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Abstract Driven piles are commonly used to transfer the loads from the super-
structure through weak strata onto stiffer soils or rocks. For driven piles, the impact
of the piling hammer induces compression and tension stresses in the piles. Hence,
an important design consideration is to check that the strength of the pile is suffi-
cient to resist the stresses caused by the impact of the pile hammer. Due to its
complexity, pile drivability lacks a precise analytical theory or understanding of the
phenomena involved. In situations where measured or numerical data are available,
various soft computing methods have shown to offer great promise for mapping the
nonlinear interactions between the system’s inputs and outputs. In this study, two
soft computing methods, the Back propagation neural network (BPNN) and Mul-
tivariate adaptive regression splines (MARS) algorithms were used to assess pile
drivability in terms of the Maximum compressive stresses, Maximum tensile
stresses, and Blow per foot. A database of more than four thousand piles is utilized
for model development and comparative performance of the predictions between
BPNN and MARS.
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1 Introduction

Driven piles are commonly used to transfer the loads from the superstructure
through weak strata onto stiffer soils or rocks. For these piles, the impact of the
piling hammer induces compression and tension stresses in the piles. Hence, an
important design consideration is to ensure that the strength of the pile is sufficient
to resist the stresses introduced by the impact of the pile hammer. One common
method of calculating the driving stresses is based on the stress-wave theory [18]
which involves the discrete idealization of the hammer-pile-soil system. Consid-
ering that the conditions at each site are different, generally a wave equation based
computer program is required to generate the pile driving criteria for each indi-
vidual project. The pile driving criteria include:

• Hammer stroke versus Blow per foot BPF (1/set) for required bearing capacity,
• Maximum compressive stresses versus BPF,
• Maximum tension stress versus BPF.

However, this process can be rather time consuming and requires very spe-
cialized knowledge of the wave equation program.

The essence of modeling/numerical mapping is prediction, which is obtained by
relating a set of variables in input space to a set of response variables in output
space through a model. The analysis of pile drivability involves a large number of
design variables and nonlinear responses, particularly with statistically dependent
inputs. Thus, the commonly used regression models become computationally
impractical. Another limitation is the strong model assumptions made by these
regression methods.

An alternative soft computing technique is the artificial neural network (ANN).
The ANN structure consists of one or more layers of interconnected neurons or
nodes. Each link connecting each neuron has an associated weight. The “learning”
paradigm in the commonly used Back-propagation (BP) algorithm [14] involves
presenting examples of input and output patterns and subsequently adjusting the
connecting weights so as to reduce the errors between the actual and the target
output values. The iterative modification of the weights is carried out using the
gradient descent approach and training is stopped once the errors have been reduced
to some acceptable level. The ability of the trained ANN model to generalize the
correct input-output response is performed in the testing phase and involves pre-
senting the trained neural network with a separate set of data that has never been
used during the training process.

This paper explores the use of ANN and another soft computing technique
known as multivariate adaptive regression splines (MARS) [3] to capture the
intrinsic nonlinear and multidimensional relationship associated with pile driv-
ability. Similar with neural networks, no prior information on the form of the
numerical function is required for MARS. The main advantages of MARS lie in its
capacity to capture the intrinsic complicated data mapping in high-dimensional data
patterns and produce simpler, easier-to-interpret models, and its ability to perform

280 W. Zhang and A. T. C. Goh



analysis on parameter relative importance. Previous applications of the MARS
algorithm in civil engineering include predicting the doweled pavement perfor-
mance, estimating shaft resistance of piles in sand and deformation of asphalt
mixtures, analyzing shaking table tests of reinforced soil wall, determining the
undrained shear strength of clay, predicting liquefaction-induced lateral spread,
assessing the ultimate and serviceability performances of underground caverns,
estimating the EPB tunnel induced ground surface settlement, and inverse analysis
for braced excavation [1, 7, 8, 12, 13, 15–17, 19–23]. In this paper, the Back
propagation neural network (BPNN) and MARS models are developed for pile
drivability predictions in relation to the Maximum compressive stresses (MCS),
Maximum tensile stresses (MTS), and Blow per foot (BPF). A database of more
than four thousand piles is utilized for model development and comparative per-
formance between BPNN and MARS predictions.

2 Methodologies

2.1 Back-Propagation Algorithm

A three-layer, feed-forward neural network topology shown in Fig. 1 is adopted in
this study. As shown in Fig. 1, the back-propagation algorithm involves two phases
of data flow. In the first phase, the input data are presented forward from the input
to output layer and produces an actual output. In the second phase, the error
between the target values and actual values are propagated backwards from the
output layer to the previous layers and the connection weights are updated to reduce

Fig. 1 Back-propagation
neural network architecture
used in this study
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the errors between the actual output values and the target output values. No effort is
made to keep track of the characteristics of the input and output variables. The
network is first trained using the training data set. The objective of the network
training is to map the inputs to the output by determining the optimal connection
weights and biases through the back-propagation procedure. The number of hidden
neurons is typically determined through a trial-and-error process; normally the
smallest number of neurons that yields satisfactory results (judged by the network
performance in terms of the coefficient of determination R2 of the testing data set) is
selected. In the present study, a Matlab-based back-propagation algorithm BPNN
with the Levenberg-Marquardt (LM) algorithm [2] was adopted for neural network
modeling.

