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Abstract The use of intelligent and sophistic technologies in evidence-based

clinical decision making support have been playing an important role in improving

the quality of patients’ life and helping to reduce cost and workload involved in their

daily healthcare. In this paper, an effective medical recommendation system that uses

a structural graph approach with advanced machine learning ensemble model is pro-

posed for short-term disease risk prediction to provide chronic heart disease patients

with appropriate recommendations about the need to take a medical test or not on

the coming day based on analysing their medical data. A time series telehealth data

recorded from patients is used for experimentations, evaluation and validation. The

Tunstall dataset were collected from May to October 2012, from industry collabo-

rator Tunstall. A time series data is segmented into slide windows and then mapped

into undirect graph. The size of slide window was empirically determined. The struc-

tural properties of graph enter as the features set to the machine learning ensem-

ble classifier to predict the patient’s condition one day in advance. A combination

of three classifiers—Least Squares-Support Vector Machine, Artificial Neural Net-

work, and Naive Bayes—are used to construct an ensemble framework to classify the

graph features. To investigate the predictive ability of the graph with the ensemble
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classifier, the extracted statistical features were also forwarded to the individual clas-

sifiers for comparison. The findings of this study shows that the recommendation

system yields a satisfactory recommendation accuracy, offers a effective way for

reducing the risk of incorrect recommendations as well as reducing the workload

for heart disease patients in conducting body tests every day. A 94% average predic-

tion accuracy is achieved by using the proposed recommendation system. The results

conclusively ascertain that the proposed system is a promising tool for analyzing time

series medical data and providing accurate and reliable recommendations to patients

suffering from chronic heart diseases.

1 Introduction

The chronic diseases such as heart disease have developed and become one of the

major public health problems which accounting for 50% of disease burden world-

wide [22]. According to World Health Organization (WHO), these diseases were

caused more than 60% of all death in 2005 [1]. Nowadays, many of people around

the world are suffering from different chronicle diseases because the lack of used dis-

eases prediction tools. Therefore, the survival rates have been noticeably increased

due to using sophisticated techniques to predict diseases in a right time.

Recommendation systems are computer-based information systems designed to

support and assist medical practitioners in implementation evidence-based practices

and improved decision-making [10, 31]. The recommendation systems can help

in minimizing medical errors and providing more detailed data analysis in shorter

time [38].

Telehealth systems offer a real time and quick way that is enable healthcare prac-

titioners and chronic diseases patients to exchange information easily [11, 45], and

subsequently have enjoined fast developments in many countries due to fast service

delivery and its low-cost. Most telehealth services are conveyed through Web-based

applications which utilize Internet and Web browsers, together with sensors, wear-

able devices and mobile. Given the significance of disease risk prediction in the

medical field [48] as well as the urgency of acquiring more effective analytic tech-

niques for disease risk prediction, great endeavors are expected to enhance the quality

of evidence-based decisions and recommendations in the telehealth environment. In

telehealth system, patients with chronic heart disease require taking daily medical

tests to monitor their heart health conditions. Yet, carrying out various necessary

medical tests every day for chronical disease patients in the current practice brings

lots of inconvenience and even burden to the patients and adversely affect their life

quality. Generating accurate intelligent recommendations to guide their daily medi-

cal tests can significantly decrease their workload in taking those tests while keeping

the associated health risk in a worthy low level.
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In many cases, an accurate medical recommendation is based upon the prediction

of patients’ short-term disease risk, which is one of the most important functions in

telehealth systems. A set of disease risk prediction models have become available in

the medical literature using statistical analysis tools and approaches based on data

mining tools. These models have been utilized for different healthcare and medical

issues [7, 9, 17, 21, 30, 33, 36, 39, 46, 47]. However, most of the existing work only

focus on the long-term medical prediction. Nevertheless, the short-term prediction,

which is studied in our work, has turns to be more challenging than the long-term

prediction as patients’ conditions may experience more dramatic and abrupt changes

during the short-term timeframe.

