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Abstract A modeling study was presented here using three different adaptive
neuro-fuzzy (ANFIS) approach algorithms comprising grid partitioning
(ANFIS-GP), subtractive clustering (ANFIS-SC) and fuzzy C-Means clustering
(ANFIS-FCM) for forecasting long period daily streamflow magnitudes.
Long-period data (between 1936 and 2016) from two hydrometric stations in USA
were used for training, evaluating and testing the approaches. Five different input
combinations were applied based on the autoregressive analysis of the recorded
streamflow data. A sensitivity analysis was also carried out to investigate the effect
of different model architectures on the obtained outcomes. When using ANFIS-GP,
the double-input model gives the best results for different model architectures, while
the triple-input models produce the most accurate results using both ANFIS-SC and
ANFIS-FCM models, which is due to increasing the model complexity for
ANFIS-GP by using more input parameters. Comparing the all three algorithms it
was observed that the ANFIS-FCM generally gave the most accurate results among
others.
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1 Introduction

Accurate streamflow forecast is very important in water resources system planning,
design, operation and management as well as identifying hydrologic drought spells
[6], controlling flood events [28], optimizing hydrologic system [17], determining
environmental flow portions [33], modeling surface water-groundwater interactions
[10], and modeling suspended sediment load in rivers [18]. Traditionally, con-
ceptual simple models have been developed by numerous researchers to describe
the rainfall-runoff process for computing the total amount of surface water flows.
Although such models do not require more detailed information on the physical
parameters, they can produce acceptable results in some cases [34]. In the contrary,
physically-based models of river flow forecast are generally time consuming and
complex which need lots of input variables for simulating river flow magnitudes
[2]. So, using autoregressive moving average (ARMA) approaches for forecasting
the streamflow magnitudes using the previously recorded flow magnitudes have
been proposed as alternatives for physically-based models [23].

As a substitute, application of heuristic models e.g. adaptive neuro-fuzzy
inference system (ANFIS) in streamflow forecasting has become viable. For
instance, Wang et al. [35], Kagoda et al. [16] and Humphrey et al. [14] applied
artificial neural networks (ANNs) models for streamflow forecasting. Shiri and Kisi
[30] introduced a wavelet-neuro-fuzzy model of streamflow forecasting. Sharma
et al. [29] compared neuro-fuzzy model with a physically based watershed model
for streamflow forecasting and concluded that the neuro-fuzzy model was equally
comparable to physical model especially when rain gauge stations were not ade-
quate. Ballini et al. [3] applied ANFIS for seasonal river flow forecast. Nayak et al.
[25] ANFIS modeling approach to model the long-term daily river flow magnitudes
in India and reported that ANFIS gave promising results in this case. Vernieuwe
et al. [34] compared data-driven Takagi–Sugeno models for rainfall–discharge
dynamics modeling. Zounemat Kermani and Teshnelab [39] introduced ANFIS
approach as a strong method of daily streamflow prediction when compared to
ANN and traditional regression models. El-Shafie et al. [9] proposed ANFIS
technique to forecast the inflow for the Nile River at Aswan High Dam on monthly
basis. Wang et al. [36] examined different heuristic models for forecasting monthly
discharge time series and introduced the ANFIS models as the most accurate
technique in this field. Rath et al. [26] applied hierarchical neuro-fuzzy model for
real-time flood forecasting. He et al. [11] compared ANN, ANFIS and SVM for
forecasting riverflow in a semiarid mountain region and found that the performance
of the applied models in river flow forecasting was satisfactory. Yarar [37] intro-
duced a hybrid wavelet-ANFIS model for forecasting monthly streamflow time
series. Yilmaz and Muttil [38] utilized different machine learning techniques
including ANFIS for runoff estimation. Talei et al. [32] applied Takagi–Sugeno
neuro-fuzzy model with online learning for runoff forecasting. Anusree and
Varghese [1] compared ANFIS, ANN and MNLR models for daily streamflow
forecasting and found the ANFIS as the superior model.
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The main aim of this study is to forecast long period daily streamflows using
three different adaptive neuro fuzzy techniques, i.e. ANFIS with Grid Partition
(ANFIS-GP), ANFIS with subtractive clustering (ANFIS-SC) and ANFIS with
fuzzy C-Means clustering (ANFIS-FCM). Two different ANFIS-GP methods were
considered in the present study: ANFIS-GP with constant output and ANFIS-GP
with linear output. The models were also compared according to their complexity
and training durations.

