spiking model with RL method and calculated the average reward and compared the
results obtained from lumped (e-greedy), rated-coded and Izhikevich models
(Fig. 9.4) while performing the n-armed bandit for different level of synaptic
strengths. The average reward obtained from rate-coded and spiking models for
different synaptic strengths was compared with standard RL Explore–Exploit
models (greedy and e-greedy where e controls the level of exploration in the
model). The average reward obtained by varying the synaptic strengths (Fig. 9.4a
and c), which internally controlled the STN–GPe dynamics, was comparable to the
results obtained from lumped RL models with different ‘e’ levels. The above results
show that DA controlled the ‘Explore’ regime by modulating the STN–GPe
dynamics. Furthermore, the synaptic strength of STN collaterals also controls the
percentage of exploration.

In future, we would like to include the n-arm bandit results from the hybrid
model which we could not now due to computational limitations. We plan to study
the influence of individual channels of STN, GPe neurons on exploration in the
n-arm bandit task.
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Chapter 10
A Cortico-Basal Ganglia Model
to Understand the Neural Dynamics
of Targeted Reaching in Normal
and Parkinson’s Conditions

Vignesh Muralidharan, Alekhya Mandali,
Pragathi Priyadharsini Balasubramani, Hima Mehta,
V. Srinivasa Chakravarthy and Marjan Jahanshahi

Abstract We present a cortico-basal ganglia model to study the neural mecha-
nisms behind reaching movements in normal and in Parkinson’s disease conditions.
The model consists of the following components: a two-joint arm model (AM), a
layer of motor neurons in the spinal cord (MN), the proprioceptive cortex (PC), the
motor cortex (MC), the prefrontal cortex (PFC), and the basal ganglia (BG). The
model thus has an outer sensory-motor cortical loop and an inner cortico-basal
ganglia loop to drive learning of reaching behavior. Sensory and motor maps are
formed by the PC and MC which represent the space of arm configurations. The BG
sends control signals to the MC following a stochastic gradient ascent policy
applied to the value function defined over the arm configuration space. The train-
able connections from PFC to MC can directly activate the motor cortex, thereby
producing rapid movement avoiding the slow search conducted by the BG. The
model captures the two main stages of motor learning, i.e., slow movements
dominated by the BG during early stages and cortically driven fast movements with
smoother trajectories at later stages. The model explains PD performance in sta-
tionary and pursuit reaching tasks. The model also shows that PD symptoms like
tremor and rigidity could be attributed to synchronized oscillations in STN–GPe.
The model is in line with closed-loop control and with neural representations for all
the nuclei which explains Parkinsonian reaching. By virtue of its ability to capture
the role of cortico-basal ganglia systems in controlling a wide range of features of
reaching, the proposed model can potentially serve as a benchmark to test various
motor pathologies of the BG.

10.1 Introduction

Reaching movements are for movement science, what the simple pendulum is for
classical mechanics. Reaching movements reveal a lot about how the brain plans
and executes movement kinematics and dynamics, in normal and pathological
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conditions. Early experiments by Fitts and Morrasso on reaching movements
showed that the hand velocity profile has a bell-shaped distribution providing a
glimpse into the planning of motor trajectories (Fitts, 1954; Morasso, 1981).
However, it was observed that such planning required adaptive feedback mecha-
nisms which could relay the current state of the motor effector and the learning
framework for optimal control (Todorov, 2004). As a result, internal models were
introduced which minimize the error between the target and current arm position by
including the factor of variability which accounts for the noise in movement
(Shadmehr & Krakauer, 2008). According to the optimal feedback control frame-
work, the current state plays a crucial role in determining the future state and
eventually the trajectory and thus probed investigators to modeling reaching with
Baye’s approach as it allows integration of previous knowledge with current sen-
sory information (Schaal & Schweighofer, 2005). Kording and Wolpert showed
that the experimental results of visually guided reaching task in the presence of
noisy feedback and explained using the Bayesian approach how subjects repre-
sented both the statistics of the sensorimotor task and the uncertainty in the task
(Körding & Wolpert, 2004). A neural correlate to Bayesian processing by neurons
was suggested by Knill and Pouget using a computational model by introducing
Poisson noise in the neural activity (Knill & Pouget, 2004).

Though the above computational models provided insights into movement
planning and execution, they do not specify the corresponding neural correlates.
During the same period, experimental groups were studying the roles of various
cortical and subcortical areas in motor learning and execution (Doya, 1999).
Particularly, the basal ganglia (BG) are involved in the learning of new actions and
sequences from cortical projections which are modulated by the midbrain
dopaminergic system (Hikosaka, Nakamura, Sakai, & Nakahara, 2002). Using a
computational model, Nakahara, Doya, & Hikosaka, (2002) showed that parallel
learning occurs in BG-cortical systems through the visual and the motor loop. The
final output is selected by the presupplementary area which acts as a coordinator for
optimal acquisition and execution of well-learned sequences (Hikosaka et al., 2002;
Nakahara, Doya, & Hikosaka, 2001). Chen and colleagues developed a model of
closed-loop control of hand movement, in which a sensory module receives input
from visual/proprioceptive areas and a Motor Module drives a mechanical two-link
arm (Chen & Reggia, 1996). By randomly activating various points in motor cortex,
the arm is driven to various points in the workspace; feedback from the hand is used
to train the proprioceptive cortex, the motor cortex, and the motor neurons of the
spinal cord module. The model is trained by unsupervised learning and was unable
to describe goal-oriented reaching which requires either supervised or reinforce-
ment learning. Izawa, Kondo, and Ito (2004) modeled a two-link arm model with
detailed arm kinematics and included learning using reinforcement learning (Izawa
et al., 2004).

We present a model of reaching that describes the contributions of basal ganglia
(BG) and the sensory-motor cortical pathway to reaching. The model particularly
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highlights the role of BG in motor learning. In the model, the BG system discovers
the desired motor cortical output by processing the reaching error which, we pro-
pose, is coded by nigrostriatal dopamine signals. This desired output is used by the
motor cortex for training. Thus in the model, the BG leads the motor cortex in
learning. The relative contributions of the cortical areas and BG evolve with
learning, with the contribution of BG dwindling with learning. The model explains
reaching movements in normal and Parkinsonian conditions and explores the causes
of the distinct paths of evolution of PD symptoms into tremor-dominant and
rigidity-dominant. The present model is a detailed network version of a simple
lumped model of reaching that we proposed earlier (Magdoom et al., 2011).

10.2 Methods

The cortico-basal ganglia model consists of two major components: the outer loop
which is the sensory-motor cortical loop and an inner loop which is the
cortico-basal ganglia loop (Fig. 10.1). These loops are an integral part for the
execution of controlled movements.

Fig. 10.1 Cortico-basal ganglia model used for simulating the reaching movements. The
architecture is designed to have two loops, a sensory-motor ‘outer’ loop (shown by solid black
arrows) and the cortico-basal ganglia ‘inner’ loop (shown by dashed black arrows). The basal
ganglia is shown to have projections from midbrain dopaminergic (DA) neurons. The motor cortex
receives projections from higher frontal areas which in the model is the prefrontal cortex. The
(m � n) shows the size of the neuronal sheet used for each area in the model (in the basal ganglia
all the nuclei are 15 � 15 in size)
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10.2.1 Arm Model

A simple two-joint kinematic model of an arm is used in the model. Each joint is
controlled by an agonist (Ag) and an antagonist (An) muscle pair innervated by a
pair of motor neurons; the muscles in turn control the position of the arm in the 2D
space. The input to the arm is a four-dimensional vector /MN(t) which represents
the muscle innervations for the agonist–antagonist pair for both the joints. The
activation is then transformed to obtain the joint angles (hS/E

JA (t)) for shoulder and the
elbow joint using Eqs. (10.1) and (10.2), respectively.

hJAS tð Þ ¼ /MN
Ag tð Þ � /MN

An tð Þ
� � p

2
þ p

2
ð10:1Þ

hJAE tð Þ ¼ /MN
Ag tð Þ � /MN

An tð Þ
� � p

2
þ p

2
ð10:2Þ

The arm covers a given set of targets in the workspace, restricted by the range of
movements of the joints. The joint angle measures are subsequently used to
determine the lengths (lE and lS) of each muscle [Eqs. (10.3), (10.4), (10.5), and
(10.6)].

lSAg tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2S þ b2S þ 2aSbS cos hJAS

� �q
ð10:3Þ

lSAn tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2S þ b2S � 2aSbS cos hJAS

� �q
ð10:4Þ

lEAg tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2E þ b2E þ 2aEbE cos hJAE

� �q
ð10:5Þ

lEAn tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2E þ b2E � 2aEbE cos hJAE

� �q
ð10:6Þ

These muscle lengths form the four-dimensional vector (ML = [lAg
S lAn

S lAg
E

lAn
E ]) which is used to develop a sensory (proprioceptive) map of the arm.

Furthermore, the end effector position (Xarm = [x1
arm x2

arm]) is also estimated in
Eqs. (10.7) and (10.8).

xarm1 ¼ lS � aSð Þ cos hJAS
� �þ lE cos hJAS þ hJAE

� � ð10:7Þ

xarm2 ¼ lS � aSð Þ sin hJAS
� �þ lE sin hJAS þ hJAE

� � ð10:8Þ
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10.2.2 The Sensory-Motor Cortical Loop

Sensory and Motor Maps

The sensory-motor cortical loop comprises of the arm, the proprioceptive cortex
(PC), i.e., the proprioceptive area of the primary somatosensory cortex, the motor
cortex, and the spinal motor neurons. PC is modeled as a self-organizing map
(SOM) of size NPC � NPC (Kohonen, 1990). In order to develop a sensory map of
the arm which we will from now on refer to as the proprioceptive map/cortex (PC),
the muscle length vector (ML(t)) received from the arm is used as feature vector to
train the PC. The activation of a single node i in the PC is given by Eq. (10.9).

Pi tð Þ ¼ exp
� ML tð Þ �WPC;i

���� 2

r2PC

 !
ð10:9Þ

where WPC,i is the weight connection between the muscle length vector of the arm
and the ith node of the PC, and rPC is the width of the Gaussian response.

The motor cortex (MC) is modeled as a combination of a continuous attractor
neural network (CANN) (Trappenberg, 2003) and a SOM of size NMC � NMC. This
represents two distinct characteristics of cortical areas which are known to have
low-dimensional representation of the input space and dynamics based on the
connectivity in these areas. The CANN architecture is characterized by short-range
excitation and long-range inhibition. Its weight kernel (WMC

C ) is parameterized by
the strength of the excitatory connections (Alat

C ), the radius of the excitatory con-
nections (rlat

C ), and the global inhibition constant (KC). A dynamic model like the
CANN is used to model MC, instead of a static model like SOM, so as to be able to
dynamically integrate the afferent inputs coming from the PC, BG, and the pre-
frontal cortex (PFC). The PC activity is used as the input to generate the
low-dimensional feature maps at the level of the MC. The MC uses this sensory
map information to develop a motor map of the arm. This is done by giving the
output of PC, a matrix of size NPC � NPC, converted into a vector of size NPC

2 � 1,
as input vector to the SOM part of MC. Training of this SOM is performed by the
standard SOM algorithm (Kohonen, 1990). Output of the PC (GPC), in addition to
two other inputs, is presented as input to the CANN part of the MC (IMC). The
network is fully connected from the arm to the PC; similarly, every PC neuron
projects to every neuron in MC. The activation of a node i in the SOM part of the
MC is given by Eq. (10.10).

GPC;i tð Þ ¼ exp
� P tð Þ �WMC;i
�� ��2

r2MC

 !
ð10:10Þ

Here, WMC,i is the weight connection between the PC and the ith node of the
SOM part of MC and rMC is the width of the Gaussian response. The MC activation
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via the attractor dynamics is driven by the PC, the BG, and the PFC. Therefore, the
total input coming into the MC is IMC tð Þ ¼ APCGPC tð ÞþABGGBG tð Þþ
APFCGPFC tð Þ, where APC, ABG, and APFC are the respective gains of the PC, BG, and
PFC networks. With these inputs, the activation dynamics of the MC is given in
(10.11).

sMC
dgMC

dt
¼ �gMC þWC

MC � Gþ IMC ð10:11Þ

where gMC is the internal state of the MC neurons, WMC
C is the weight kernel given

by WC
MC;i;j ¼ AC

lat exp
� ðiMC�ihÞþ ðjMC�jhÞk k2

2 rClatð Þ2
� 	

� KC which determines the local

excitation/global inhibition dynamics, [iMC, jMC] are the locations of the nodes in
MC, and [ih, jh] corresponds to the central node. The output activity of the MC (G
(t)) is obtained by performing a divisive normalization [Eq. (10.12)], which is done
often to produce biologically realistic activity bumps (Pouget & Latham, 1999).

G tð Þ ¼ g2MC

1þ 2p
N2
MC

� �
bMC

P
g2MC

ð10:12Þ

Neurons of the motor cortex project to the motor neuronal layer (MN). The
motor neurons—there are just four of them—in turn project one each to the four
muscles of the arm as described by Eq. (10.13).

/MN tð Þ ¼ AMNWMC!MNG tð Þ ð10:13Þ

In order to close this loop, i.e., to train the connections between the MC and the
MN (WMC!MN) layers [Eq. (10.14)], we initially provide the input at the MN layer
as the desired activation for the arm (uD

MN(t)). This produces a sensory activity in
the PC which in turn generates a motor activity in the MC (G(t)). The weights
between the MC and the MN layers are trained in a supervised manner by com-
paring the network-derived MN activation uMN(t) to the desired activation
uD
MN(t) (Eq. 10.14). This gives a loop which is consistent in mapping the external

arm space to the neuronal space and vice versa.

DWMC!MN ¼ gMC!MN /MN
D tð Þ � /MN tð Þ� �

G tð Þ ð10:14Þ

10.2.3 Training the Cortical Loop

The training schema for the entire model is shown in Fig. 10.2. The steps for
training the sensory-motor loop are as follows.
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1. Randomly generate n different muscle activations of the arm, which result in
n-arm configurations. Each configuration of the arm provides a feature vector of
muscle lengths, ML.

2. The feature vector of muscle lengths, ML, is presented as input to the PC layer,
which is trained using the SOM algorithm.

3. The output state of PC layer is then presented as input to MC. Output of MC is
presented as input to MN layer via a weight stage (WMC!MN). WMC!MN are
trained by the following procedure. A random activation vector (uMN) is given
to the MN layer. The output of the MN layer then activates the arm and puts it in
an equilibrium configuration. Starting from the muscle lengths from the arm, we
track the signal flow via the PC, MC, and back to MN layers. Output of the MN
layer, ideally, must be equal to the random activation vector (uMN) given to the
arm. The matrix of the sensory activations is then passed on to the MC layer
(SOM) to evolve the motor map of the arm.

4. Finally, the loop is closed by training the weight connection between the MC
and the MN layers by generating a desired MN activity (uD

MN(t)) and approxi-
mating the network-derived MN activity uMN(t) as in Eq. (10.14).

Fig. 10.2 Training schema in the cortico-basal ganglia model. It initially starts with (a) training
the arm to PC connections, followed by (b) training the PC-to-MC connections, and finally closing
the loop by (c) training the MC-to-MN weights. Then, the BG module is introduced and the
PFC-to-MC connections are trained (d). In every figure, the dashed arrows indicate the
connections that are being trained
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10.2.4 The Basal Ganglia

The BG module has the following components: the striatum, the Globus Pallidus
internal and external segments (GPi and GPe), the subthalamic nucleus (STN), and
the thalamus (Fig. 10.3a). The output of the BG modulates the MC activity to
provide the appropriate control signal for the arm to reach the target. We begin with
an outline of learning and operation of the BG module. In line with our earlier
models of BG, in the proposed model, the BG module is trained by reinforcement
learning to choose the optimal actions (Balasubramani, Chakravarthy, Ravindran, &
Moustafa, 2014; Chakravarthy & Balasubramani, 2015; Chakravarthy, Joseph, &
Bapi, 2010; Gupta, Balasubramani, & Chakravarthy, 2013; Magdoom et al., 2011;
Muralidharan, Balasubramani, Chakravarthy, Lewis, & Moustafa, 2013). The BG,
acting via the cortical loop, drives the arm so that the hand reaches the desired target
(Fig. 10.3b). Prefrontal inputs which represent the target or the goal position and
the current hand position information from the sensory cortex are thought to be
combined in the BG to compute a value function that codes for the error between
the desired and the actual hand position (Fig. 10.3c). The output of the BG per-
forms a form of stochastic hill-climbing over the value function (Magdoom et al.,
2011). Thus, by way of searching for the maxima in the value function, in the early
stages of learning, the BG module drives the motor cortex to make reaching
movements to the target. In the model however this value computation (Varm (t)) is
not a result of training; value is presented as an explicit function of distance
between the end effector (Xarm) and the goal position (Xtarg) in Eq. (10.15). The rV
term defines the spatial range over which the value function is sensitive for that
particular target.

V arm tð Þ ¼ exp
� X targ � Xarmk k2

r2V

 !
ð10:15Þ

Stochastic Hill-Climbing

The input to the striatum comes from the motor cortex in the form of a difference
vector. We hypothesize that this difference vector which is the change in the motor
cortical activity (DG(t)) is the drive for the sustenance of motor activity. This
information is then modulated via the direct (projections from D1-expressing
neurons in the striatum) and the indirect (projections from D2-expressing neurons
in the striatum) pathways as a function of the dopamine signal [Eqs. (10.17) and
(10.18)]. From previous studies (Chakravarthy & Balasubramani, 2015; Magdoom
et al., 2011), we have shown that this switching between direct and indirect
pathways can be carried out using a form of the temporal difference signal called
the value difference [Eq. (10.16)].
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dV ¼ V arm tð Þ � V arm t � 1ð Þ ð10:16Þ

The quantity dv in Eq. (10.16) is called the value difference, which is subtly
different from the temporal difference error. We proposed earlier that value dif-
ference also correlates with dopamine signals just as TD error has been suggested to
be represented by dopamine signals (Chakravarthy & Balasubramani, 2015;
Magdoom et al., 2011; Muralidharan et al., 2013). Value difference signals are
thought to be carried by nigrostriatal connections to the striatum, where they
modulate the responses of striatal projection neurons to cortical inputs as follows:

yD1 ¼ 1
1þ exp �kD1 dV � tD1ð Þð ÞDG tð Þ ð10:17Þ

Fig. 10.3 Basal ganglia and value function. The network of the basal ganglia (a) which receives
cortical input, DG(t), and via the direct and indirect pathways computes DG(t + 1). The indirect
pathway has a 2D sheet of reciprocally connected STN–GPe neurons whose dynamics is governed
by the lateral (neighborhood Gaussian connectivity, green STN, red GPe) and interconnectivity in
these layers. The two-link arm (b) represented by blue lines for the links and green circle for the
end effector, approaching a goal position (red circle) and computing the value function which
peaks at the target location (c) in this case is a target at [0 0]. The BG dynamics essentially
constitutes a stochastic hill-climbing mechanism that seeks to maximize the value function in order
to reach the target
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yD2 ¼ 1
1þ exp �kD2 dV � tD2ð Þð ÞDG tð Þ ð10:18Þ

where yD1 and yD2 represent the outputs of D1R- and D2R-expressing medium
spiny neurons (MSNs), respectively. In the nonlinearity, kD1 and tD1 and kD2 and
tD2 are the gains and the thresholds of the direct and indirect pathways, respectively.
Also kD1 = −kD2 which suggests that when dv is positive (negative), the direct
(indirect) pathway is selected. Since D2R-expressing MSNs of the striatum project
to the GPe, yD2 influences GPe neural dynamics, which in turn influences STN
neural dynamics, as shown below.

sGPe
dxGPe
dt

¼ �xGPe þ eg
XX

WglatxGPe þwsgySTN þ yD2 ð10:19Þ

sSTN
dxSTN
dt

¼ �xSTN þ es
XX

W slatySTN � wgsxGPe ð10:20Þ

ySTN ¼ tan h kSTNxSTNð Þ ð10:21Þ

kSTN controls the slope of the sigmoid, thus the STN output. sSTN and sGPe are
the respective timescales of STN and GPe. The weight parameters that control the
connection strengths between the STN and GPe are wsg and wgs, and the weights
that control lateral connections within both the STN and the GPe layer are Wslat and
Wglat with connection strengths �s and �g, respectively, which have a Gaussian
neighborhood as defined in (10.22).

Wglat=slat
i;j;k;l ¼ exp � ig=s � kg=s

� �2 þ jg=s � lg=s
� �2

rg=slat

� �2
0
B@

1
CA ð10:22Þ

The indirect pathway consisting of the STN and GPe forms a coupled excita-
tory–inhibitory pair of neuronal pools [Eqs. (10.19) and (10.20)]. Such excitatory–
inhibitory pairs of neuron pools are known to exhibit complex oscillations (Kalva,
Rengaswamy, Chakravarthy, & Gupte, 2012). The dynamics of these oscillators is
highly dependent on the input, which constitutes the projections from the
D2-expressing neurons of the striatum. The STN layer in the model exhibits cor-
related activity for high striatal input, and uncorrelated oscillatory activity for low
striatal inputs (see Appendix in Chap. 5). The uncorrelated oscillations of the STN
are a key source of exploratory drive that randomly pushes the arm around in the
workspace.

Here, rlat
g/s is the spread of the lateral connections, respectively, for the STN–GPe

network. So for a given neuron i, j the weights represent a 2D Gaussian whose
maximum is centered on (i, j). The output of the STN is combined in the GPi with
the signal arriving via the direct pathway from the D1R-expressing MSNs in the
striatum as follows:
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yGPi ¼ AD1yD1 � AD2ySTN ð10:23Þ

At the level of the GPi, the DP output, i.e., yD1 and the STN output (ySTN) are
combined (Eq. 10.23) and then passed on to the thalamus. The thalamus is modeled
as a continuous attractor network which is necessary to integrate as well as filter
information from the GPi output.

10.2.5 Prefrontal Cortex—Information of Goal Position

The motor command is thought to arise from the PFC, in the sense that the goal of
the movement is represented in the PFC (Asplund, Todd, Snyder, & Marois, 2010;
Matsumoto, Suzuki, & Tanaka, 2003). The PFC specifies information regarding the
position of the goal to be reached. Similar to the PC and the MC layers, the PFC
layer is trained like a SOM with weights WPFC, but the input features are the spatial
locations that the arm could reach in the model. Training in the model occurs in
weights linking the PFC and the MC. The weights between the PFC and the MC
(WPFC!MC) are trained as follows. A target, Xtarg = [x1

targ x2
targ] activates corre-

sponding neurons in the PFC with activation U(t) using Eq. (10.24).

Ui tð Þ ¼ exp
� X targ tð Þ �WPFC;i

���� 2

r2PFC

 !
ð10:24Þ

The arm initially makes reaching movements which are driven by dynamics
aided by a stochastic hill-climbing procedure called ‘Go-Explore-NoGo (GEN)’
applied to the value function (Chakravarthy & Balasubramani, 2015). Furthermore,
whenever the arm reaches the target position, the connections from PFC and MC
are also trained, so that the motor command can directly activate the motor cortex,
thereby producing rapid movement, without the slow search conducted by the BG.
In this case, the training is initiated only when the arm reaches the target, i.e., the
end effector is within a small radius, n (=0.1 units) of the target location. Similar to
the MC and MN layer weights, the WPFC!MC are trained in a supervised fashion
(Eq. 10.25). Let GPFC be the activity that PFC activation induces in MC; let Gtarg be
the activity in MC that drives the arm to the target location. Therefore, Gtarg serves
as a target vector for GPFC. The weights from PFC to MC are therefore trained as
follows:

DWPFC!MC ¼ gPFC!MC Gtarg tð Þ � GPFC tð Þ� �
U tð Þ ð10:25Þ

Here, GPFC(t) is the PFC-driven MC activity and as this learning progresses, the
arm reaches the goal position faster and faster. Therefore, the model exhibits two
stages of motor learning: Slow movements dominated by the BG are seen in the
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early stages, while the cortically driven fast movements dominate the later stages.
The PFC contribution increases as a function of the reaching error as in Eq. (10.26).

APFC ¼ APFC þ ft
re

ð10:26Þ

Here, ft is a factor for controlling the speed of growth of APFC and re is the
reaching error estimated as average distance to the target.

10.2.6 Timescales of Motor Movement in the Cortex
and the BG

Reaching movements, like several other behavioral events, involve dynamics at
multiple timescales: the neuronal activity which is generally in milliseconds, and
the actual movement which unfolds over the order of seconds. In the model, the
cortical loop is assumed to run slightly slower than the BG module. The integration
time step used is 1 ms. As the dynamics of the STN–GPe loop in the indirect
pathway needs some time to settle, we run this loop for 50 iterations, before sending
the output to the MC. Thus, a single update of the MC activity happens after every
50 ms during which the BG dynamics run. All the results presented are at the
timescale of the MC.

10.2.7 Simulating Pathology—Parkinsonian Condition

The value difference term ‘dv’, as we have mentioned earlier, is a correlate of the
dopamine signal. To simulate the dopamine-deficient state of PD in the model, the
‘dv’ term is clamped to a lower value. Thus if [dlow dhigh] represents the normal
range of the dopamine signal exhibited by the control subjects, then PD OFF
conditions are simulated having a smaller range [dlow dv

*], where dv
* denotes the

clamped limit that is lesser than dhigh [Eq. (10.27)]. In addition to this, PD ON
conditions could also be simulated [Eq. (10.28)] in the model by adding a constant
additive term which we call the medication factor to the value difference (dv

med).

PD OFF :
If dV [ d�V
dV ¼ d�V

ð10:27Þ

PD ON :

If dV [ d�V
dV ¼ d�V þ dmed

V
else

dV ¼ dV þ dmed
V

ð10:28Þ

178 10 A Cortico-Basal Ganglia Model to Understand the Neural …



Furthermore, the degeneration of the SNc neurons is not the only pathology
linked with PD. Others areas of the BG such as the STN and GPe are shown to have
pathological synchronized oscillations in the PD patients (Weinberger, Hutchison,
& Dostrovsky, 2009). Pathological b-band oscillations in these loops have also
been linked to PD tremor and rigidity (Mallet et al., 2008; Weinberger et al., 2009).
Therefore, in addition to clamping dv, we also investigated other parameters such as
the lateral connection strengths in STN and GPe neurons (Wslat & Wglat), the
interconnection strengths wsg and wgs, and the relative contributions of the direct
and the indirect pathways on the final motor action. Finally, there is definitely an
influence of dopamine on the excitability of the cortical neurons. As a result to
study these effects, we also introduced a variable for tonic dopamine levels (dton),
which is updated using the value difference using Eq. (10.29), to understand the
effect of dopamine depletion in the higher cortical areas.

ston
ddton
dt

¼ �dton þAtondV ð10:29Þ

This gives an estimate of the averaged gradient information or the value func-
tion, which controls the dynamics of the MC. We made the tonic dopamine variable
dton control the strength of connectivity in the MC, i.e., Alat

C which controls the
strength of lateral connectivity within the attractor network of MC using
Eq. (10.30).

sMC
dAC

lat

dt
¼ �AC

lat þ f kton dton � htonð Þð Þþ k ð10:30Þ

where f is a sigmoid function f �ð Þ ¼ 1
1þ exp ��ð Þ

� �
, with slope kton and threshold hton

and k is a constant to maintain baseline values of Alat
C .