In this work, we utilize a structural graph to process the time series medical data

of heart disease patients to facilitate the subsequent data analytics to produce the

accurate prediction and recommendations. Graphs can be mathematically defined

as abstract representations of networks that consist from set of nodes linked by

edges [28, 35]. In last years, graph theory has been widely increasingly used in

analysing and classification of the complex networks relationships such as, social

networks, biological and brain networks, signal and image processing. It is used in

neuroscience research to analyse and study the brain diseases [32, 43, 44]. Some

studies [16, 26, 37] showed that graph theory can be considered as a one of robust

tools to characterize the functional topological properties of brain networks for both

normal and abnormal brain functioning [25, 41]. It is also used in image processing

as a powerful tool to analyse and classify digital images [34]. The time series of EEG

signals are converted into graphs by [12, 13] for EEG sleep stages classification.

The intelligent, accurate medical recommendations in our work rely on the use

of classification approaches to produce reliable prediction of the short-term medical

risks of the patients. By nature, this is a classification problem which involves using

classification methods (called classifiers) to predict the necessity of taking body test

of a given medical measurement.

There are several reasons that pushed us to construct the ensemble classifier. First,

it provides an efficient solution for building a single model for applications of which

the amount of data may be very large [40]. Second, it has also been proven to be an

effective tool thanks to its ability to improve the overall accuracy of the prediction

model. Empirical results showed that machine learning ensembles are often more

accurate than the individual classifiers that make them up [3, 42]. Bagging aggre-

gation is a machine learning ensemble algorithm designed to enhance the accuracy

and stability of machine learning algorithms [8], which was proposed by Breiman in

the mid-1990s [40]. It has been proven to be a very popular, efficient and effective

method for building an ensemble model.

Due to the ensemble outperforms individual classifiers, a combination of three

classifiers—Least Squares-Support Vector Machine, Artificial Neural Network, and

Naive Bayes—are used to construct an ensemble framework in this work.
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The contributions of this work can be summarized as follows:

∙ First, the time series medical data of a given patient will be segmented into smaller

overlapped sliding windows based on the size of the sliding window used in the

data analysis;

∙ Then, each sliding window is mapped into undirect graph in order to extract the

structural properties of each graph;

∙ Finally, the extracted structural properties of each graph are then input into our

ensemble learning model to produce a binary recommendation concerning whether

that patient needs to take a medical test on the coming day for a certain medical

measurement such as the heart rate or blood pressure.

In this paper, a novel short-term recommendation system for chronic heart dis-

ease patients is proposed. This system is developed using a structural graph with a

machine learning ensemble model to provide patients in a telehealth environment

with appropriate recommendations for the necessity of taking a medical body test

on the coming day. Such recommendations are established based on the prediction

of their heart conditions using their time series medical data from the past few days.

To verify the performance of the proposed model, the metrics of accuracy, work-

load saving and risk are used and experimental evaluations are conducted on a real-

life time series data collected from a pilot study on a group of heart failure patients.

The experimental results demonstrate that the proposed model yields a reasonably

good recommendation accuracy and can effectively reduce the workload required in

medical tests for the patients. It also can effectively reduce the risk of incorrect rec-

ommendations. We believe that this analytic model is promising in risk assessment

and management associated with heart failure and other similar diseases.

The remainder of this paper is organised as follows. Section 2 explains the details

of the proposed methodology including describes the machine learning classifiers

that constructing the proposed ensemble model. Section 3 discussed in details the

experimental evaluation results and the used dataset and also compared the results

of the proposed method with other results of common methods. Finally we conclude

the paper and highlight the future work in Sect. 4.

2 Methodology

Figure 1 illustrates the overall architecture of our recommendation system used for

chronic heart disease patients in the telehealth environment. In this section, we

present in details the architecture of the recommender system.
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Fig. 1 An overview of the proposed methodology

2.1 Time Series Segmentation

In our system, the input time series data, represented asX = {y1, y2, y3,… , yn}which

contains n data, is segmented into a set of overlapped sub-segments based on a prede-

fined value of parameter k that specifies the size of the sliding window, corresponding

to each sub-segment. In this work, many experiments are conducted with different

numbers of slide window sizes (k). It is important to divide the time series data into

several windows because each slide window will be mapped into a separated graph

and then extract the effective features from graphs to represent the slide windows.