2.2 Multivariate Adaptive Regression Splines Algorithm

MARS was first proposed by [3] as a flexible procedure to organize relationships
between a set of input variables and the target dependent that are nearly additive or
involve interactions with fewer variables. It is a nonparametric statistical method
based on a divide and conquer strategy in which the training data sets are parti-
tioned into separate piecewise linear segments (splines) of differing gradients
(slope). MARS makes no assumptions about the underlying functional relationships
between dependent and independent variables. In general, the splines are connected
smoothly together, and these piecewise curves (polynomials), also known as basis
functions (BFs), result in a flexible model that can handle both linear and nonlinear
behavior. The connection/interface points between the pieces are called knots.
Marking the end of one region of data and the beginning of another, the candidate
knots are placed at random positions within the range of each input variable.

MARS generates BFs by stepwise searching over all possible univariate can-
didate knots and across interactions among all variables. An adaptive regression
algorithm is adopted for automatically selecting the knot locations. The MARS
algorithm involves a forward phase and a backward phase. The forward phase
places candidate knots at random positions within the range of each predictor
variable to define a pair of BFs. At each step, the model adapts the knot and its
corresponding pair of BFs to give the maximum reduction in sum-of-squares
residual error. This process of adding BFs continues until the maximum number is
reached, which usually results in a very complicated and overfitted model. The
backward phase involves deleting the redundant BFs that made the least contri-
butions. An open MARS source code from [10] is adopted in performing the
analyses presented in this paper.

Let y be the target dependent responses and X = (X1, …, XP) be a matrix of
P input variables. Then it is assumed the data are generated based on an unknown
“true” model. For a continuous response, this would be
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y= f ðX1, . . . ,XPÞ+ e= f ðXÞ+ e ð1Þ

in which e is the fitting error. f is the built MARS model, comprising of BFs which
are splines piecewise polynomial functions. For simplicity, only the piecewise
linear function is expressed and considered in this paper. Piecewise linear functions
follow the form maxð0, x− tÞ with a knot defined at value t. Expression maxð ⋅ Þ
means that only the positive part of ð.Þ is used otherwise it is assigned a zero value.
Formally,

maxð0, x− tÞ = x− t, if x ≥ t
0, otherwise

�
ð2Þ

The MARS model f(X), which is a linear combination of BFs and their inter-
actions, is expressed as

f ðXÞ= β0 + ∑
M

m=1
βmλmðXÞ ð3Þ

where each λm is a BF. It can be a spline function, or interaction BFs produced by
multiplying an existing term with a truncated linear function involving a new/
different variable (higher orders can be used only when the data warrants it; for
simplicity, at most second-order is adopted). The terms β are constant coefficients,
estimated using the least-squares method.

Figure 2 shows an example illustration of how the MARS algorithm would
make use of piecewise linear spline functions to fit provided data patterns.
The MARS mathematical equation is as follows

y = − 5.0875 − 2.7678 × BF1 + 0.5540 × BF2 + 1.1900 × BF3 ð4Þ

Fig. 2 Knots and linear
splines for a simple MARS
example
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in which BF1 = max(0, x – 17), BF2 = max(0, 17 – x) and BF3 = max(0, x – 5)
and max is defined as: max(a, b) is equal to a if a > b, else b. The knots are located
at x = 5 and 17. These two knots delimit/cut the x range into three intervals where
different linear relationships are identified.

The MARS modeling is a data-driven process. To construct the model in Eq. (3),
first the forward phase is performed on the training data starting initially with only
the intercept β0. At each subsequent step, the basis pair that produces the maximum
reduction in the training error is added. Considering a current model with M basis
functions, the next pair to be added to the model is in the form of

βM +1 λlðXÞmaxð0,Xj − tÞ+ βM +2 λlðXÞmaxð0, t−XjÞ ð5Þ

with each β being estimated by the least-squares method. This process of adding
BFs continues until the model reaches some predetermined maximum number,
generally leading to a purposely overfitted model.