2 Methods

2.1 Adaptive Neuro-fuzzy Inference System (ANFIS)

ANFIS is a merger of an adaptive neural network (ANN) and a fuzzy inference
system (FIS), where the parameters of FIS are identified by the ANN learning
algorithms. ANFIS is able to estimate real continuous functions on a compact set of
parameters with any degree of accuracy [15]. There are two approaches for FIS,
namely, Mamdani and Assilian [24] and Takagi and Sugeno [31]. The differences
between the two approaches corresponds to the consequent part where Mamdani’s
method uses fuzzy membership functions, while linear or constant functions are
utilized in Sugeno’s method.

2.1.1 ANFIS Architecture

Let’s assume a FIS having two input variables of x and y and one output variable
f. The first-order Sugeno fuzzy model, a typical rule set with two fuzzy If-Then
rules would read:

Rule 1: If x is A1and y is B1, then f1 = p1x+ q1y+ r1 ð1Þ

Rule 2: If x is A2 and y is B2, then f2 = p2x+ q2y+ r2 ð2Þ

where A1, A2 and B1, B2 are the membership functions (MFs) of the inputs x and y,
respectively and p1, q1, r1 and p2, q2, r2 are the parameters of the output function.
Here, the output f is the weighted mean of the single rule outputs.

The output of the ith node in layer l is shown as Ol,i. Every node i in Layer 1 is
an adaptive node with node Ol, i = φAi xð Þ , for i = 1, 2, or Ol, i = φBi− 2 yð Þ, for
i = 3, 4, where x (or y) is the input to the ith node and Ai (or Bi-2) is a linguistic label
(such as ‘low’ or ‘high’) associated with this node. The MFs for A and B are
generally described by generalized bell functions as:
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φAi xð Þ= 1

1+ x− cið Þ ̸ai½ �2bi ð3Þ

where {ai, bi, ci} is the parameter set. Parameters in this layer are called as premise
parameters. The outputs of this layer are the membership values of the premise
part. Layer 2 includes the nodes labeled Π which multiply incoming signals and
sending the product out. For instance,

O2, i =wi =φAiðxÞφBiðyÞ, i=1, 2. ð4Þ

Each node output shows the firing strength of a rule. The nodes labeled N
computes the ratio of the ith rule’s firing strength to the sum of all rules’ firing
strengths in Layer 3,

O3, i =wi =
wi

w1 +w2
, i=1, 2. ð5Þ

The outputs of this layer are referred to as normalized firing strengths. The nodes
of the Layer 4 are adaptive with node functions

O4, i =wifi =wi pix+ qiy+ rið Þ ð6Þ

where wi is the output of Layer 3, and pi, qi, rif g are the parameter set. Parameters
of this layer are called as consequent parameters. The single fixed node of the Layer
5 labeled Σ computes the final output as the summation of all incoming signals

O5, i = ∑
i=1

wifi =
∑i wifi
∑i wi

ð7Þ

So, an adaptive network which is functionally equivalent to a Sugeno first-order
fuzzy inference system is built.