2.2 Graph Construction and Structural Graph Similarity

Each slide window was mapped as an undirect graph. A graph is a pair of sets G =
(V ,E), where V is a set of nodes (vertices, or points) so that each node represents

the value of a test measurement for that day and E is a set of connections among the

nodes of graphs. Therefore, each pair of nodes in a graph are connected by a link

if there is a relationship between them [4, 5, 29]. The Euclidean distance has been

widely used as a similarity measuring method [6, 18, 19]. Let Dij = 1, 2, 3,… ,M
be the set of time series of M test measurements in each slide window. Each test

measurement in a slide window is assigned to be a node in an undirected graph. Lets

n1 and n2 be nodes in an undirected graph. They are connected if the distance (d)

between them are less or equal to a determined threshold [13]:

(n1, n2) ∈ E, if d(n1, n2) ≤ 𝜃 (1)

where 𝜃 is a determined threshold. An example of an undirect graph is shown in

Fig. 2. A graph G can be described by giving a square matrix N × N called adjacency

or connectivity matrix A to describe the connections among the nodes of graph.
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Fig. 2 An example of an

undirect graph

Table 1 The adjacency matrix of a graph G
n1 n2 n3 n4 n5 n6 n7

n1 0 1 1 1 1 1 0

n2 1 0 1 0 0 0 0

n3 1 1 0 1 0 0 0

n4 1 0 1 0 1 0 1

n5 1 0 0 1 0 0 1

n6 1 0 0 0 0 0 1

n7 0 0 0 1 1 1 0

The adjacency matrix contains zeros in it’s diagonal and thus it is a symmetric matrix.

The adjacency matrix is qual to one if there is a connect between two nodes, and zero

otherwise [6].

A(ni, nj) =

{
1 if (ni, nj) ∈ E,
0 otherwise.

(2)

For example, Table 1 shows the adjacency matrix of a graph G that consists from

7 nodes. We can notice that each element aij in an adjacency matrix A is equal to

1 when the connection exists, and zero otherwise. The diagonal of matrix A is still

zero for all it’s elements.
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2.3 Graph Features

The adjacency matrix of a graph G can be used to extract the statistical features of a

graph G [13, 14, 26]. The statistical features of a graph can be used for prediction

in this study. The following sections illustrate the most common extracted features

from a graph G.

2.3.1 Degree Distributions of the Graph

The degree distribution, that denoted by P(k), refers to the proportion of nodes with

degree k divided by the total number of nodes in the graph [13]. It can be mathemat-

ically defined as follow:

P(k) = |{n ∣ d(n) = k}|
N

(3)

where d(n) refers to the degree of node n, N is the total number of nodes in the graph.

2.3.2 The Clustering Coefficient of the Graph

Clustering coefficient (CC) is one of the most important measures used to charac-

terize the local and global structures of a graph [13, 26, 28]. Let ni be a node in a

graph G. Thus the local clustering coefficient of a given node ni is computed as the

proportion of links among ni’s neighbours which are actually realised compared with

the total number of possible connections. For example, the clustering coefficient of

a node n3 in Fig. 2 is 1 because the node n3 has three neighbours, which can have

a maximum of 3 connections among them and all of them are realised. The over-

all level of clustering in a graph is measured as the average of the local clustering

coefficients of all the nodes:

C′ = 1
N

N∑
i=1

Cni (4)

where,N is the number of nodes in a graphG andCni is the local clustering coefficient

of the node ni.

2.3.3 Jaccard Coefficient of the Graph

Jaccard Coefficient (it also called Jaccard Index) is a statistical tool that used to mea-

sure the similarity and diversity between two nodes of a graph [20]. Let ni and nj are

two nodes in a graph G. Thus the Jaccard coefficient 𝛤 (ni, nj) is defined as the ratio
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of the set of the neighboring intersections between those two nodes to the set of the

neighboring unions for the two nodes. It can be mathematically defined as follows:

𝛤 (ni, nj) =
|N(ni) ∩ N(nj)||N(ni) ∪ N(nj)| (5)

where N(ni) is the set of neighbors of the node ni that have an edge from ni to them,

and N(nj) is the set of neighbors of the node nj that have an edge from nj to them.