The backward phase improves the model by removing the less significant terms
until it finds the best sub-model. Model subsets are compared using the less
computationally expensive method of Generalized Cross-Validation (GCV).
The GCV is the mean-squared residual error divided by a penalty that is dependent
on model complexity. For the training data with N observations, GCV is calculated
as [9]

GCV =
1
N∑

N
i=1 ½yi − f ðxiÞ�2

½1− M + d × ðM − 1Þ ̸2
N �2

ð6Þ

in which M is the number of BFs, d is a penalty for each basis function included in
the developed sub-model, N is the number of data sets, and f ðxiÞ denotes the MARS
predicted values. Thus the numerator is the mean square error of the evaluated
model in the training data, penalized by the denominator which accounts for the
increasing variance in the case of increasing model complexity. Note that
ðM − 1Þ ̸2 is the number of hinge function knots. The GCV penalizes not only the
number of BFs but also the number of knots. A default value of 3 is assigned to
penalizing parameter d and further suggestions on choosing the value of d can be
referred to [3]. At each deletion step, a basis function is pruned to minimize Eq. (3),
until an adequately fitting model is found.

After the optimal MARS model is determined, by grouping together all the BFs
involving one variable and another grouping of BFs involving pairwise interactions,
the analysis of variance (ANOVA) decomposition procedure [3] can be used to
assess the parameter relative importance based on the contributions from the input
variables and the BFs.
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3 Performance Measures

Table 1 shows the performance measures and the corresponding definitions utilized
for prediction comparison of the two surrogate methods.

4 Pile Drivability Data Sets

In this paper, a database containing 4072 piles with a total of seventeen variables is
developed from the information on piles already installed for bridges in the State of
North Carolina [11]. Seventeen variables including hammer characteristics, hammer
cushion material, pile and soil parameters, ultimate pile capacities, and stroke were
regarded as inputs to estimate the three dependent responses comprising of the
Maximum compressive stresses (MCS), Maximum tensile stresses (MTS), and
Blow per foot (BPF). A summary of the input variables and outputs is listed in
Table 2.

For purpose of simplifying the analyses considering the extensive number of
parameters and large data set, Joen and Rahman [11] divided the data into five
categories (Q1–Q5) based on the ultimate pile capacity, as detailed in Table 3. In
this paper, for each category 70% of the data patterns were randomly selected as the
training dataset and the remaining data were used for testing. For details of the
entire data set as well as each design variable and responses, the report by Joen and
Rahman [11] can be referred to.

Table 1 Summary of performance measures

Performance measure Definition

Coefficient of determination (R2) R2 = 1−
1
n∑n

i=1 ðYi −YÞ2
1
n∑n

i=1 ðyi − yÞ2

Coefficient of correlation (r) r= ∑N
i=1 ðYi −YÞðyi − yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i=1 ðYi −YÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i=1
ðyi − yÞ2

r

Relative root mean squared error (RRMSE)
RRMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N∑

N
i=1 ðYi − yiÞ2

p
1
N∑

N
i=1 yi

×100

Performance index (ρ) ρ= RRMSE
1+ r

y is the mean of the target values of yi; Y is the mean of the predicted Yi; N denotes the number of
data points in the used set, training set, testing set or the overall set; Definitions of RRMSE, r and ρ
are based on [4].
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Table 2 Summary of input variables and outputs

Inputs and
outputs

Parameters and parameter descriptions

Input variables Hammer Hammer weight (kN) Variable 1 (x1)
Energy (kN ⋅m) Variable 2 (x2)

Hammer cushion material Area (m2) Variable 3 (x3)
Elastic modulus (GPa) Variable 4 (x4)
Thickness (m) Variable 5 (x5)
Helmet weight (kN) Variable 6 (x6)

Pile information Length (m) Variable 7 (x7)
Penetration (m) Variable 8 (x8)
Diameter (m) Variable 9 (x9)
Section area (m2) Variable 10

(x10)
Slenderness L/D Variable 11

(x11)
Soil information Quake at toe (m) Variable 12

(x12)
Damping at shaft
(s/m)

Variable 13
(x13)

Damping at toe (s/m) Variable 14
(x14)

Shaft resistance (%) Variable 15
(x15)

Ultimate pile capacity Qu

(kN)
Variable 16
(x16)

Stroke (m) Variable 17
(x17)

Outputs Maximum compressive stress MCS (MPa)
Maximum tensile stress MTS (MPa)
BPF

Table 3 Division of data with respect to ultimate pile capacities

Pile type Qu range (kN) Data
No. of training data No. of testing data Total

Q1 133.4−355.9 270 90 360
Q2 360.0−707.3 428 144 572
Q3 707.4−1112.1 808 249 1057
Q4 1112.2−1774.8 1296 421 1717
Q5 1774.9−3113.7 276 90 366

Total 3078 994 4072
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5 BPNN Models

For simplicity, only BPNN models with one single hidden layer structure are
considered. The optimal BPNN model is selected from models with different hidden
neurons since the other main parameters for BPNN algorithms have been fixed as:

logsig transfer function from the input layer to the hidden layer;
tansig transfer function from the hidden layer to the output layer;
maxepoch = 500;
learning rate = 0.01;
min_grad = 1 × 10−15;
decrease factor mu_dec = 0.7;
increase factor mu_inc = 1.03.