2.1.2 Grid Partition Method

Grid partition (GP) is one of the commonly used methods for producing initial FIS
rules for ANFIS building, where the space including input- output parameters is
divided into certain partitions called as grids. Each grid expresses a fuzzy surface,
and interference areas between grids make a continuous output surface [13, 22].
There is no fixed rule for defining the number of MFs for each variable, so they are
identified through a trial and error process. The learning process is begun from zero
output and during the learning process, functions and fuzzy rules are trained
gradually [7]. Although they are different membership function types which can be
applied in modeling various procedures, the literature review shows that triangular
MFs are commonly used and the most optimal MF types for practical applications

306 O. Kisi et al.



[27]. Nevertheless, other studies (e.g. [34]) have confirmed that the type of MFs
cannot affect the results of simulation majorly, though other studies have demon-
strated the major effect of MFs in modeling accuracy (e.g. [19]).

2.1.3 Subtractive Clustering Method

The subtractive clustering method assumes that each data point is a potential cluster
center and calculates a measure of the likelihood that each data point would define
the cluster center on the basis of the density of surrounding data points. Considering
a set of n data points x1, x2, . . . , xif g in m-dimensional space, it is assumed that all
data points within a cubic space have been normalized. In subtractive clustering,
each of the data points is considered as a potential cluster center. As a result, the
density index Di corresponding to the data xi can be expressed as follows:

Di = ∑
n

j=1
exp −

xi − xj
�� ��
ðra ̸2Þ2

 !
ð8Þ

Here, ra is a positive quantity called cluster radius. If many data points are
adjacent to a data point, hence, that data point has the maximum density. After
measuring the density of each data point, data point with the highest density is
selected as the first data center clustering [12]. If the effect limited area of the center
of the first cluster center is removed, following formula is used to measure the other
points density.

Di =Di −Dc1 ∑
n

j=1
exp −

xi − xclk k2
rb ̸2ð Þ2

 !
ð9Þ

Here, xc1 and Dc1 are the selected points and density potential, respectively. rb is
a positive constant. To avoid approaching the cluster centers, the rb constant value
is normally larger than ra (rb is considered 1.5ra). After measuring the density for
each data point, the next cluster center xc2 is selected and all the measured density
for data points will be recalculated. This process continues until a sufficient number
of cluster center produce [2, 20].

2.1.4 Fuzzy C-Means Method

In fuzzy clustering, each pattern might belong to several clusters or segment. One of
the most functional clustering algorithms is K-mean algorithm. This unsupervised
algorithm in large datasets, exposures with some limitations in the process, may not
work properly. To deal with the disadvantages, different clustering algorithms have
been proposed. Among them, fuzzy c-means as a proper alternative method is used
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[21]. Fuzzy C-means (FCM) was developed by Dunn [8] and Bezdek [4] improved
it.

The FCM method blocks a set of N vector xi, i = 1,…, n, into c fuzzy clusters,
where each pattern is corresponded to a cluster with a degree specified by a
membership grade uij between 0 and 1. The final object by the FCM algorithm is to
find c cluster centers so that the cost function of the dissimilarity measure can be
minimized. The aim is minimizing the objective function that is defined as below:

MinJFCM = ∑
C

c=1
∑
N

i=1
wp
ic wik − vck2 s.t. ∑

C

c=1
wic =1, i=1, 2, . . . ,N ð10Þ

which p (1< p) is known as fuzzifier portion and N, is the number of data points; C,
the number of clusters; wic, the number of belongings of the ith data point to the cth
cluster; v, is the clusters center and x is the number of the input. for calculating the
amount of wic the following formula is used [5]:

wic =
1

∑C
L=1 d2ic ̸d2ij
� �1 ̸ðp− 1Þ for i=1, 2, . . . ,N and c=1, 2, . . . ,C ð11Þ

For beginning of the center vectors, centers are calculated by:

vc =
∑N

j=1 w
p
jcxj

∑N
j=1 w

p
jc

ð12Þ

FCM procession continues until a convergence condition is obtained.