2.3.4 Average Degree

The average degree (AD) points out to the average number of links connecting in a

node ni to the other nodes in the graph [2]. The average degree of a graph can be

defined as the total number of links for each node divided by the number of nodes

in a graph [12]:

AD = 1
N

m∑
i=1

Ki (6)

where Ki is the degree of node ni and N is the total number of nodes in a graph.

For example, we can easily calculate the degree of each node for a graph G shown

in Fig. 2 and then calculate the average degree (AD) as follows:

K(n1) = 5,K(n2) = 2,K(n3) = 3,K(n4) = 4,K(n5) = 3,K(n6) = 2,K(n7) = 3,
K(n8) = 0, and AD = 2.

2.4 Bootstrap Aggregation (Bagging)

An ensemble approach is a very effective method that combines the decisions of

multiple base classifiers in order to overcome the limited generalization perfor-

mance of each base classifier and generate more accurate predictions than individual

base classifier. Bootstrap aggregation, a.k.a bagging, is a machine learning ensemble

algorithm designed to enhance the accuracy and stability of machine learning algo-

rithms [15, 27]. In the bootstrap method, the classifiers are trained independently and

then aggregated by an appropriate combination strategy. Specifically, our ensemble

model can be divided into two phases. In the first phase, the model uses bootstrap

sampling to generate a number of training sets. In the second phase, the training of the

three base classifiers, i.e., Least Square-Support Vector Machine, Neural Network

and Naive Bayes, is performed using the bootstrap training sets generated during

the first phase. Figure 3 shows an example of the bagging algorithm which involves

the three classifiers to build our ensemble model. In this study, the training set was

divided into multiple datasets using the bootstrap aggregation approach, and then the

classifiers were individually applied to these datasets to generate the final prediction.
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Fig. 3 An example of a bagging algorithm

It is noted that different individual classifier in the bagging approach may perform

differently. Therefore, we assign a weight to each classifier’s vote, based on how well

the classifier performs. The classifier’s weight is calculated based on its error rate.

The classifier that has a lower error rate is considered more accurate and is therefore

assigned a higher weight. The weight of classifier Ci’s vote is calculated as follows:

w(Ci) = log
1 − error(Ci)
error(Ci)

, 1 ≤ Ci ≤ 3 (7)

The following example is presented to facilitate the understanding of our weighted

bagging ensemble model:

1. Least Square-Support Vector Machine, Neural Network, and Naive Bayes are

used as individual base classifier in the ensemble model. Suppose that the clas-

sifier training is performed on the training data and the error rate is calculated

for each base classifier as 0.14 for LS-SVM, 0.25 for NN, and 0.30 for NB;

2. As per Eq. (7), the weight 0.78 is assigned to LS-SVM, 0.47 to NN, and 0.36 to

NB;

3. Suppose that the three base classifiers generate the following predictions for a

coming testing day: LS-SVM predicts 0, NN predicts 1, and NB predicts 1 (Here,
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0 means no test is required on the testing day for a medical measurement; 1 means

a test is required otherwise);

4. The ensemble classifier will use the weighted vote to generate the following pre-

diction results:

Class 1: NN + NB ⟶ 0.47 + 0.36 ⟶ 0.83,

Class 0: LS-SVM ⟶ 0.78.

5. Finally, according to the weighted vote, the class 1 has a higher value than class 0.

Therefore, the ensemble classifier will classify this testing day as being in Class

1, suggesting that the patient in question need to take the test on that day for a

medical measurement.

3 Experiment Result

This study aims at short-term risk assessment in chronic heart diseases patients based

on analytic of a patient’s historical medical data using structural graph similarity and

machine learning-based ensemble classifier. As mentioned above, the time series

slide windows were converted into undirect graphs. Then, the suitable features from

graphs were extracted and entered as input features set for the ensemble classifier.

The detailed experimental results are discussed in the following sub sections.

3.1 Performance Assessment

In this section, we present the details concerning the design of our experimental

evaluation including datasets and performance metrics.

As the predictive performance of the proposed model is quite important, assess-

ment of potential predictions is critically dependent on the quality of the used dataset.