5.1 The Optimal BPNN Model

The BPNN with the highest coefficient of determination R2 value for the testing
data sets is considered to be the optimal model. Figure 3 plots the R2 values of the
testing data sets for BPNN models with different neurons (from 5 to 15) in the
hidden layer for MCS, MTS and BPF predictions. It can be observed that for
the optimal MCS, MTS, and BPF models, the number of the neurons in the hidden
layer is 9, 7 and 11, respectively.

5.2 Modeling Results

Figures 4, 5 and 6 show the BPNN predictions for the training and testing data
patterns for MCS, MTS, and BPF, respectively. For the MCS predictions, con-
siderably high R2 (>0.97) are obtained for both the training and testing patterns.
Compared with the MCS predictions, the developed BPNN model is slightly less

Fig. 3 R2 for different
neuron numbers for MCS,
MTS and BPF models
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Fig. 4 Prediction of MCS
using BPNN

Fig. 5 Prediction of MTS
using BPNN

Fig. 6 Prediction of BPF
using BPNN
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accurate in predicting the MTS mainly as a result of the bias (errors) due to the
significantly smaller tensile stress values in comparison to the compressive stresses.
For the BPF estimation, high R2 are also obtained for both the training and testing
patterns, with the latter slightly greater than the training sets. In addition, the three
optimal BPNN models can serve as reliable tools for prediction of MCS, MTS and
BPF.

5.3 Parameter Relative Importance

The parameter relative importance determined by BPNN is based on the method by
[5] and discussed by Goh [6]. Figure 7 gives the plot of the relative importance of
the input variables for the three BPNN models. It can be observed that MCS is
mostly influenced by the input variable x11 (Slenderness) and MTS is mostly
influenced by the input variable x8 (Penetration). Interestingly, BPF is primarily
influenced by the input variable x16 (Ultimate pile capacity).

5.4 Model Interpretability

For brevity, only the developed BPNN MCS model is expressed in mathematical
form through the trained connections weights, the bias, and the transfer functions.
The Mathematical expression for MCS obtained by the optimal MCS analysis is
shown in the Appendix 1.

Fig. 7 Prediction of BPF
using BPNN
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6 MARS Models

It is assumed that at most the 2nd order interaction is considered for the prediction
of MCS, MTS and BPF using MARS. The number of basis functions changes from
2n to n2 (n = 17 in this study, numerical trials indicate that overfitting occurs when
the number of BFs exceeds 80).

6.1 The Optimal MARS Model

The MARS model with the highest R2 value and less BFs for the testing data set is
considered to be the optimal. Figure 8 plots the R2 values of the testing data sets for
the MARS models with different BFs (from 34 to 78) in the hidden layer for the
MCS, MTS and BPF predictions. It can be observed that for the optimal MCS,
MTS, and BPF models, the number of BFs is 52, 36 and 38, respectively.

6.2 Modeling Results

Figures 9, 10 and 11 show the MARS predictions for the training and testing data
patterns for MCS, MTS, and BPF, respectively. For the MCS prediction, consid-
erably high R2 (>0.95) are obtained for both the training and testing patterns. As in
the BPNN analysis, the developed MARS model is less accurate in predicting MTS
compared with the MCS predictions, mainly due to the bias brought about by the
smaller tensile stress values. For the BPF estimation, high R2 (>0.90) are also
obtained for both the training and testing patterns, with the latter slightly greater
than the training sets. Consequently, the three optimal MARS models can serve as
reliable tools for prediction of MCS, MTS and BPF.

Fig. 8 R2 for different
number of BFs for MCS,
MTS and BPF models
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Fig. 9 Prediction of MCS
using MARS

Fig. 10 Prediction of MTS
using MARS

Fig. 11 Prediction of BPF
using MARS
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6.3 Parameter Relative Importance

Table 4 displays the ANOVA decomposition of the built MARS models for MCS,
MTS and BPF respectively. For each model, the ANOVA functions are listed.
The GCV column provides an indication on the significance of the corresponding
ANOVA function, by listing the GCV value for a model with all BFs corresponding
to that particular ANOVA function removed. It is this GCV score that is used to
assess whether the ANOVA function is making a significant contribution to the
model, or whether it just marginally improves the global GCV score. The #basis
column gives the number of BFs comprising the ANOVA function and the variable
(s) column lists the input variables associated with this ANOVA function.