10.3 Results

10.3.1 Mapping of the Joint Configurations in the PC
and MC

The sensory-motor cortical loop is initially tested (Fig. 10.4a) as a stand-alone
network, and the MC is activated to investigate the range of movements of the arm
in the workspace. Activation to the MC is given as IMC = IPFC + IBG + IPC + Iapp
where IPFC = IBG = IPC = 0 and Iapp is a Gaussian current and a matrix of size
NMC � NMC in which is centered on random nodes to activate different regions of
the MC. In Eq. (10.31), iMC and jMC represent the nodes in the MC and ir and jr are
random nodes over which the Gaussian current is centered.
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Iapp ¼ exp � iMC � irð Þ2 þ jMC � jrð Þ2

rg=slat

� �2
0
B@

1
CA ð10:31Þ

We observe that the arm is capable of reaching most of the positions in the
output space (Fig. 10.4b), suggesting a consistent mapping of arm configurations in
the feature space. Furthermore, to understand the loop’s ability to represent arm
positions uniquely, the activity generated upon probing the MC and the activity
generated via the loop, i.e., arm ! PC ! MC are compared and are found to be
the same. In addition, the activity of the PC and MC is mapped back onto the joint
configuration space which produces map structures shown in Fig. 10.4c, d. In case
of the PC map, the joint configuration space is fairly uniform and topography is
well maintained, whereas just one level above in the MC the map starts to become
more complex with both regions of continuous change in the configuration space
and areas of fractures or discontinuities. The regions of overlapping representations
seem to have increased from the PC map to the MC map.

Fig. 10.4 Sensory and motor maps. The sensory-motor loop is probed at the level of the MC
(a) and the mapping of the end effector positions approximated by the network is compared to all
possible positions in the arm workspace (b). The joint configuration maps formed for both the PC
(c) and the MC (d) layers, where blue lines indicate the two links and the green dot denotes the end
effector position
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10.3.2 Reaching Movements of the Arm

We initially tested the model by providing multiple targets to reach and to test if the
arm reaches these areas. Figure 10.5a (1–6) shows a snapshot of the network in
action as the arm reaches the target. The MC activity corresponds to the arm
configuration that has successfully reached the target. The PFC activity codes for
the goal position (represented by the red star). Initial movements of the arm are
solely driven by the gradient information present in the value function (Eq. 10.15).
The indirect pathway of the BG provides activity with low correlation under certain
parametric conditions of STN–GPe connections (see BG column, STN–GPe in
Table 10.1) to enable sufficient exploration of the arm in the workspace
(Chakravarthy & Balasubramani, 2015). This in turn leads to training the con-
nections between the PFC and the MC (Eq. 10.25). The PFC input to the MC
specifies the activity that the motor cortex should evolve in order to reach the target.
The GPi activity, which forms the input to the thalamus from the BG, is integrated
in the thalamus. It is important to note that, when the MC activity and the PFC input
into MC are the same, it means that the network has learned to approximate the
activity needed to reach the target (Eq. 10.25). There are 50 trials in total in the
simulation, where the initial 20 trials are used for learning the target location and
the trajectory to follow for a successful reach, during which the amplitude of PFC
input is increased as per Eq. (10.26) and the PFC-to-MC connections (WPFC!MC)
are trained. In the next 30 trials, the arm is tested for its performance. For each trial,
the arm is initialized to a starting position and provided with a specific target (the
target position is kept constant for all trials) to reach. A successful reach is signified
by the arm coming within at least n units of distance from the target. The trial is
then terminated in two cases: (a) when the arm reaches the target successfully or
(b) when the target is not reached and the simulation crosses the maximum time
limit.

The end effector trajectories become smoother as learning progressed in controls
and, furthermore, there is decrease in hand path variability as learning progresses
(Fig. 10.5b). Here, the spatial variance is represented as ellipses (Georgopoulos,
Kalaska, & Massey, 1981) and we see that the variance decreases with trials. We
investigated the velocity profiles of the arm while performing the reach, and the
characteristic of bell-shaped curve is observed in the profile (Fig. 10.5c).
Additionally, it is known from previous work that these velocity profiles fit well to a
delta-lognormal distribution (Plamondon, 1998), with the two lognormal compo-
nents corresponding to the agonist and the antagonist bursts, respectively. We
found that the reaching profiles obtained in the model fit well to this distribution
(Fig. 10.5c). The performance of the arm also improves with trials seen as a
decrease in the time taken to reach the target (Fig. 10.5d). There is a reduction in
the variance of the time to reach across blocks of trials suggesting lower motor
variability upon learning (Fig. 10.5d).
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10.3.3 Velocity Profiles of Controls and PD Patients

Majsak and colleagues (Majsak, Kaminski, Gentile, & Flanagan, 1998) performed
reaching experiments in both healthy controls and PD subjects at self-determined
speeds to estimate changes in kinematics of the subjects under conditions where the
objects are stationary and moving. The PD subjects were on their dopamine
medication (Sinemet®) and performed six trials in each case (a) when object was

Fig. 10.5 Reaching behavior in controls. The simulation snapshot of the model while performing
the reaching task (a) and the activities of multiples areas in the model (a.1–6). The end effector
trajectories (b) obtained in the case of controls for reaching three different targets (represented by
three different colors—blue, green, and red) across trials as the learning of the PFC-to-MC
connections (WPFC!MC) takes place. The ellipses show the spatial ± SD as the model performs
reaching across 50 trials. The velocity profiles during a reach (blue line) compared to the
lognormal distribution (LN Fit, green dotted line) (c). Performance of the model in control
conditions as a function of the time to reach target location (d) and the variability in reach times
(e) through trials (here each block refers to 10 trials)
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stationary, (b) moving, and (c) stationary again. In the model however we compared
the performance of the arm in the stationary case to compare the basal-level
activities. The PD ON condition in the model is simulated using Eqs. (10.27) and
(10.28) where the clamped dopamine limit, dV

*, is set to 0.1 and the medication
factor (dV

med) to 0.5. In order to account for the slowness and reduced velocity in PD
movement, the tonic dopamine variable (dton) is introduced via Eq. (10.29) and
affects the MC dynamics using Eq. (10.30).

The dton values in controls and PD condition reveal that the controls show
increase in the levels of tonic dopamine as the task progresses, whereas it is much
smaller in case of PD (Fig. 10.6a). This affects the attractor dynamics of the MC,
where the values of Alat

C are always high for the PD case compared to the control
case where after some time the value falls due to the increase in dton (Fig. 10.6b).

Table 10.1 Parameter values used for simulating the cortico-basal ganglia model

MC BG PFC PC MN Arm

SOM Value function/

DA

SOM SOM MC ! MN net Kinematics

NMC 15 NPFC 15 NPC 15

rMC 1 rV 2 rPFC 0.1 rPC 0.02 AMN 0.01 aS 0.04

CANN Aton 3 PFC ! MC net ηMC!MN 0.1 bS 0.07

APC 0.1 kton −50 ηPFC!MC 0.1 aE 0.03

ABG 1 hton 0.5 bE 0.08

APFC 0.1 − APFC
T* k 9 lS 0.3

Alat
C 10 Striatum lE 0.3

rlat
C 2 kD1 50

KC 0.5 kD2 −50

bMC 0.5 tD1 0.05

sMC 0.005 tD2 0

STN–GPe

�g 1

�s 1

wsg 1

wgs 1

rlat
g/s 1

sSTN/GPe 0.005

GPi

AD1 15

AD2 1
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Lower values of Alat
C lead to easy translation of the neural activity bump over the

neural space, and high values make it difficult for the BG to trigger movements as a
result of the local excitation and global inhibition dynamics. The velocity profiles of
the subject groups for a self-determined speed are shown in Fig. 10.6c. The sim-
ulated controls reach the target faster than in the PD case, and their peak velocities
are also higher. The kinematic variables of the reach task are shown in Fig. 10.6d–f.
A significant difference is seen in the movement time between the controls and the
PD subjects, suggesting slow or bradykinetic movements in the PD case.

Fig. 10.6 Stationary target reaching task. The evolution of the tonic dopamine variable (dton)
(a) and the MC dynamics variable (Alat

C ) (b) for the entire task duration (50 trials) for controls, PD1
and PD2. Here, PD1 and PD2 refer to different clamped dopamine levels (dV

*), which is 0.1 (blue
line) and 0.01 (red line), respectively. Kinematics of reaching movements with velocity profiles of
controls and PD (c), time to peak velocity (d), peak velocity (e), and movement time (f) from
experiment (adapted from Majsak et al., 1998) and the corresponding model performance
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10.3.4 Model Performance on the Pursuit Task

Another set of experiments captured by the model included the pursuit task con-
ducted by Soliveri and group where they tracked the ability of PD subjects to
pursue a moving target using a manipulandum (Soliveri, Brown, Jahanshahi,
Caraceni, & Marsden, 1997). In the model, this task is abstracted to the arm trying
to reach for a series of continuously changing target positions. The target moves
back and forth in a straight line in a sinusoidal fashion with a frequency of 0.25 Hz,
thereby making it predictable. There were three blocks in the experiment each
including 10 trials. The behavioral variable measured both in the experiment and
model is percentage of time on target which is defined as the time spent on the
target using the manipulandum (experiment) or arm (model). As previously
described, in the model the arm is thought to be on the target if the distance to the
target is within n (=0.1) units. The PD subjects included in the study were on their
DA medication. In the model, we designed the target to move similarly as in the
experiment, in a sinusoidal fashion. As the target shifted, the activation in the PFC
also changed at every instant of time as it codes for the target location. This meant
that the peak of the value function (Eq. 10.15) also changes continuously with time
giving the arm the necessary information to track the moving target. The dV

* is set to
−0.2 and the dV

med to 0.01. From Fig. 10.7a, it is evident that the controls are
capable of pursuing the moving target more efficiently than PD ON subjects which
the model captures (Fig. 10.7b), even though both subject groups showed learning
as the trials progressed. This phenomenon is also observed in the experiment where
the PD subjects also learn the task across blocks (Fig. 10.7c, d). The last block in
the experiment suggests a performance drop in both the control and PD subjects
which the authors attribute to fatigue. This is not captured in the model as we did
not take into account the factor of fatigue in the muscle model. See Table 10.1 for
parameter values used for simulating the experimental conditions.

10.3.5 Motor Initiation with the Cortico-BG Loop

The relative strengths of the BG along with the PFC inputs into the MC are
analyzed to understand the dynamics of the cortico-basal ganglia loop on movement
initiation. The arm was initialized to a starting configuration, and the PFC input is
provided as pulses of duration (50 ms) with varying amplitudes. The displacement
of the arm from its starting position is tracked. In the presence of only PFC (i.e.,
ABG = 0), the amplitude of PFC input to initiate sufficient movement has to be high
(APFC > 0.9). The introduction of the BG with varying degree of strengths
(ABG = 0.01, 0.05, 0.1, and 0.2) leads to movement at lower amplitude of PFC
input, thus making motor initiation easier, though with higher contribution of BG
the movement variability increases (Fig. 10.8a). With the introduction of PD
condition (dV

* = 0, dV
* = −1 and wsg = wgs = 3, which causes synchronized
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oscillations of the STN–GPe loop), keeping ABG constant, we again see a tendency
toward higher input strengths of PFC required to initiate movement (Fig. 10.8b).
We observe that there needs to be compensation from higher cortical areas in
disease conditions for reaching movement and could be interpreted as a deficiency
in voluntary movement initiation due to the impaired BG.

10.3.6 PD Symptoms

The model is further extended to understand several motor symptoms commonly
seen in PD. In the model, three cardinal symptoms of PD movement are simulated:
tremor, rigidity, and bradykinesia. Initially to simulate PD condition, the value
difference is clamped, but that alone does not reproduce all the above symptoms in
the model. Other parameters also must be varied as shown below.

Tremor, Rigidity, and Bradykinesia

PD symptoms start appearing in the model when the dopamine signal (dV
* = −1) is

clamped and the connection strengths between the STN and GPe (wsg and wgs) and
the lateral connection strengths in the STN (�s) are manipulated. In all the symptom
cases, the interconnections, i.e., wsg and wgs are increased from the control levels
(wsg and wgs = 1 in controls, wsg and wgs = 3 in PD). Controls have a smooth

Fig. 10.7 Pursuit reaching task. The performance of subjects on the pursuit task (adapted from
Soliveri et al., 1997) and the differences observed in control and PD behavior in experiment (a and
c) and the model (b and d)
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trajectory to the target (Fig. 10.9a), and tremor starts to appear initially with just the
increase in the connection strength between STN and GPe, i.e., wsg and wgs

(Fig. 10.9b). Rigidity and bradykinesia seem to coexist in the model and start to
emerge upon decreasing the contribution of the lateral connections within the STN
(�s) compared to the tremor case (Fig. 10.9c) (for rigidity �s = 0.7). We estimated
the frequency spectrum of the velocity of the arm during the reaching task and in
the tremor case (Fig. 10.9e). There is increased power in the 4–10 Hz range which
is seen clinically in PD patients as well (Jankovic, 2008). This also brings about
differences in the spectrogram of the average STN activity in the tremor and rigidity
scenarios compared to control scenario. In the control case, the STN activity
remains sufficiently decorrelated (Fig. 10.9g). However in both the symptomatic
cases, power of the spectrum seems to be concentrated within a narrow frequency
range: tremor (frequency range = 10–40 Hz) and rigidity (frequency range = 20–
55 Hz) (Fig. 10.9h, i). Various studies have observed pathological oscillations in

Fig. 10.8 Motor initiation in the cortico-BG loop. The displacement of the arm from a starting
position with varying degree of the PFC and BG input strengths (APFC, ABG) (a) and the effect of
PD condition (b) on motor initiation
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the indirect pathway especially in the STN–GPe loop and are generally related to
the symptoms observed in the PD patients (Hammond, Bergman, & Brown, 2007;
Mallet et al., 2008; Weinberger et al., 2009). These pathological oscillations are in
the b-band (13–30 Hz), and this is seen in the model where the frequency spec-
trogram of the average STN activity shows increased power in the b-range. In the
rigidity case, the spectrum shifts to higher frequency band compared to
Parkinsonian tremor. This shift in the spectrum seems to result in the arm restricted
to a very small part of the state space, thereby reflecting movements that are slower
and more rigid.

The three symptomatic conditions are also presented as a function of distance to
the target position (Fig. 10.10a). On further exploration of the entire range of values

Fig. 10.9 Emergence of PD symptoms in the model. Movement trajectories (dark green trace) of
the arm during reaching a target (red dot) in controls (no dV

*, wsg and wgs = 1, �s = 1) (a), PD
tremor (dV

* = −1, wsg and wgs = 3, �s = 1) (b), and PD rigidity (dV
* = −1, wsg and wgs = 3, �s = 0.7)

(c) conditions. The frequency spectrograms of movement in controls (d), PD tremor (e), and PD
rigidity (f), where PD tremor shows increased power in the 4–10 Hz regions. The spectrogram of
the averaged STN activity in controls (g), during PD tremor (h), and rigidity (i). The spectrum
shows a shift into higher frequencies in case of the PD symptoms (rigidity > tremor)
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for the STN–GPe interconnections (wsg and wgs) and the intraconnections (�s), the
regimes of disease states seem to appear (Fig. 10.10b). In Fig. 10.10b, the values
are obtained as mean of the Fourier spectrum of the arm velocity for each condition.
Therefore, higher mean values of the Fourier spectrum suggest more tremor-like
behavior and the lower values suggest more rigid and bradykinetic movements.
Intermediate values could be control-like behavior with more a balanced frequency
spectrum as shown in Fig. 10.9d. It suggests that at a given wsg the range of �s at
which tremor or rigidity appears is different. This could be a reason for high
symptom variability among PD patients and the bias toward development of certain
symptoms earlier in the disease compared to later. However, the general trend
suggests that decrease in the lower lateral strengths in the STN may be a major
causative reason for rigidity and higher interconnection strength for tremor.

10.4 Discussion

We present a cortico-basal ganglia model that performed reaching tasks. By
inducing PD conditions in the model, we are able to simulate the impairments seen
in PD reaching movements. There are two different loops in the model: the
sensory-motor cortical loop and the cortico-basal ganglia loop. So the model is on
the lines of optimal control theory and closed-loop control where the sensory-motor
integration provides the necessary feedback mechanisms for control; the
cortico-basal ganglia loop sets the optimality criterion to maximize performance
(Todorov, 2004). In this case, the criterion becomes the value function: Stochastic

Fig. 10.10 Influence on network parameters on PD symptoms. PD symptoms viewed as a
function of the distance to the target position (a). The analysis of the strength of interconnections
within STN–GPe (wsg and wgs) and the lateral connection strength within the STN (�s) and their
effect on the type of symptoms manifested in PD is represented as the expected value of the
Fourier spectrum of velocity (b). The blue and red range represents rigidity/bradykinetic, and
tremor movements, respectively. The control regime lies in the green range
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gradient descent dynamics executed by the BG model essentially drives the
reaching movements of the arm toward a target. One of the assumptions in the
model is that this value function may be readily available to the BG module by the
top-down information from higher cortical areas. A plausible mechanism could be
the prefrontal cortical connections to the ventral striatum (Alexander, Crutcher, &
DeLong, 1991; Botvinick, 2008), which code the goal information in the form of
value function at the level of ventral striatum. Alternatively, it is not essential to
assume that such a value function can be constructed readily from the goal infor-
mation; the value can also be constructed in the ventral striatum by the plasticity of
cortico-striatal connections that combine the goal information from the prefrontal
cortex with the sensory-motor information from the sensory-motor cortical pro-
jections to the ventral striatum.

The acquisition of motor skill requires learning at several levels (Hikosaka et al.,
2002). One of the key points of the model is during the early phase of learning,
when the movements are slower and more dynamic, the BG is dominant. As the
cortical learning progresses, specifically PFC-to-MC training in the model, the
movements become quicker and more directed toward the target location. This
phenomenon is actually seen in monkeys performing associative learning tasks,
where initially the neuronal activity is higher in the striatal areas, suggesting
responses to rewards, and a slow increase in the activity of the prefrontal cortex
(Pasupathy & Miller, 2005). These studies also suggest that the output of BG trains
the higher cortical areas and this is precisely captured in the model. There is a
significant contribution of striatum during initial stages of learning, and as the
cortical systems start to take over, actions become habitual and automatic (Ashby,
Turner, & Horvitz, 2010). The initial slower movements in the model are driven by
climbing the value function (i.e., dopamine-dependent), and as the PFC contribu-
tion increases, it can activate other cortical areas like MC which can directly
influence spinal motor neurons for faster movements.

10.4.1 Cortico-Basal Ganglia Loop as an Attractor Network

The proposed model highlights the idea that the final hand position due to reaching
is an attracting state of the cortico-basal ganglia dynamics. Therefore, the attractor
dynamics of the cortico-basal ganglia loop must be well understood in order to
understand reaching dynamics in normal and Parkinsonian conditions. The attractor
dynamics that drives the reaching movements in the model arises from three
sources: (1) the lateral connections in the CANN model of MC, (2) the
sensory-motor cortical loop dynamics, and (3) the cortico-basal ganglia loop
dynamics. The attractor dynamics of the CANN model has been explored exten-
sively in other studies (Gupta et al., 2013; Jankovic, 2008). The attractor dynamics
of the sensory-motor cortical loop, even in the absence of the cortico-basal ganglia
loop, is demonstrated in Fig. 10.8a, where it is shown that the PFC input to MC
must exceed a threshold to move the hand from its current state. Addition of the
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cortico-basal ganglia loop seems to lower the threshold; it is easier initiate the hand
movement for a given PFC activation, if there is assistance from the cortico-basal
ganglia loop. This result explains the relative difficulty observed in PD patients in
initiating hand movements (Chen & Reggia, 1996). In Fig. 10.8b, the PD pathology
is investigated slightly differently. Instead of removing the BG input to MC, the dV
term, which represents dopamine projections to the striatum, is clamped at two
levels (clamp value, dV

* = 0, and dV
* = −1; wsg = wgs = 3). These parameter settings

suppress the dopamine signal (dV) and also change the dynamics of STN–GPe loop
to synchronized dynamics, emulating PD conditions (Chakravarthy &
Balasubramani, 2015). Under these conditions also, it can be seen that it is harder to
initiate movement, even though the strength of BG input to MC is unaffected. These
results show that the dynamics of the cortico-basal ganglia loop amplifies the output
of MC, thereby facilitating movement in normal condition. This amplification is
suppressed in PD conditions, due to reduced dopamine levels and increased syn-
chronization of the STN–GPe loop. These results resonate well with the model of
the role of BG in willed action proposed in (Chakravarthy, 2013).

10.4.2 Indirect Pathway for Exploration and Emergence
of PD Symptoms

The STN–GPe loop modeled as a network of coupled oscillators induces
exploratory dynamics in the model [Eqs. (10.19), (10.20), and (10.21)]. We have in
previous studies substantiated the role of the indirect pathway as an Explorer that
performs random search over the action space which is necessary when viewing
basal ganglia as a reinforcement learning engine (Chakravarthy & Balasubramani,
2015). The exploration in the model comes from the fact that there is a stochastic
drift in the activity of MC, influenced by the complex dynamics of the STN–GPe,
thereby driving the arm to visit all possible arm configurations. As a result, the
indirect pathway becomes very important in the initial trials to drive arm move-
ments where the movement variability is also high (Fig. 10.5d, e). In the initial part
of a reaching trial, value difference (dV) is small which makes the striatal output to
GPe and GPi low. Therefore, in the initial part of a trial, the output of BG is
dominated by the output of the STN–GPe loop, which facilitates movement initi-
ation. However, once movement begins, dV changes significantly strongly reflecting
the gradient of the value function. In the PD case, the clamping of the value
difference (dv) in the model enhances the outputs of D2R neurons in the striatum
and amplifies the contributions of the indirect pathway to BG output. Thus, in PD
conditions, the BG output depends on the dynamics of the STN–GPe loop, with
altered dynamics of STN–GPe manifesting as impaired movement (Table 10.2).

Table 10.2, which summarizes the results from Fig. 10.9, shows the parameters
of STN–GPe loop under control and PD conditions. Particularly, it shows that the
internucleus connections (wgs and wsg) are high compared to the control for both the
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symptom categories (rigidity and tremor). Furthermore, in case of rigidity, the STN
lateral connectivity strength (�s) is lower than in case of tremor. It is known that
symptoms in PD could be correlated with synchronized oscillations in the STN,
which is often seen in the b-range (Mallet et al., 2008; Weinberger et al., 2009).
Studies show that the oscillatory activity in the STN ranges from the low frequency
3–7 Hz to beta (13–30 Hz) in the more dorsal regions to even gamma (30–100 Hz)
in the ventral areas (Zaidel, Spivak, Grieb, Bergman, & Israel, 2010). The model
concurs with this where we see the STN activity ranging from desynchronized in
control case (Fig. 10.9g) to synchronized beta in tremor (Fig. 10.9h) condition and
high beta (20.5–28 Hz), bordering on gamma (25–100 Hz) during rigidity
(Fig. 10.9i). There is not much evidence on how such pathological oscillations give
rise to both tremor and rigidity. An interesting observation from the model was that
both tremor and rigidity were associated with different frequency bands of the STN
activity (as shown in Fig. 10.9h, i), with rigidity associated closer to the gamma
range compared to the tremor. It remains to be verified whether such firing patterns
exist in the basal ganglia under conditions of rigidity and tremor.

10.4.3 Effect of Dopamine on Motor Performance

In the model, the dopamine signal (dv) aids in switching between the direct and the
indirect pathways of the BG. In order to model the effect of dopamine on the motor
cortex, we define the tonic dopamine variable, dton, [Eq. (10.29)], which controls
the lateral inhibition in the CANN component of the MC. This tonic dopamine
variable is a local-time-averaged version of phasic dopamine (Eq. 10.29). There
seems to be a higher degree of intracortical inhibition with the application of
dopamine agonists to the motor cortex and a significant decrease in this inhibition
upon the administration of dopamine antagonist (Ziemann, Tergau, Bruns,
Baudewig, & Paulus, 1997). In PD ON subjects, the peak velocity of reaching and
the acceleration of movement are higher and the time spent in deceleration is lower
compared to the OFF case suggesting its benefit in reducing bradykinesia
(Castiello, Bennett, Bonfiglioli, & Peppard, 2000). In the model, these effects are
reproduced by making the Alat

C parameter in MC a function of the tonic dopamine
variable dton. The Alat

C parameter modulated by the tonic dopamine affects the
intrinsic excitability of the CANN component of MC (Fig. 10.6b), where larger
values of Alat

C make the CANN dynamics more stable and resistant to any changes in
the input that comes from areas, viz. BG, PC and PFC.

Table 10.2 STN–GPe
parameters and relation to PD
symptoms (rigidity and
tremor)

wgs (=wsg) �s dv
*

Controls 1 1 No bound on dv
*

Tremor 3 1 −1

Rigidity 3 0.7 −1
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10.4.4 Limitations and Future Directions

The immediate limitation of the model is the lack of a distinct striatal module;
instead we have used striatal activation functions to modulate the cortical input
entering the BG. Since the arm used is a 2D kinematic model (it could be extended
to 3D naturally), the introduction of nonlinear muscle model with force dynamics
would aid in understanding the agonist–antagonist interaction during movement. In
future, we would like to extend the model as a test bench to analyze reaching
movement impairments in other basal ganglia pathologies like Huntington’s chorea,
ballismus, dystonia, and even drug-induced dyskinesias (Jankovic, 2008). Since the
model is generalized in its approach, by involving different end effectors, like
locomotor apparatus or articulators, we can understand motor behavior such as gait
and speech, respectively (Canter, 1963; Hausdorff, Cudkowicz, Firtion, Wei, &
Goldberger, 1998). One of the interesting results from the model is that with BG
impairment, movement initiation becomes difficult and would require more vol-
untary effort to do so. This could be tested by stimulating motor areas using
techniques like TMS (transcranial magnetic stimulation) in PD patients and see
whether movement initiation requires more amplitude of stimulation than controls.
This would also enhance the theory of the BG as an active player in regulating
willed action (Chakravarthy, 2013). We show that shift in PD symptoms from
tremor to rigidity could be caused by an increase in the correlated activity of the
STN neurons. Experiments could target the changing activity in the STN and look
for similar changes in movement behavior. Finally, the attractor dynamics, local
excitation and global inhibition, of the MC in the model could be manipulated by
using DA agonist and antagonists to see which aspects of these dynamics does
dopamine have an influence on.
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Chapter 11
Studying the Effect of Dopaminergic
Medication and STN–DBS on Cognitive
Function Using a Spiking Basal Ganglia
Model

Alekhya Mandali and V. Srinivasa Chakravarthy

Abstract Using the spiking Izhikevichmodel used in the earlier chapters, we studied
the effect of medication [L-Dopa and dopamine agonists (DAA)] and subthalamic
nucleus (STN) deep brain stimulation on decision making using two cognitive tasks,
i.e., Iowa gambling task (IGT) and the probabilistic learning task (PLT) and were
validated using the experimental results. Based on the experimental observations that
dopaminergic activity is analogous to temporal difference (TD) and induces
cortico-striatal plasticity, we introduced learning in the cortico-striatal weights using
the reinforcement learning framework. For PLT and IGT, the model in PD condition
under medication (L-Dopa) was unable to learn from punishments which is attributed
to excess dopamine levels in striatum even during punishment. Themodel underDAA
was impulsive reflected in the lower RT in PLT and negative score in IGT.We varied
two parameters during DBS (1) the electrode position within STN and (2) antidromic
activation of GPe neurons. The performance in both IGT (Score) and PLT (reaction
time) was dependent on the position of the electrode and amplitude of the current for a
specific electrode position. We also observed that a higher antidromic activation of
GPe neurons does not impact the learning ability but decreases reaction time as
reported in DBS patients for PLT. These results suggest a probable role of electrode
and antidromic activation in modulating the STN activity and eventually affecting the
patient’s performance.

