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Abstract In this chapter we present some results of the first European research
project dealing with the utilisation of Big Data ideas and concepts in the Steel
Industry. In the first part, it motivates the definition of a multi-scale data repre-
sentation over multiple production stages. This data model is capable to synchro-
nize high-resolution (HR) measuring data gathered along the whole flat steel
production chain. In the second part, a realization of this concept as a three-tier
software architecture including a web-service for a standardized data access is
described and some implementation details are given. Finally, two industrial
demonstration applications are presented in detail to explain the full potential of this
concept and to prove that it is operationally applicable. In the first application, we
realized an instant interactive data visualisation enabling the in-coil aggregation of
millions of quality and process measures within seconds. In the second application,
we used the simple and fast HR data access to realize a refined cause-and-effect
analysis.
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1 Introduction

According to the German ICT industry association BITKOM.
Big Data means the analysis of large amounts of data from a variety of sources at

high speed aiming to generate economic benefit [1].
In other words, the aim of Big-Data is not to create vast data pools, but to make

use of the data in a target-oriented manner.
From the viewpoint of manufacturing industries, this means that it is much more

important how to combine the data with production knowledge than to process huge
amounts of data in real-time. In this context, the focus must be set on the usability
of Big-Data and not only on the technological limits of data processing. Therefore,
in [2] the concept of the domain expert is introduced. Contrary to the technological
expert, he does not care about the well-known Vs,1 but demands 3 Fs to Big-Data
applications:

For the domain expert the usage of Big Data should be Fast, Flexible and
Focused.

Thus, in this chapter we present a solution that tries to maximize data usability,
already before storage, by means of a multi-scale data representation. Accompanied
with the knowledge about the production history of each single product this can be
used to implement ETL-procedures providing tailored data for any kind of through
process analysis, enabling fast, flexible and focused Big-Data applications.

2 Problem Definition

Today modern measuring systems support the production of high quality steel and
provide an increasing amount of high resolution (HR) quality and process data
along the whole flat steel production chain. Although this amount appears to be
quite small compared to the huge amount of data that occurs e.g. in the world wide
web, especially the complexity of the flat steel production chain makes detailed
analytic tasks difficult for classical relational database management systems
(RDBMS).

1Volume, Variety, Velocity, Veracity
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2.1 Spatial Querying

First reason impeding data analytic tasks in flat steel production is the fact, that the
product (steel coil) basically implies a 2-dimensional spatial object. Whereas on the
one hand it is no problem for a standard RDBMS to access the whole HR data for
each single coil produced quite fast, it is much more difficult to retrieve only partial
data.

If the task is:

Retrieve all available HR data within a certain coil-region over one whole production
period containing thousands of coils.

Standard data-warehouse concepts are approaching their limits very fast. To for-
mulate spatial queries using standard SQL leads to extremely complex statements.
Spatial extensions of common RDBMS like MS SQL Server 2008 [3] or postGIS
for PostgreSQL [4] are able to cope with spatial objects, apply spatial indices and
execute spatial queries, but they are devoted to supply geographical data.

For instance in case of the MS SQL Server the spatial indices are based on
regular grid structures in different resolutions approximating spatial objects [3]. The
main problem of this approach is that the regular grid structure should preferably be
small compared to each single spatial object described by this index to perform
well. However, in case of single surface defects measured by an automatic surface
inspection system (ASIS) this relation is just the opposite. There are many small
objects detected on the coil that would need a very small grid structure for the
spatial index and thus cannot be efficiently covered. The underlying index structure
is dedicated to less and larger objects as usually the case in geographic applications
but not for industrial data.

The addressing and aggregation of a multiple-coil request, as foreseen for HR
data evaluation is not supported directly and thus not of high-performance. Figure 1
shows the result of a trial setup using a geospatial database (Post-
greSQL + PostGIS) and GeoServer [5] as frontend, which is an open source
geospatial web service engine dedicated to process geographical data. The appli-
cability and performance of this architecture was tested by means of Apache JMeter
[6] measuring the querying and aggregating performance of surface defects of 5
coils at a time (different for each request).