For this reason, telehealth data from Tunstall dataset will be conducted in this work.

We use a real-life dataset obtained from our industry collaborator Tunstall to test

the practical applicability of the proposed model. A Tunstall dataset obtained from a

pilot study has been conducted on a group of heart failure patients and the resulting

data were collected for their day-to-day medical readings of different measurements

in a tele-health care environment. The Tunstall database employed in the develop-

ment of the algorithm consists of data from six patients with a total of 7,147 differ-

ent time series records. Data were acquired between May and January 2012, using

a remote telehealth collaborator. The dataset is by nature in a time series and con-

tains a set of measurements taken from the patients on different days. Each record in

the dataset consists of a few different meta-data attributes about the patients such as

patient-id, visit-id, measurement type, measurement unit, measurement value, mea-

surement question, date and date-received. The characteristics of the features of the

dataset are shown in Table 2.
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Table 2 Characteristic features of the dataset

Feature name Feature type

Id Numeric

Id-patient Numeric

HCN Numeric

Visit-id Numeric

Measurement type Nominal

Measurement unit Nominal

Measurement value Numeric

Measurement question Nominal

Date Numeric

Date-received Numeric

In addition, each record contains a few medical attributes including Ankles,

Chest Pain, and Heart Rate, Diastolic Blood Pressure (DBP), Mean Arterial Pressure

(MAP), Systolic Blood Pressure (SBP), Oxygen Saturation (SO2), Blood Glucose,

and Weight. Ethical clearance was obtained from the University of Southern Queens-

land (USQ) Human Research Ethics Committee (HREC) prior to the onset of the

study. This dataset is used as the ground truth result to test the performance of our

proposed model. The recommendations produced by our proposed model will be

compared with the actual readings of the measurement in question recorded in the

dataset to see how accurate our recommendations are.

Since a patient’s historical medical data often have the class-imbalance problem

(i.e., the number of normal data is much larger than that of the abnormal data),

we carefully dealt with the class-imbalance problem when training the classifiers.

The over-sampling and under-sampling methods have been used as good means to

address this problem.

The selected input data were divided into two groups as the training and the test-

ing sets. The slide windows time series data have been randomly divided into about

75% for the training of ensemble’s classifier and 25% for the testing purpose. Several

of experiments were designed and conducted to evaluate the proposed model using a

real-life Tunstall database. Different sizes of slide windows were used to determine

the best selected features set and the best size for each slide window as well. All the

experimental results were conducted using MATLAB (R2015) on a desktop com-

puter with the configurations of a 3.40 GHz Intel core i7 CPU processor with 8.00

GB RAM.

The performance of proposed method was evaluated by calculating the accuracy,

workload saving, and risk. Accuracy refers to the percentage of correctly recom-

mended days against the total number of days that recommendations are provided;

workload saving refers to the percentage of the total number of days when recom-

mendations are provided against the total number of days in the dataset, while risk

refers to the percentage of incorrectly recommended days that recommendations are
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no test needed. Mathematically, Accuracy, workload saving and risk are defined as

follows [24]:

Accuracy = NN
NN + NA

× 100% (8)

Saving = NN + NA|D| × 100% (9)

Risk = NR|D| × 100% (10)

where NN denotes the number of days with correct recommendations, NA denotes

the number of days with incorrect recommendations, NR denotes the number of days

with incorrect days that recommendations are no test needed, and |D| refers to the

total number of days in the dataset. Here, a correct recommendation means that the

model produces the recommendation of “no test required” for the following day and

the actual reading for that day in the dataset is normal. If this is a case, the recom-

mendation is considered accurate.

3.2 Prediction Accuracy with Different Number of Features

We first carried out experiments to evaluate the recommendation performance of our

system under different sets of statistical features extracted from the siding windows

of the dataset. Several experiments are carried out to determine the best set of the

graph features by which the original time series can be represented with the best

form. The four graph features were tested separately to evaluate the prediction accu-

racy of the proposed system. Figure 4 shows the ranking of the statistical features

based on their performance where the features were sorted in a descending order

based on their effectiveness in predicting patient’s condition.