11.1 Introduction

The surgical technique, deep brain stimulation (DBS) of the subthalamic nucleus
(STN), is now widely used in the treatment of Parkinson’s disease (PD) when either
dopamine replacement therapy does not provide continuous relief from motor
symptoms or leads to drug-induced dyskinesias (Benabid, 2003). Irrespective of its
wide clinical usage (Garcia, D’Alessandro, Bioulac, & Hammond, 2005), the exact
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mechanism of DBS action is still under debate. Furthermore, various experimental
studies show a controversial effect of DBS on cognition (Jahanshahi et al., 2000)
particularly on impulsivity (Brittain et al., 2012; Frank, Samanta, Moustafa, &
Sherman, 2007; Smeding, Speelman, Huizenga, Schuurman, & Schmand, 2009).
Several reports have highlighted the development of new onset, often transient,
impulse control disorders (ICDs) following STN stimulation (Combs et al., 2015;
Hershey et al., 2004; Smeding et al., 2007). This was thought to be due to stim-
ulation parameters such as current spread and electrode position which affected the
outcome in cognitive tasks (Sudhyadhom et al., 2007; Witt et al., 2013; York,
Wilde, Simpson, & Jankovic, 2009). STN stimulation can also increase risk-taking
behavior in Iowa gambling task (IGT) (Evens et al., 2015). Patients with STN–DBS
tended to overestimate their performance with a preference toward competitive
environments (Florin et al., 2013). On the other hand, pre-existing ICDs were
reported to resolve following STN–DBS, as a result of reduction in dopaminergic
medication (Castrioto et al., 2015). Thus, STN–DBS may lead to varying net effects
on impulsivity in PD through different mechanisms.

Probabilistic learning task (PLT) (Frank et al., 2007; Frank, Seeberger, &
O’reilly, 2004) also captures the decision-making ability and impulsivity features.
PLT tests the learning capability of the performer not only in choosing rewarding
choices but also in avoiding punishing ones. Experimental results show that the
performance of normals and PD OFF subjects during PLT is similar in terms of
choosing rewarding and avoiding punishing choice (Frank et al., 2007). The per-
formance of PD ON subjects was opposite to that of PD OFF with a preference
toward the rewarding choice, which was accounted to the presence of excess DA
levels in the striatum due to medication. This excess DA (due to medication)
prevents the PD subjects to learn from punishments. Another critical feature cap-
tured by PLT is the reaction time (RT). It has been observed that normal subjects
take more time when presented with multiple equally rewarding stimuli (high
conflict) and are expected to choose one among them (Frank et al., 2007). Frank
et al. (2007) hypothesized that STN increases its activity and buys the extra time
needed (‘holding the horses’) during such situations. This was further shown by
Zaghloul et al. (2012), where an increase in STN activity in PD patients during high
conflict conditions was observed (Zaghloul et al., 2012). Experiments conducted by
Frank et al. (2007) showed that the performance of DBS subjects on PLT was not
significantly different in terms of learning ability but showed impulsive behavior in
terms of RT.

The aim of this study is twofold, firstly to show that the spiking BG model is
able to replicate the performance of normal, PD OFF, PD ON (L-DOPA) conditions
as in experimental studies (Frank et al., 2007) and secondly to hypothesize the
effect of DAA, DBS electrode on learning, impulsivity, and behavior. The details of
the model are described in the previous section and below.
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11.2 Materials and Methods

11.2.1 Spiking Neuron Model of the Basal Ganglia

The network model of BG (Mandali, Rengaswamy, Chakravarthy, & Moustafa,
2015) described earlier was used to simulate the cognitive tasks. For details of the
model and its related equations please refer to earlier sections. The details of the
cognitive tasks (IGT and PLT) and the related measures are explained below.

11.2.2 Behavioral Tasks

11.2.2.1 Iowa Gambling Task (IGT)

IGT involved the presentation of four decks of cards wherein each of the decks A/B/
C/D is associated with a combination of reward and penalty. IGT was conducted for
a total of 100 trials (5 bins of 20 trials each).The net outcome of a certain card
selection (reward + penalty) in each trial was calculated. Over a few trials, the cards
from the decks A and B (C and D) are disadvantageous (advantageous) as the
corresponding expected value is negative (positive).

11.2.2.2 Probabilistic Learning Task (PLT)

The experiment consists of two stages, training and testing. During the training
stage, the model was presented only with three pairs of stimuli (AB/CD/EF) one at
a time in a random fashion. Each of the six choices (A/B/C/D/E/F) was associated
with a reward with a priori probability. For example, selection of choice ‘A’ leads to
reward (= +1) 80% of the time, whereas choice ‘B’ leads to a reward only 20% of
the time. Similarly, choice ‘C’ (‘E’) gives reward with a probability of 70% (60%)
and choice ‘D’ (‘F’) leads to reward only 30% (40%) of the time and punishment
(= −1) for rest of the trials. The model was expected to learn these reward prob-
abilities by the end of training.

During the testing stage, the model was tested with 15 novel combinations (e.g.,
AC, CE, DE) which were not presented during the training stage. No feedback was
provided for the response made after each stimulus. The model was tested for its
learning ability based on whether it chose (avoided) a rewarding (punishing) choice
from the presented combination pair. For example, if a novel combination of choice
‘A’ with another choice was presented; the model was expected to choose ‘A’ as the
probability of obtaining a reward was the highest for ‘A’. Similarly, when the
stimuli with combination of ‘B’ with other choices were presented, the model is
expected to avoid selecting ‘B’ as its reward probability was the lowest. Apart from
testing for the learning ability, the model was also tested for performance during
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high conflict (HC) and low conflict (LC) situations. For example, the stimulus
combination ‘AC’ falls under the category of HC as both choice ‘A’ (80%) and
‘C’(70%) have high reward probabilities but stimulus combination ‘BC’ comes
under the category LC as reward probabilities (‘B’ = 20% and ‘C’ = 70%) are
significantly different. The reaction time was measured for each of the conditions
(HC/LC).

During this stage, the model was tested for the following conditions:

• Testing accuracy where the model was presented with 15 novel combinations
not used during the training phase.

• Choice/Avoidance Accuracy of the model to select choice ‘A’ and avoid choice
‘B’ when presented with all possible novel combinations containing either ‘A’
or ‘B’.

• Decision-making efficiency in term of reaction times during HC and LC
situations.

11.2.3 Simulating Tasks Using Spiking Neuron Network
Model

Based on the task, each of the nuclei is divided into either two or four quadrants.
For example, since IGT consists of four decks, each nucleus [STN/GPe/GPi/
Striatum (both D1 and D2)] in the network was divided equally into four quadrants,
where each quadrant received input from one of the decks (Fig. 11.1b). The
expected value of each card was represented by the cortico-striatal weight which
was modulated by DA term ‘d’. The input to GPe and GPi (i.e., the output of D2
and D1 striatum) was modeled as Poisson spike train (Reti, 2015), whose frequency

was proportional to the cortico-striatal weight wD1
i;k ;w

D2
i;k

� �
of the corresponding

card(i) and trial(k). The striatal neuronal firing rate was restricted to 2–40 Hz as per
the experimental literature (Kravitz et al., 2010). Since DA is known to modulate
plasticity in cortico-striatal conditions, the error term ‘d’ (in the model) was used to
update the cortico-striatal synapses (Surmeier, Ding, Day, Wang, & Shen, 2007).
DA also modulated the synaptic strengths within various BG nuclei such as STN
(Cragg, Baufreton, Xue, Bolam, & Bevan, 2004), GPe (Smith & Kieval, 2000).

11.2.3.1 Cortico-Striatal Weight Update and Temporal
Difference Error

Each deck was associated with two cortico-striatal weights wD1
i;0 ;w

D2
i;0

� �
which were

initialized with random values from a uniform distribution over (0, 1). The two
cortico-striatal weights were trained as,
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Fig. 11.1 a Computational spiking basal ganglia model with key nuclei such as striatum (D1,
D2), STN, GPe, GPi, and thalamus. Excitatory/inhibitory/modulatory glutamatergic/GABAergic/
dopaminergic projections are shown by green/red/violet arrows. b The BG model and the regions
within each nuclei corresponding to the four decks are indicated
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DwD1
i;kþ 1 ¼ gdkx

inp
i;k ð11:1Þ

DwD2
i;kþ 1 ¼ �gdkx

inp
i;k ð11:2Þ

The expected value (Vk) for kth trial was calculated as

Vk ¼
X4
i¼1

wD1
i;k � xseli;k ð11:3Þ

The reward (Rek) for kth trial was calculated as

Rek ¼
X4
i¼1

ri;k � xseli;k ð11:4Þ

The loss (Lk) for the kth trial was calculated as,

Lk ¼
X4
i¼1

li;k � xseli;k ð11:5Þ

The error (d) for kth trial was defined as

dk ¼ Rek þ Lk � Vk ð11:6Þ

where wD1
i;kþ 1 wD2

i;kþ 1

� �
;wD1

i;k wD2
i;k

� �
were the cortico-striatal weights of D1 (D2)

striatum for ith card in k + 1th and kth trial, ri;k and li;k were the reward and loss
obtained for the selected ith card in kth trial, xinp was the input binary vector
representing the four decks, xsel was the binary vector representing the selected
card, e.g., if the card ‘A’ in IGT is selected xsel = [1 0 0 0].

11.2.3.2 Simulating Untreated PD and Medically Treated
PD Conditions

Bearing in mind that ‘d’ is similar to DA activity (Niv, 2009; Schultz, 1998), and
there is loss of DA neurons in PD, we simulated PD condition by clamping the ‘d’
value (Eq. 11.6) to a low limit (dlim) which resembles the untreated PD condition
(Eq. 11.7).

dlim ¼ min d;DAceilð Þ ð11:7Þ

where minðy; aÞ is defined as
z ¼y if y\a

a if y[ a
and DAceil is the upper limit of ‘d’.
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Medically treated PD condition clinically involves external intake of dopamine
precursors such as L-DOPA which was simulated by adding a positive ‘dmed’ term
to the dlim (Eq. 11.7).

dnew ¼ dlim þ dmed ð11:8Þ

Another class of medication prescribed to PD patients is DAA, which has dif-
ferential affinity for dopamine receptors. We simulated DAA with preferential
affinity for D2 receptors, also known to be linked to impulsivity (MacMahon &
Macphee, 2008). The dnew in the Eq. (11.8) was used to update only D2 cortico-
striatal weight (wD2) unlike for L-DOPA where both wD1 and wD2 were updated.

11.2.3.3 DBS Current

An external current which mimics the clinically delivered DBS current was applied
to the STN neurons in the model. The parameters (frequency, pulse duration, and
amplitude) of the stimulation current were chosen to be similar to the typical values
used in a clinical setting (Garcia et al., 2005). The stimulation current was applied
to the entire/part of STN module in the form of Gaussian distribution (Foutz &
McIntyre, 2010). The mean of the Gaussian coincides with the lattice position
(ic, jc) which was assumed to be the center of the electrode and extent of current
spread was controlled by the variance parameter (r).

IDBSij ¼ ADBS � e
�ðði�icÞ2 þ ðj�jcÞ2Þ

r2 ð11:9Þ

where IDBSij is the current received by the neuron at position (i, j), ADBS is the
amplitude of the current (pA), r controls the current spread, and (ic, jc) is the mean/
center point of the electrode. The effect of electrode position (ic, jc) and stimulation
parameters ADBS and r on STN activity and on behavior was explored.

Electrode Position

Experimental results show that change in the electrode position alters behavior
(Hershey et al., 2004, 2010), and this can be attributed to the difference in pattern
and volume of STN activation due to the electrode position (Miocinovic et al.,
2006). Also, the final action or choice selection depends on the activity of GPi
neurons which receive weighted input from STN and D1R-expressing MSNs.
Bearing these points in mind, we chose three electrode positions where the lattice
point indicates the center of the electrode, i.e., Pos 1 in the upper half of the STN
nucleus at lattice point (13, 13), Pos 2 with electrode contact center at the lattice
point (25, 25), and Pos 3 in the lower half of the STN nucleus at lattice point
(38, 38). Each module (StrD1, StrD2, GPe, and STN) in the model is divided into
four quadrants corresponding, respectively, to the four panels in the probabilistic
learning task. This is a modeling assumption that has to be made in the absence of
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experimental data about how the four action choices might be represented in the
basal ganglia nuclei. The electrode position that we study in the model is also
described with reference to such representations. Thus, the four quadrants in the
modules do not correspond to the well-known basal ganglia loops like sensori-
motor, associative, limbic.

11.2.4 Performance Measures

In this section, we explain all the performance measures used in this study to
quantify and validate the results obtained from the model for all the conditions.

11.2.4.1 IGT Score

The performance was measured as IGT total score (number of selections from ‘C’,
‘D’—number of selections from ‘A’, ‘B’).

11.2.4.2 PLT-Learning

The model was trained for 120 trials (= 40 per combination (AB/CD/EF)), and the
learning ability of the model was checked during the training stage in terms of
training accuracy where the probability of selecting the correct choice was plotted
as the training progressed (trials were divided into five equal bins). The perfor-
mance of the model was compared with the results (Fig. 11.2a) from (Zaghloul
et al., 2012).

PLT-Testing Accuracy and Difference in Reward Expectation (DRE)

Difference in Reward Expectation (DRE): After training, the a priori choice
selection probability was calculated based on the number of times the corre-
sponding choice was presented and selected. We then calculated the difference in
reward expectation (DRE), which is the difference between the two a priori choice
probabilities for that particular presented stimulus. DRE captures the amount of
conflict between the presented choices, the higher (lower) the DRE for that stimulus
the lower (higher) is the conflict. For example, if stimulus ‘BC’ was presented then
DREBC, which is the difference between P(B) and P(C), would be low, thereby
reducing the probability of choice ‘B’ getting selected.

Testing Accuracy: Once the training phase is completed, the model was tested by
presenting 15 novel combinations. The objective was to calculate the probability
with which the first choice in the presented stimulus was selected. For example,
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if stimulus ‘AC’ was presented for 20 times and choice ‘A’ was selected for 16
times, then the testing accuracy for choice ‘A’ would be 0.8 (= 16/20).

The learning ability of a system to select the most rewarding choices while
avoiding the punitive ones can be obtained by just evaluating the relationship
between DRE and testing accuracy. For example, the testing accuracy (of choice
‘A’) for the stimulus ‘AF’ (whose DRE > 0) would be expected to be high because

Fig. 11.2 Activity of STN neuron healthy, with and without DBS in PD. a The activity of STN
neurons in healthy condition. b The bursting activity of STN neurons in PD condition. c STN
neurons resume to tonic firing after DBS. d The reduction in the frequency content at tremor
frequency (4 Hz) in STN neurons in mentioned conditions. e The DBS current in biphasic mode
(frequency = 130 Hz with amplitude of 200 pA). f The synchronization levels in the standalone
STN–GPe network with increase in DBS current
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the reward probability associated with choice A is also high. So for an optimally
trained system, one can expect a linear relationship between testing accuracy and
DRE.

PLT-Choice/Avoidance Accuracy

This quantity measures the ability of the model to select the most rewarding option
‘A’ and avoid the punitive choice ‘B’ when presented with novel combinations not
used during training.

11.3 Results

We first present the results relating to the changes in synchronization levels of STN
neurons due to DBS. Then, we report the performance measures obtained from
model in healthy, PD untreated, treated (medication and stimulation conditions in
both IGT and PLT.

11.3.1 De-synchronization by DBS Current

The membrane potential of STN neurons (Fig. 11.2a, d) in PD untreated condition
showed bursting activity and frequency content showed a peak at around 4 Hz with
high synchrony level (= 0.67) (Mandali et al., 2015).

On stimulating the STN neurons in PD condition, the peak around tremor fre-
quency (= 4 Hz) was significantly reduced (Fig. 11.2d) (P < 0.00001). Similarly,
the bursting activity in Fig. 11.2a was overridden and suppressed by the stimulating
current (Fig. 11.2b). The synchrony level Rsync in the presence of DBS current
decreased from 0.67 (in PD condition and stimulation-OFF) to 0.42
(stimulation-ON) (Fig. 11.2e) but increased at higher current amplitudes.

We then studied how PD affected decision-making ability in normals, PD OFF,
PD ON (L-Dopa and DAA), and STN–DBS conditions for IGT and PLT.

In the IGT experiment, the subject is presented with four decks of cards wherein
each of the decks A/B/C/D is associated with a combination of reward and penalty
and is conducted for a total of 100 trials (5 bins of 20 trials each). The net outcome
of a certain card selection (reward + penalty) in each trial was calculated. Over a
few trials, cards from the decks A and B were disadvantageous as the expected
value is negative and decks C and D were advantageous with a positive expected
value. The performance was measured as IGT total score (# of selections from ‘C’
and ‘D’—# of selections from decks ‘A’ and ‘B’).

The model’s performance was compared with that of an experimental result
(Fig. 11.3). In healthy control (HC) condition, the score was negative in the first
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bin, but began to increase positively from the second bin (Fig. 11.3) which was
absent in both PD OFF and ON conditions. The lowest scores were obtained for
PD ON (L-Dopa and DAA) (result not shown) compared to others. The mean IGT
score values (Fig. 11.3) for HC, obtained from experiment (Gescheidt et al., 2012)
and simulation were not significantly different (P = 0.19). Similarly, the mean IGT
score values obtained from medically treated PD subjects and simulation were not
significantly different (P = 0.74).

Now, the IGT task was simulated for STN–DBS condition The mean IGT score
values obtained from PD ‘ON’ subjects from experiment (Oyama et al., 2011) and
simulation were statistically similar (P = 0.42) (Fig. 11.4). Similarly, the mean IGT
score values for PD with STN–DBS experiment and simulation were similar
(P = 0.55).

Based on experimental observation (Hershey et al., 2010), the effect of DBS
electrode parameters on IGT score was also checked in the model.

Fig. 11.3 IGT performance results were redrawn from Gescheidt et al. (2012). a HC from
experiment and simulation. b Medically treated PD patients from experiment and simulation
(L-DOPA)

Fig. 11.4 IGT scores calculated for PD ‘ON’ and PD ON+DBS condition. The experimental
results are redrawn from Oyama et al. (2011). a PD ‘ON’ controls from experiment and simulation
for three sessions. b DBS subjects for baseline and DBS ON
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When the electrode position (positions explained in Fig. 11.5 legend) was
changed such that stimulation is given selectively to part of the STN module
corresponding to each deck in IGT, we observed a significant variation in the IGT
score (Fig. 11.5b) (P < 0.0001). On changing the spread of DBS current
(Fig. 11.5c), there was a trend toward better performance with lower radius of
spread (r = 10), which did not reach statistical significance (P = 0.67). We also
observed a lower IGT score at higher (= 300 pA) and lower (= 70 pA) currents
compared to that obtained from optimal current (= 100 pA) (P < 0.001). The
underlying cause for such an effect was investigated by observing the spiking
activity of STN for both optimal (= 100 pA) and high (= 300 pA) current
scenarios.

The second task in the impulsivity study is the PLT. The experiment consists of
two stages, training and testing. During the training stage, the model was presented
with three pairs of stimuli (AB/CD/EF) one at a time in a random fashion. Each of

Fig. 11.5 IGT score. a The STN network (= 50 � 50) with quadrants which receive input from
each of the corresponding decks (A, B, C, D). b The IGT score for three electrode positions
(Position 1—in first quadrant with electrode center at lattice point (13, 13), Position 2—center of
the electrode at the lattice point (25, 25), and Position 3—center of the electrode at the lattice point
(38, 38) in the fourth quadrant. c For the electrode at position 2, the spread of the current was
changed. d The effect of DBS current amplitude (70, 100, and 300 pA) on IGT scores when the
electrode is placed in position 3
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the six choices (A/B/C/D/E/F) was associated with a reward with a priori proba-
bility. For example, selection of choice ‘A’ leads to reward (= +1) 80% of the time,
whereas choice ‘B’ leads to a reward only 20% of the time. Similarly, choice ‘C’
(‘E’) gives reward with a probability of 70% (60%) and choice ‘D’ (‘F’) leads to
reward only 30% (40%) of the time and punishment (−1) for rest of the trials.
During the testing stage, the model was tested with novel combinations (e.g., AC,
BD) which were not presented during the training stage. The model was tested for
its learning ability based on whether it chose (avoided) a rewarding (punishing)
choice from the presented stimulus pair. Apart from testing the learning ability, the
model was also tested for the performance during high conflict (HC) and low
conflict (LC) situations. For example, the stimulus combination ‘AC’ falls under the
category of HC as both choice ‘A’ (80%) and ‘C’(70%) have high reward proba-
bilities but stimulus combination ‘BC’ comes under the category LC as reward
probabilities (‘B’ = 20% and ‘C’ = 70%) are significantly different. The ability of
the model to select the most rewarding option ‘A’ and to avoid the punitive choice
‘B’ was then evaluated.

To this end, the model was presented with novel combinations of choices ‘A’
and ‘B’ was implemented on normals, PD OFF, PD ON (L-DOPA and DAA)
conditions (Fig. 11.6). The modeling results were compared with experimental
results from Frank et al. (2007). The results obtained from simulation (Fig. 11.6b)
were found to be similar to that obtained from the experiment (Fig. 11.6a).

Various experimental and clinical studies reported impulsivity in PD patients
after stimulation of STN which was soon contradicted. Keeping this in mind, we
studied the effect of electrode position on reward and punishment learning. We
choose three electrode positions where lattice point indicates the center of the
electrode, i.e., Pos 1 in the upper half of the STN nucleus at lattice point (13, 13),
Pos 2 with electrode contact center at the lattice point (25, 25), and Pos 3 in the

Fig. 11.6 Testing accuracy of the model in for HC, PD OFF, PD ON (L-DOPA and DAA). a The
experiment results redrawn from Frank et al. (2007). b Simulation results obtained from the
spiking BG model
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lower half of the STN nucleus at lattice point (38, 38). The performance of the
model shifted from reward based to punishment based on changing the DBS
electrode position (Fig. 11.7).

We then studied the role of STN activity in HC condition (Brittain et al., 2012;
Cavanagh et al., 2011; Frank et al., 2007; Zaghloul et al., 2012) in each of the four
conditions [Normals/PD OFF/PD ON (L-DOPA and DAA)] for correct and error
trials (Fig. 11.8). The reaction time for PD-DAA condition was the lowest for HC
among all the other cases, suggesting impulsive behavior known to be present in
dopamine agonist-treated subjects (Voon et al., 2007).

We then checked for the effect of electrode position on RT, by considering the
three positions as described earlier (Fig. 11.7). The electrode position was shifted
between the three positions keeping all other stimulation parameters constant, and the
reaction time was measured in LC and HC trials. We observed that the reaction time
decreased for HC condition, decreased for a specific electrode position (= Pos 3) (for
both correct and error trials as plotted in Fig. 11.9).

11.4 Discussion

The model was used to study impulsivity in PD OFF and ON conditions. The IGT
performance was poor in PD OFF as well as in ON conditions compared to HC, with
worse being in ON. The model in treated PD ON condition does not learn from its
action outcomes (rewards/punishments) and wanders among the decks, which is
reflected in the negative IGT score (Fig. 11.3). Physiologically, this negative
behavior is attributed to excess DA levels in striatum (Frank et al., 2007). In the
model, striatal weights were positively updated even in punishment situation due to

Pos2

Pos1

(a) (b)

Pos3

Fig. 11.7 Effect of electrode position on performance. a Graphical representation of the electrode
position in STN lattice where Pos 1 has the electrode center at the lattice point (25, 25), Pos 2 at
lattice point (13, 13), and Pos 3 at (38, 38). b The performance of the model during stimulation of
STN for each of the three positions
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Fig. 11.8 Reaction time in milliseconds (ms) for various conditions applied on the spiking BG
model. a Reaction time (ms) obtained from the model for all the four conditions normals, PD OFF,
PD ON (L-Dopa, DAA) for LC and HC condition in correct trials. b Reaction time (ms) measured
from the model for all the four conditions (Normals, PD OFF, PD ON (L-Dopa, DAA) for LC and
HC condition in error trials. c Experimental reaction time (ms) obtained from normal, PD OFF,
and PD ON condition for correct. d Error trials from (Frank et al., 2007)

Fig. 11.9 Reaction time for LC and HC conditions when the position of the electrode was
changed. Pos 1, Pos 2, Pos 3 are also described in Fig. 8. a Correct, b error trials
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dopaminergic medication (dmed), leading to the selection of wrong choice.
Stimulation decreased the IGT performance compared to ON condition (Fig. 11.4).
We then changed the position of electrode within the STN nucleus (Fig. 11.5) and
observed a significant change in IGT score. Apart from position, another parameter
thought to influence cognition was observed to be current amplitude. With the above
results, one can consider the possibility that stimulation current when applied to
topographical areas within STN might lead to inhibition/facilitation of the corre-
sponding panel selection depending on the current amplitude.

In PLT, the model’s ability to differentiate between a high rewarding and low
rewarding choice in each of the physiological and pathological conditions [PD
OFF, PD-medicated conditions (L-DOPA and DAA)] was tested. The accuracy of
normals and the accuracy of PD OFF conditions of the model were not significantly
different for both choosing A and avoiding B cases. But this behavior was absent in
both of the medicated conditions (L-DOPA and DAA) (Fig. 11.6). This behavior
was also experimentally observed where PD patients under medication tend to learn
more from rewards than punishments (Frank et al., 2004, 2007). This can be
accounted for by the medication term (dmed = 3) which prevents the dip selection of
punitive choices. The model’s performance in DAA condition did not yield good
accuracy either in reward learning but performed better than L-DOPA condition in
punishment learning (Fig. 11.6). We then studied the performance of the model in
DBS condition and observed that the performance was dependent on the electrode
position. As the position of electrode was changed (Fig. 11.7.), the model switched
from reward-based to punishment-based learning. Based on the experimental data
that an increase in STN activity was observed during HC conditions, we analyzed
the reaction time for each of the conditions in LC and HC cases in each of the five
conditions. We observed that the model in normal conditions took more time to
make a choice during HC case compared to that in LC in both correct and error
trials (Fig. 11.8). The impulsivity behavior observed clinically due to DAA med-
ication (Ondo & Lai, 2008; Voon et al., 2007) was captured by the model wherein it
was observed that a lower RT for HC case (Fig. 11.8a). We observed that the RTs
were different for different electrode positions (Fig. 11.9), and a lower RT was
obtained for HC case during both correct and error trials for a specific electrode
position (Pos 3) in DBS condition.