In this trial, an average response time of 550 ms on the basis of 1500 requests
was obtained, but the response time increased exponentially with the number of
queried coils, leading to unacceptable results if more coils are analysed [7].

However, for quality monitoring and improvement of the production processes a
more statistical view on the data is mandatory. The absolute coil-position of a
measurement looses importance and a normalized view on the data should be used
to compare not only single coils but also full production cycles and/or material
groups regarding suspicious data distributions. This involves not only 5 but several
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hundred coils thus a new concept of HR data representation had to be found
allowing the fast aggregation of spatial information over a massive amount of
individual coils.

2.2 Product Tracking

To be able to locate a quality problem in the flat steel production chain it is
mandatory to be able to track each individual coil or part of a coil through the full
production process. As exemplary shown in Fig. 2 for the tinplate production, such
a production chain can be quite complex.

Moreover, it is very likely that an effect of a quality problem is measured at a
process step different from the step that causes that problem. Consider an ASIS
installed at a tinning line located at the end of the processing chain that detects
surface defects emerging at a degreasing line.

To be able to correlate process parameters with such a quality problem, it must
be possible to calculate the emerging position p* of each single surface defect from
the position p of the ASIS detection at the tinning line as

p* = Tc
d→ t

� �− 1 pð Þ ð1Þ

where Tc
d→ t is the individual position transformation of coil c from the degreasing

line to the tinning line. This transformation is a composition of the following base
transformations occurring in the flat steel production process:

Fig. 1 Distribution of response time for spatial querying the data of 5 coils
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• winding—always causes a switch of coil start and end. Furthermore a switch of
top/bottom and left/right side is possible

• production process—rolling processes cause coil elongation and thus linear
position shifts

• cutting/welding—due to continuous production, customizing and repairing
operations coils may be cut and new coils assembled from multiple coil parts of
preceding process steps

In Fig. 3 each blue dot on the most right picture represents the relative position
of one or more surface defects as detected by an ASIS installed at the tinning line.
These defect positions are transformed to the preceding lines according to the
available tracking information for the individual coil. Consequently, the quality data
of each coil has to be transformed individually before they can be combined with
process data from preceding lines making this kind of through-process investiga-
tions very complex and time-consuming for standard data-warehouse concepts.
A dedicated storage concept should be able to consider tracking information already
in the ETL-procedures to provide fast query response times for data analytic tasks.

Fig. 2 Exemplary production chain for tinplate production [8]
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3 How to Apply Big Data Concepts in Flat Steel
Production?

The HR data that occurs in flat steel production are values provided by measuring
systems installed at different steps in the production chain. Thus for a suitable
production model, each processing step of a single product has to be considered as
one product instance.

Furthermore, all gathered data has to be assignable to an individual product and
each measurement to a single position on this product. This means in particular, that
time-series must be synchronized with the production and consequently all data
becomes spatial. To allow synchronization between different production steps
additionally the full tracking information of each coil should be available. Figure 4
shows the different data types that have to be considered as HR-data in flat steel
production.

Usually for further processing this kind of information is aggregated based on
constant length segments (e.g. 1 m) and stored in a factory-wide quality database
(QDB). Thus, already today common applications based on the available data in a
QDB can monitor the current production, support quality decisions or allow ded-
icated investigations in case of customer claims [9]. However, to realize a solution
supporting as well fast in-coil aggregations as displaying data from the viewpoint of
different production steps by considering material tracking information, a tailored
data model is needed.

Fig. 3 Position of surface defects tracked through the production chain
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3.1 Production Data Model

A suitable data model that is able to provide efficient HR data access for flat steel
production was developed in the European research project ‘EvalHD’ [7]. The
general idea is to address the problem from the domain expert point of view. To
visualize HR-data on the screen an image has to be created representing a pixel
matrix I : = 0,Nx½ � × ½0,Ny�. Each pixel px, y ∈ I represents a rectangle Rx, y on the
coil that is located relative to each pixel position in I [10]. The color (resp. value) of
each pixel is calculated from the HR measurements within the corresponding
rectangle Rx, y.