3.2.1 Two-Features Set

To determine the best combination of the two graph features, a set of experiments was

designed. In this experiment, at each time, a two features set of graphs was picked

up from the ordered list in Fig. 4 and sent to ensemble classifier. The number of

permutation of two graph features that was tested in this paper was six cases. Figure 5

shows the performance of the proposed method based on the graphs features. Based

on the obtained results, it was observed that the combination of Jaccard coefficient

and degree distribution recorded the highest accuracy of 81% compared to other

combinations. We found that those two features were able to give the promising

prediction. However, the lowest accuracy of 56% rate was recorded by the pair of
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Fig. 4 Ranking of the graph features based on their accuracy performance

Fig. 5 Accuracy based on two-features sets (Note DDDegree Distribution; JC Jaccard Coefficient;

CC Clustering Coefficient; AD Average Degree)

clustering coefficients and average degree. For further investigation, three features

set was tested in the next experiment.

3.2.2 Three-Features Set

To assess the method ability to predict the status of patient with a high accuracy, the

proposed method was tested using three features set. The first three graph features in

Fig. 4 were selected. The three features were degree distribution, Jaccard coefficient

and clustering coefficient. Figure 6 shows the performance of the proposed method

using three and four features sets. The most noticeable results from this experiment

were that the prediction accuracies were exceeded 94% compared with the sets of
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Fig. 6 Accuracy based on

three and four features sets

two features. For more accurate results, different experiments were designed with

different data size. The results showed that there is a stability in the performance of

the proposed method. Another three features set was also tested in this paper, how-

ever, the results confirmed that the three features set of degree distribution, Jaccard

coefficient and clustering coefficient was the best combination of the graphs features

to provide the recommendation accurately.

Four features was also tested and investigated in this paper. Based on the results

in Fig. 6, the prediction accuracy of the proposed method was achieved a low rate

compared with three features set. It was archived 87% using all the graph features

including degree distribution, Jaccard coefficient, clustering coefficient and average

degree. In this paper, the combination of the first three features for degree distribu-

tion, Jaccard coefficient and clustering coefficient was considered as they achieved

the best accuracy.

3.3 Prediction Accuracy with Different Size of Slide Windows

The second influence in this work is associated to the size of window. In this experi-

ment, the best window size is investigated to obtain the desired prediction accuracy.

From the obtained results, it is clear that there is a positive relationship between the

selected size of slide window and the predictive performance of the proposed sys-

tem. It was found that when the number of nodes in a graph is increased due to the

increasing the size of a slide window, the proposed method generates more accurate

recommendations. To determine the optimum size of a slide, a set of experiments

were conducted with different sizes of windows. It found that the model performance

is improved by increasing the size of slide window (the number of nodes). This is

because the characterises of time series data are clearly presented when the number

of graph nodes is increased. Therefore, we tested our proposed model with different

sizes of window and started with 7, 10, 15 and 20 days. In these experiments, the

three features set of degree distribution, Jaccard coefficient and clustering coefficient

were considered. The four Medical attributes including Heart Rate, Diastolic Blood
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Table 3 Performance evaluation based on slide windows of 7 days

Measurement Accuracy (%) Saving (%) Risk (%)

Heart rate 86.37 60.34 05.21

DBP 85.30 57.18 05.40

MAP 87.70 61.33 05.00

SO2 84.30 55.44 05.90

Pressure (DBP), Mean Arterial Pressure (MAP), and Oxygen Saturation (SO2) were

used in the following experiments.

3.3.1 Slide Window of 7 Days

A slide windows of 7 days were used to test the predictive performance of the pro-

posed method. Each day in the slide window was represented by a node in a graph.

The three structural properties of the graphs were extracted and considered the key

features to represent each window. The metrics of accuracy, workload saving and

risk for all the graphs were calculated to verify the performance of proposed method.

Table 3 presents the metrics of accuracy, workload saving and risk for each measure-

ment in the Tunstall dataset.

Based on the obtained results, it was noticed that the performance of the proposed

method was not good enough to predict the patient’s condition due to the number of

the graph nodes was not enough to reflect the behaviours of the time series data. To

tackle this issue, the number of nodes in each graph was increased by considering

a new size window. In the next experiment, the influence of using a window size of

10 days was discussed.