In future, we would like to extend our model by combining it with continuum
models which utilizes patient’s anatomical data. This could help in deriving
patient-specific protocols which could increase the patient’s quality of life.
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Chapter 12
Modeling Serotonin’s Contributions
to Basal Ganglia Dynamics

Pragathi Priyadharsini Balasubramani, V. Srinivasa Chakravarthy,
Balaraman Ravindran and Ahmed A. Moustafa

Abstract In addition to dopaminergic input, serotonergic (5-HT) fibers also widely
arborize through the basal ganglia circuits and strongly control their dynamics.
Although empirical studies show that 5-HT plays many functional roles in
risk-based decision making, reward, and punishment learning, prior computational
models mostly focus on its role in behavioral inhibition or timescale of prediction.
This chapter presents an extended reinforcement learning (RL)-based model of DA
and 5-HT function in the BG, which reconciles some of the diverse roles of 5-HT.
The model uses the concept of utility function—a weighted sum of the traditional
value function expressing the expected sum of the rewards, and a risk function
expressing the variance observed in reward outcomes. Serotonin is represented by a
weight parameter, used in this combination of value and risk functions, while the
neuromodulator dopamine (DA) is represented as reward prediction error as in the
classical models. Consistent with this abstract model, a network model is also
presented in which medium spiny neurons (MSN) co-expressing both D1 and D2
receptors (D1R–D2R) is suggested to compute risk, while those expressing only D1
receptors are suggested to compute value. This BG model includes nuclei such as
striatum, Globus Pallidus externa, Globus Pallidus interna, and subthalamic nuclei.
DA and 5-HT are modeled to affect both the direct pathway (DP) and the indirect
pathway (IP) composing of D1R, D2R, D1R–D2R projections differentially. Both
abstract and network models are applied to data from different experimental para-
digms used to study the role of 5-HT: (1) risk-sensitive decision making, where
5-HT controls the risk sensitivity; (2) temporal reward prediction, where 5-HT
controls timescale of reward prediction, and (3) reward–punishment sensitivity,
where punishment prediction error depends on 5-HT levels. Both the extended RL
model (Balasubramani, Chakravarthy, Ravindran, & Moustafa, in Front Comput
Neurosci 8:47, 2014; Balasubramani, Ravindran, & Chakravarthy, in
Understanding the role of serotonin in basal ganglia through a unified model, 2012)
along with their network correlates (Balasubramani, Chakravarthy, Ravindran, &
Moustafa, in Front Comput Neurosci 9:76, 2015; Balasubramani, Chakravarthy,
Ali, Ravindran, & Moustafa, in PLoS ONE 10(6):e0127542, 2015) successfully
explain the three diverse roles of 5-HT in a single framework.
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V. S. Chakravarthy and A. Moustafa, Computational Neuroscience
Models of the Basal Ganglia, Cognitive Science and Technology,
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12.1 Introduction

In addition to dopamine (DA), serotonergic projections to the BG are also known to
have an important role in decision making (Rogers, 2011). Serotonin or
5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter with at least seven
main classes of receptors (Buhot, 1997). The major synthesis site of serotonin is
dorsal raphe nucleus (DRN) in the brainstem. Understanding 5-HT functioning can
be done at genetic, molecular, synaptic, cellular, network, or systems level.
Abnormality of serotonergic system is found in many disorders such as depression,
obsessive compulsion, bipolar disorder, Parkinson’s disease, Schizophrenia, to
name a few (Aghajanian & Marek, 2000; Dalley, Everitt, & Robbins, 2011; Fox,
Chuang, & Brotchie, 2009; Lopez-Ibor, 1992). Reconciliation of their inferences at
multiple scales is essential for successful designing of therapeutic measures to
disorders in cognition, perception, motor, and social domains.

The neuromodulator 5-HT is an ancient molecule that existed even in plants
(Angiolillo & Vanderkooi, 1996). Through its precursor tryptophan, 5-HT is linked
to some of the fundamental processes of life itself. Tryptophan-based molecules in
plants are crucial for capturing the light energy necessary for glucose metabolism
and oxygen production (Angiolillo & Vanderkooi, 1996). Thus, by virtue of its
fundamental role in energy conversion, 5-HT is integral to mitosis, maturation, and
apoptosis. In lower organisms, it modulates feeding behavior and other social
behaviors such as dominance posture and escape responses (Azmitia, 2001; Chao,
Komatsu, Fukuto, Dionne, & Hart, 2004; Kravitz, 2000). Due to its role as a
homeostatic regulator in higher animals and in mammals, 5-HT is also associated
with appetite suppression (Azmitia, 1999; Gillette, 2006; Halford, Harrold, Lawton,
& Blundell, 2005). Furthermore, 5-HT has been implicated in regulating moods and
emotions such as anxiety, depression, and also processes such as hallucination
(Cools, Nakamura, & Daw, 2011; Tops, Russo, Boksem, & Tucker, 2009).

It is important to understand and reconcile the roles of DA and 5-HT in the BG.
There are at least three ways to control 5-HT function in humans, including
behavioral neurogenetics (relationship between genes coding for 5-HT system and
behavior), tryptophan depletion (a drink which reduces 5-HT levels in the brain),
and psychopharmacological (the administration of 5-HT agonists and antagonists to
healthy human subjects) studies. Increasing 5-HT level leads to decreasing pun-
ishment prediction, though recent evidence pointing to the role of DA in processing
aversive stimuli makes the picture more complicated (Boureau & Dayan, 2011; So
et al., 2009). The tendency to pay more attention to negative than positive expe-
riences or other kinds of information (negative cognitive biases) is observed at
lower levels of 5-HT (Cools, Robinson, & Sahakian, 2008; Robinson, Cools, &
Sahakian, 2012). Serotonin is also known to control the timescale of reward pre-
diction (Tanaka et al., 2007) and to play a role in risk-sensitive behavior. Studies
found that under conditions of tryptophan depletion, which is known to reduce
brain 5-HT level, risky choices are preferred to safer ones in decision-making tasks
(Long, Kuhn, & Platt, 2009; Murphy et al., 2009; Rogers, 2011). Reports about
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5-HT transporter gene influencing risk-based decision making also exist (He et al.,
2010; Kuhnen, Samanez-Larkin, & Knutson, 2013). 5-HT mediates differentiation
to decisions on gains and losses, and is known to influence nonlinearity in
risk-based decision making—risk adversity in the case of gains and risk seeking
during losses, while presented with choices of equal means (Murphy et al., 2009;
Zhong, Israel, Xue, Ebstein, & Chew, 2009; Zhong, Israel, Xue, Sham, et al.,
2009). In summary, 5-HT is not only important for behavioral inhibition, but is also
related to timescales of reward prediction, risk, anxiety, attention, etc., and to
non-cognitive functions like energy conversion, apoptosis, feeding, and fatigue.

Some abstract models suggested that whereas the DA responds to appetitive
stimuli, 5-HT responds to aversive or punitive stimuli (Daw, Kakade, & Dayan,
2002). Unlike computational models that argue for complementary roles of DA and
5-HT, empirical studies show that both neuromodulators play cardinal roles in
coding the signals associated with the reward (Cools et al., 2011; Rogers, 2011;
Tops et al., 2009). Genes that control neurotransmission of both molecules are
known to affect processing of both rewarding and aversive stimuli (Cools et al.,
2011). Complex interactions between DA and 5-HT make it difficult to precisely
tease apart the relative roles of the two molecules in reward evaluation. Some
subtypes of 5-HT receptors facilitate DA release from the midbrain DA-releasing
sites, while others inhibit them (Alex & Pehek, 2007). In summary, it is clear that
the relationship between DA and 5-HT is not one of simple complementarity. Both
synergistic and opposing interactions exist between these two molecules in the
brain (Boureau & Dayan, 2011).

There have been prior models to elucidate the function of 5-HT. Daw et al.
(2002) developed a line of modeling that explores an opponent relationship (Daw
et al., 2002; Dayan & Huys, 2008) between DA and 5-HT at tonic and phasic levels
by representing reward and punishment prediction errors, respectively. Doya (2002)
associated 5-HT with discount factor, which is a measure of the timescale of reward
integration (Doya, 2002; Tanaka et al., 2007) in reinforcement learning
(RL) framework. There was no single computational theory that integrates and
reconciles the existing abstract computational perspectives of 5-HT function under
a single umbrella.

12.2 Methods

12.2.1 Modeling the Joint Functions of DA and 5-HT
in the BG: An Abstract Model (Model I)

The major circuit performing the above-described framework is the cortico-basal
ganglia–thalamic loops. We focus on them in this chapter. Serotonin’s function can
be majorly thought to control behavior (sensory and motor levels) through
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1. punishment and reward prediction (Boureau & Dayan, 2011; Cools et al., 2011;
Rogers, 2011; Seymour, Daw, Roiser, Dayan, & Dolan, 2012)

2. response inhibition (Cools et al., 2008)
3. timescale of reward prediction (Tanaka et al., 2007)
4. risk sensitivity and utility construction (Long et al., 2009).

In our model, DA represents TD error as in the most extant literature of DA
signaling and RL (Schultz, 1998; Sutton & Barto, 1998), and 5-HT controls risk
prediction error. Action selection is controlled by the utility function, which is a
weighted combination of both the value and risk functions (Bell, 2001;
d’Acremont, Lu, Li, Van der Linden, & Bechara, 2009; Preuschoff, Bossaerts, &
Quartz, 2006). In this modified utility function (Balasubramani et al., 2014), the
weight of the risk function depends on the sign of the value function and a trade-off
parameter, which is associated with 5-HT functioning. The utility function is pro-
posed to be computed in the striatum. Three representative experiments linking
5-HT to (1) risk sensitivity (Long et al., 2009), (2) timescale of reward prediction
(Tanaka et al., 2007), and (3) punishment sensitivity (Cools et al., 2008) were tested
with the model (Balasubramani et al., 2014) and are briefly outlined in this chapter
too.

The model hypothesizes 5-HT to control risk sensitivity and prediction error as
follows: On the lines of the utility models described by (Bell, 1995) and
(d’Acremont et al., 2009), the model of the utility function ‘Ut’ is presented as a
trade-off between the expected payoff and the variance of the payoff (the subscript
‘t’ refers to time). The original utility formulation used in (Bell, 1995; d’Acremont
et al., 2009) is given by Eq. (12.1)

Ut s; að Þ ¼ Qt s; að Þ � j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht s; að Þ

p
ð12:1Þ

where Qt is the expected cumulative reward and ht is the risk function or reward
variance, for state, ‘s’, action, ‘a’; and ‘j’ is the risk preference. Note that in
Eq. (12.1), we represent the state and action explicitly as opposed to that presented
in (Bell, 1995; d’Acremont et al., 2009). Following action execution policy ‘p’, the
action value function ‘Q’ at time ‘t’ of a state, ‘s’, and action, ‘a’ may be expressed
as

Qtþ 1 st; atð Þ ¼ Qt st; atð Þþ gQdt ð12:2Þ

where ‘st’ is the state at time ‘t’, ‘at’ is the action performed at time ‘t’, and ‘ηQ’ is
the learning rate of the action value function (0 < ηQ < 1). The temporal difference
(TD) error measure of DA is defined by dt in the following equation for the case of
immediate reward problems.

dt ¼ rt � Qt st; atð Þ ð12:3Þ
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In the case of delayed reward problems, the TD error is represented as

dt ¼ rtþ 1 þ cQt stþ 1; atþ 1ð Þ � Q st; atð Þ ð12:4Þ

where ‘st+1’ is the state at time ‘t + 1’, ‘at+1’ is the action performed at time ‘t + 1’,
Similar to the value function, the risk function ‘ht’ has an incremental update as
defined by Eq. (12.5).

htþ 1 st; atð Þ ¼ ht st; atð Þþ ghnt ð12:5Þ

where ‘ηh’ is the learning rate of the risk function (0 < ηh < 1), and ‘nt’ is the risk
prediction error expressed by Eq. (12.6),

nt ¼ d2t � ht st; atð Þ ð12:6Þ

The extended form of utility function is obtained by substituting j = a sign
(Qt(st,at)) in Eq. (12.1), whose reasoning is given below.

Ut st; atð Þ ¼ Qt st; atð Þ � a sign Qt st; atð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht st; atð Þ

p
ð12:7Þ

In the above equation, the risk preference includes three components—the ‘a’
term, the ‘sign(Qt)’ term, and the risk term ‘

ffiffiffiffiffi
Ht

p
’. The sign(Qt) term achieves a

familiar feature of human decision making, viz. risk aversion for gains and risk
seeking for losses (Kahneman & Tversky, 1979; Markowitz, 1952). In other words,
when sign(Qt) is positive (negative), Ut is maximized (minimized) by minimizing
(maximizing) risk. Note that the expected action value Qt would be positive for
gains that earn rewards greater than a reward base (here = 0) and would be negative
otherwise during losses. The model (model A) associates 5-HT level with a, a
constant that controls the relative weightage between action value and risk
(Eq. 12.7) to reconcile and unify various functions of serotonin in a single
framework. Hence, the 5-HT activity in the striatum of the BG is related to con-
trolling the risk sensitivity for the construction of utility.

12.2.2 Modeling the Joint Functions of DA and 5-HT
in the BG: A Network Model (Model II)

A network model of the BG consistent with the earlier lumped model
(Balasubramani, Chakravarthy, Ravindran, et al., 2015) is presented in this section.
The model builds on a novel proposal that the medium spiny neurons (MSNs) of
the striatum can compute either value or risk depending on the type of DA receptors
they express. Whereas the MSNs that express D1-receptor (D1R) of DA compute
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value as being earlier reported in modeling studies (Krishnan, Ratnadurai,
Subramanian, Chakravarthy, & Rengaswamy, 2011), those that co-express D1R
and D2R contributing anatomically to the direct and the IPs (Bertran-Gonzalez
et al., 2008; Calabresi, Maj, Pisani, Mercuri, & Bernardi, 1992; Hasbi, O’Dowd, &
George, 2010, 2011; Nadjar et al., 2006; Perreault et al., 2010; Perreault, Hasbi,
O’Dowd, & George, 2011) are shown to be capable of computing risk.
Constructing a network model (model B) of the BG that works on extended utility
(Eq. 12.7) can have the following motivation for value computation in striatum:

(1) Occurrence of TD error information in the form of DA signal at the striatum
(Schultz et al., 1997),

(2) Availability of information related to the cortical sensory state in the striatum
(Divac, Fonnum, & Storm-Mathisen, 1977; McGeorge & Faull, 1989), and

(3) DA-dependent plasticity in cortico-striatal connections (Reynolds & Wickens,
2002).

A typical formulation of DA-dependent learning (Reynolds & Wickens, 2002)
may be expressed as the change in cortico-striatal connection strength, w (dw),

Dw ¼ gds ð12:8Þ

where ‘s’ in Eq. (12.8) represents the cortical sensory input and is used in this
section as a logical variable for neural encoding of the underlying state ‘s’, s = 1 (if
s = st) else s = 0; ‘d’ is the TD error (refer Eqs. (12.3 and 12.4) representing DA
activity); and ‘η’ is the learning rate. Similar formulations have been proposed from
purely RL theory considerations [see Chap. 9 of (Abbott, 2001)]. A slight variation
of the above equation would be as follows:

Dw ¼ gkStrðdÞx ð12:9Þ

where ‘kStr’ is a function of d, that represents the effect of DA on the neural firing
rate (Reynolds, Hyland, & Wickens, 2001). Thus, the learning rule of Eq. (12.9)
has a Hebb-like form, where neuromodulation is modeled in terms of the effect of
the neuromodulator on the firing rate of the post-synaptic neuron. The form of the
function kStr varies depending on the type of DA family receptors (R) expressed in
MSNs as we explain below. In neurons with D1R expression, higher DA level
increases the probability of MSN excitation by a given cortical input (Moyer, Wolf,
& Finkel, 2007; Surmeier, Ding, Day, Wang, & Shen, 2007). Hence, in models that
represent MSNs, kStr is described as an increasing sigmoid function of DA for
neurons that express D1R. In cells with D2R, the activation is higher under con-
ditions of low DA levels (Hernandez-Echeagaray, Starling, Cepeda, & Levine,
2004), and therefore, the kStr function is modeled as a decreasing function of DA
(Frank, 2005; Frank, Samanta, Moustafa, & Sherman, 2007; Frank, Seeberger, &
O’Reilly, 2004). These sigmoid kStr functions are expressed as,
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k
Str

D1ðdÞ ¼
2c1

1þ expðc2ðdþ c3ÞÞ � c1

k
Str

D2ðdÞ ¼
2c1

1þ expðc2ðdþ c3ÞÞ � c1

k
Str

h�D1ðdÞ ¼
c1

1þ expðc2ðdþ c3ÞÞ
k

Str

h�D2ðdÞ ¼
c1

1þ expðc2ðdþ c3ÞÞ

ð12:10Þ

where c1, c2, c3 are constants subjective to the receptor type. The gain functions of

D1R MSNs and D2R MSNs are given by k
Str

D1; k
Str

D2 and that of the D1R and the D2R
components of co-expressing MSNs are given by kh-D1, kh-D2, respectively. The

gain function expression for risk coding MSNs k
Str

h�D1; k
Str

h�D2

� �
is logarithmic

sigmoid that lie within the limits of nonnegative real number space while that of the
other MSNs (kD1, kD2) is coded by tangential sigmoid. Examples for such sigmoid
k functions with parameters for the D1R, D2R, and the D1R–D2R MSNs are shown
in Fig. 12.1a. MSNs with D1R expression are appropriately suited for value
computation (Kalva, Rengaswamy, Chakravarthy, & Gupte, 2012; Krishnan et al.,
2011). They express kD1(d) as an increasing function of d.

Such cellular models of MSNs along with the BG model explained in
Balasubramani et al. (2015) are shown to consistently explain the results of extended
RL model of serotonin (Eq. 12.7). Serotonin’s input to D1-, D2-, D1–D2-co-
expressing receptors containing MSNs are represented as aD1, aD2, aD1D2, respec-
tively. Whereas D1 MSNs following direct pathway, D2 and co-expressing D1–D2
receptors containing MSNs are modeled to follow IP of the BG dynamics
(Fig. 12.2).

The D1R MSNs receive cortico-striatal connections whose weight is denoted by
‘wD1’. The value ‘Q’ computed by such an MSN is given by (Eq. 12.11).

Q ¼ wD1 s ð12:11Þ

Change in weight for such a neuron is given by (Eq. 12.12).

DwD1 ¼ gD1 k
Str
D1ðdÞ s ð12:12Þ

where ηD1 is the learning rate. We will now show that a similar neuron model in
which D1R and D2R are co-expressed can simulate risk computations. In case of a

neuron that would compute risk, the kStr function is represented as ‘k
Str

D1D2’. We
assume that a neuron with D1R–D2R co-expression combines the characteristics of
purely D1R- and D2R-expressing MSNs. Therefore, in D1R–D2R-co-expressed

MSNs, the function ‘k
Str

D1D2’ is an even function of ‘d’, with k
Str

D1D2 (d) increasing
with increasing magnitude of d. In a MSN with co-expression of D1R and D2R,

k
Str

D1D2 (Eq. 12.13) can be expressed as the summation of functions corresponding to
a D1R component kStrh�D1 and a D2R component kStrh�D2 as follows.
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kStrD1D2 ¼ kStrh�D1 þ kStrh�D2 ð12:13Þ

Note that the characteristic of k
Str

h�D1 and k
Str

h�D2 as a function of d depends on the
constants c1, c2, c3 of the Eq. (12.10). Response of such a neuron is given as,

h ¼ wD1D2s ð12:14Þ

and the change in corresponding weight, dwh, is given as,

DwD1D2 ¼ gD1D2 k
Str

D1D2ðdÞ s ð12:15Þ

where ηD1D2 is the learning rate. Thus, the unified network model proposes that
(D1R-expressing) striatal MSNs with d-dependent kStr functions that are of
increasing sigmoidal shape are capable of computing value. Similarly (D1R–
D2R-co-expressing), striatal neurons with d-dependent kStr functions that are of ‘U’
shaped can compute risk (Fig. 12.1a). Just as D1R-expressing MSNs can be
regarded as cellular level substrates for value computation in the striatum, D1R–
D2R-co-expressing MSNs could be cellular level substrates for risk computation

(Fig. 12.1b). The gain expression for risk coding MSNs k
Str

h�D1; k
Str

h�D2

� �
uses a

logarithmic sigmoid function that is unipolar, while the gain expression of other

D1R and D2R MSNs k
Str

D1; k
Str

D2

� �
uses a tangent-sigmoid function that is bipolar.

The above cellular substrates for value and risk computation are put in a network
model of BG (Fig. 12.2) to show that the network, including serotonin, is capable
of reward–punishment–risk-based decision making (Balasubramani et al., 2014,
2015). This network model captures the anatomical details of the BG and represents
the following nuclei: the striatum, STN, GPe, and GPi. The training of the
cortico-striatal connections by nigrostriatal DA correlate (d) also occurs as
described in the earlier section. It models, in an elementary form, the action of DA
in switching between DP and IP, via the differential action of DA on the D1-, D2-,
and D1–D2-co-expressing receptors (R) of striatal MSNs. The model also proposes
different DA signals for the updating of cortico-striatal weights and the switching in
GPi (Chakravarthy & Balasubramani, 2014). Some of the key properties of the
STN–GPe system such as their bidirectional connectivity facilitating oscillations
and ‘Exploratory’ behavior are also captured. The model framework is adapted
from the classical models of the BG as described in (Albin, Young, & Penney,
1989; Bar-Gad & Bergman, 2001; DeLong, 1990).

JFig. 12.1 a Schematic of the cellular correlate model for the value and the risk computation in the
striatum, b D1, D2, and D1D2 gain functions, c the output activity of D1R MSN (yD1), D1R–
D2R-co-expressing MSN (yD1D2), and normalized variance computed analytically (var) = p*
(1 − p); here p is the probability associated with rewards, i.e., with probability p, reward = 1, else
reward = 0. The resemblance of var to yD1D2 shows the ability of D1R–D2R-co-expressing MSN
to perform risk computation. Published in (Balasubramani et al., 2015a)
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Serotonin’s influence on decision making extends to various functions such as
risk sensitivity, timescale of reward prediction, and punishment sensitivity.
Therefore, the next section deals with application of the described unified model
representing 5-HT to control the risk prediction error, and DA controlling the
reward prediction error, to the distinct experiments dealing with various represen-
tative functions of 5-HT.

12.3 Results

12.3.1 Reward–Punishment Sensitivity

Several studies find that tryptophan levels mediate differential learning and decision
making through rewards and punishments. Let’s take this instance of reversal
learning task-based study performed by (Cools et al., 2008; Robinson et al., 2012)
in which the subjects were presented with two stimuli, one associated with reward
and the other with punishment. On each trial, subjects had to predict whether the
highlighted stimulus would lead to reward or punishment response. The subjects
were tested in either a balanced or a depleted tryptophan levels (drink), on their
association of the stimulus to the corresponding action at any time. Results showed
that performance did not vary significantly with cases in both balanced and
tryptophan-depleted conditions. Errors were fewer in the tryptophan-depleted than
balanced conditions in both cases. Specifically, errors were fewer for punishment
prediction trials compared to reward prediction trials in tryptophan-depleted con-
ditions. Thus the experiment suggests that tryptophan depletion selectively
enhances punishment prediction relative to reward prediction.

JFig. 12.2 a Schematic of the BG showing the direct (DP) and indirect (IP) pathways; b the
schematic flow of the signal in the network model. Here s denotes the state; a denotes the action;
with the subscript denoting the index i. Since most of the experiments in the study simulate two
possible actions for any state, we depict the same in the above figure for a state si; The D1, D2,
D1D2 represent the D1R-, D2R-, D1R–D2R MSNs, respectively, and w denotes subscript
corresponding cortico-striatal weights. The schematic also has the representation of DA forms:
(1) the d affecting the cortico-striatal connection weights (Houk et al., 2007; Schultz, 1998), (2) the
dU affecting the action selection at the GPi (Chakravarthy & Balasubramani, 2014), (3) the Q
affecting the D1/D2 MSNs (Schultz, 2010b); and 5-HT forms represented by aD1, aD2, and aD1D2
modulating the D1R, D2R, and the D1R–D2R-co-expressing neurons, respectively. The inset
details the notations used in model section for representing cortico-striatal weights (w) and
responses (y) of various kinds of MSNs (D1R-expressing, D2R-expressing, and D1R–
D2R-co-expressing) in the striatum, with a sample cortical state size of 4, and maximum number
of action choices available for performing selection in every state as 2. Adapted from
(Balasubramani et al., 2014; Balasubramani, Chakravarthy, Ravindran, et al., 2015;
Balasubramani, Chakravarthy, Ali, et al., 2015)
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The reconciled model (Fig. 12.2) has effectively captured the reward–punish-
ment sensitivity controlling property of serotonin (Balasubramani et al., 2014;
Balasubramani, Chakravarthy, Ravindran, et al., 2015) (Fig. 12.3).

12.3.2 Serotonin and Timescale of Reward Prediction

In another model, it is argued that 5-HT plays a role in the scaling of future rewards
(Doya, 2002; Tanaka et al., 2007). In order to verify the hypothesis that 5-HT
corresponds to the discount factor, c (as in Eq. 12.4), Tanaka et al. (2007) con-
ducted an fMRI experiment in which subjects performed a multistep delayed
reward choice task. Subjects had to choose between a white square leading to a
small early reward and a yellow square leading to a large but delayed reward
(Tanaka et al., 2007). They were tested in: (1) tryptophan-depleted, (2) control, and
(3) excess tryptophan conditions.

The model (Fig. 12.2) of (Balasubramani et al. 2014; Balasubramani,
Chakravarthy, Ravindran, et al., 2015) has captured the timescale of reward pre-
diction functional control of serotonin (Fig. 12.4).

Fig. 12.3 Mean number of errors in non-switch trials a as a function of ‘a’ and outcome trial type;
balanced (5-HT param a = 0.5 in model I; aD1D2 = 1, aD1 = 1, aD2 = 5 in model II) and
tryptophan depletion (a = 0.3 in model I; aD1D2 = 1, aD1 = 1, aD2 = 2.25 in model II). Error bars
represent standard errors of the difference as a function of ‘a’ in simulation for size ‘N’ = 100
(Sims). b Experimental error percentages adapted from Cools et al. (2008). Error bars represent
standard errors as a function of drink in experiment (Expt). The results in b were reported after the
exclusion of the trials from the acquisition stage of each block. Adapted from (Balasubramani
et al., 2014; Balasubramani, Chakravarthy, Ravindran, et al., 2015)
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12.3.3 Serotonin and Risk Sensitivity

Long et al. (2009) studies risk sensitivity under conditions of tryptophan depletion.
In this experiment, a monkey was required to saccade to one of two given targets.
One target was associated with a guaranteed juice reward (safe) and the other with a
variable juice volume (risky). A nonlinear risk sensitivity toward juice rewards by
adopting risk-seeking behavior for small juice rewards and risk aversive behavior
for the larger ones (Long et al., 2009) was observed in the monkeys. They showed
that when 5-HT levels are reduced in the brain using Rapid Tryptophan Depletion
(RTD), monkeys preferred risky over safer alternatives (Long et al., 2009).
Tryptophan acts as a precursor to 5-HT, and therefore reduction in tryptophan
causes reduction in 5-HT.

The model (Fig. 12.2) of Chakravarthy and colleagues (Balasubramani et al.,
2014; Balasubramani, Chakravarthy, Ravindran, et al., 2015) has successfully
explained risk sensitivity property of serotonin (Fig. 12.5).