Table 4 ANOVA decomposition of MARS model for MCS, MTS and BPF

Function MCS MTS BPF

GCV #
Basis

Variable
(s)

GCV #
Basis

Variable
(s)

GCV #
Basis

Variable
(s)

1 28.82 1 1 1.047 2 5 39.657 2 1

2 8.346 2 6 575.191 1 6 9.750 2 2

3 7.073 1 8 109.688 2 7 1.760 2 13

4 10.226 1 12 305.352 1 8 3.005 2 15

5 5.629 3 17 251.585 2 11 8.034 2 16

6 11.184 1 1 3 25.373 1 17 2.976 2 17

7 48.344 2 1 17 0.441 1 1 6 66.894 3 1 3

8 8.048 5 2 4 337.341 2 3 7 0.370 2 1 6

9 11.846 2 3 4 0.893 2 3 17 0.235 2 1 13

10 21.733 2 3 17 5.626 2 5 7 0.231 1 1 16

11 63.062 1 4 15 2.229 1 5 11 43.396 2 2 3

12 8.017 1 6 8 795.122 4 6 7 0.357 1 2 4

13 4.976 3 8 17 92.069 3 6 8 0.403 2 2 16

14 6.797 1 6 9 0.557 4 2 17

15 48.170 4 6 11 0.280 2 3 13

16 1.472 1 6 16 0.705 2 4 15

17 2.593 2 6 17 0.227 1 4 17

18 0.626 1 7 8 0.170 1 5 13

19 11.173 1 7 17 0.191 1 6 15

20 0.447 1 8 16 0.221 2 7 15

21 50.089 2 8 17 0.375 1 13 15

22 0.828 1 11 15 0.984 1 16 17

23 148.475 2 11 17

24 1.472 2 14 17

25 0.466 1 15 17
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Figure 12 gives the plot of the relative importance of the input variables for the
three HP drivability models developed by MARS. It can be observed that both
MCS and BPF are mostly influenced by the input variable x1 (hammer weight).
Interestingly, MTS is primarily influenced by the input variable x6 (the weight of
helmet). It should be noted that since the BPNN and MARS algorithms adopt
different methods in assessing the parametric relative importance, it is under-
standable that the two algorithms give different results.

6.4 Model Interpretability

Table 5 lists the BFs of the MCS model. The MARS model is in the form of

MCS MPað Þ=169.4 + 0.0095 ×BF1+ 35.6 ×BF2− 47.5 ×BF3− 0.46 ×BF4− 2×BF5+
8847 ×BF6+ 9.2 ×BF7− 8.2 ×BF8− 0.0025 ×BF9+ 0.0062×BF10− 3.2 ×BF11+
470×BF12− 0.0036 ×BF13− 0.8 ×BF14− 0.0012×BF15+ 0.006×BF16+ 9.43 ×BF17
− 6.1 ×BF18+ 0.136 ×BF19− 0.098×BF20− 0.83 ×BF21− 0.17 ×BF22− 540×BF23
+ 1.34 × 105 ×BF24+ 1.672 ×BF25− 0.42 ×BF26+ 0.144 ×BF27− 4.57 ×BF28
− 0.0054×BF29+ 0.052 ×BF30+ 87×BF31+ 250×BF32− 763×BF33− 16×BF34
− 28.1 ×BF35+ 0.217×BF36− 0.2 ×BF37+ 34.5 ×BF38+ 31.3 ×BF39− 50.2 ×BF40
− 425×BF41+ 0.0018 ×BF42− 0.003×BF43− 7.4 ×BF44+ 341×BF45+ 51.4 ×BF46
+ 5.67 ×BF47+ 12×BF48+ 0.96×BF49+ 100.2 ×BF50− 0.2 ×BF51+ 0.23×BF52

ð7Þ

Fig. 12 Relative importance
of the input variables in
MARS pile drivability models
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7 Discussions

Comparisons of R2, r, RRMSE and ρ, as well as the built model interpretability
between MARS and BPNN are shown in Table 6. It can be observed that generally
BPNN models are slightly more accurate than MARS. However, in terms of the
model interpretability, MARS outperforms BPNN through easy-to-interpret model.
Thus, both these two methods can actually be used for cross-validation.

Table 5 BFs and corresponding equations of MARS MCS model

BF Equation BF Equation

BF1 max(0, x16–1550) BF27 max(0, x15 − 15)
BF2 max(0, x17−2.29) BF28 max(0, 15−x15)
BF3 max(0, 2.29−x17) BF29 BF28 × max(0, x16−289)
BF4 max(0, x6−7.38) BF30 BF28 × max(0, 289−x16)
BF5 max(0, 7.38−x6) BF31 BF2×max(0, x1−29.4)
BF6 max(0, 0.014−x10) BF32 BF6 × max(0, x6−6.67)
BF7 max(0, x2−30.7) BF33 BF6 × max(0, 6.67−x6)
BF8 max(0, 30.7−x2) BF34 BF5 × max(0, 1.81−x17)
BF9 BF1 × max(0, x7−8.00) BF35 BF3 × max(0, x1−29.4)
BF10 BF1 × max(0, 8.00−x7) BF36 BF7 × max(0, x11−50)
BF11 max(0, x11−9) BF37 BF7 × max(0, 50−x11)
BF12 max(0, 9−x11) BF38 BF28 × max(0, x13−0.59)
BF13 max(0, 1550−x16) ×

max(0, x8−3.05)
BF39 BF28 × max(0, 0.59−x13)

BF14 max(0, 1550−x16) ×
max(0, 3.05−x8)