Thus, for visualisation and a given image I it is sufficient to store only the
position x, y together with the aggregated value px, y in a production data model
without loosing any information. By means of a bijective function

μ: 0,Nx½ � × 0,Ny
� �

→ ½0,NxNy� ð2Þ

furthermore a unique TileID: = μ x, yð Þ ∈ ½0,NxNy� can be assigned to each pixel
position simplifying the aggregation over multiple coils significantly as this
aggregation can be directly performed over equal TileIDs.

Moreover, this means that using a grid structure fitted to the size and resolution
of the intended visualisation I is a minimal data representation as it stores exactly
the data that is required. On the other hand there are some applications where a
resolution much lower than Nx × Ny is reasonable. One example is the

Fig. 4 Example of measurement data entries in flat steel production, with coil length-position pmd ,
coil width-position pcd and measurement value v or event attributes: length l, width w and class c
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cause-and-effect analysis described in 5.2, but also for visualisation it may be
beneficial to use lower resolutions. They can be used to realize a ‘coarsest first’
visualisation and a user-experience similar to other modern rendering engines as
applied e.g. by the virtual globe “Google Earth” and in detail described in [11].
A parallel querying of the desired information over multiple resolutions and the
immediate visualisation of the finest available data as soon as it is completely
processed leads to a low response time and high user-acceptance of the system [12].

This idea leads to a multi-scale grid representation of measurement data as
shown in Table 1. According to Eq. (2) in this representation each grid cell can be
uniquely addressed by means of the pair (Stage, TileID), thus keeping the fast
aggregation capabilities of the single stage model.

For the final production data model a grid of 1 cell in cross direction (CD) times
2 cells in production direction (MD) was chosen as coarsest stage 0 resolution. The
different number of cells was chosen because of the unequal length to width ratio of
a steel coil (often < 1:10000). For the next stage, the resolution is multiplied by 2
in each dimension leading to the final grid hierarchy shown in Table 2. In this
setup, exactly 4 grid cells of stage i+1 fit in a grid cell of stage i and thus each
TileID of stage i+1 can be uniquely assigned to a single stage i grid cell.

To extract the raw data from the productive databases, transform and load them
into the common HR data model at first each coil has to be normalized to a length
and width of 1. This means that each point Pc : = ðx, yÞ on a coil c is converted to a
new point

Table 1 Visualisation of surface defect distribution over about 8000 coils in different resolution
stages

Stage 0 

n = 2 

Stage 1 

n = 8

Stage 2 

n = 32

Stage 3 

n = 128

Stage 4 

n = 512

Stage 5 

n = 2048

Stage 6 

n = 8192

Stage 7 

n = 32768

Stage 8 

n = 131072
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Pc : =
x
cw

,
y
cl

� �
∈ 0, 1½ �2, with cw : = coil width and cl : = coil length. ð3Þ

Consequently, the reachable synchronization accuracy can be calculated
dependent on the coil c, the coil dimensions cw, cl and the resolution stage s ∈ 0, 8½ �
as

Δxc, s =
cw
s
resp Δyc, s =

cl
s

ð4Þ

Some exemplary values for Δxc, s and Δyc, s are also given in Table 2.
Once each coil position is normalized, the transformation of point-based raw

data into the grid structure can be performed quite easy by simple cell-based
aggregation of all measurements falling into one specific grid cell. Regarding 1D
and 2D continuous measurements, the aggregations stored in the grid structure are
minimum, maximum, mean and count of the measuring values. Event-based data
(like surface defects) are usually stored as rectangular regions combined with a
certain identifier describing the type of the event (e.g. defect class) and can either be
aggregated as absolute counts per grid cell or overlapping area relative to the full
cell area.