12.4 Discussion

The various functional manifestations of 5-HT at different scales of analysis made it
very difficult for devising a unified theory to explain its multiple roles (Dayan &
Huys, 2015). Thus, most existing computational models focus on one or a few of

Fig. 12.4 a Selection of the
long-term reward as a
function of a. Increasing c
increased the frequency of
selecting the larger and more
delayed reward. Increasing a
also gave similar results for a
fixed c. b Differences in the
utilities (U) between the
yellow and white panels
averaged across trials for the
states, st, as a function of c
and a. Here N = 2000.
Adapted from (Balasubramani
et al., 2014)
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5-HT’s functions. Many of these models employ high-level RL model such as TD
learning (Daw et al., 2002; Doya, 2002). This chapter presents a model of serotonin
in controlling risk-based utility, for reconciling major functions such as punishment
prediction and response inhibition, timescale of reward prediction, and risk sensi-
tivity (Balasubramani et al., 2012, 2014; Balasubramani, Chakravarthy, Ravindran,
et al., 2015; Balasubramani, Chakravarthy, Ali, et al., 2015).

The starting point of our model was to understand the contributions of 5-HT to
BG function (Boureau & Dayan, 2011; Tanaka et al., 2009). We use the notion of
risk, since 5-HT is shown to be associated with risk sensitivity through the fol-
lowing instances. On presentation of the choices with risky and safe rewards, the
reduction of 5-HT levels favors the selection of risky choices in comparison to the
baseline levels (Long et al., 2009). The nonlinearity in risk-based decision making
—risk aversion in the case of the gains and risk seeking in the case of losses—is
postulated to be affected by central 5-HT levels (Murphy et al., 2009). Negative
affective behavior such as depression, anxiety, and impulsivity which are caused by
the reduction of the central 5-HT levels is argued to be a risky choice selection in a
risk-based decision-making framework (Dayan & Huys, 2008). Based on the
putative link between 5-HT function and risk sensitivity, we have extended the
classical RL approach of policy execution using the utility function (Eq. 12.7)
instead of value function. In the utility function, the weightage (a) that combines
value and risk is proposed to represent 5-HT functioning in BG. Using this for-
mulation, we show that three different experimental paradigms instantiating diverse
theories of serotonin function in the BG can be explained under a single framework.
Recent work by Bogacz and colleagues also supports this idea at the level of striatal
synaptic plasticity (Mikhael & Bogacz, 2016).

Fig. 12.5 Comparison between the experimental and simulated results for the a overall choice,
b unequal EV, c equal EV, under RTD (with 5-HT param a = 1.658 in model I; aD1D2 = 0.0012,
aD1 = 1, aD2 = 1 in model II) and baseline (control, with 5-HT param a = 1.985 in model I; 1.32
in model II) conditions. Error bars represent the standard error (SE) with size ‘N’ = 100. The
experiment (Expt) and the simulation (Sims) result of any case did not reject the null hypothesis,
which proposes no difference between means, with P value > 0.05. Here the experimental results
are adapted from Long et al. (2009). Adapted from (Balasubramani et al., 2014; Balasubramani,
Chakravarthy, Ravindran, et al., 2015)
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12.4.1 Significance of Sign(Qt)

The sign(Qt) term presented in the modified formulation of utility function
(Eq. 12.7) denotes the preference for risk in a given context of the experiment. At
high mean reward values, humans are found to be risk-averse, whereas at low mean
reward values they are risk-seeking (Kahneman & Tversky, 1979). In neuroeco-
nomic experiments, this risk preference is statistically determined, for example, by
maximizing the log likelihood of the decisions (d’Acremont et al., 2009). Though
this method estimates the risk preference subjectively, it is derived from decisions
made throughout the experiment. The use of sign(Qt) in our model takes into
account the variation of the subjective risk preference, according to the expected
cumulative reward outcomes observed within an experiment.

12.4.2 5-HT-DA Interaction in the ‘Risk’ Component
of Decision Making

The risk part of the utility function (Eq. 12.7) has three components: a, sign(Qt),
and √ht. While ‘a’ represents 5-HT, the remaining two components are dependent
on ‘d’ or DA. Thus, the proposed model of risk computation postulates a complex
interaction between DA and 5-HT. In neurobiology, complex interactions are
indeed seen between DA and 5-HT (Di Matteo, Di Giovanni, Pierucci, & Esposito,
2008; Di Matteo, Pierucci, et al., 2008) at the cellular level. The 5-HT afferents
from the DRN differentially modulate the DA neurons in SNc and Ventral
Tegmental Area (VTA) (Gervais & Rouillard, 2000). The 5-HT projections act via
specific receptor subtypes in the DA neurons. Action of 5-HT 1A, 5-HT 1B, 5-HT
2A, 5-HT 3, 5-HT 4 agonists facilitate dopaminergic release, whereas 5-HT 2C
agonists inhibit the same. Selective 5-HT reuptake inhibitors are known to reduce
the spontaneous activity of DA neurons in VTA (Alex & Pehek, 2007; Di
Giovanni, Di Matteo, Pierucci, & Esposito, 2008; Di Mascio, Di Giovanni, Di
Matteo, Prisco, & Esposito, 1998). 5-HT neurons in DRN also receive dense DA
innervations from midbrain DA neurons (Ferre, Cortes, & Artigas, 1994) and
express D2R (Suzuki, Hurd, Sokoloff, Schwartz, & Sedvall, 1998).

12.4.3 Main Finding of the DA-5-HT-Based BG Network
Model for Utility-Based Decision Making

Ideally, a convincing model of value computation in the striatum must go beyond
an abstract lumped representation and demonstrate how value may be computed by
neural substrates of the striatum. There is a strong evidence for the existence of
DA-modulated plasticity in cortico-striatal connections, an effect that is necessary
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to account for value computation in the MSNs of the striatum [see review by
(Kötter & Wickens, 1998)]. The idea that MSNs are probably cellular substrates for
value computation has found its place in the recent modeling literature (Morita,
Morishima, Sakai, & Kawaguchi, 2012). Starting from the fact that the effect of DA
on the D1R-expressing MSNs of the striatum is to increase the firing rate, it has
been shown in a computational model of the BG that the D1R-expressing MSNs are
capable of computing value (Krishnan et al., 2011). The present study presented a
model of co-expressing D1R–D2R MSNs’ gain function as an addition of the gain
functions of D1R and the D2R MSNs. As a result, the D1D2R MSNs acquire a ‘U’-
shaped gain function. A few experiments provide support for such a representation,
for instance, the study by Allen, Maher, Wani, Betts and Chase (2011) on neurons
co-expressing D1-like and D2-like receptors in C. elegans (Allen et al., 2011). Here
the D1R and D2R of a co-expressing neuron have antagonistic effects on neuro-
transmitter (acetylcholine) release. Specifically, they propose that the D1R–
D2R-co-expressing neurons could simply be a combination of D1R and D2R
neurons. Even studies on rodents and in vitro striatal cultures have shown the
antagonistic nature of the D1 and the D2 receptor components of a co-expressing
neuron (Hasbi et al., 2011). They report that these co-expressing neurons activate
the CAMKII and BDNF machinery, each of which is known to play opposing roles
in synaptic plasticity—long-term potentiation and long-term depression (Surmeier
et al., 2007). We follow such a perspective of simple addition of the antagonistic D1
and the D2 neuronal gain functions to model the D1R–D2R MSN in our modeling
study. In the BG, the ventral striatal neurons are known to be specially involved in
risk processing (Stopper & Floresco, 2011). In this regard, we further hypothesize
that D1R–D2R MSNs in those nuclei (Stopper & Floresco, 2011) would specifi-
cally contribute to risk computation as observed in experimental work by Stopper
et al. (2011). We also predict that the selective loss of these co-expressing neurons
would make the subject less sensitive to risk and therefore show risk-seeking
behavior. Then the chapter continues toward realizing action selection through
network dynamics of the BG. The underlying stochasticity in the softmax rule used
in our early study (Balasubramani et al., 2014) is achieved indirectly by the chaotic
dynamics of the STN–GPe loop (Kalva et al., 2012).

12.4.4 Striatal DA and 5-HT

The DA signals used in our model are a function of reward–value, and TD in value–
utility (Fig. 12.2). The existence of different forms could be possible because of the
following:

(1) Distinct sets of dopamine neurons are known to project to striatum. For
instance, structures such as the striosome and matrisome are proposed to
receive different DA modulatory signals [See the section ‘Modularity of
dopamine signals’ in (Amemori, Gibb, & Graybiel, 2011)]. Some other studies
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find that all the SNc DA neurons innervate both the striosomes and matrisomes,
but each neuron’s activity might favor any one of the compartment (Matsuda
et al., 2009).

(2) Similarly, dopaminergic neurons from different regions dorsal–ventral of SNc–
VTA might represent different computational quantities [See section
‘Modularity of dopamine signals’ in (Amemori et al., 2011)].

(3) Moreover, certain DAergic signals are known to specifically modulate between
trials, while some other are proposed to act like a teaching signal within a trial
(Stauffer, Lak, & Schultz, 2014; Tai, Lee, Benavidez, Bonci, &Wilbrecht, 2012).

A review by Schultz (Schultz, 2013) and other studies (Lak, Stauffer, & Schultz,
2014; Stauffer et al., 2014) states that the dopamine neurons are known to reflect
various reward attributes such as the magnitude, probability, and delay. In fact, the
above-mentioned attributes also get reflected when dopamine neurons can inform
the first derivative of value or the utility function, as a common neuronal imple-
mentation (Stauffer et al., 2014).

Our model proposes that the d and sign(Q) (Fig. 12.2) affect the computation of
utility function by the MSNs. It must be noted that d affects all the three kinds of
MSNs (D1R, D2R, and the D1R–D2R MSNs) presynaptically as investigated
through many experimental studies [Refer (Kötter & Wickens, 1998; Reynolds &
Wickens, 2002)]. But the sign(Q) correlate of DA is proposed to affect the
responses of D1R–D2R MSNs.

The receptors 5-HT 1, 2A, 2C, and 6 (Di Matteo, Pierucci, et al., 2008; Ward &
Dorsa, 1996) are most abundantly expressed in the striatum. None of these
receptors show preferential co-localization to any striatal proteins, such as sub-
stance P, dynorphin (neurons that contribute to the striato-nigral direct pathway), or
enkephalin (contributing to the IP). However, a differential expression indeed exists
—5-HT2C is highly expressed in the patches, and 5-HT2A in the matrix (Eberle‐
Wang, Mikeladze, Uryu, & Chesselet, 1997). These 5-HT receptors are more likely
to be co-expressed even along with the D1R–D2R MSNs which form a substantial
portion of the striatum according to certain experimental studies (Bertran-Gonzalez,
Hervé, Girault, & Valjent, 2010; Paolo Calabresi, Picconi, Tozzi, Ghiglieri, & Di
Filippo, 2014; Hasbi et al., 2010, 2011; Nadjar et al., 2006; Perreault et al., 2010). It
is true that 5-HT’s specificity in expression along with a particular type of MSN is
still not clear.

In order to investigate the possibility that 5-HT modulation of MSNs may not be
limited only to D1R–D2R MSNs, but could have a differential action on the three
pools of MSNs (D1R, D2R, and D1R–D2R), we have conducted additional sim-
ulations and obtained quite revealing results. On varying different subsets of
faD1;aD2; and aD1D2g, the following inferences are made:

– The modulation of aD1 alone [aD2 = 1, aD1D2 = 1] is not able to consistently
model the behavior of a balanced (high aD1) or the reduced tryptophan (low
aD1) conditions in any experiment. Similar is the case of modulating aD2
[aD1 = 1, aD1D2 = 1] alone.
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– The joint modulation of aD1 and aD2 [aD1D2 = 1] was not able to explain any of
the experiments satisfactorily.

– aD1D2 is found to be able to explain the results of the experiment by Cools et al.
(2008) better only when optimized along with aD2. The joint modulation of aD2
and aD1D2 [aD1 = 1] achieves best fit for all the experiments.

– aD1 is not found to be as sensitive as aD1D2 and aD2 in all the experiments,
though a nonzero aD1 is preferred.

– In summary, aD1 representation of 5-HT can be fixed at 1, while the others
aD1D2 and aD2 can be varied and optimized to explain different 5-HT-based
experimental results.

The optimization of fixed 5-HT values might also be related to the tonic mod-
ulation exerted by DRN during reward processing (Alex & Pehek, 2007; Jiang,
Ashby Jr., Kasser, & Wang, 1990; Nakamura, 2013).

12.4.5 The Co-expressing D1R–D2R MSNs

There have been varied reports of the proportion of co-expressing D1R–D2R MSNs
in the striatum. These neurons were not modeled in any of the earlier studies
(Ashby, Turner, & Horvitz, 2010; Frank et al., 2004; Humphries & Prescott, 2010;
Krishnan et al., 2011), though present in significant proportion to D1R- and
D2R-expressing MSNs (Bertran-Gonzalez et al., 2010; Calabresi et al., 2014; Hasbi
et al., 2010, 2011; Nadjar et al., 2006; Perreault et al., 2010). Such unpopular nature
of the D1R–D2R MSNs in the striatum might be due to the following: The exis-
tence of co-expressing D1R–D2R MSNs have been under debate over years. Many
studies supported distinct populations of the striatal MSNs projecting in
striato-nigral and striato-pallidal pathways including neurochemical and genetic
ontology analysis in mice (Araki, Sims, & Bhide, 2007), transgenic mice engi-
neered using bacterial artificial chromosome (BAC) with enhanced green fluores-
cent protein (Bertler & Rosengren, 1966; Matamales et al., 2009; Shuen, Chen,
Gloss, & Calakos, 2008; Valjent, Bertran-Gonzalez, Hervé, Fisone, & Girault,
2009), biochemical and imaging assays including in situ hybridization
(ISH) combined with retrograde axonal tracing (Gerfen et al., 1990; Catherine Le
Moine & Bloch, 1995; Le Moine, Normand, & Bloch, 1991), fluorescence-
activated cell sorting (FACS) of MSNs or translating ribosome affinity purification
approach (TRAP) (Heiman et al., 2008; Lobo, Karsten, Gray, Geschwind, & Yang,
2006). These studies report that D1Rs are present in striato-nigral MSNs and are
Substance P positive, whereas the D2R is enriched with enkephalin and is
striato-pallidal in nature [Classical models of the BG: (Albin et al., 1989; DeLong,
1990)].

However, some of these highly sensitive studies are under debate
(Bertran-Gonzalez et al., 2010; Calabresi et al., 2014) due to the following reasons:
The developmental regulation of D1R and D2R mRNAs as analyzed in the genetic
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ontology studies with mice (Araki et al., 2007) results from intrinsic genetic pro-
grams that control the receptors’ expression, whereas the actual dopaminergic
neuron’s innervation in a projection area (here, the striatum) is found to control the
D1R and D2R expressions (Jung & Bennett, 1996). Furthermore, the genetically
engineered bacterial artificial chromosome (BAC) mice are found to have alter-
ations in comparison with wild-type mice in terms of behavioral, electrophysio-
logical, and molecular characterization. Even highly advanced optogenetics and
other imaging techniques that support segregation of the pathways are questioned
for their ability to monitor the subcortical activity accurately in the behaving ani-
mals [See the reviews by (Bertran-Gonzalez et al., 2010; Calabresi et al., 2014)].

Meanwhile, there are many other findings questioning the strict segregation of
the direct and the IPs. See review by (Bertran-Gonzalez et al., 2010; Calabresi et al.,
2014) for more details. These studies report various modes of cross-talk existing
between the ‘classical’ dichotomous projections from the striatum. Studies also
report co-expression of the D1R and the D2R in a MSN to be a medium for
cross-talk. They even propose the receptors’ heteromerization to such an extent that
these co-expressing MSNs would have their downstream effects completely dif-
ferent from that of the neurons solely expressing the D1R or the D2R.

The studies reporting co-expression of D1R–D2R in the MSNs analyze com-
ponents such as calcium and brain-derived neurotrophic factor (BDNF) (Hasbi
et al., 2009; Rashid, O’Dowd, Verma, & George, 2007), using techniques such as
reverse transcription polymerase chain reaction (RT-PCR) that is reviewed in
(Surmeier & Kitai, 1993), co-immunoprecipitation (Lee et al., 2004), or fluores-
cence resonance energy transfer (FRET) using fluorophore-labeled antibodies
(Hasbi et al., 2009). Some quantitative measures regarding the proportion of D1R–
D2R MSNs in the striatum include nearly 17% in the nucleus accumbens shell, and
6% in the caudate–putamen, when estimated using BAC transgenic mice
(Bertran-Gonzalez et al., 2008). Though there have been doubts regarding the
accurate neuronal labeling in BAC transgenic mice, the proportions have been
confirmed by the later studies too (Matamales et al., 2009). Similarly, a quantitative
FRET in situ showed that more than 90% of the D1R–D2R-co-expressing neuronal
bodies in the nAcc and nearly 25% of them were found in the caudate–putamen
(Perreault et al., 2010). Hence, these studies favor the presence of D1R–D2R MSNs
in significant levels in the striatum.

A few studies report the projection of D1R–D2R-co-expressing neurons to GPi
(Perreault et al., 2010, 2011). Though our present study accounts for their pro-
jection to GPe alone, this study suggests that the D1R–D2R-co-expressing neurons
targeting the pallidum mainly contribute to risk computation. Those D1R–D2R
MSNs that project to SNc may be utilized for the TD in utility computation. These
projections of the D1R–D2R-co-expressing neurons toward both the indirect and
the direct pathways support the study that DA D1R containing neurons may not
solely project onto the direct pathway. This is because some of the D1R containing
MSNs are known to also project to the IP (Calabresi et al., 2014). Those D1R
neurons could be co-expressing D2R, since D1R–D2R-co-expressing MSNs are
capable of invading both the direct and the IPs (Bertran-Gonzalez et al., 2010;
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Calabresi et al., 2014; Hasbi et al., 2010, 2011; Nadjar et al., 2006; Perreault et al.,
2010). Similarly, the D2R MSN need not just solely project to the IP. The study of
(Calabresi et al., 2014) shows that D1R–D2R MSNs are one of the means by which
the direct and the IPs interact. Such a notion is also implemented in our modeling
study, and hence these D1R–D2R-co-expressing MSNs might play a major role in
the cross-talk between the direct and the IPs.

Moreover, DA D1R and D2R are also shown to form heteromeric complexes
with unique functional properties and phenotype (Hasbi et al., 2011; Perreault, Fan,
Alijaniaram, O’Dowd, & George, 2012). These heteromers are found to have
increased sensitivity following repeated increases in DA transmission. The
up-regulated state of these heteromers persisted after DA agonist removal, identi-
fying these heteromeric complexes as therapeutic targets in DA-related disorders,
such as schizophrenia and drug addiction. These heteromers are also predicted to
significantly influence cognition, learning, and memory (Perreault et al., 2011,
2012). We would expect that there might be differences between the co-expressing
neurons and the heteromers, but in the absence of more data, this study has used the
simple model of addition of D1R and D2R MSN’s gain functions to represent the
D1R–D2R-co-expressing neurons.

12.5 Future Work

The co-expressing D1R–D2R MSNs are experimentally shown to significantly
contribute to both the direct and the IPs of the BG (Bertran-Gonzalez et al., 2010;
Calabresi et al., 2014; Hasbi et al., 2010, 2011; Nadjar et al., 2006; Perreault et al.,
2010). These two distinct pools of D1R–D2R MSNs—one following DP that
controls exploitation, and the other following IP that controls exploration
(Chakravarthy & Balasubramani, 2013; Chakravarthy, Joseph, & Bapi, 2010; Kalva
et al., 2012)—might be used for modeling the nonlinearity in risk sensitivity based
on outcomes (risk aversion during gains and risk seeking during losses) (Kahneman
& Tversky, 1979). The inherent opponency between the DP and IP (Albin, 1998;
DeLong, 1990) would facilitate the projections of the corresponding D1R–D2R
MSNs for showing contrasting risk-sensitive behavior. Each of the neuronal pools
computing the risk function should then be weighed by appropriate sensitivity
coefficients [representing neuromodulators DA and 5-HT (Balasubramani et al.,
2014)] to capture the nonlinear risk-sensitive behavior (Kahneman & Tversky
1979) based on the reward–punishment outcomes. This is simplified in the present
modeling study by considering the D1R–D2R MSNs to IP alone, multiplied by a (a
sign(Q)) term. Moreover, the increased magnitude of risk associated with an action
is experimentally found to enhance exploration in action selection (Cohen,
McClure, & Angela, 2007; Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006;
Frank, Doll, Oas-Terpstra, & Moreno, 2009). This is implemented in our network
model by routing the co-expressing D1R–D2R MSN activity to the IP that controls
the exploration of the BG dynamics (Chakravarthy & Balasubramani, 2013;
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Chakravarthy et al., 2010; Kalva et al., 2012). Expanding the framework to include
the D1R–D2R MSNs projections to GPi (in the DP) would be done in our future
work.

Projections from GPe to GPi are found in the primates (Gerfen & Wilson, 1996;
Kawaguchi, Wilson, & Emson, 1990; Mink, 1996). GPe projections to GPi are
thought to be more focused, compared to the more diffuse projections of STN to
GPi. These GPe–GPi connections bypass the GPe–STN–GPi connectivity. The
former are thought to perform a focused suppression of GPi response to a par-
ticular action, whereas the latter impose a Global NoGo influence (Mink, 1996;
Parent & Hazrati, 1995). Though the functional significance of these connections is
not known, not accounting for this connectivity (STN–GPe–GPi) is a limitation of
our modeling study. However, since we do not differentiate a global/local NoGo
signal in our study, the proposed minimal model adapted from classical BG models
(Albin et al., 1989; Bar-Gad & Bergman, 2001; DeLong, 1990; Mink, 1996) is able
to capture the required experimental results at the neural network level.

Further investigation should examine in more detail DA–5-HT interactions
based on the specific receptor type distribution in the BG. This study only deals
with the theoretical principles underlying DA–5-HT interactions in the BG, which
can be then expanded to understand the detailed influence of the same interactions
in the cortex, SNc, and Raphe nucleus. Apart from analyzing the details of the
interactions in various regions of the brain, attempts to include other major neu-
romodulators like acetylcholine (ACh) and norepinephrine (NE) are also desired.
This could be realized by including a self-organized map (SOM) model of the
striatum which captures its topologically ordered arrangement of the striosomes and
matrisomes (Stringer, Rolls, Trappenberg, & De Araujo, 2002) and is controlled by
the ACh mediated tonically active interneurons. The model is expected to analyze
ACh influence in the selection of striosome–matrisome pairs and the plasticity of
cortico-striatal connections (Ding et al., 2011; Spehlmann & Stahl, 1976). Specific
investigation of how the neuromodulator NE affects the STN–GPe system and the
BG dynamics is also of special interest. Neuromodulator NE has been compared to
the inverse temperature parameter of Eq. (12.7) and is thought to specifically affect
the exploration dynamics of the BG action selection machinery (Aston-Jones &
Cohen, 2005; Doya, 2002). In our earlier study, we have showed that the STN
lateral connections can also influence the BG exploration dynamics significantly
(Chakravarthy & Balasubramani, 2013). Control of response inhibition through
STN is thought to be established through the NE activity in STN, and a dysfunction
in such control could be related to impulse control disorders (ICD) (Economidou,
Theobald, Robbins, Everitt, & Dalley, 2012; Swann et al., 2013). The impact of DA
and NE activities on STN functioning should be tested in future, paving way to a
comprehensive computational understanding of the roles of all the four major
neuromodulators (DA, 5-HT, NE, ACh) in the BG dynamics.

STN also receives extensive norepinephrine (NE) afferents (Parent & Hazrati,
1995; Wang et al., 1996). And since many studies report that the dynamics of STN–
GPe is strongly controlled by the neuromodulator NE (Belujon, Bezard, Taupignon,
Bioulac, & Benazzouz, 2007; Delaville, Zapata, Cardoit, & Benazzouz, 2012),
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future work should explore the possible role of NE in the BG dynamics.
Particularly, NE is expected to control the lateral connection strengths in STN–GPe,
and the gain of cortical input (Aston-Jones & Cohen, 2005; Cohen et al., 2007;
Dayan & Yu, 2006) to striatum and STN. The control of response inhibition
through STN is thought to be established through the NE activity in STN, and a
dysfunction in such control could be related to ICD (Economidou et al., 2012;
Swann et al., 2013). A detailed model of STN–GPe dynamics and the effect of NE
on the same could help us better understand the role of the STN–GPe system in
impulsivity and design better deep brain stimulation protocols to cure impulsivity
(Frank et al., 2007).

Although DA, 5-HT, and NE along with the STN–GPe dynamics figure
prominently in the experimental studies on action selection dynamics and their
reaction times, computational models that closely resemble the neurobiological data
supporting all those factors do not exist. Our model is the first to include the
contribution of both DA and 5-HT in behavioral measures mediated by the BG
dynamics.
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Chapter 13
Modeling Serotonin’s Contributions
to Basal Ganglia Dynamics in Parkinson’s
Disease with Impulse Control Disorders

Pragathi Priyadharsini Balasubramani, V. Srinivasa Chakravarthy,
Balaraman Ravindran and Ahmed A. Moustafa

Abstract Impulsivity involves irresistibility in execution of actions and is
prominent in medication condition of Parkinson’s disease (PD) patients. In this
chapter, we model a probabilistic reversal learning task in PD patients with and
without impulse control disorder (ICD) to understand the basis of their neural
circuitry responsible for displaying ICD in PD condition. The proposed model is of
the basal ganglia (BG) action selection dynamics, and it predicts the dysfunction of
both dopaminergic (DA) and serotonergic (5HT) neuromodulator systems to
account for the experimental results. Furthermore, the BG is modeled after utility
function framework with DA controlling reward prediction and 5HT controlling the
loss and risk prediction, respectively. The striatal model has three pools of medium
spiny neurons (MSNs) including those with D1 receptor (R) alone, D2R alone, and
co-expressing D1R–D2R neurons. Some significant results modeled are increased
reward sensitivity during ON medication and an increased punishment sensitivity
during OFF medication in patients. The lower reaction times (RT) in ICD subjects
compared to that of the non-ICD category of the PD ON patients are also explained.
Other modeling predictions include a significant decrease in the sensitivity to loss
and risk in the ICD patients.

13.1 Introduction

The network model explained in the Chap. 12 is extended to model behavior of
Parkinson’s disease (PD), PD with impulsivity in this chapter. The reaction time
behavior of subjects as modeled by an action selection paradigm in this study is
compared against experimental literature. Impulsivity is a multi-factorial problem,
is assessed depending on the accuracy of goal-directed action performance, as well
as the ability to exert inhibitory control over action impulses that could possibly
interfere with goal-directed action (Ahlskog, 2010; Wylie, Ridderinkhof, Bashore,
& van den Wildenberg, 2010). Some popular action selection paradigms used to
test for impulsivity include a simple stimulus–response task, delayed stimulus–
response task, and their modifications through contingency devaluations
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(Dougherty, Mathias, Marsh, & Jagar, 2005; Nombela, Rittman, Robbins, & Rowe,
2014). Impulsive behaviors are generally marked in experimental measures by
shorter reaction times (RT) and reduced accuracy indicating their compromised
inhibitory control of non-optimal actions and higher delay discounting of rewards
(Dalley, Everitt, & Robbins, 2011; Dalley, Mar, Economidou, & Robbins, 2008;
Evenden, 1999).