3 Case Study

Daily streamflow data from two stations, Murder Creek near Evergreen (Hydrologic
Unit Code 03140304, Latitude 31°25′06″, Longitude 86°59′12″, Drainage area
176.00 square miles, Gage datum 178.29 feet a.s.l.) and Choctawhatchee River
Near Newton (Hydrologic Unit Code 03140201, Latitude 31°20′34″, Longitude
85°36′38″, Drainage area 686.00 square miles, Gage datum 138.56 feet a.s.l.),
Alabama, USA were used in this research. The location of the study area and
stations are illustrated in Fig. 1. The reason of selection of these stations is due to
having long data period. Data covering the period of 1936–2016 for the both
stations were divided into three parts, training (01/01/1938–12/31/1976, 14245
values), validation (01/01/1977–12/31/1996, 7305 values) and testing (01/01/1997–
12/31/2016, 7305).
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The summary of statistical properties is reported in Table 1 for the used
streamflow data. From the table, it is clear that data have highly skewed distribu-
tions, skewness coefficient ranging between 8.19 and 20.7. Data of the Chocta-
whatchee River has more autocorrelations than those of the Murder Creek. This
may be due to the high discharge volume of the Choctawhatchee.

USA

Alabama

Murder Creek near 
Evergreen AL Choctawhatchee River 

Near Newton, AL

Fig. 1 The location of the studied area
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4 Application and Results

In this study, the ability of cluster based neuro fuzzy methods, ANFIS-SC and
ANFIS-FCM, was investigated in forecasting daily streamflows which have long
data period (1936–2016). The results of these methods were compared with the
ANFIS-GP which uses all possible rule combinations and generally has higher
complexity and computational time when compared to cluster based neuro fuzzy
methods. For the ANFIS-GP, two different outputs, constant and linear, were
applied to detect the difference with each other. The models were compared
according to the four different statistics, root mean square error (RMSE), mean
absolute relative error (MARE), determination coefficient (R2) and Nash-Sutcliffe
efficiency (NE) which can be expressed as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i=1
Qm, i −Qo, ið Þ2

s
ð13Þ

MARE=
1
n
∑
n

i=1

Qm, i −Qo, ijj
Qo, i

100 ð14Þ

NSE=1−
∑n

i=1 Qm, i −Qo, ið Þ
∑n

i=1 Qo, i −Qo

� � ð15Þ

where Qo,i and Qm,i are the observed and estimated streamflows, N is the number of
time steps,Qo is the mean of the observed streamflows. First, auto and partial auto
correlation analysis were employed and they suggested three previous lags. In the
applications, however, five input scenarios comprising five previous lags were used
from input(i) to input(iv) comprising Qt-1 to Qt-1, Qt-2, Qt-3, Qt-4 and Qt-5.

The results of the ANFIS-GP models with constant and linear outputs are pre-
sented for the Choctawhatchee River in Tables 2 and 3. For the ANFIS-GP models,
different number of triangular membership functions were tried and the best one
that gave the minimum RMSE in the validation period was selected. It is clear from

Table 1 The statistical properties of the streamflow data sets

Station Data set Min Max Mean Sd Csx r1 r2 r3
Choctawhatchee
River

Training 1.73 584 27.9 34.4 4.52 0.887 0.702 0.564
Validation 1.23 205 25.8 47.9 20.7 0.789 0.505 0.339
Testing 0.99 975 22.7 36.7 8.19 0.867 0.650 0.498

Murder Creek Training 1.11 346 7.93 10.1 10.1 0.668 0.427 0.341
Validation 1.62 264 8.49 9.68 8.94 0.719 0.399 0.287
Testing 0.94 241 6.89 9.19 8.45 0.743 0.484 0.357