Given this multi-grid data representation, the question remains how to enable the
combination of data across production stages. This again can be easily solved by
not only simultaneous storage of data across different resolutions, but also across
different perspectives. Assumed that the information about all coil transformations
is given during data transformation, the data can be tracked upstream and/or
downstream and further grid data can be created and stored for each measurement
from the perspective of other production steps. The data is stored for each plant
separately according to the available material tracking information. Thus, the data is
available simultaneously in different plant coordinates enabling fast HR data access
by means of redundant data storage.

Table 2 Grid definitions and exemplary sizes of grid cells for a coil length of 7500 m and a coil
width of 1500 mm

Stage Tiles CD Tiles MD Δxc, s
(cw : = 1500 mm) (mm)

Δyc, s
(cl : = 7500 m) (m)

0 1 2 1500 3750
1 2 4 750 1875
2 4 8 375 937.5
3 8 16 187.5 468.75
4 16 32 93.75 234.38
5 32 64 46.88 117.19
6 64 128 23.44 58.59
7 128 256 11.72 29.3
8 256 512 5.86 14.65
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Finally, to analyse production data and find causes of quality problems it is
essential to be able to filter data according to different production parameters, like
material, thickness, production period, etc. Thus, further filter conditions have to be
added to each grid entry of the same HR-type (see Fig. 4) to keep filter capabilities
of the data representation. The grid attributes finally stored can be classified into
five different categories:

• Coil Filter—Unique coil identifier that allows filtering grid entries by coil
attributes like material type, thickness, process parameters, etc.

• Identifier—Unique grid cell identifier needed for fast aggregation (Stage,
TileID)

• Sub Filter—Further type specific filter conditions (defect class, measuring
device, etc.)

• Data—Per grid cell aggregated measuring data (min, max, mean, count)

This production data model is able to synchronize and aggregate HR data of
different kind from different perspectives very fast. Therefore, it acts as a kind of
database index on the available HR raw data supporting dedicated querying of grid
data.

4 Implementation

The production data model described above was implemented as classical three-tier
architecture as shown in Fig. 5. This architecture has the benefit that it separates
presentation, application processing, and data management functionality.

Fig. 5 Schema for HR data access
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At the bottom of this architecture, a database management system (DBMS)
implements the HR-data model. In this approach, it is not relevant if the database is
a standard RDBMS or a Hadoop cluster. The application server has to cope with it
and use the correct query syntax to provide the desired grid data by means of
parallel querying the employed database. On top of this architecture, a browser
application communicates with the application server following a unified
web-service definition that is based on the Web-Map-Tile-Service (WMTS) stan-
dard provided by the Open-Geospatial Consortium [13]. In the implemented setup
the querying of the data follows a two-step approach:

1. Query all coils meeting certain filter conditions applied by the user
2. Query grid data according to the selected coils

The resulting grid data can be provided either aggregated (for visualisation) or
per-piece (for cause-and-effect analysis). If material tracking should be considered
one important detail of the final implementation is, that each coil queried in the first
step knows its own production history. This allows switching the viewpoint to
another process step without re-querying the selected coil-set. Furthermore, it is
possible to select only coils that where processed at a certain line being another
important aspect when searching for quality problem causes. For further details on
the web-service definition, please refer to [14].

5 Application

To proof the usability of the architecture depicted in Fig. 5 it was finally imple-
mented at two industrial sites. The production data was transformed to grid data and
continuously imported in the HR data model. Based on the available data a solution
for the fast data visualisation was realized supporting instant-interactive data
analysis and a solution for refined cause-and-effect analysis was implemented.

5.1 Visualisation

The system implemented at thyssenkrupp Rasselstein GmbH finally involved
1137 HR-measurements from 24 main aggregates of the complete tinplate pro-
duction chain together with the full material tracking information. This includes
data from the hot strip mill to the finishing lines at the end of the production. As
database, an MS SQL Server 2012 has been chosen with a capacity of 20 TB being
sufficient to cover approx. 1 year of full production grid data.