A subset of PD patients with impulse control disorder (ICD) suffers from a lack
of inhibitory control over some inappropriate hedonic drives potentially associated
with harmful consequences; they form 14% of ON medication PD patients, PD ON,
and are mostly undergoing medication with DA agonists (Bugalho &
Oliveira-Maia, 2013). Their characteristics include pathological gambling, binge
eating, overuse of dopaminergic medications among others. Optimal therapy and
medications are required to control for withdrawal symptoms in motor and the
non-motor domains (Djamshidian, Averbeck, Lees, & O’Sullivan, 2011). Cortical
structures such as prefrontal cortex and orbitofrontal cortex, subcortical structures
like basal ganglia (BG) are important correlates of impulsivity (Dalley et al. 2008;
Ray, Antonelli, & Strafella, 2011). Dysfunction of neuromodulators such as
dopamine and serotonin, and their receptors DA D2, and 5HT 1, 2, 6, in the
frontostriatal circuitry has been identified for impulsivity as well (Averbeck,
O’Sullivan, & Djamshidian, 2014; Bugalho & Oliveira-Maia, 2013; Dalley et al.,
2008), especially in PD (Dalley et al., 2008; Dalley et al., 2011). Therefore, a
unified and complete modeling approach to PD, and ICD in PD, should include
5HT along with DA system for their better understanding and toward their better
therapeutics. The network dynamics of the BG as delineated in the previous
chapter, modulated through DA and 5HT based utility dynamics, is applied to an
experiment invoking reward-based decisions, assessing their accuracy as well as
RT, conducted on healthy controls and PD patients with and without ICD. The
model has been able shown to propose distinctive neural correlates contributing to
ICD in PD patients (Balasubramani, Chakravarthy, Ali, Ravindran, & Moustafa,
2015).

13.2 Probabilistic Learning, Parkinson’s Disease,
and Impulse Control Disorder

Using the lumped model of the BG policy to model a probabilistic learning task.
The simulation studies presented so far in the previous chapter are performed

under controlled conditions. This section simulates a study that relates to reward/
punishment learning of PD condition.
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13.2.1 Experiment Summary

Bodi et al. (2009) used a probabilistic classification task for assessing reward/
punishment learning under the different medication conditions of PD patients. The
medications used in the study were a mix of DA agonists (pramipexole and ropi-
nirole) and L-DOPA. The task was as follows: one of four random fractal images
(I1–I4) was presented. In response to each image, the subject had to press on one of
two buttons—A or B—on a keypad. Stimuli I1 and I2 were always associated with
reward (+25 points), while I3 and I4 were associated with loss/punishment (−25
points). The probability of reward or punishment outcome depended on the button
(A or B) that the subject pressed in response to viewing an image (Bodi et al.,
2009). There are 160 trials administered in 4 blocks. Experiments were performed
on healthy controls, never-medicated (PD OFF), and recently medicated PD (PD
ON) patients. The study (Bodi et al., 2009) showed that the never-medicated
patients were more sensitive to punishment than the recently medicated patients and
healthy controls. On the other hand, the recently medicated patients outperformed
the never-medicated patients and healthy controls on reward learning tasks. The
optimal decision is the selection of A for I1 and I3, and B for I2 and I4.

13.2.2 Simulation

We adapt the version of abstract extended reinforcement learning model described
in the previous chapter here. The immediate reward case of the experiment is
expressed by Eq. (3) of Chap. 12, with which the value update, Eq. (13.2), and the
risk update, Eq. (5) of Chap. 12, are made for a (state, action) pair. The states here
are four images, and the action is categorized as either A or B. The utility for a
particular (state, action) pair is constructed using Eq. (7). The measure of change in
utility is calculated by the following Eq. (13.1).

dUðtÞ ¼ Utðst; atÞ � Ut�1ðst; at�1Þ ð13:1Þ

where ‘U’ is the utility represented in Eq. (12.7) of Chap. 12. The change in utility,
Eq. (13.1), now controls the action selection dynamics set out by the following
Eq. (13.2).

if dUi [ dhi;Go

elseif dUi\dlo;NoGo

else Explorefif rand[ e;

if dUi [ dm;Go

else NoGo

else Select random actiong

ð13:2Þ
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where

dm ¼ ðdhi þ dloÞ=2

e ¼ expððdUi � dmÞ2=r2Þ

The Go-Explore-NoGo (GEN) policy-based BG action selection dynamics has
been discussed earlier in the Chap. 5. The PD condition is modeled by equations in
the section of Chap. 5 with parameters, dLim = 0, and dMed = 0.15. The simulation
is run for 160 trials.

13.2.3 Results

The modeling study finds that a (5HT) takes a lower value in PD compared to the
healthy controls to represent the overall reduction of 5HT levels. The model of
healthy controls shows almost equal sensitivity to rewards and punishments.
The PD ON model shows an increased sensitivity to reward compared to that of
punishment, whereas PD OFF shows the opposite trend (Fig. 13.1).

13.3 Applying the Network Model of BG to Probabilistic
Learning Task

Bodi et al. (2009) experiment is again modeled here using the network model as
described in the previous chapter. The +25 reward is represented as reward ‘r = 1’
and the −25 punishment as ‘r = −1’. The weights for the D1R, D2R, and the D1R–
D2R neurons are initialized randomly between 0 and 1.
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Fig. 13.1 Accuracy of
decisions depicted for various
subject categories of
experimental data and their
model simulation (run for 100
instances)
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13.3.1 Results

In the model, the healthy controls show high sensitivity to rewards, punishments, and
risk (aD1, aD2, aD1D2). The PD ON patients show an increased sensitivity to reward
compared to that of punishment, whereas the PD OFF patients show the opposite
trend. The parameters of the model that best represent the experiment are: [aD1, aD2,
aD1D2] = [1, 1, 0.2] for the healthy controls; [dLim, aD1, aD2, aD1D2] = [0.001, 1,
0.99, 0.001] for PD OFF; and [dLim, dMed, aD1, aD2, aD1D2] = [0.001, 0.021, 1, 0.2,
0.001] for PD ON. The results are put forth in Fig. 13.2 and are consistent across
other model extensions detailed in this chapter.

The results substantiate both the differential modulation of 5HT in the MSNs that
differentiating various PD conditions as well—(1) The differential modulation of
5HT in the D1R–D2R MSNs with aD1D2 = 0.2 (in healthy controls) and a
D1D2 < 0.2 (in PD) (Fig. 13.2) is noticed. (2) The activity of 5HT in the D2R MSNs
is significantly lowered specifically in the PD ON condition (PD ON aD2 = 0.2
compared to aD2 > 0.2 in PD OFF and healthy controls). Many neurobiological
experimental studies have observed lowered 5HT levels in PD conditions compared
to the healthy controls (Bedard et al., 2011; Fahn, Libsch, & Cutler, 1971; Halliday,
Blumbergs, Cotton, Blessing, & Geffen, 1990). This is captured in our modeling
study with a smaller a value observed to modulate both the D2R and the D1R–D2R
MSNs. (3) The PD ON condition is reported to have lowered 5HT levels than the
OFF-medicated PD condition. This is shown by reduced 5HT release and increased
DA release from the serotonergic neurons in the presence of L-DOPA (Reed,
Nijhout, & Best, 2012; Tan, Salgado, & Fahn, 1996). This is specifically reflected
by a significant decrease in the level of aD2 affecting the D2R MSNs in our
modeling study.

Fig. 13.2 Reward–punishment sensitivity obtained by simulated (Sims)-PD and healthy control
models to explain the experiment (Expt) of Bodi et al. (2009). Error bars represent the standard
error (SE) with N = 100 (N = number of simulation instances). The simulations match the
experimental value distribution closely and are not found to be significantly different (p > 0.05)
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13.4 Analyzing the Reaction Times and Impulsivity

This experimental setup is the same as the previous section and has been earlier
performed with PD patients and healthy control subjects as described in (Piray,
Zeighami, Bahrami, Eissa, Hewedi, & Moustafa, 2014), but the present modeling
study extends the same experimental setup to analyze the subject’s RT. The
experimental results suggest ICD patients are more sensitive to rewards in the
medication condition and had lower RT than non-ICD. The non-ICD patients had
no significant difference between reward and punishment learning, and similar was
the case of healthy controls. The PD OFF patients showed higher efficiency toward
punishment learning.

13.4.1 Modeling Results

The network model described in the previous section is now applied to the
experimental data. The experimental and simulated RT as well as task accuracy is
provided in Fig. 13.3 for all subject groups. The modeling results suggest optimal
parameters to DA as d (viz. dLim and dMed) and 5HT—(aD1, aD2, aD1D2) for rep-
resenting ICD behavior in the PD. Particularly, an increased reward sensitivity in
PD ON with a significantly reduced 5HT modulation of the striatal D2R (aD2) and
the D1R–D2R (aD1D2) MSNs represents PD ON ICD condition. The parameters of
the model that best represent the experiment are: [aD1, aD2, aD1D2] = [1, 0.185,
0.997] for the healthy controls; [dLim, aD1, aD2, aD1D2] = [0.001, 1, 0.99, 0.033] for
PD OFF; and [dLim, dMed, aD1, aD2, aD1D2] = [0.001, 0.06, 1, 0.046, 0.001] for
PD ON ICD, [0.001, 0.06, 1, 0.916, 0.160] for PD ON non-ICD.

13.5 Discussion

The developed network model was not only tested for action selection problems,
but also for their RT. The haste displayed on executing actions, for premature and
inaccurate responses, is termed as impulsivity. ICD is widely noticed during the ON
medication condition of PD. There are many models for explaining ICD: According
to one model, ICD is thought to be a kind of habitual behavior (Bugalho &
Oliveira-Maia, 2013). Another one makes use of the opponency between the BG
pathways as mediated dopamine to explain ICD (Frank, 2005; Frank, Samanta,
Moustafa, & Sherman, 2007a; Frank, Scheres, & Sherman, 2007b). One another
model employs an Actor–Critic approach to find abnormal evaluation-related
computations in ventral striatum to explain impulsivity in PD ON (Piray, Zeighami,
Bahrami, Eissa, Hewedi, & Moustafa, 2014). There exists other models which uses
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matching law (Evenden, 1999). Some relate them to an increased reward dis-
counting and myopicity of reward predictions (Doya, 2002; Tanaka et al., 2007).

We show that such effects can be captured in the proposed model by the risk
sensitivity term (aD1D2). Earlier models of impulsivity in PD take only the defi-
ciency of DA into consideration (Piray et al., 2014), leaving behind other potential
salient factors such as 5HT as indicated in this study. The reduced learning from the
punishments in PD ON ICD patients was captured by prior models using an
explicitly negative prediction learning rate (Piray et al., 2014), whereas this study
takes the nonlinearity in reward–punishment behavior through the sign() term to
differentiate reward–punishment learning among subject groups.

Our model shows the importance of modulating both DA and 5HT in the BG to
effectively explain ICD and PD behavior for the probabilistic task; the clamping of
DA models the marked reduced DA availability in PD (Evans et al., 2006; Steeves
et al., 2009). Our model also predicts a lower levels of 5HT in the BG for both
PD OFF and PD ON as found through many experimental studies (Bedard et al.,
2011; Fahn et al., 1971; Fahn, Snider, Prasad, Lane, & Makadon, 1975; Halliday
et al., 1990). Specifically, based on model, a lowered sensitivity of 5HT in D2R and
D1R–D2R MSNs is observed to mark ICD behavior. The model also shows a
higher sensitivity of 5HT in the D2R MSNs for PD OFF behavior.

Fig. 13.3 Comparing action selection accuracy and reaction times between experiment and
simulation for various subject categories. a Accuracy is presented as run for 100 instances. RTs are
shown for (b) the experimental data, and (c) for simulation (p > 0.05, ANOVA, with reward
valence, punishment valence, and RT as factors of analysis). Refer to (Balasubramani et al., 2015)
for more details on parameters, and Chap. 12 for details on the network model methods
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Chapter 14
An Oscillatory Neural Network Model
for Birdsong Learning and Generation:
Implications for the Role of Dopamine
in Song Learning

M. Maya, V. Srinivasa Chakravarthy and B. Ravindran

Abstract We present a model of bird song learning and production in which the
motor control pathway is modeled by a trainable network of oscillators and the
Anterior Forebrain Pathway (AFP) is modeled as a stochastic system. Song learning
in many species of birds is divided into two phases. In the first phase, the sensory
phase, the male bird listens to the tutor song of another male bird in the colony and
memorizes some aspect of the tutor song. In the second phase, the motor learning
phase, the bird establishes the songs learnt earlier by rehearsal aided by auditory
self-feedback. We hypothesize that: (1) the songbird learns only evaluations of
songs during the sensory phase; (2) the AFP plays a role analogous to the Explorer,
a key component in reinforcement learning (RL); (3) the motor pathway learns the
song by combining the evaluations (value information) stored from the sensory
phase, and the exploratory inputs from the AFP in a temporal stage-wise manner.
Model performance on real birdsong samples is presented. Impaired song output
under conditions of lesions of AFP nuclei, including the Lateral Magnocellular
Nucleus of the Anterior Neostriatum (LMAN) and Area X, is studied. The model
also proposes a role for dopamine signal in song learning and shows that under
dopamine-deficient conditions, similar to those of Parkinson’s disease, song
learning is impaired.

14.1 Introduction

14.1.1 Birdsong Learning

The aesthetic and emotional appeal of the bird song is a phenomenon known
throughout human history. In recent times, the bird song has evoked tremendous
interest among the scientific community due to the striking similarities found
between the process of song acquisition by birds and speech learning in humans
(Doupe & Kuhl, 1999). It has been observed that both juvenile birds and human
babies need an adult of the same species—the so-called ‘tutor’ bird—to develop
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normal vocalizations (Doupe & Kuhl, 1999). Not only do birds raised in social
isolation develop abnormal ‘isolate’ songs but birds can develop geographically
restricted ‘dialects’ for songs (Brainard & Doupe, 2002) as in case of human
languages. Both humans and birds require auditory feedback of their own speech/
song during the learning phase (Konishi, 1965). During the sensory learning phase,
a juvenile songbird like the zebra finch listens to and memorizes the tutor song
(from the tutor); in the subsequent sensory motor learning phase, they match their
actual vocalization with the memorized song and use this error feedback to correct
their song (Bolhuis & Moorman, 2015; Hahnloser & Kotowicz, 2010).
Electrophysiological studies reveal that the site of the tutor song memory is cau-
domedial nidopallium (NCM), a region in the avian brain homologous to mam-
malian auditory cortex (Yanagihara & Yazaki-Sugiyama, 2016).

Yet another concurrent feature of speech learning, in humans and songbirds,
relates to the critical periods of learning observed in both species. In humans as well
as in zebra finches, the capacity to learn generally declines with age; yet this closure
of the sensitive period is not strictly dependent on age but on prior experience.
Infants as well as juvenile birds have the ability to discriminate their own species’
speech/song when presented with many different sounds. Experiments have shown
that songbirds when presented with a variety of songs from different species prefer
to learn songs of their own species (Marler & Peters, 1977). At the level of the brain
circuits, it has been observed that there is a dominance of the left hemisphere for
speech/song production in both humans and songbirds (Doupe & Kuhl, 1999).

The process of vocal learning from an adult is a process that is found to be
unique to humans, songbirds, dolphins, bats, and across species (Brainard &
Doupe, 2002). Recent research revealed that there are analogous regions between
the bird’s brain and the human brain at a gross level and also at the level of song/
speech processing pathways (Reiner, Perkel, & Mello, 2004). Furthermore, the
availability of a precisely characterized neural pathway involved in song learning
makes it an attractive model system for investigating the mechanisms of motor skill
acquisition and the role of various brain regions. Added to this are the facts that the
songbirds are domesticated species, have relatively high breeding rates, and hence
are easy to rear in the laboratory.

The neural regions involved in song learning and generation process together
form the ‘song system,’ which consists of (a) the motor pathway that is involved in
song generation (Nottebohm, Stokes, & Leonard, 1976) and (b) the Anterior
Forebrain Pathway (AFP) which is involved in the song learning process but is not
required for song production once the song is learnt (Bottjer, Meisner, & Arnold,
1984; Scharff & Nottebohm, 1991; Sohrabji, Nordeen, & Nordeen, 1990). Since the
neural circuit in songbirds is entirely devoted to a single motor task—that of song
learning—it serves as an ideal system for mapping behavior to neural activity.

A remarkable feature that has emerged out of the study of the song system is the
resemblance of the AFP to the human cortical–basal ganglia circuit (Luo, Ding, &
Perkel, 2001). The human basal ganglia (BG) are a set of deep brain regions
implicated in many motor and cognitive functions ranging from action selection
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(Berns & Sejnowski, 1995), action gating, sequence learning (Berns & Sejnowski,
1998), reward-based learning (Barto, 1995; Schultz, 1998), among other processes.

In the present work, we focus on the role of BG in reward-based learning by
using songbirds as model systems. In humans, phasic dopamine signal is thought to
signify the error between the total expected future reward and the reward obtained
(Schultz, 1998). This error drives the learning process by motivating the subject to
perform those actions that maximize the reward obtained. In song birds, a region
called Area X in the AFP receives dense dopaminergic projections from the mid-
brain (Bottjer, 1993), which is analogous to mammalian BG regions like Str and
pallidum. This dopaminergic release is found to be correlated with that of various
stages in song learning in birds (Harding, 1998). Just as in mammalian brains,
dopamine cells in songbirds are also found to encode an error-like signal that guides
song learning (Gadagkar et al., 2016).

14.1.2 Neuroanatomy of Birdsong

There are two major pathways involved in the song learning process: the motor
pathway and the Anterior Forebrain Pathway (AFP). The motor pathway runs
between two sets of nuclei—the HVc and the Robust nucleus of the Arcopallium
(RA). The HVc receives inputs from the auditory system (Field L) and sends
glutamatergic projections to the RA and Area X, a region of the AFP. The RA is
characterized by the presence of long-range inhibitory interneurons and two dif-
ferent sets of motor neurons innervating the syringeal muscles and the respiratory
muscles (Nottebohm et al., 1976; McCasland, 1987). It has been seen that lesions of
any of these two nuclei, HVc or the RA, leads to muteness or abnormal song in
adult songbirds (Nottebohm et al., 1976). The song system seems to be organized in
a hierarchical fashion within the motor pathway (Abarnel, Gibb, Mindlin, &
Talathi, 2004; Yu & Margoliash, 1996). The HVc is thought to mediate learning at
the level of motifs, and the RA seems to encode the vocalizations at the level of
individual syllables (Fig. 14.1).

It has been observed that the AFP plays an important role in vocal learning in
juvenile birds, but has no role in the maintenance of adult song (Bottjer et al.,
1984). The AFP consists of three major sets of nuclei—Area X, Dorso-Lateral
Thalamus (DLM), and Lateral Magnocellular Nucleus of the Anterior Neostriatum
(LMAN). Area X consists of GABAergic neurons which resemble the spiny neu-
rons of the mammalian striatum (Str). The electrophysiological properties of these
and other neurons in Area X have led to the speculation that this region behaves in a
manner analogous to that of the pallidum and Str in the mammalian BG (Carrilo &
Doupe, 2004; Reiner et al., 2004). Area X receives glutamatergic projections from
HVc and LMAN. It also receives dense dopaminergic projections from the mid-
brain region called the Ventral Tegmental Area (VTA) and has neurons containing
D1, D2, or both dopamine (DA) receptors. Similar to the situation in medium spiny
neurons in the mammalian Str, D1 receptor activation enhances excitability and is
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essential for long-term potentiation (LTP), whereas D2 receptor activation reduces
excitability (Ding & Perkel, 2002). The DLM projection to LMAN is excitatory and
is analogous to the thalamocortical projection in mammals. The LMAN is the
output nucleus of the AFP to the motor pathway, and it projects to the RA and
Area X through NMDA-mediated synapses.

The effects of lesioning studies of Area X and LMAN in juvenile zebra finches
are in stark contrast to each other, yet they give an important information regarding
the function of the AFP in song learning (Bottjer et al., 1984; Scharff & Nottebohm,
1991; Sohrabji et al., 1990). Area X lesions prevent the song from getting crys-
tallized, and the bird produces highly variable songs for the rest of its life. This
occurs because Area X lesions lead to reduced inhibition of LMAN, leading to
increased firing of LMAN neurons, whose influence on the motor pathway seems to
result in high song variability. LMAN lesions on the other hand reduce the vari-
ability in song production and cause early crystallization of the song. The AFP
drives learning by perturbing the HVc–RA synaptic connections or RA activity. RA
neurons have been seen to exhibit auditory responses in sleeping zebra finches
(Dave & Margoliash, 2000). It has been proposed that RA neurons might be
involved in the construction of an inverse model for sensorimotor learning as they
can be responsive to auditory input (in sleep) and to the premotor activity
(Margoliash, 2002). Hence, the AFP might be acting to regulate the activity of the
RA neurons. Within the AFP, the Area X seems to control the output of the LMAN
neurons through the DLM. Hence, it follows that Area X is either directly involved

Fig. 14.1 Neuroanatomy of Birdsong. AFP—Anterior Forebrain Pathway, RA—Robust nucleus
of the Archistriatum, DLM—Dorso-Lateral Thalamus, LMAN—Lateral Magnocellular Nucleus of
the Anterior Neostriatum, VTA—Ventral Tegmental Area
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in the evaluation of the error between the bird’s song and the tutor song or it
receives this evaluation from a region in the auditory pathway (probably Field L
nuclei). Based on this error, it controls the output of the LMAN to produce higher
or lesser variability. Further evidence for this kind of function of the AFP comes
from inactivation studies of LMAN. It was seen that reversible inactivation of
LMAN during the sensory stage, but not during the sensorimotor stage, leads to
reduction in song learning in the bird (Basham, Nordeen, & Nordeen, 1996).
Evidence has also been found for the presence of what are known as
‘song-selective’ neurons in the AFP (Doupe, 1997). ‘Song-selective’ neurons are
neurons that respond specifically to the bird’s own song or to the tutor’s song but
not to the song of conspecifics. It has been observed that both Area X and LMAN
respond selectively to the bird’s own song and not to other conspecific songs or
even to the bird’s own song played in reverse order. The fact that this respon-
siveness develops during the process of learning, and is not innate, further indicates
the experience-dependent learning of neurons in the AFP. It is important to note
that such selectivity based on experience is also observed in human language
learning (Kuhl, 1994). In the beginning, human infants can discriminate phonemes
from all human languages but are gradually tuned to respond to the sounds of their
native language.

14.1.3 Dopamine in Learning

In the songbird brain, dopaminergic projections are seen to originate from the
midbrain regions, VTA, SNc, and the periaqueductal gray (PAG) (Appeltants,
Absil, Balthazart, & Ball, 2000; Lewis, Ryan, Arnold, & Butcher, 1981). It has
been observed that the major target nucleus of the VTA projections is the Area X in
the AFP. This region receives much denser dopaminergic innervations compared to
the other regions in the bird’s brain like the motor pathway, HVc, and RA. It is not
known conclusively if the same neurons innervate the HVc and RA as those of the
AFP. The properties of the dopaminergic neurons innervating Area X have been
well characterized. It was observed that dopaminergic neuron activity was higher
during singing than during silence. It was also observed that in vitro electrical
stimulation of Area X leads to the release of DA (Gale & Perkel, 2005). Further, it
was observed that the role of dopamine (DA) in Area X was to reduce the
excitability of the medium spiny neurons (MSNs), since there was a majority of D2
receptors in Area X (Ding & Perkel, 2002).

Studies that quantify DA activity employ assays for the enzyme, tyrosine
hydroxylase (TH), which converts L-tyrosine to dihydroxyphenylalanine (DOPA),
which in turn is the precursor for DA. It was observed that Area X neurons show
low reactivity for TH during the initial stage of song learning, but increased
reactivity during development and reached a peak by day 60 (Soha, Shimizu, &
Doupe, 1996). Studies using turnover rates of DA (the rate at which DA is taken up
or used by the cells) showed that the DA levels and turnover rates reduced
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profoundly by day 90 (Harding, 1998). Similar results were observed in other song
control nuclei like LMAN and RA, and auditory neurons like Field L, though the
levels of DA were much higher in Area X. This implies that DA plays a role in
error-driven learning during the song learning process similar to that observed in
humans and other mammals.

In mammals, it has been observed that the major area in the BG that receives
dopaminergic projections is the Str from the midbrain region substantia nigra pars
compacta (SNc). Some studies indicate that the SNc also projects to the GP and the
subthalamic nucleus (STN) (Cossette, Lévesque, & Parent, 1999), but the projec-
tions are not as dense as those projected to the Str. Various functional roles for DA
in this system have emerged from studies of animal models of Parkinson’s disease
(PD), a disease which occurs due to the degeneration of the dopaminergic neurons
in the SNc. The role of D1 and D2 receptors in the Str has already been outlined
above. It has also been observed that DA modulates the efficacy of the
cortico-striatal synapses.

DA neurons have been observed to respond to novel stimuli and rewards
(Schulz, 1998). It was seen that these neurons initially respond to the occurrence of
a reward signal, but subsequently to cues that predict the reward signal. When a
reward is not expected but is received, there is an increase in firing of dopamine
neurons; when the reward is expected and is delivered, there is no change in their
firing, whereas when the reward is expected but not delivered there is a dip in the
activity of dopamine neurons.

14.1.4 Modeling Bird Song Learning

Song learning in birds takes place in three stages: the sensory stage, during which
the birds listens to and memorizes the song, the sensorimotor stage, when the bird
learns the memorized song by self-feedback, and the crystallized stage, when the
bird has developed a stable song matching that of the tutor.

Doya & Sejnowski, (1995) proposed a reinforcement-based learning scheme of
the song learning process. It was assumed that the AFP stores in it a ‘song template’
which it compares with the bird’s own song to adaptively train the songbird. The
synaptic perturbations were provided by LMAN in the AFP. Doupe et al. (2005)
proposed a model based on the ‘AFP comparison hypothesis.’ Here it was proposed
that the AFP evaluates the birdsong by producing a prediction of the feedback of
the syllable, the ‘efference copy.’ Fiete et al. (2007) proposed a spiking neuron
model involving the motor pathway and the LMAN nuclei. According to their
model, the AFP acts as an adaptive critic with stochastic perturbations generated by
the LMAN region.

Computational models of bird song acquisition and generation developed so far
(Doya & Sejnowski, 1995; Fiete, Fee, & Seung, 2007; Troyer & Doupe, 2000) have
focused on attributing a specific function to various regions within the song system
in the song learning process. Yet the role of DA in the learning process has not been
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considered by these models. Considering the fact that the AFP functions in a
manner analogous to the BG in humans, it would be interesting to study the exact
role of dopamine in the AFP during learning.

A computational model for the song learning process would serve as a model
system to understand motor learning. In humans, degeneration of the mesencephalic
dopaminergic centers like substantia nigra pars compacta can lead to a pathological
state called Parkinson’s disease (PD) characterized by tremor, bradykinesia, and
other motor symptoms. At the systems level, a full understanding of how the neural
activity patterns are affected and how these lead to behavioral changes is currently
not available. Understanding the networks subserving song learning in birds and the
pathology of the same can open up new avenues to the understanding of BG
function in learning.