Min, Max, Mean, Sd, Csx, r1, r2 and r3 show the mean, minimum, maximum, standard deviation,
skewness coefficients, lag-1, lag-2 and lag-3 autocorrelations, respectively
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the tables that the ANFIS-GP with constant output has the best accuracy in test
period for the 3rd input combination while the 1st input provides the best results for
the ANFIS-GP with linear output. First model comprising constant output seems to
be superior to the second model. This can also be seen from the mean of the all
input combinations. From the mean statistics, it is clear that the training accuracy of
ANFIS-GP models with linear output is better compared to the other one. The 2nd
model with linear output can approximate better than the 1st model with constant
output because it has higher number of parameters and more flexible than the latter
one. Assume that we used 2 Gaussian membership functions (each has 2 param-
eters) and 5 inputs for each model. In this case, the premise parameters of the both

Table 2 Results of ANFIS-GP models with constant output—Choctawhatchee River

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 51.78 46.67 16.99 10.99 11.52 25.79
MARE (%) 48.52 16.36 7.700 6.180 5.950 15.13
R2 49.36 15.99 9.200 6.950 7.200 16.11
NE 45.06 9.160 7.180 4.930 5.610 12.93
Duration (s) 48.68 22.05 10.27 7.260 7.570 17.49

Validation RMSE (m3/s) 31.37 29.44 29.04 29.21 30.18 29.85
MARE (%) 29.66 16.54 16.96 17.29 18.60 19.81
R2 0.594 0.657 0.664 0.655 0.618 0.638
NE 0.570 0.622 0.632 0.628 0.602 0.611

Testing RMSE (m3/s) 18.08 16.15 15.70 15.96 16.33 16.44
MARE (%) 42.28 21.08 21.91 22.48 24.38 26.42
R2 0.759 0.811 0.821 0.814 0.804 0.802
NE 0.758 0.807 0.817 0.811 0.802 0.799

Table 3 Results of ANFIS-GP models with linear output—Choctawhatchee River

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 15.81 13.53 13.31 13.14 12.88 13.73

MARE (%) 24.60 15.46 16.44 15.60 15.54 17.53

R2 0.789 0.845 0.850 0.854 0.860 0.839

NE 0.789 0.845 0.850 0.854 0.860 0.839

Duration (s) 3.680 8.710 26.42 116.6 619.0 154.9

Validation RMSE (m3/s) 31.37 10,687 22,450 1711 1648 7306

MARE (%) 29.66 76.32 233.5 23.33 20.14 76.59

R2 0.594 0.016 0.054 0.241 0.257 0.233

NE 0.570 −49,861 −220,032 −1278 −1185 −54,471
Testing RMSE (m3/s) 18.08 6744 13,108 2042 1930 4768

MARE (%) 42.28 64.13 203.4 28.39 27.48 73.14

R2 0.759 0.010 0.000 0.041 0.034 0.169

NE 0.758 −33,719 −127,390 −3093 −2762 −33,392
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models will be 2 * 25 = 64. The 1st model will have 32 rules, each has 1 constant
output parameter and totally it will have 32 output parameters while the 2nd model
will have 32 rules, each has 6 output parameters and totally 32 * 6 = 192 output
parameters. For this reason, the training duration of the ANFIS-GP models with
linear output is also much higher than those of the ANFIS-GP models with constant
output especially when the number of inputs is higher than 2.

Tables 4 and 5 report the results of ANFIS-FCM and ANFIS-SC models with
respect to RMSE, MARE, R2 and NE for the Choctawhatchee River. For the
ANFIS-FCM models, different number of cluster numbers (vary between 1 and 8)

Table 4 Results of ANFIS-FCM models—Choctawhatchee River

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 15.58 13.77 13.63 13.70 13.71 14.08
MARE (%) 16.91 15.17 15.66 15.63 15.84 15.84
R2 0.795 0.839 0.843 0.841 0.841 0.832
NE 0.795 0.839 0.843 0.841 0.841 0.832
Duration (s) 13.20 20.80 28.23 20.98 25.43 21.73