3.3.2 Slide Window of 10 Days

The time series data were segmented into windows by using a slide window of

10 days and then each window was transferred into a graph. As mentioned before,

10 days slide windows were considered to improve the accuracy of the proposed

method and to make more accurate recommendations. One of the interesting find-

ings in this paper, the proposed method yielded a high performance using 10 days

slide window compared with the window size of 7 days. It can be noticed that the

performance of proposed method significantly improved due to the number of graph

nodes increased. It was found that the graphs nodes reflect big differences between

the patient states which include whether he/she requires medical test or not. Table 4

shows the obtained results by the proposed method after considering the window

size of 10 days.
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Table 4 Performance evaluation based on slide windows of 10 days

Measurement Accuracy (%) Saving (%) Risk (%)

Heart rate 92.75 59.80 03.95

DBP 91.40 58.77 04.50

MAP 90.55 60.65 04.80

SO2 91.60 55.50 04.20

Table 5 Performance evaluation based on slide windows of 15 days

Measurement Accuracy (%) Saving (%) Risk (%)

Heart rate 94.80 62.30 02.60

DBP 93.80 59.50 03.60

MAP 93.90 61.40 03.40

SO2 94.60 61.80 02.90

Based on the obtained results in Table 4, It is interesting to note that the accura-

cies, for all the measurements, improved by more than 5% compared to the results

in Table 3. In addition, using window size of 10 days did not considerably affect the

performance of workload saving although the accuracy and risk are increased.

3.3.3 Slide Window of 15 Days

For further investigation, a window size of 15 days were adopted to test the perfor-

mance of the proposed method. In this experiment, the size of window was increased

into 15 day. Table 5 represents the metrics of accuracy, workload saving and risk for

all the measurements using slide window size of 15 days. Based on results in Table 5,

the average of accuracy of the proposed method were exceeded 94% across different

measurements. The obtained results proved that the size of the window has a signif-

icantly potential on the accuracy of the prediction for all the measurements. One of

the most important observations, the graphs characteristics were became significant

to exhibit different behaviours when the patient state change from required test to

not required test. We found that the connectivity among the graph nodes (clustering

coefficients) are strong enough to reveal the difference between time series data.

Different sizes of window including 20, 25 and 30 days were also tested and eval-

uated in this study. It was noticed that there are no significant differences compared

with the obtained results using the 15 days slide windows. Thus, the optimal window

size was 15 days because it reflects the actual behavior of the time series data, on the

basis of observation on the obtained results.
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3.4 Comparative Study

To investigate the performance of our recommendation system, two performance

comparisons were conducted in this section. In the first experiment, the performance

of the recommendation system was evaluated based on individual classifier as well as

machine learning-based ensemble classifier. In the second experiment, the proposed

system was compared with some of our previous approaches. All the obtained results

were recorded and evaluated.

3.4.1 Performance Evaluation Based on a Single Classifier as Well
as Ensemble Model

In this experiment, we evaluate the performance of our system under 15 day slide

windows and the three graph features set based on the previous information. Table 6

shows the results of comparison among the ensemble classifier and the individual

classifiers. Based on the results, the system performance using individual classifier

was between 80 and 85% across different measurements. The maximum accuracy of

85% was obtained by LS-SVM, while the minimum accuracy of 80% was gained by

Nave Byes. We can notice that although the proposed system was conducted with

different classifiers, there is no a big fluctuation in its performance and the accu-

racies of those classifiers are quite closer. One of the gold solution to improve the

performance of the proposed method and to decrease the error rate is to combine

multi-classifiers to classify the extracted features.

However, in this paper, an ensemble machine learning was used to classify the

graphs features. Our recommendation system achieved a better prediction accuracy

compared with the individual classifiers with an increase of 12%. As mentioned

above, each classifier is trained and conducted with the dataset separately and then

they combined according to an appropriate criteria. By comparing the results in

Table 6, we can observe that the performance of the proposed sytem was escalated

when the ensemble machine learning was adopted.