BF40 BF4 × max(0, x5−0.05)

BF15 max(0, 1550−x16) ×
max(0, x6−9.34)

BF41 BF4 × max(0, 0.05−x5)

BF16 max(0, 1550−x16) ×
max(0, 9.34−x6)

BF42 max(0, 1550−x16) ×
max(0, x11−24)

BF17 BF6×max(0, x16−1067.5) BF43 max(0, 1550−x16) ×
max(0, 24−x11)

BF18 BF6 × max(0, 1068−x16) BF44 BF7 × max(0, 0.18−x3)
BF19 BF11 × max(0, x4−3.24) BF45 max(0, x3−0.26)
BF20 BF11 × max(0, 3.24−x4) BF46 max(0, 0.26−x3)
BF21 BF11 × max(0, x1−29.4) BF47 BF5 × max(0, x4−1.97)
BF22 BF11 × max(0, 29.4−x1) BF48 BF5 × max(0, 1.97−x4)
BF23 BF6 × max(0, x7−3.05) BF49 BF5 × max(0, 44.7−x2)
BF24 BF6 × max(0, 3.05−x7) BF50 BF45 × max(0, 30−x11)
BF25 BF7 × max(0, x17−2.90) BF51 BF11 × max(0, x2−54.2)
BF26 BF7 × max(0, 2.90−x17) BF52 BF11 × max(0, 54.2−x2)
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8 Summary and Conclusions

A database containing 4072 pile data sets with a total of 17 variables is adopted to
develop the BPNN and MARS models for drivability predictions. Performance
measures indicate that both the BPNN and MARS models for the analyses of pile
drivability provide similar predictions and can thus be used for predicting pile
drivability as cross-validation. In addition, the MARS algorithm builds flexible
models using simpler linear regression and data-driven stepwise searching, adding
and pruning. The developed MARS models are much easier to be interpreted.
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Appendix 1

Calculation of BPNN Output MCS Model
The transfer functions used MCS are ‘logsig’ transfer function for hidden layer

to output layer and ‘tansig’ transfer function for output layer to target. The cal-
culation process of BPNN output for MCS is elaborated in detail as follows:

From connection weights for a trained NN, it is possible to develop a mathe-
matical equation relating input parameters and the single output parameter Y using

Y = fsig b0 + ∑
h

k=1
wkfsig bhk + ∑

m

i=1
wikXi

� �� �� �
ð8Þ

Table 6 Comparison of performance measures for BPNN and MARS

Performance measures MCS BPNN BPF MCS MARS BPF
MTS MTS

R2 Training 0.9704 0.8419 0.9494 0.9572 0.7840 0.9080
Testing 0.9755 0.9302 0.9730 0.9557 0.7820 0.9220

r Training 0.9852 0.8931 0.9742 0.9782 0.8855 0.9534
Testing 0.9874 0.9414 0.9762 0.9784 0.8945 0.9604

RRMSE
(%)

Training 4.2382 80.828 18.487 5.0764 83.604 24.731
Testing 3.7621 62.364 18.543 4.8102 73.222 23.464

ρ (%) Training 2.1357 42.688 9.3624 2.5663 44.342 12.672
Testing 1.8945 32.468 9.3884 2.4321 38.651 11.975

Model interpretability Poor, as shown in Appendix 1 Good, Eq. (7) and Table 5
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in which b0 is the bias at the output layer, ωk is the weight connection between
neuron k of the hidden layer and the single output neuron, bhk is the bias at neuron
k of the hidden layer (k = 1, h), ωik is the weight connection between input variable
i (i = 1, m) and neuron k of the hidden layer, xxx is the input parameter i, and fsig is
the sigmoid (logsig & tansig) transfer function.

Using the connection weights of the trained neural network, the following steps
can be followed to mathematically express the BPNN model:

Step 1: Normalize the input values for x1, x2,… and x17 linearly using
Xnorm =2ðxactual − xminÞ ̸ðxmax − xminÞ− 1