Validation RMSE (m3/s) 28.92 24.32 24.75 24.60 24.75 25.47
MARE (%) 17.05 15.09 15.79 15.83 16.18 15.99
R2 0.635 0.759 0.756 0.756 0.750 0.731
NE 0.635 0.742 0.733 0.736 0.733 0.716

Testing RMSE (m3/s) 18.00 15.99 15.69 15.70 15.71 16.22
MARE (%) 19.39 16.89 18.54 17.99 18.51 18.26
R2 0.760 0.811 0.817 0.817 0.817 0.804
NE 0.760 0.811 0.817 0.817 0.817 0.804

Table 5 Results of ANFIS-SC models—Choctawhatchee River

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 15.64 14.04 13.76 13.77 13.78 14.20
MARE (%) 19.55 17.74 16.83 16.90 17.04 17.61
R2 0.793 0.833 0.840 0.839 0.839 0.829
NE 0.793 0.833 0.840 0.839 0.839 0.829
Duration (s) 12.89 16.68 20.64 30.70 36.03 23.39

Validation RMSE (m3/s) 34.17 33.35 33.44 33.66 33.94 33.71
MARE (%) 22.71 20.74 18.68 18.54 18.74 19.88
R2 0.503 0.534 0.528 0.518 0.506 0.518
NE 0.490 0.515 0.512 0.505 0.497 0.504

Testing RMSE (m3/s) 18.71 17.17 16.40 16.62 16.92 17.16
MARE (%) 29.84 27.41 23.58 23.08 23.44 25.47
R2 0.741 0.783 0.802 0.796 0.788 0.782
NE 0.740 0.781 0.801 0.795 0.788 0.781
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which decides the number of rules were tried and the best one that gave the
minimum RMSE in the validation period was selected. For the ANFIS-SC models,
different number of radii values (vary between 0.1 and 1) which decides the number
of membership functions and rules were tried. It is apparent from the tables, the 3rd
input combination has the best accuracy for the both methods and after 3 lags input,
the accuracy of the models does not considerably increase. Comparison with the
ANFIS-GP models indicates that the ANFIS-FCM model slightly performs superior
to the ANFIS-GP with constant output and ANFIS-SC models. The training
duration of the ANFIS-GP with constant output is less than those of the cluster

Table 6 Results of ANFIS-GP models with constant output—Murder Creek

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 7.520 7.370 7.350 15.63 13.60 10.30
MARE (%) 35.33 28.05 25.91 20.75 16.11 25.23
R2 0.450 0.471 0.474 0.793 0.843 0.606
NE 0.450 0.471 0.474 0.793 0.843 0.606
Duration (s) 3.720 6.950 12.71 26.61 64.08 22.81

Validation RMSE (m3/s) 6.730 6.540 6.450 32.71 30.42 16.57
MARE (%) 29.03 25.24 24.51 24.98 18.37 24.43
R2 0.519 0.548 0.561 0.546 0.623 0.559
NE 0.516 0.543 0.556 0.533 0.596 0.549

Testing RMSE (m3/s) 6.180 5.990 5.980 18.11 18.17 10.89
MARE (%) 48.31 35.83 31.66 28.80 20.91 33.10
R2 0.554 0.583 0.582 0.757 0.757 0.647
NE 0.548 0.576 0.577 0.757 0.755 0.642

Table 7 Results of ANFIS-GP models with linear output—Murder Creek

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 7.140 6.880 6.720 15.31 13.15 9.840

MARE (%) 19.15 18.55 19.19 16.97 16.09 17.99

R2 0.503 0.539 0.560 0.802 0.854 0.651

NE 0.503 0.539 0.560 0.802 0.854 0.651

Duration (s) 4.100 8.760 26.62 116.2 941.1 219.4

Validation RMSE (m3/s) 6.640 6.280 13.93 7442 7013 2896

MARE (%) 20.26 18.89 18.82 29.37 48.98 27.26

R2 0.529 0.578 0.133 0.214 0.018 0.295

NE 0.529 0.578 −1.075 −24,179 −21,472 −9130
Testing RMSE (m3/s) 5.830 5.480 7.320 4193.5 3420 4768