14.1.5 Objective

We present a model of bird song production in which the motor control pathway is
modeled by a trainable network of oscillators and the Anterior Forebrain Pathway
(AFP) is modeled as a stochastic system. The outputs from the motor pathway
coordinate the activity of the bird’s vocal organ, syrinx, and that of the respiratory
system which have been modeled here using a mechanistic model of the syrinx. The
bird’s beak is modeled as a vocal filter. The model proposes a role for dopamine in
song learning, analogous to the role of dopamine in mammalian BG and motor
learning. It gives a general picture of how dopamine drives learning and exploration
in bird song acquisition. Simulating PD-like conditions of dopamine deficiency, the
model shows impairment in song learning under such conditions. The model is
trained on real birdsong data, and effects of lesioning and Parkinsonian pathology
are investigated.

The chapter is organized as follows. Section 14.2 presents a detailed description
of the proposed model and each of its components. Section 14.3 presents the results
of simulations of the model. Model performance from real birdsong samples under
(a) normal conditions and (b) pathological conditions—which include lesioning and
dopamine-deficient Parkinsonian-like conditions—is presented in this chapter.
Section 14.4 discusses the implications of the findings from our model. The chapter
concludes with directions for future work.

14.2 Model Description

We propose a model of song learning based on reinforcement learning where the
HVc–RA system is modeled by two sets of Hopf oscillators (Righetti, Buchli, &
Ijspeert, 2006) which act as central pattern generator (CPG) circuits. The AFP is
modeled as a random noise source which perturbs the output of the oscillatory
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networks. The outputs of the two networks, with the noise added from the AFP, are
fed to the model of the bird vocal organ, the syrinx, which in turn is fed to a vocal
filter which plays the role of analogous to the bird’s peak, enhancing only certain
frequency components of the incoming signal. Figure 14.2 gives a broad overview
of the proposed model.

14.2.1 The Motor Pathway Model

Central pattern generators (CPGs) are systems that are capable of producing
rhythmic patterns of activity in the absence of any external input (Crook & Cohen,
2003). Many rhythmic behaviors like respiration and locomotion are encoded in the
form of CPGs in the brain stem. The song produced by the adult zebra finch is
highly stereotyped irrespective of the presence or absence of auditory feedback. The
fact that song deteriorates very little in adult songbirds after deafening indicates that
the song must be generated by a mechanism that is independent of external control
once it is learnt (Doupe & Kuhl, 1999). However, deafening in juvenile birds leads
to impaired song learning.

The first conclusive evidence that these CPGs are located in the motor pathway
was given by Vu, Mazutek, and Kuo (1994). Further evidence comes from the fact

Fig. 14.2 Actor–Critic–Explorer schema of the proposed model with the various components.
AFP—Anterior Forebrain Pathway. For explanation of the notations, refer text
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that the HVc receives inputs from auditory areas and the HVc firing patterns are
modified by auditory feedback. The song ‘pattern’ is thought to be encoded in the
HVc–RA synaptic strengths.

We use a network of Hopf oscillators to model the motor pathway (Righetti
et al., 2006). During the training process, the training signal is fed as a forcing
function to each of the oscillators in the network. These oscillators then embed the
desired signal in the form of a stable limit cycle. Hence, the system is robust; even
with small perturbations, it returns to the limit cycle pattern mimicking the stable
song system in the adult bird.

The governing equations for the variables (x, y, x, a, Ф) of the oscillators are
given as:

dxi
dt

¼ cðl� r2i Þxi � xiyi þ eFðtÞþ s sinðRi � /iÞ: ð14:1Þ

dyi
dt

¼ cðl� r2i Þyi � xixi: ð14:2Þ
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dt
¼ �eg
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ri

� �
FðtÞ: ð14:3Þ

dai
dt

¼ gxiFðtÞ: ð14:4Þ
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dt
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sgnðx0Þ cos�1 � y0ffiffiffiffiffiffiffiffiffiffi

x20 þ y20
p

0
@

1
A ð14:8Þ

FðtÞ ¼ PteachðtÞ �
Xn
i¼1

aixi ð14:9Þ

where µ is a parameter that controls the amplitude of oscillations, x is the intrinsic
frequency of the oscillators, e is a coupling constant, c is the learning rate, a denotes
the weights of the oscillators, a0 denotes the baseline values of the weights, x and
y denote the state variables of the oscillator, /i denotes the phase of the oscillator,
Pteach(t) denotes the input signal, and F(t) is the feedback error signal in the
oscillator equation that denotes the difference between the training signal and its
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reconstruction, r ¼ ffiffiffiffiffiffiffiffiffiffi
x2 þp

y2. Equations (14.1, 14.2) denote oscillator dynamics
and Eqs. (14.3–14.8) denote learning dynamics of the parameters x, a, and a0. Note
that the learning described above is a supervised form of learning. In the present
model, the above learning mechanism is reformulated as a RL mechanism
(Fig. 14.3).

We use the above two-network model to simulate the outputs from the motor
pathway to the syringeal and respiratory muscles. The outputs of the two oscillatory
networks are:

v1ðtÞ ¼
Xn
i¼1

ai1xi þ a01c1 ð14:10Þ

v2ðtÞ ¼
Xn
i¼1

ai2xi þ a02c2 ð14:11Þ

14.2.2 The Anterior Forebrain Pathway in the Model

We propose that the AFP plays the role of an ‘Explorer’ in the reinforcement
learning framework. This pathway serves as the source of chaotic perturbations to
the motor pathway. This is evident from the remodeling of the LMAN–RA
synapses observed during song learning (Iyengar & Bottjer, 2002) and the reduced
variability in the song following LMAN lesions (Bottjer et al., 1984). At the onset
of learning, the LMAN–RA projections are diffuse and the bird produces highly
variable notes (subsong). During the process of learning, refinement of LMAN–RA
synapses takes place (plastic song) and at the end of crystallized song phase, the
number of LMAN–RA synapses decreases substantially.

We incorporated two random variables (mean = 0, std = 0.25, uniform distri-
bution) to model the role of AFP in the song learning process. In the model, the

Pteach(t)
F(t)

Fig. 14.3 Schematic of network used in the model showing the feedback loop and the coupling
between the oscillators
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noise generated at every time instant is added to the output of the oscillator net-
works. The following equation governs the final output to the vocal organ:

uðtÞ ¼ vðtÞþ ðvÞf: ð14:12Þ

The term v controls the exploratory drive to the oscillatory networks. This in turn
is controlled by d, which denotes the temporal difference (TD) error term in the RL
framework (Sutton & Barto, 1998), given by

d ¼ tanhðs eavgðtÞ � errðtÞÞ ð14:13Þ

where s is a constant (s = 0.6), eavg(t) is the average error of the previous training
stage, and err(t) is the current error, denoted by er(t) in Eq. (14.25) and err(t) in
Eq. (14.27) (see Sect. 14.2.5 for a more detailed description of error measures). The
tanh(.) is used to suppress fluctuations in error differences in Eq. (14.13). The term
d controls the exploration done by the model at each time step by controlling the
value of v.

v ¼ cð1� dÞ ð14:14Þ

where c = 0.4;
A negative value of d implies a low error; hence, the value of v is set to low

value for the model to have less exploration.

14.2.3 The Respiratory System and Syrinx Model

The outputs from the two networks of the motor pathway control two different
variables essential for song production. Network 1 influences the respiratory rhythm
by controlling the bronchial pressure (Pb). Network 2 controls the restitution
constant (K) of the bird’s vocal organ, the syrinx.

P ¼ P0 þP1v1; ð14:15aÞ

K ¼ K0 þK1v2 ð14:15bÞ

where P0 = 1.2 kPa, K0 = 2.5 N/cm3, P1 = 1.0 kPa, K1 = 3 N/cm3.
The current theory of song learning in birds suggests that song is produced

through oscillations of tissue folds called labia that open and close the air passage
from the bronchi to the trachea (Gardner, Cecchi, Magnasco, Laje, & Mindlin,
2001). These oscillations are modeled by:
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dxsyr
dt

¼ ysyr: ð14:16Þ

M
dysyr
dt

� �
þDysyr þD2y

3
syr þKxsyr ¼ P

a0 � b0 þ 2sysyr
xþ b0 þ sysyr

� �
: ð14:17Þ

where M is the mass (M = 0.05 g/cm2), D and D2 correspond to (D = 5 dyn s/cm3,
D2 = 0.009 dyn s3/cm3), all of which are in per unit area; s is the time constant
(s = 0.005 s), a0 = 0.01 cm, b0 = 0.02 cm.

14.2.4 The Vocal Filter Model

The oscillations produced by the vocal folds are filtered by the vocal tract so that
certain high-frequency components of the incoming signal are enhanced (Hoese,
Podos, Boetticher, & Nowicki, 2000). Here the filter is modeled by assuming that
the trachea and the beak form two tubes of lengths L1 and L2 and areas A1 and A2,

respectively (Gardner et al., 2001). The input pressure generates a fluctuation in the
tracheal pressure part of which is reflected and part of which travels to the beak.
Again part of the energy is reflected and part transmitted at the beak, denoted by the
final output bf.

a tð Þ ¼ Pi tð Þþ bbðt � s1Þ: ð14:18Þ

bb tð Þ ¼ r12 � aðt � s1Þþ t12 � cbðt � s2Þ: ð14:19Þ

bf tð Þ ¼ t12 � aðt � s1Þþ r12 � cbðt � s2Þ: ð14:20Þ

cb tð Þ ¼ a � bfðt � s2Þ: ð14:21Þ

where P(t) is the input pressure, calculated by Eq. (14.22), a(t) and bf(t) are the
forward traveling waves from the trachea and the beak, respectively, bb(t) and
cb(t) denote the backward traveling (reflected) waves from the trachea and the beak,
respectively, r12 and t12 denote the sound energy reflected and transmitted,
respectively, at the junction of the beak and the trachea, sI denotes the time taken by
the sound wave to traverse a tube of length Li, and a denotes the reflection coef-
ficient between the beak and the atmosphere.

PiðtÞ ¼ cp
d2xsyr
dt2

ð14:22Þ

where cp is a constant of proportionality (cp = 1), L1 = 5 cm, L2 = 2 cm, A1 = 9.0
arbitrary units, A2 = 8.0 arbitrary units, a = 0.9 (Trevisan, Eguia, & Mindlin,
2001), r12 and t12 are calculated according to the following equations:
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r12 ¼ A1 � A2

A1 þA2
ð14:23Þ

t12 ¼ 1� r12 ð14:24Þ

14.2.5 Training Algorithm

The model is trained in a temporal stage-wise manner. The training signal received
by the motor system is processed by dividing the signal into smaller segments. Each
segment is processed based on the average error of the previous segment. This kind
of segmentation process referred to as ‘chunking’ of sensory information has been
observed to occur in the case of performing a sequential visuomotor task (Sakai,
Kitaguchi, & Hikosaka, 2003). In the model, training is done by comparing the
performance of the system with that of the previous stage using a TD learning
algorithm. Training is performed if the error in a given instant is lesser than that of
the previous trained segment (Fig. 14.4). The error is computed in two phases. In
the first phase, the error is taken as a weighted average of errors in the peak
frequency, peak amplitude, and baseline values of the signal over a small time
window. In the second phase of training, the error is the average over instantaneous
error values between the birdsong signal and the output signal of the model in a
small time window. Figure 14.4 shows the temporal staging used for training.

The first phase error is computed using the following equation:

eI tð Þ ¼ epp tð Þþ efr tð Þþ ebl tð Þ ð14:25Þ

Fig. 14.4 Error computation for temporal stage-wise learning in the model
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where epp(t) is the error in the peak-to-peak amplitude between the two signals, and
efr(t) is the error in peak frequencies, ebl(t) is the error in the baseline values of the
two signals.

The error, eII(t), in phase 2 of training is computed as:

einst tð Þ ¼ F tð Þ�bf tð Þð Þ2 ð14:26Þ

errðtÞ ¼
Pt

j¼ðt�winÞ einstðjÞ
win

ð14:27Þ

where einst implies instantaneous value of error between the two signals and win is
the size of window over which the instantaneous error is averaged.

As denoted in Fig. 14.4, the signal is segmented into chunks of smaller units,
containing, say, k sample points. Then, eavg(t) is the averaged error denoted by:

eavgðtÞ ¼
Xðiþ 1Þk

t¼ik

errðtÞ
k

: ð14:28Þ

Here, err(t) is er(t) as in Eq. (14.25) or err(t) as in Eq. (14.27), i denotes the ith
chunk of the signal.

The network output error signals, F1 and F2, are updated based on the following
equations,

F1ðtÞ ¼ v1f1ðtÞþm � F1ðt � 1Þ ð14:29Þ

F2ðtÞ ¼ v2f2ðtÞþm � F2ðt � 1Þ ð14:30Þ

where m denotes the momentum term in reinforcement learning (m = 0.3), v1 and
v2 denote the values of the exploration variables, and f1 and f2 denote the noise
variables as explained in Sect. 14.2.2. F1 and F2 denote the output error signals.
They denote (u(t) – v(t)) as in Eq. (14.12). As v tð Þ ! u tð Þ, the noise variable
reduces in magnitude, denoting a decrease in the exploratory drive in the model.
Further, as the networks are trained with the Eqs. (14.3–14.7), for various param-
eters, v1 tð Þ ! F1 tð Þ and v2 tð Þ ! F2 tð Þ.

The learning equations for the weights of the oscillators are also updated such
that Eqs. (14.4) and (14.5) are modified to:

da
dt

¼ gdxðtÞFjðtÞ: ð14:31Þ

da0j
dt

¼ gdcjFjðtÞ;
where j ¼ 1 or 2 denotes network 1 or network 2

ð14:32Þ

where c1 = 1.0, c2 = 1.0, η = 0.4.
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14.3 Results

The model was tested on two different zebra finch song syllables. The results are
shown in Figs. 14.5 and 14.6, respectively. Here the noise variable v has the mean
0 and standard deviation 0.25.

14.3.1 Lesion Studies

Lesioning is a standard way to differentiate the specific contributions of a nucleus in
a neural circuit. In the song system of Fig. 14.1, the efferent pathway consisting of
HVc and RA is essential for both song learning and production while the recursive
loop consisting of Area X and LMAN is found to be necessary for song learning
and not for song production. Specifically, lesions of Area X and LMAN have
distinct effects on song learning process, which will be now investigated with the
help of simulations.

14.3.1.1 LMAN Lesion

LMAN lesions caused severe distortion of bird song that consisted of monotonous
repetition of a single note complex. Basically, birds with early LMAN lesions
manifest premature crystallization, though similar lesions in adult birds have little
or no effect. Figure 14.7 from Bottjer et al. (1984) shows sonograms of songs from
birds whose LMAN was lesioned at 35 days. Note that the spectral band pro-
gressively became narrower with age; at an age of about 90 days, spectrum became
much narrower than that of a normal song. Notes in the song of LMAN-lesioned
birds lacked the frequency modulations of a normal song; they consisted of long
bouts of singing without the normal phrase structure. The song of LMAN-lesioned
birds is characterized by monotonous repetitions of a single note complex and
stabilizes early (Scharff & Nottebohm, 1991).

Our present model lumps Area X and LMAN together, into a single random
vector with variable amplitude. LMAN has glutamatergic neurons while Area X has
GABA neurons. Since LMAN directly projects to RA, and LMAN neurons are
excitatory, lesioning of LMAN can be modeled as reduced amplitude of noise
vector ðfiÞ in the model.

To simulate LMAN lesion, noise amplitude fi is reduced from the normal 0.25
(standard deviation) to 0.05, and the song system is trained as it was in the normal
case. Note that the model song corresponding to LMAN lesion has neither the
frequency nor amplitude variations of a normal song note. Like the song of the
LMAN-lesioned bird, the model output is confined to a narrow band of frequencies
with weak harmonic component. The model song seems to consist of two repeti-
tions of a single note complex, each lasting about 50 ms (Fig. 14.8a). Network’s
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JFig. 14.5 a Sound pressure waveforms (normalized) of a birdsong syllable (left) and the
reconstructed waveform obtained from the model (right). b Power spectra of an actual birdsong
syllable and the reconstructed waveform obtained from the model are shown below. c The error
plot for the different stages in the training is shown. The solid line indicates the first stage of
training where the error is the weighted average of errors in the peak frequency, peak amplitude,
and baseline values of the signal over a small time window. The dashed line indicates the
second-stage training where the error is the average value of instantaneous error over a small time
window

Fig. 14.6 a Sound pressure waveforms (normalized) of a birdsong syllable (left) and the
reconstructed waveform obtained from the model (right). b Power spectra of an actual birdsong
syllable and the reconstructed waveform obtained from the model are shown below. c The error
plot of one of the training stages is shown
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training error drops quickly at an early stage and saturates at a high value,
resembling early song stabilization (Fig. 14.8c).

Figure 14.8 shows the reconstructed syllable at the adult stage after LMAN
lesion in comparison with that of the normal syllable of the zebra finch.

14.3.1.2 Area X Lesion

Contrary to effects of LMAN lesions, birds with lesions in Area X produced songs
that consisted of a rambling series of long and variable notes (Scharff & Nottebohm,
1991). While LMAN lesions produced premature stabilization, songs in birds with
lesions of Area X never stabilized.

We may recall that Area X is GABAergic and projects to LMAN. Thus, lesions
of Area X would disinhibit LMAN, which is expected to have larger than normal
activation. Therefore, we model Area X lesions by increasing the noise amplitude,
fi (standard deviation is 0.25 in normal case to 0.6 in case of Area X lesion).

In Fig. 14.9a, b, denote cases of different degrees of Area X damage. A denotes
43% Area X damage and B denotes 84% Area X damage. Note that the interval
length and the note structure both show degradation to various degrees in both
cases.

The results of the model simulations for two different trials of Area X lesions are
shown in Fig. 14.10.

Fig. 14.7 Effect of LMAN lesions on song performance in a zebra finch From Bottjer et al. (1984)

272 14 An Oscillatory Neural Network Model for Birdsong …



14.3.2 Dopamine Depletion Studies

Significant progress seems to have been made, in the recent years, in the under-
standing of the role of dopaminergic system in bird song (Gadagkar et al., 2016;
Kubikova & Kostal, 2009). Like in mammalian brains, sites that contain

Fig. 14.8 a Sound pressure waveforms (normalized) of a normal birdsong syllable (left) and the
reconstructed waveform obtained from the model after LMAN lesion (right). b Power spectra of an
actual birdsong syllable and the reconstructed waveform obtained from the model after lesion are
shown below. c The error plot of one of the training stages is shown. The solid line denotes phase
1 error, and the dotted line denotes the phase 2 error during training
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dopaminergic cells in songbird brain are SNc, VTA, and/or the periaqueductal gray.
Neurons of SNc and VTA project to the medium spiny neurons of Area X and alter
the excitability of the same (Ding & Perkel, 2002). Dopaminergic projections to
HVc and RA also exist (Bottjer, 1993). Although it is quite tempting to apply the
current notions about the varied functions of dopamine in mammalian brains to
songbird brains, there is very little experimental evidence to directly support such a
view. Brainard and Doupe (2002) suggest that the AFP in songbird provides some
sort of an error signal used for learning. To simulate dopamine-deficient conditions,
like those in a PD-affected songbird, we constrain the upward fluctuations of d,
which signifies DA signal, as follows:

dPD ¼ minðd;DAceilÞ ð14:33Þ

where min(x, a) is defined as:

y ¼ x; for x\a

¼ a; for a� x

In Eq. (14.33), d is the error signal directly calculated by Eq. (14.13), and dPD
denotes a weakened DA signal. DAceil is chosen to be a value less than the max-
imum value of d. Thus, lesser values of DAceil denote a greater DA loss. A similar
implementation of dopamine deficiency was used recently in (Balasubramani et al.,
2015; Magdoom, Subramanian, Chakravarthy, Amari, & Meenakshisundaram,
2010).

The DAceil value here was taken to be 0.5 so that DA levels as denoted by d vary
between −1 and 0.5 instead of −1 and 1, simulating reduced DA conditions. The
model was trained for the same time as in previous cases (Fig. 14.11).

Fig. 14.9 Effect of Area X lesions on song performance in a zebra finch. From Scharff &
Nottebohm, (1991)
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Correlated noise:

It is customary to model PD conditions by reduced dopamine levels. But another
change also is observed in dopamine-deficient BG. Experimental studies have
revealed, under dopamine-deficient conditions, prominent low-frequency period-
icity (4–30 Hz) of firing and dramatically increased correlations among neurons in
the GPe and the STN, though there were no significant changes in firing
rates (Bergman, Wichmann, Karmon, & DeLong, 1994; Brown et al., 2001;

Fig. 14.10 a Sound pressure waveforms (normalized) of a normal birdsong syllable (left) and two
instances of reconstructed waveforms (middle and right) obtained from the model after Area X
lesion. Note the variability in the song produced. b Power spectra of an actual birdsong syllable
and the reconstructed waveform after Area X lesion obtained from the model as explained in the
text. c The error plot of one of the training stages is shown. The solid line denotes phase 1 error,
and the dotted line denotes the phase 2 error during training
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Fig. 14.11 a Sound pressure waveforms (normalized) of a normal birdsong syllable (left) and the
reconstructed waveform obtained from the model after dopamine depletion (right). b Power
spectra of an actual birdsong syllable and the reconstructed waveform after depletion obtained
from the model are shown below. c The error plot of one of the training stages is shown. The solid
line denotes phase 1 error, and the dotted line denotes the phase 2 error during training
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Magnin, Morel, & Jeanmonod, 2000; Nini et al., 1995). Complex activity of STN–
GPe system is thought to play the role of the Explorer, an important component in
RL machinery and loss of such complexity has been hypothesized to contribute to
motor symptoms of PD, a theme that happens to be the central theme in the line of
models of basal ganglia described in this book (Chakravarthy & Balasubramani,
2014).

Therefore, we present a modeling exercise in which the noise arising out of AFP
is correlated. In the model we make f1 ¼ f2 to make noise values of both networks
correlated (Fig. 14.12).

14.4 Discussion

We present an Actor–Critic–Explorer model of birdsong learning cast in the
framework of reinforcement learning. In tune with some of the previous RL-based
models on BG, we model dopamine as the temporal difference (TD) error. The
value, which represents the inverse of the error between the original birdsong and
its reconstruction, is thought to be computed in the critic. The location of the critic
is not precisely known. In the model of Doya and Sejnowski (1995), it was assumed
that the AFP stores a template of the tutor’s song and uses it to generate evaluations.
But there has been no clear evidence of the same though it is clear that the Area X is
involved in either error evaluation or in using the error for controlling exploration.
We assume that these evaluations are the only information preserved by the bird
after its sensory stage. The AFP, or specifically LMAN’s output to RA, is thought
to be the Explorer which perturbs the motor pathway, thereby enabling it to dis-
cover the correct inputs to the syrinx necessary to produce an accurate song. Several
lines of biological evidence point to the possibility that LMAN serves as an
Explorer. Firstly, LMAN neural activity is more irregular and variable from trial to
trial, than activity in RA (Leonardo, 2004). Secondly, LMAN activity is lower
during the directed song, which is stable and stereotyped, than during the undi-
rected song which shows more variability (Hessler & Doupe, 1999; Kao, Doupe, &
Brainard, 2005).

In this preliminary model, the three modules of AFP (Area X, DLM, and
LMAN) are lumped together and modeled as two uniformly distributed random
variables of mean 0 and standard deviation 0.25. The motor pathway is modeled by
a network of oscillators, where the oscillatory layer denotes the HVc and the output
layer of the network represents RA. The song output of the model is a function of
both the motor pathway and the AFP. The relative contributions of the motor
pathway and the AFP vary with trials, with the contribution from AFP becoming
negligible once the song is crystallized. This is incorporated in the following
manner: In our model, as seen by Eq. (14.14), the variable v controls the noise from
the AFP, which in turn is controlled by d as explained in Sect. 14.2.2. In the
beginning of training, v is high as d is high. As training proceeds and the bird’s
song starts to match that of the tutor, the value of d falls to a low value, thereby
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Fig. 14.12 a Sound pressure waveforms (normalized) of a normal birdsong syllable (left) and the
reconstructed waveform obtained from the model with correlated noise (right). b Power spectra of
an actual birdsong syllable and the reconstructed waveform with correlated noise obtained from
the model are shown below. c The error plot of one of the training stages is shown. The solid line
denotes phase 1 error, and the dotted line denotes the phase 2 error during training
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reducing v, leading to a low contribution from the AFP to the final song. This
feature of the model reflects the fact that the adult song evolves to be independent of
AFP.

The dopamine signal serves multiple roles in the present model. The phasic
dopamine signal, dðtÞ, represents the TD error. It modulates the connections
between the oscillatory layer and the output layer of the network that represents the
motor pathway. This assumption is biologically feasible since the HVc ! RA
synapses are located in RA and dopamine projections from VTA do arrive at RA
(Appletants, Ball, & Balthazart, 2002). The phasic dopamine also controls the level
of exploration at every time step according to Eq. (14.14), which is a biologically
plausible feature since there are dopaminergic projections to Area X and LMAN.
Although DA projections to LMAN have been observed, the number of the pro-
jections seems to be only moderate, whereas the projections to Area X seem to be
quite dense as seen by tyrosine hydroxylase immunoreactivity studies (Bottjer,
1993). The slow-varying or tonic dopamine signal, which may be thought to be
represented by the average error in song reconstruction over trials, controls the
amplitude of noise arising out of the AFP, on a slower timescale of trials.

The idea that AFP is probably providing exploratory inputs for training the
motor pathway is not new (Doya & Sejnowski, 1995; Fiete et al., 2007). Doya and
Sejnowski (1995) assume that LMAN projections to RA perturb the HVc ! RA
synapses, and offer, as biological justification, the fact that LMAN synapses onto
RA are of NMDA-type. Expanding their original schema in a subsequent work,
Doya and Sejnowski (1998) interpret Area X as the Critic and LMAN as the
Explorer. In a more recent work, Fiete et al. (2007) present a model of birdsong
learning which is also cast in the RL framework, but differs from Doya and
Sejnowski (1995) on several issues. While both models agree that LMAN is the
Explorer [referred to as experimenter in (Fiete et al., 2007)], the main point of
departure between the two models is regarding the nature of the Explorer, or,
specifically, the nature of LMAN’s influence on RA.

In (Doya & Sejnowski, 1995), LMAN inputs to RA are thought to produce a
change in HVc ! RA weights, a change that lasts during the entire duration of the
song (1–2 s). If the weight change results in an improved song, the change is
reinforced; else the change is discarded. But LMAN activity is dynamic, varying
over a timescale of 10–100 ms; it does not seem to supply the biological require-
ments of Doya and Sejnowski model. Following such a thread of arguments, Fiete
et al. (2007) present a model of birdsong learning in which LMAN inputs to RA
perturb, not the HVc ! RA synapses, but the activities of RA neurons.