For more investigation, the execution time of the proposed model was calculated

based on the ensemble classifier as well as individual classifiers. Figures 7 and 8

show the complexity time for each individual classifier and the ensemble model.

we observed that the ensemble model takes more time to complete the training and

Table 6 Performance evaluation based on a single classifier and an ensemble model

Classifier Accuracy (%) Saving (%) Risk (%)

LS-SVM 85.30 61.10 04.30

Neural network 83.50 60.80 05.10

Naive bayes 80.40 60.95 04.90

Ensemble model 94.27 61.25 03.01
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Fig. 7 Comparison of the execution time between the classifiers and the ensemble model under

different slide windows

Fig. 8 Comparison of the execution time between the classifiers and the ensemble model under

different measurements

prediction than the individual base classifier. This is reasonable as the ensemble

model needs to aggregate the results from the base classifiers to generate the weights

for them and produce the final recommendation. The ensemble model sacrifices a

little on the execution time for achieving better recommendation effectiveness for

patients. Additionally, the training stage can be performed off-line so that it will not

adversely affect the efficiency in generating recommendations for patients during the

prediction stage.
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Table 7 Prediction accuracy comparison with other methods

Tunstall dataset

Method Size of window Techniques used Accuracy (%)

Raid et al. [23] 5 days Basic heuristic

algorithm

86

Raid et al. [24] 5 days Basic heuristic

algorithm,

Regression-based

algorithm and Hybrid

algorithm

91

Proposed method 15 day Structural graph

similarity and

ensemble model

94

3.4.2 Effectiveness Comparison with Previous Approaches

To evaluate the performance of the proposed method, the prediction results were

compared with some of our previously proposed methods that tackle the exactly same

problem as we do in this paper using the same Tunstall dataset for a fair compari-

son. Table 7 represents the performances comparison among the two other reported

methods and our proposed method. Based on results, the proposed model is the best

among the three methods. Raid et al. [23] used a innovative time series prediction

algorithm to provide recommendations to heart disease patients in the tele-health

environment. The best accuracy was achieved using slide windows of 5 days. The

average of the accuracy for all patients they achieved was 86% across all measure-

ments. An intelligent recommender system, supported by three innovative predic-

tive algorithms, was proposed by Raid et al. [24] for short-term risk assessment

on patients in telehealth environment. The size of slide window was empirically

detected by 5 days as the best accuracy in this study. The average of accuracy results

obtained was 91% for all measurements. It clearly seems from the above results in

Table 7 that the proposed model yielded the highest accuracy compared with the two

others methods using the same dataset.

4 Conclusions and Future Research Directions

In this work, we propose a recommendation system supported by the structural graph

properties and advanced machine learning ensemble for short-term disease risk pre-

diction and medical test recommendation in the telehealth environment for patients

suffering from chronic heart disease. This study applies the structural graph, which

effectively represents the medical time series data and input the extracted statistical

features to the ensemble model to generate the accurate, reliable recommendations
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for chronic heart disease patients. Three popular and capable classifiers, i.e., Least

Square-Support Vector Machine, Neural Network, and Naive Bayes are used to con-

struct the ensemble framework.

The experimental results show that the proposed system using slide windows

of 15 day with the optimal statistical features set produced by the structural graph

properties yields a better predictive performance for all measurements. The results

also show that our system using the ensemble classifier with optimal features set

can correctly predict up to 94% of the subjects across all measurements. It is also

observed that our system is more effective than the individual base classifiers used

in the ensemble model and outperforms the previously proposed approaches to solve

the same problem. Our evaluation establishes that our recommendation system is

effective in improving the quality of clinical evidence-based decisions and help

reduce the time costs incurred by the chronic heart disease patients in taking their

daily medical test, whereby improving their overall life quality.

There are several directions for our future research work in this study. First, we

want to evaluate our proposed system using additional appropriate datasets which

preferably have a large number of data records. We are also interested in applying

other ensemble techniques, such as boosting and Adaboost, to produce recommen-

dations and conducting a comparative study on those different ensemble models.

Finally, given the generality of our proposed model in dealing with medical time

series data, we will explore the possibility to apply our system to support telehealth

care for patients suffering from other type of diseases.
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