MARE (%) 19.83 19.83 22.05 35.92 38.87 73.14

R2 0.598 0.646 0.471 0.044 0.027 0.169

NE 0.598 0.644 0.365 −13,036 −8674 −33,392
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based ANFIS-FCM and ANFIS-SC models. The reason of this might be fact that
the ANFIS-FCM and ANFIS-SC have linear output comprising more consequent
parameters. However, the main advantage of the cluster based neuro fuzzy methods
is that their rules are automatically determined based on the selected cluster number
or radii value. For example, in case of 8 clusters, we will have only 8 rules for the
whole fuzzy model while the ANFIS-GP has 32 rules when the input number is 5.

The statistics of the ANFIS-GP models with constant and linear outputs are
compared in Tables 6 and 7 for the Murder Creek. As seen from the tables, the both
methods have the best accuracy in the test period for the 2nd input combination.
After 2nd input, the accuracy of ANFI-GP model comprising linear output is

Table 9 Results of ANFIS-SC models—Murder Creek

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 92.24 126.8 8.690 15.59 14.01 51.46
MARE (%) 33.02 40.23 8.460 18.70 17.41 23.56
R2 0.030 0.453 0.327 0.794 0.834 0.488
NE 0.030 0.453 0.327 0.794 0.834 0.488
Duration (s) 0.266 0.543 0.790 30.71 36.03 13.67

Validation RMSE (m3/s) 122.5 272.2 10.96 33.98 33.37 94.60
MARE (%) 40.22 73.53 11.81 21.83 20.41 33.56
R2 0.000 0.034 0.157 0.510 0.531 0.247
NE −0.047 −1.347 0.093 0.496 0.514 −0.058

Testing RMSE (m3/s) 114.2 165.1 9.620 18.36 16.67 64.80
MARE (%) 41.93 57.57 9.910 26.28 25.62 32.26
R2 0.002 0.178 0.244 0.751 0.796 0.394
NE −0.067 0.061 0.215 0.750 0.794 0.351

Table 8 Results of ANFIS-FCM models—Murder Creek

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 7.100 6.870 7.000 15.58 14.10 10.13
MARE (%) 18.73 16.94 18.15 22.58 25.42 20.36
R2 0.509 0.540 0.523 0.795 0.832 0.640
NE 0.509 0.540 0.523 0.795 0.832 0.640
Duration (s) 13.31 19.90 15.26 13.90 16.03 15.68

Validation RMSE (m3/s) 6.670 6.290 6.250 27.21 25.41 14.37
MARE (%) 19.78 17.71 18.84 27.60 32.46 23.28
R2 0.525 0.577 0.583 0.683 0.749 0.623
NE 0.525 0.577 0.582 0.677 0.718 0.616

Testing RMSE (m3/s) 5.860 5.570 5.620 18.09 16.18 10.26
MARE (%) 19.63 18.12 19.59 35.66 43.00 27.20
R2 0.594 0.634 0.628 0.757 0.806 0.684
NE 0.594 0.634 0.627 0.757 0.806 0.683
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worsening. It can be said that increasing input number increases the complexity of
the model and this results in worse streamflow forecasts. Similar to the Chocta-
whatchee River, the training durations of the ANFIS-GP with linear output is higher
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Fig. 2 The time variation of the observed and forecasted streamflows by using the optimal
ANFIS-GP-constant, ANFIS-FCM and ANFIS-SC models—Choctawhatchee River
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than those of the models with constant output especially for the inputs higher than
2. Tables 8 and 9 present the training, validation and testing results of ANFIS-FCM
and ANFIS-SC models for the Murder Creek. ANFIS-FCM model has the best
accuracy in 2nd input combination while the 3rd input combination provides the
best accuracy for ANFIS-SC model. Comparison of the Tables 6, 7 and 8 clearly
shows that the ANFIS-GP model with linear output slightly performs superior to the
ANFIS-GP with constant output and ANFIS-FCM models. ANFIS-SC model has
the worst accuracy even though it has the least training duration. Comparison of
two stations obviously indicates that the accuracy of the applied models is better for
the Choctawhatchee River compared to Murder Creek. The main reason of this
might be the fact that the data of first station has lower autocorrelations than the
latter one.