Let the actual x1 =X1a and the normalized x1 =X1

X1 = − 1+ 2× ðX1a − 7.8Þ ̸ð31.1− 7.8Þ ð9Þ

Let the actual x2 =X2a and the normalized x2 =X2

X2 = − 1+ 2× ðX2a − 23.9Þ ̸ð102.3− 23.9Þ ð10Þ

Let the actual x3 =X3a and the normalized x3 =X3

X3 = − 1+ 2× ðX3a − 0.15Þ ̸ð0.27− 0.15Þ ð11Þ

Let the actual x4 =X4a and the normalized x4 =X4

X4 = − 1+ 2× ðX4a − 1.21Þ ̸ð3.72− 1.21Þ ð12Þ

Let the actual x5 =X5a and the normalized x5 =X5

X5 = − 1+ 2× ðX5a − 0.0Þ ̸ð0.18− 0.0Þ ð13Þ

Let the actual x6 =X6a and the normalized x6 =X6

X6 = − 1+ 2× ðX6a − 4.0Þ ̸ð34.5− 4.0Þ ð14Þ

Let the actual x7 =X7a and the normalized x7 =X7

X7 = − 1+ 2× ðX7a − 3.0Þ ̸ð30.5− 3.0Þ ð15Þ

Let the actual x8 =X8a and the normalized x8 =X8

X8 = − 1+ 2× ðX8a − 3.0Þ ̸ð30.5− 3.0Þ ð16Þ

Let the actual x9 =X9a and the normalized x9 =X9

X9 = − 1+ 2× ðX9a − 0.30Þ ̸ð0.36− 0.30Þ ð17Þ

Let the actual x10 =X10a and the normalized x10 =X10
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X10 = − 1+ 2× ðX10a − 0.010Þ ̸ð0.014− 0.010Þ ð18Þ

Let the actual x11 =X11a and the normalized x11 =X11

X11 = − 1+ 2× ðX11a − 8.4Þ ̸ð100.1− 8.4Þ ð19Þ

Let the actual x12 =X12a and the normalized x12 =X12

X12 = − 1+ 2× ðX12a − 0.0025Þ ̸ð0.0084− 0.0025Þ ð20Þ

Let the actual x13 =X13a and the normalized x13 =X13

X13 = − 1+ 2× ðX13a − 0.16Þ ̸ð0.83− 0.16Þ ð21Þ

Let the actual x14 =X14a and the normalized x14 =X14

X14 = − 1+ 2× ðX14a − 0.20Þ ̸ð0.66− 0.20Þ ð22Þ

Let the actual x15 =X15a and the normalized x15 =X15

X15 = − 1+ 2× ðX15a − 10Þ ̸ð95− 10Þ ð23Þ

Let the actual x16 =X16a and the normalized x16 =X16

X16 = − 1+ 2× ðX16a − 137.9Þ ̸ð2891.2− 137.9Þ ð24Þ

Let the actual x17 =X17a and the normalized x17 =X17a

X17 = − 1+ 2× ðX17a − 1.02Þ ̸ð3.46− 1.02Þ ð25Þ

Step 2: Calculate the normalized value (Y1) using the following expressions:

A1 = − 21.3261+ 6.2318logsig X1ð Þ− 3.1654logsig X2ð Þ+17.1602logsig X3ð Þ
− 1.459logsig X4ð Þ− 4.3521logsig X5ð Þ+13.216logsig X6ð Þ− 9.768logsig X7ð Þ
+3.5715logsig X8ð Þ − 0.1209logsig X9ð Þ+0.2208logsig X10ð Þ+15.9897logsig X11ð Þ
− 9.4443logsig X12ð Þ− 1.9824 logsig X13ð Þ− 5.5972logsig X14ð Þ− 6.3521logsig X15ð Þ
+5.4767logsig X16ð Þ− 0.7102logsig X17ð Þ

ð26Þ

A2 = − 8.4258− 15.0031logsig X1ð Þ+11.7647logsig X2ð Þ+1.1075logsig X3ð Þ
− 5.1013logsig X4ð Þ+6.9054logsig X5ð Þ− 10.1146logsig X6ð Þ− 5.4258logsig X7ð Þ
− 23.0086logsig X8ð Þ+0.5226logsig X9ð Þ+0.4659logsig X10ð Þ+4.8115logsig X11ð Þ
+8.377logsig X12ð Þ+18.6713logsig X13ð Þ− 13.0335logsig X14ð Þ+15.2353logsig X15ð Þ
− 12.7608logsig X16ð Þ+2.239logsig X17ð Þ

ð27Þ
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A3 = − 7.9671− 21.6681logsig X1ð Þ+6.0201logsig X2ð Þ+6.4033logsig X3ð Þ
− 0.5677logsig X4ð Þ+21.532logsig X5ð Þ+11.305logsig X6ð Þ− 21.4426logsig X7ð Þ
+24.4447logsig X8ð Þ − 1.7981logsig X9ð Þ− 1.526logsig X10ð Þ− 6.618logsig X11ð Þ
− 32.874logsig X12ð Þ+3.4611logsig X13ð Þ− 5.9862logsig X14ð Þ +9.1232logsig X15ð Þ
− 15.876logsig X16ð Þ− 1.1918logsig X17ð Þ

ð28Þ

A4 = − 0.8699+ 3.7546logsig X1ð Þ− 2.2402logsig X2ð Þ − 1.2905logsig X3ð Þ
+0.2448logsig X4ð Þ− 0.1977logsig X5ð Þ+0.0614logsig X6ð Þ+1.206logsig X7ð Þ
− 0.6279logsig X8ð Þ − 2.19logsig X9ð Þ+2.1303logsig X10ð Þ− 0.3518logsig X11ð Þ
− 0.4643logsig X12ð Þ+1.0234logsig X13ð Þ− 0.1317logsig X14ð Þ +0.1105logsig X15ð Þ
− 0.2714logsig X16ð Þ− 0.3666logsig X17ð Þ