The treatment of Explorer, in the present model, is similar to that of (Fiete et al.,
2007) in its broad outlines, though the mathematical form is quite different. Also,
unlike both the models described above (Doya & Sejnowski, 1995; Fiete et al.,
2007), we explicitly represent dopamine signal in the model. This signal is used to
train HVc ! RA synapses, and also to control the amplitude of LMAN activity,
which represents the exploratory noise. An explicit representation of dopamine
signal made it possible to model song learning in avian Parkinson’s disease (PD).
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Song learning under dopamine-deficient conditions was simulated in
Sect. 14.3.3. DA reduction is simulated by varying two parameters: (1) constraining
upward fluctuations of dopamine signal and (2) increasing the correlation (to 1) of
the two outputs of the AFP. In both cases, there is a failure to learn, with recon-
struction error showing non-monotonic fluctuations. In the former case of con-
strained dopamine fluctuations, the model song has smaller amplitude than normal
song and exhibits a narrowing of spectral band. Experimental studies show that
lesions of SNc–VTA do not affect song production in adult birds (Hara, Kubikova,
Hessler, & Jarvis, 2007). But to our knowledge, there is no corresponding study on
song learning in a juvenile bird. Studies of changes in PD speech in human subjects
reveal a reduced variability in fundamental frequency, F0 (Harel, Cannizzaro,
Cohen, Reilly, & Snyder, 2004), but there is no mention of variation in harmonic
content.

It would be important to compare the current understanding of the function of
mammalian BG and the AFP in songbird. Knowledge in our understanding of one
of these systems can probably be used to fill in the gaps in our understanding of the
other. For example, the classical accounts of BG interpret the direct pathway as the
‘Go’ pathway, since it facilitates movement, and the indirect pathway as the
‘NoGo’ pathway, since it inhibits movement. Since the AFP, the avian homolog of
BG, is only a single pathway, it is not clear whether it is comparable to the direct or
the indirect pathway of mammalian BG. From microanatomical studies of AFP,
Farries & Perkel, (2002) suggest that AFP is best considered as a mixture of the
direct and indirect pathways, and Area X has both striatal and pallidal features.
Extending the anatomical comparison to that of function, if we consider that the
AFP’s inputs to RA serve as an Explorer or an experimenter, it would be legitimate
to ask if and where such an Explorer is located in mammalian BG. The question is
of significance since classical treatments only speak of ‘Go’ and ‘NoGo,’ with no
sign of an Explorer in the picture.

We have been developing a model of mammalian BG in which the indirect
pathway serves the role of an Explorer (Chakravarthy & Balasubramani, 2014;
Chakravarthy, Joseph, & Bapi, 2010; Joseph, Gangadhar, & Chakravarthy, 2010;
Magdoom et al., 2010; Sridharan, Prashanth, & Chakravarthy, 2004). Dopamine
signals to the Str are believed to switch cortico-striatal transmission between the
direct and indirect pathways, with higher dopamine levels activating the direct
pathway (‘Go’), and lower dopamine levels activating the indirect pathway
(‘NoGo’). Between the ‘Go’ and ‘NoGo’ regimes, we posit an intermediate
‘Explore’ regime which corresponds to moderate dopamine levels. In this regime,
the indirect pathway generates stochastic, exploratory signals, analogous to the AFP
in songbird. A recent model of the role of BG in reaching movements embodies
these modeling principles and also exhibits PD symptoms like tremor and
bradykinesia under dopamine-deficient conditions (Magdoom et al., 2010).

Thus, mammalian BG and avian AFP seem to have deep functional similarities,
in addition to the known anatomical resemblances. A more in-depth study of
functional similarities might clarify and resolve points of ambiguity in both sys-
tems. The two systems indeed seem to have a deep functional similarity in that both
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serve as engines for learning by reinforcement. With this fundamental guiding
principle, a comprehensive modeling effort that goes hand in hand with experi-
mental investigations might soon bring about a decisive progress in our under-
standing of these two crucial brain circuits.
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Chapter 15
The Basal Ganglia: Summary
and Future Modeling Research

V. Srinivasa Chakravarthy and Ahmed A. Moustafa

Abstract The pivotal idea of the Go-Explore-NoGo (GEN) approach to BG
modeling, expounded in this book, is the hypothesis that the complex dynamics of
the STN–GPe loop can introduce certain randomness in the action selection
mechanisms that occur downstream in other BG areas as well as the cortex, tha-
lamus, and other subcortical structures. The indirect pathway, that consists of the
STN–GPe loop, in addition to its classical role as a source of movement inhibition,
also serves as a source of randomness, and therefore, in the jargon of reinforcement
learning, can control the levels of exploration in action selection. In this chapter, we
summarize how the Go-Explore-NoGo approach can account for several functions
of the basal ganglia. We also provide a few ideas on how to use the
Go-Explore-NoGo approach to simulate behavioral performance in other basal
ganglia-related functions (e.g., attention, working memory, episodic memory) and
disorders (e.g., schizophrenia).

For more details on the GEN approach, the reader is referred to Chap. 5 in this
book. Modeling studies described in various prior chapters in this book have further
shown that as the tonic dopamine levels in the striatum are varied continuously,
action selection exhibits three regimes for three different ranges of dopamine. For
high dopamine levels, the model tends to choose the optimal (highest value) output
(analogous to ‘Go’); for low dopamine levels, no action is selected (analogous to
‘NoGo’); but for intermediate levels of dopamine the model selects a nonoptimal
action, a selection which randomly varies from trial to trial. It is this new facet of
the model that emerges naturally out of the dynamics of STN–GPe, without
explicitly introducing stochastic elements, that is being proposed to underlie
exploratory action selection dynamics of the BG. Thus, we have incorporated in our
modeling approach the so-called GEN approach according to which the action
selected dynamics of BG can be expressed in terms of the three regimes: Go,
Explore, and NoGo.

Our approach to modeling BG described in Chap. 5 is built around value-based
decision making. In Chap. 12, we extended this approach to utility-based decision
making. Utility is a linear sum of value and risk, where risk is defined as the
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expected value of the square of the temporal difference error. This modeling
expansion accommodated another neuromodulator, serotonin, which is known to
have a multitude of functions in the BG. Specifically, we hypothesized that the
coefficient of the risk term in the utility function, the risk sensitivity, a, is the neural
correlate of the action of serotonin in the BG. This model, which combines the roles
of both dopamine and serotonin in BG, accounts for several functions of serotonin.
Currently, there are three prominent theories of the role of serotonin in BG:
(1) risk-sensitive decision making, where serotonin controls risk assessment,
(2) temporal reward prediction, where serotonin controls timescale of reward pre-
diction, and (3) reward/punishment sensitivity, in which the punishment prediction
error depends on serotonin levels. Our model reconciles all the three functions of
serotonin in a single framework.

The above-described model of the action of dopamine and serotonin has been
recently extended to model bipolar disorder (Balasubramani & Chakravarthy,
2017). Bipolar disorder is characterized by mood swings—oscillations between
manic and depressive states. These swings (oscillations) mark the length of an
episode in a patient’s mood cycle (period) and can vary from hours to years. Our
modeling study uses decision-making framework to investigate the role of basal
ganglia network in generating bipolar oscillations. In this model, the basal ganglia
system performs a simple two-arm bandit task (Bourdaud, Chavarriaga, Galán, &
del R Millan, 2008; Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006), consisting
of probabilistic positive and negative rewards as outcomes of each of the arms
(states); they correspond to the model’s positive and negative mood states,
respectively. The outcomes are probabilistic with probability = 0.5. We chose this
task as it is simple enough for observing the oscillatory effect in decision-making
framework between positive and negative states. Here, we study the utility function
approach in more detail, focusing on the influence of subjective reward and risk
sensitivity in the overall choice selection dynamics between positive and negative
mood states. In the first model (A), we build value, risk, and utility functions from
classic RL strategies for positive and negative states and use softmax policy (Sutton
& Barto, 1998) to choose between actions. Then, in model (B), we extend the
concepts to a more detailed network model of the BG, with abstract activities of D1
receptor-expressing medium spiny neurons (D1 MSNs) of striatum for computing
value, and the D1 and D2 receptor co-expressing MSNs for computing risk func-
tion. The direct and indirect pathways of BG, encompassing STN, GPe, GPi, and
thalamus, implement the selection strategy to choose between utilities of positive
and negative states. In both the models, we associate putative mechanisms driving
the selection dynamics with bipolar-like oscillations between mood states. The
bipolar oscillations, it must be noted, are obviously different from the pathological
oscillations of STN–GPe dynamics that are exhibited in diseases such as
Parkinson’s (Gillies, Willshaw, & Li, 2002; Weinberger, Hutchison, Lozano,
Hodaie, & Dostrovsky, 2009; Willshaw & Li, 2002). While the STN–GPe oscil-
lations are in the range of Hertz, the bipolar oscillations span over months and
years. Finally, a reduced dynamical system model (C) consisting of a simple
two-variable system, that captures the essential dynamics of both the above models,
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is presented and the correspondences between the key parameters of different
models are discussed.

Since it is generally considered that the central function of BG is action selec-
tion, several computational BG models address action, which is often restricted to
discrete or binary action selection. However, several motor functions of the BG
involve operating in continuous spaces—reaching, gait, saccades, spatial naviga-
tion, among others. Therefore, there is an obvious need to build BG models that
operate in continuous action spaces, a topic that has been often neglected in prior
models of the basal ganglia (Joel, Niv, & Ruppin, 2002). In Chap. 5, we extended
the discrete action selection framework to continuous spaces. The discrete values
associated with discrete actions now give place to a value function defined over
continuous state spaces. The GEN approach applied to such continuous value
function can be reduced, for computational convenience, to a three-step algorithm,
which can be interpreted as a form of stochastic hill-climbing over the value
landscape, a process that is analogous to simulated annealing (Kirkpatrick, Gelatt,
& Vecchi, 1983). The above-mentioned general framework has been extended to
explain a wide variety of BG functions including reaching, gait, precision grip, song
learning, and action selection. Extensions of the above-mentioned framework that
substitute the value function with a utility function, which is a combination of value
and risk, have been used to model the joint functions of dopaminergic and sero-
tonergic systems in the BG.

We now explain how the aforementioned modeling approach can be used to
explain several motor and some non-motor functions of BG. This is a guide for
computational modeling neuroscientists who aim to develop models of the basal
ganglia.

15.1 Applying the BG Model to Various Behavioral
Processes

In Chap. 10, we describe a model of the role of BG in generating reaching
movements. The model consists of a cortical loop including the motor cortex,
proprioceptive cortex, a layer of neurons representing the spinal cord and a simple
arm model closing the loop. The cortical loop is first trained using unsupervised
learning. Once the cortical loop is trained, the activation of a specific part of the
motor cortex places the arm at a specific point in its workspace. Now the BG and
the prefrontal cortex are added to the cortical loop to introduce goal-oriented
reaching. The distance between the target and the BG system is represented as a
value function in the BG system: The goal information is projected to the striatum
from the prefrontal cortex, and information about the actual location of the hand
comes from the sensory cortical projections to the striatum. The cortico-basal
ganglia dynamics drives the hand up the value gradient following the GEN policy
taking the hand closer to the goal. Once the hand approaches the goal sufficiently
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closely, the final muscle activations of the hand at that state are used to train the
prefrontal to motor cortical connections. Thus, the muscle activations required to
reach a given target are discovered by the BG dynamics by a slow search process
and transferred progressively to the cortical pathway by. Thus, the model’s archi-
tecture and function are consistent with the classical perspective of the role of BG in
motor learning that motor learning first occurs in the BG and gradually transferred
to the cortex. This gradual transfer from BG to the cortex is implemented by two
coefficients that represent the level of influence of the BG and the prefrontal cortex
on the movement generated by the model. Parkinson’s disease is simulated by
suppressing the dopamine signal represented by the temporal difference error, and
also by altering the connectivity of the STN–GPe system so as to increase the
synchronization levels of that system. The simulated Parkinson’s disease model
shows both akinetic rigidity and tremor for various parameter settings.

Chapter 10 describes a model of song learning in birds, specifically in zebra
finches. Birds have a BG homolog, known as the Anterior Forebrain Pathway
(AFP), although it is slightly different from mammalian BG in detailed anatomy.
The AFP consists of a chain of modules including Area X, Dorso-Lateral Thalamus
(DLM), and Lateral Magnocellular Nucleus of the Anterior Neostriatum (LMAN).
Then there is the motor pathway, analogous to the sensory-motor cortical pathway
mammalian brains, consisting of two regions: hyperstriatum ventrale pars caudalis
(HVc) and Robust nucleus of the Archistriatum (RA). Song learning in many
species of birds is divided into two phases. In the first phase, the sensory phase, the
male bird listens to the tutor song of another male bird in the colony and memorizes
some aspect of the tutor song. In the second phase, the motor learning phase, the
bird establishes the songs learnt earlier by rehearsal aided by auditory self-feedback.
We hypothesize that: (1) the songbird learns only evaluations of songs during the
sensory phase; (2) the AFP plays a role analogous to the Explorer, a key component
in reinforcement learning (RL); (3) the motor pathway learns the song by com-
bining the evaluations (value information) stored from the sensory phase, and the
exploratory inputs from the AFP in a temporal stage-wise manner. Although there
are differences in anatomical features between the avian BG homolog and mam-
malian BG, at an abstract level, there are strong functional similarities. Here too, as
in the earlier cases that describe motor learning in mammalian brains, there is a BG
homolog that computes the value and also supplies exploratory drive to the main
pathway—the motor pathway. Thus, the BG homolog in the avian case discovers
the correct output by a slow and gradual search process and transfers the results of
the search to the motor pathway for rapid learning.

In Chap. 7, we develop modeling strategies to elucidate gait abnormalities in PD
specifically freezing of gait, which is characterized by sudden and paroxysmal
cessation of locomotion. It is often triggered by certain environmental contexts
which include approaching narrow doorways/passages, turns, and also during
movement-related scenarios such as movement initiation and dual-tasking. The
models are driven by the hypothesis that FOG is not a motor problem, but a
problem of the evaluation of space in PD subjects, as the contextual features which
usually trigger freezing include turning environments, narrow doorways, obstacles
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among others. We model the cortico-BG network to understand the role of these
contexts on freezing behavior. We propose the concept of ‘value of space’ which
represents a value function an agent (simulated entity) builds while exploring a
given environment. This value function is used by the motor machinery to perform
appropriate actions in different scenarios, like narrow doorways and winding pas-
sages. In this work, we model the cortico-BG-spinal system to explain the
Parkinsonian gait impairment. The spinal areas are modeled as central pattern
generators which produce the necessary rhythmic output for sustaining locomotion.
We study the role of higher level areas on lower level mechanisms leading to gait
regulation and its breakdown in PD freezers (subjects who show freezing). We
further extend this model to study the role of cognition in freezing. Cognitive tasks
which are often coupled with normal motor processes (dual-tasking) evoke freezing
in PD. We attempt to understand freezing by modeling multiple cortico-BG loops,
viz. motor and cognitive loops and the effect of their interaction on gait movements.
We also model the influence of turning on gait, another factor known to trigger
freezing. The modeling efforts suggest that freezing is perhaps not exclusively
dependent on dopamine insufficiency in PD, and there is a plausible role of other
neuromodulators, especially serotonin and norepinephrine which could precipitate
this episodic behavior.

Chapter 8 presents a model of precision grip performance in normal and PD
conditions. Precision grip refers to the task of holding a small object by gripping it
between the thumb and the index finger. Precision grip performance involves a
threshold effect: Precision grip succeeds only if the grip force exceeds a certain
threshold, known as the slip force. Otherwise the object slips and falls. The
problem, therefore, lends itself naturally to be treated using risk-based decision-
making methods. Close to the slip force, even a small fluctuation in grip force can
lead to slippage and fall. This large variability in the outcome close to the slip force
is associated with high risk. Therefore, grip force must be maintained sufficiently
higher than the threshold value of slip force, so as to minimize risk. The
utility-based decision-making approach of Chap. 12 is ideally suited to model the
grip force changes in normal and PD conditions. Experimental studies on grip force
generation in PD patients show an increase in grip force during ON medication and
an increase in the variability of the grip force during OFF medication (Fellows,
Noth, & Schwarz, 1998; Ingvarsson, Gordon, & Forssberg, 1997). Since there are
grip force changes in PD conditions, the role of BG in precision grip performance is
strongly indicated. The model consists of two components: (1) the sensory-motor
loop component and (2) the Basal Ganglia component. The sensory-motor loop
component converts a reference position and a reference grip force into lift force
and grip force profiles, respectively. The lift force and grip force work together in
lifting a load. The sensory-motor loop component also includes a plant model that
represents the interaction between two fingers involved in PG and the object to be
lifted. The proposed model is able to account for the precision grip results from
normal and PD patients accurately (Fellows et al., 1998; Ingvarsson et al., 1997).

We had also extended the approach to BG modeling developed in this book to
model the role of BG in spatial navigation. This work was published elsewhere and
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not discussed in this book (Sukumar, Rengaswamy, & Chakravarthy, 2012). It is
generally thought that the hippocampus is the primary subcortical structure
involved in spatial navigation. However, there is evidence that BG and hip-
pocampus actually cooperate in driving spatial navigation (Packard & Knowlton,
2002). In fact, more recent evidence suggests the involvement of cerebellum in
spatial navigation, particularly in integrating vestibular signals with other sensory
signals like visual, auditory, or proprioceptive signals that aid navigation
(Rochefort, Lefort, & Rondi-Reig, 2013). Elsewhere we had described a model of
the combined roles of BG and hippocampus in spatial navigation (Sukumar et al.,
2012). The model describes the BG as subserving cue-based navigation, while the
hippocampus subserves place-based navigation. The model was applied to a stan-
dard spatial navigation set up like the Morris water maze. Place is coded by the
spatial context represented by a set of poles uniformly placed around the rim of the
circular water maze. When the simulated animal reaches the hidden platform, it is
given a positive reward; when it hits the surrounding wall it is given a punishment.
On exploration of the maze, the simulated animal constructs a value landscape of
the ambience in terms of the spatial context represented by the array of poles. The
model was able to account for the experimental results of using the Morris water
maze (Devan & White, 1999). Under Parkinsonian conditions, the model also
exhibited impaired spatial learning characterized by longer escape latencies
(Miyoshi et al., 2002).

Our BG modeling approach was also extended to model the role of BG in
saccade generation (Krishnan, Ratnadurai, Subramanian, Chakravarthy, &
Rengaswamy, 2011). Although there is extensive evidence supporting the role of
BG in saccade generation, there are very few computational models simulating this
function (Dominey & Arbib, 1992). One of the output ports of BG, the substantia
nigra pars reticulate (SNr), influences saccades via the Superior Colliculus (SC), a
key nucleus that controls eye movements. Hikosaka and colleagues have shown that
the caudate–SNr–SC pathway can be trained to produce reward-based saccadic
movements (Isoda & Hikosaka, 2008). Saccades were found to be prolonged with
reduced velocities in MPTP monkeys (Kori et al., 1995). As with the other BG
models, our BG model for saccade generation was cast within the reinforcement
learning (RL) framework, with the dopamine representing the temporal difference
error, the striatum serving as the critic, and the indirect pathway playing the role of
the Explorer. The model captures experimentally observed performance on standard
saccade tasks like feature and conjunction searches, directional selectivity, and a
successive saccade task. Under Parkinson’s conditions, the model also exhibited
longer saccade reaction times and prolonged saccades, consistent with patient
performance.

In this book, we have primarily focused on motor functions of the basal ganglia,
in normal and pathological conditions. However, the motor deficits in pathology of
the basal ganglia are not confined to the musculoskeletal system and extend also to
motor apparatus that controls speech. Motor deficits in PD include those of respi-
ration, phonation, and articulation and therefore affect speech production (Harel,
Cannizzaro, & Snyder, 2004). Speech motor deficits in PD are manifested as
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dysarthria, a disorder of spoken communication due to central or peripheral nervous
system damage, and are associated with disturbance in the muscular control of
speech. It is characterized by a monotony of pitch and loudness, reduced stress,
variable rate, imprecise consonants, and a generally poor level of articulation (Pinto
et al., 2004). In Chap. 14, we described a model of song learning and production in
songbirds. An interesting modeling challenge for the future is to extend the song
learning model described in this book, to model speech impairment in PD patients.
The fact that the basal ganglia have a role in speech production, anticipates a role
for this subcortical circuit in general language functions. BG models of sequence
learning can be extended to model language functions, since language processing is
an instance of sequential information processing. Thus, modeling effort of the basal
ganglia, starting from modeling of motor functions, to modeling sequence pro-
cessing, proceeding to modeling language function, is a logical path along with
modeling can progress. Such a manner of progression is meaningful even from the
point of view of the so-called motor theories of language origins (Allott, 1992).
According to this theory, language had originated by a new combination of pre-
existing neural motor elements, by a redirection of neural programs which were
hitherto occupied with movement coordination, to be extended to the muscles of the
mouth, throat, and chest among others in order to produce speech sounds. Thus, the
modeling framework laid out in this book, to explain motor functions of the basal
ganglia, can perhaps be effectively extended to model also the language functions
of the basal ganglia.

The Go-Explore-NoGo approach to BG modeling can also be expanded to
cognitive processes, such as attention, working memory, and episodic memory. In
attentional processes, one needs the Go mechanism to select which information in
the environment to pay attention to. But in addition, we also learn not to pay
attention to certain cues in the environment, such as task-irrelevant information,
which require the NoGo mechanism (Moustafa, 2015). Impairment of the NoGo
mechanism of attention can lead to excessive attentional performance to several
cues in the environment, which is a key feature of schizophrenia (Bergman,
O’Brien, Osgood, & Cornblatt, 1995; Morris, Griffiths, Le Pelley, & Weickert,
2013; Pankow et al., 2016). Impaired dopamine projections to the basal ganglia
underlie attentional deficits in schizophrenia (Mehler-Wex, Riederer, & Gerlach,
2006). In addition, choosing which environmental cues to pay attention to requires
one to search for important cues in the environment; such search is based on the
Explore mechanism, as what we pay attention to in the environment is not always
fixed. Accordingly, future modeling work should incorporate the
Go-Explore-NoGo approach to simulate attentional task performance in healthy
people and also patients with schizophrenia. The same mechanism can also be used
to simulate attentional impairment in ADHD, a disorder that also involves degen-
eration of dopamine projections to the basal ganglia (Mehler-Wex et al., 2006). The
same exact mechanism can also be used to simulate working memory, as both
attentional and working memory processes rely on similar neural mechanisms
(LaBar, Gitelman, Parrish, & Mesulam, 1999; Mayer et al., 2007). The same
Go-Explore-NoGo policy can be used to simulate episodic memory. Some studies
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have investigated memory retrieval vs. memory suppression, that is, to understand
the Go mechanism to retrieve memory or NoGo mechanism to suppress memory
retrieval (Anderson & Green, 2001; Benoit & Anderson, 2012; Levy & Anderson,
2008). The importance of inhibiting memory retrieval (NoGo) is linked to
trauma-related disorders, such as post-traumatic stress disorder (PTSD), when it is
potentially important not to remember negative life events. While it has been
reported that different parts of the prefrontal cortex play a role in memory retrieval
and memory suppression (Depue, Curran, & Banich, 2007), to our knowledge it is
not known whether the basal ganglia play a role in these processes as well. Future
modeling work can also incorporate the Go-Explore-NoGo mechanism to simulate
episodic memory in healthy individuals and also patients with PTSD.

15.2 Clinical Applications

Throughout the book, the models described have been used to describe basal
ganglia function in both normal and disease conditions, particularly under
Parkinsonian conditions. But the power of the models does not stop at explaining
the impaired function in disease conditions; our models can be extended to explain
the effect of various therapeutic measures employed to treat the disease. Two
prominent therapeutic modalities for Parkinson’s disease are drugs and deep brain
stimulation (DBS); both of these approaches have been included in the models
described in this book.

The Izhikevich spiking network model (Mandali, Rengaswamy, Chakravarthy,
& Moustafa, 2015) was used to study impulsivity in PD OFF and ON conditions
using cognitive tasks, such as the Iowa gambling task (IGT) and probabilistic
learning task (PLT) (Mandali & Chakravarthy, 2016; Mandali, Chakravarthy,
Rajan, Sarma, & Kishore, 2016) (see Chap. 11). The model showed that the IGT
performance was poor in PD condition (both OFF and ON medication) compared to
healthy condition, with worse performance in ON medication condition. The
simulated PD ON condition does not learn from its action outcomes (rewards/
punishments) and wanders among the decks, which is reflected in the negative IGT
score. Physiologically this negative behavior is attributed to excess DA levels in the
striatum (Frank, Samanta, Moustafa, & Sherman, 2007). In the model, striatal
weights were positively updated even in punishment situation due to dopaminergic
medication (dmed), leading to the selection of wrong choice. Stimulation decreased
the IGT performance compared to ON condition. We then changed the position of
electrode within the STN nucleus and observed a significant change in IGT score.
Apart from position, another parameter thought to influence cognition was observed
to be current amplitude. With the above results, one can consider the possibility that
stimulation current when applied to topographical areas within the STN might lead
to inhibition/facilitation of the corresponding panel selection depending on the
current amplitude.
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In the probabilistic learning task, the model’s ability to differentiate between a
low and high rewarding choice in each of the physiological and pathological
conditions (PD OFF, PD medicated conditions (L-DOPA and dopamine agonist))
was tested. This behavior in PD OFF condition was also experimentally observed
where PD patients under medication tend to learn more from rewards than pun-
ishments (Frank, Seeberger, & O’reilly, 2004; Hazy, Frank, & O’Reilly, 2007).
This can be accounted for by the medication term (dmed = 3) which prevents the dip
selection of punitive choices. The model’s performance in the dopamine agonist
condition did not yield good accuracy either in reward learning but performed better
than L-DOPA condition in punishment learning. We then studied the performance
of the model in DBS condition and observed that the performance was dependent
on the electrode position. As the position of electrode was changed, the model
switched from reward-based to punishment-based learning. Based on the experi-
mental data that an increase in STN activity was observed during high-conflict
conditions, we analyzed the reaction time for each of the conditions in low-conflict
and high-conflict cases in each of the five conditions. We observed that the model
in normal conditions took more time to make a choice during high-conflict case
compared to that in low-conflict in both correct and error trials. The impulsivity
behavior observed clinically due to dopamine agonist medication (Ondo & Lai,
2008; Voon et al., 2007) was captured by the model wherein it was observed that a
lower reaction time for high-conflict case. We observed that the reaction times were
different for different electrode positions and a lower reaction time was obtained for
high-conflict case during both correct and error trials for a specific electrode
position (Pos 3) in the DBS condition.

One of the aims of building computational models is to understand the mech-
anisms of pathophysiology and aid in their diagnosis and treatment. It is of utmost
importance to translate the developed models such that they can be used clinically
to provide patient/symptom-specific intervention. There is a need to build com-
putational models with reasonable details which can predict the differences in
pathophysiological features within patients that could lead to their symptomatic
differences. These differences in the estimated model’s parameters within subjects
would then correspond to various cellular parameters such as neurotransmitter
levels and anatomical architecture, which can be used to optimally target and
improve patient’s clinical condition. The development of comprehensive, multi-
scale, and closed-loop models to better understand and deliver DBS in a clinical
setting has strong analogies with the problem of understanding drug effects on
behavior.

Even in the domain of modeling pharmaceutical effects of neurological drugs,
there is a need to develop comprehensive, multiscale models of the brain that
capture drug effects from the molecular level to behavior. Such an approach to
modeling drug action has been identified as a whole new field known as compu-
tational neuropharmacology (Aradi & Érdi, 2006). Though computational models
of drug action often confine themselves to modeling drug–receptor interactions
(Jorgensen, 2004), its ultimate aim is to understand drug’s effect on symptom
manifestation; its effect at the molecular is only instrumental in ensuring the
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desirable effect at the level of the symptom. Our modeling approach used in this
book can be also used to simulate drug effects on the treatment of various basal
ganglia-related disorders.
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