The time variation of observed and forecasted streamflows by using the optimal
ANFIS-GP-constant, ANFIS-FCM and ANFIS-SC models can be seen from Fig. 2
for the Choctawhatchee River. From the figures, it is clear that the ANFIS-FCM
model catches the high streamflow values better than the other models. The
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Fig. 3 The scatterplots of the observed and forecasted streamflows by using the optimal
ANFIS-GP-constant, ANFIS-FCM and ANFIS-SC models—Choctawhatchee River
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Fig. 4 The time variation of the observed and forecasted streamflows by using the optimal
ANFIS-GP-linear, ANFIS-FCM and ANFIS-SC models—Murder Creek

Three Different Adaptive Neuro Fuzzy Computing … 317



ANFIS-SC also seems to be better than ANFIS-GP model. Figure 3 makes the
scatterplot comparison of the applied models. ANFIS-GP model has slightly higher
R2 than the ANFIS-FCM. However, the a and b coefficients of the fit line equation
(assume that the fit line is y = ax + b) are respectively closer to the 1 and 0 (exact
line is y = x) for the ANFIS-FCM compared to the ANFIS-GP model. Figure 4
illustrates the time variation graphs of the observed and forecasted streamflows by
using the optimal ANFIS-GP-linear, ANFIS-FCM and ANFIS-SC models for the
Murder Creek. The ANFIS-GP-linear and ANFIS-FCM models considerably
underestimate peak discharges while the ANFIS-SC overestimates. The scatter
diagrams of the three methods are given in Fig. 5. As seen from the figure, the
ANFIS-GP model has slightly higher R2 than the ANFIS-FCM while the slope
coefficient of the latter model closer to the 1 compared to the first model. The
ANFIS-SC seems to be insufficient in forecasting daily streamflows of Murder
Creek.
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5 Conclusion

Long period streamflow data from two hydrometric stations in USA were used in
the present research to forecast streamflow magnitudes in daily forecast horizon.
Adaptive neuro-fuzzy inference system (ANFIS) with three different running
algorithms, namely, ANFIS grid partitioning (ANFIS-GP), ANFIS sub clustering
(ANFIS-SC) and ANFIS fuzzy C means (ANFIS-FCM) were then trained, vali-
dated and tested using these data. Five input combinations were tried by also
considering the auto- and partial-auto-correlation functions of the streamflow
records during the study period to see the effect of 5 time lags on the predictions.
Using different models and input combinations it was revealed that the best input
combination (which can be used to feed the predictive models) is somewhat
model-specific, where introducing more input parameters (beyond the double-input
combination) has deteriorated the ANFIS-GP accuracy. This might be linked to the
model complexity by using more inputs and might dictate a risk of redundancy
when using inputs roughly based on linear measures (e.g. auto correlation). Nev-
ertheless, the models architectures had monotonous influence on the predictive
models performance that showed the necessity of performing sensitivity analysis on
the models architectures. This might be crucially important when using short period
data, where the time domain is limited and general trend of data which can affect the
predictions are not involved in model training. It was seen that the ANFIS-GP
model with linear output produce complex model structure especially in case of
high number of inputs compared to ANFIS-GP with constant output.

In this study, high number of membership functions were not tried for that
ANFIS-GP model because its parameters exponentially increase when the number
of MFs was increased. In future studies, the effect of MFs numbers may be
investigated by using high speed computers.
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