ð29Þ

A5 = − 1.8394+ 0.5777logsig X1ð Þ+0.0039logsig X2ð Þ − 0.1447logsig X3ð Þ
− 0.0038logsig X4ð Þ+0.1173logsig X5ð Þ− 0.2946logsig X6ð Þ− 1.2601logsig X7ð Þ
+3.2074logsig X8ð Þ− 0.496logsig X9ð Þ+0.4693logsig X10ð Þ− 2.415logsig X11ð Þ
+0.2184logsig X12ð Þ+0.5232logsig X13ð Þ+0.1453logsig X14ð Þ+0.1121logsig X15ð Þ
− 0.1928logsig X16ð Þ+0.2347logsig X17ð Þ

ð30Þ

A6 = − 10.0517− 1.6316logsig X1ð Þ− 9.722logsig X2ð Þ− 0.7598logsig X3ð Þ
− 0.6052logsig X4ð Þ+6.2292logsig X5ð Þ− 15.005logsig X6ð Þ+13.487logsig X7ð Þ
− 14.773logsig X8ð Þ +0.2152logsig X9ð Þ+0.1029logsig X10ð Þ− 7.4019logsig X11ð Þ
− 9.094logsig X12ð Þ+0.7162logsig X13ð Þ+3.5733logsig X14ð Þ+5.7949logsig X15ð Þ
− 9.2971logsig X16ð Þ+0.3107logsig X17ð Þ

ð31Þ

A7 = − 19.748+ 17.4566logsig X1ð Þ− 6.3092logsig X2ð Þ− 11.431logsig X3ð Þ
+2.612logsig X4ð Þ− 10.9304logsig X5ð Þ+3.7079logsig X6ð Þ− 6.078logsig X7ð Þ
− 11.0792logsig X8ð Þ− 0.0797logsig X9ð Þ+2.5652logsig X10ð Þ− 13.752logsig X11ð Þ
+21.45logsig X12ð Þ+5.628logsig X13ð Þ+4.9272logsig X14ð Þ+0.3388logsig X15ð Þ
− 10.0783logsig X16ð Þ+11.6775logsig X17ð Þ

ð32Þ

A8 = − 0.8092+ 0.8928logsig X1ð Þ+0.2205logsig X2ð Þ− 0.1265logsig X3ð Þ
− 0.0339logsig X4ð Þ+0.2392logsig X5ð Þ− 0.5454logsig X6ð Þ− 2.6061logsig X7ð Þ
+7.1711logsig X8ð Þ− 1.018logsig X9ð Þ+0.8755logsig X10ð Þ− 5.613logsig X11ð Þ
+0.8703logsig X12ð Þ+0.9022logsig X13ð Þ+0.3572logsig X14ð Þ+0.202logsig X15ð Þ
− 0.3748logsig X16ð Þ+0.2867logsig X17ð Þ

ð33Þ
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A9 = − 1.3878− 1.4052logsig X1ð Þ+0.6705logsig X2ð Þ− 0.5285logsig X3ð Þ
− 0.0814logsig X4ð Þ+0.668logsig X5ð Þ+1.052logsig X6ð Þ− 4.0946logsig X7ð Þ
+3.5151logsig X8ð Þ− 0.4901logsig X9ð Þ+1.104logsig X10ð Þ+0.3529logsig X11ð Þ
0.9261logsig X12ð Þ+1.442logsig X13ð Þ− 0.0338logsig X14ð Þ +0.2956logsig X15ð Þ
− 0.365logsig X16ð Þ− 1.0274logsig X17ð Þ

ð34Þ

B1 = − 1.9078 × tanh A1ð Þ ð35Þ

B2 = − 0.2020 × tanh A2ð Þ ð36Þ

B3 = 0.5773× tanh A3ð Þ ð37Þ

B4 = − 1.8211 × tanh A4ð Þ ð38Þ

B5 = 59.5399× tanh A5ð Þ ð39Þ

B6 = − 1.8844 × tanh A6ð Þ ð40Þ

B7 = − 17.4645 × tanh A7ð Þ ð41Þ

B8 = − 17.3515 × tanh A8ð Þ ð42Þ

B9 = − 2.1634 × tanh A9ð Þ ð43Þ

C1 = − 1.2957+ B1 + B2 + B3 +B4 +B5 + B6 + B7 + B8 +B9 +B10 +B11 ð44Þ

Y1 =C1 ð45Þ

Step 3: De-normalize the output to obtain MCS

MCS = 21.93+ 422.18− 21.93ð Þ× Y1 + 1ð Þ ̸2 ð46Þ

Note: logsig xð Þ=1 ̸ 1+ exp − xð Þð Þwhile tanh xð Þ= 2 ̸ð1+ expð− 2xÞÞ− 1
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