It was necessary to put a lot of effort in the implementation of the import services
to be able to store the available HR data to the server without flooding. Extensive
use of methods like bulk inserts, parallel processing and index-free temporary tables
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were required to finally achieve ‘coil-realtime’, meaning that the time required for
data storage can follow the production. It can be reasonable assumed that this will
be no issue using a database system dedicated to Big-Data processing. On the other
hand, it has to be investigated if the query performance of such a system can be
competitive with the index structures provided by the standard RDBMS.

Figure 6 shows a performance statistic over two months of system usage. In this
period the median response time of the system, providing defect data was 215 ms.
This response time refers to the first visualisation of the lowest resolution stage
queried. The querying process was implemented by means of parallel SQL-queries
for 8 equally sized full width stripes distributed over the full coil length. In this trial
the multi-scale visualisation started with stage 2 and refined over stage 6 before
finally stage 8 results were presented.

On average (median) the browser application was able to provide the full res-
olution defect data to the user (8 stripes at stage 8 resolution) in less than 1.5 s.
Furthermore, it can be seen that the usage of the system in the testing period was
mainly focused on the analysis of 1D and event-based data, whereas 2D-continuous
data played only a minor role.

5.1.1 Paw-Scratch Example

The following example clearly demonstrates the benefit of the developed solution
as it shows how a quality problem could be successfully solved using the interactive
visualisation solution presented in this chapter. The quality problem investigated
was the so-called ‘paw-scratch’—defect that often looks like a paw print of an
animal. This defect is well detected by ASIS and can be classified very reliable by
using context information in post-processing rules [9]. Thus, it is a good choice for

Fig. 6 Performance statistics of HR server over 2 months usage
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a detailed ASIS data analysis as no manual data verification is required [15]. The
investigation started with the analysis of paw-scratch defects as detected by an
ASIS installed at the finishing line. The visualisation on top of Fig. 7 shows the
distribution of this type of defect over a set of more than 2000 coils affected by this
defect and combines more than 500.000 single defects in one image. Herein the
most blue grid positions represent more than 500 single paw-scratch detections.

The picture in the middle of Fig. 7 shows the same result as the top picture after
each single ASIS result of each individual coil has been tracked to one of the two
degreasing lines located at the thyssenkrupp site in Andernach. In this case, a
characteristic distribution of the paw-scratch defects becomes visible and it appears
that significant more paw-scratches were located at the beginning of the coils.

This example impressively shows what happens if no tracking information is
considered for data analysis. Due to the individual coil transformations as described
in Sect. 2.2, the characteristic defect distribution at the causative line gets com-
pletely lost throughout the production chain. Thus, in this case no reasonable

Fig. 7 Relative defect positions of paw-scratch defects at the finishing (top) and tracked to the
degreasing line (middle). Bottom: in-coil aggregated mean values of related process variables
(light: line speed, dark: strip tension)
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correlation analysis can be performed by means of the defect positions as measured
by the ASIS.

Generally, an almost uniform distribution as shown on top of Fig. 7 is a strong
indication that the cause of this defect is not located at the specific line. On the other
hand once there is a kind of characteristic distribution visible as in the middle, it
makes sense to correlate the relative positions of the surface defects with process
parameters of the plant.

The bottom picture of Fig. 7 shows an overlay of the paw-scratch distribution at
the degreasing line and the stage 8 grid mean values of the 1-dimensional process
data ‘line speed’ (light) and ‘strip tension’ (dark). It can be seen that there is a
strong correlation between the dark strip tension graph and the paw-scratch
locations.

For the quality engineers this correlation was taken as reason to perform some
trials, how to adapt the process parameters of the degreasing line in such a way that
a lower strip tension at the beginning of the coil can be achieved. To evaluate the
trial results again the ASIS data of the finishing lines had to be tracked back to the
degreasing line to see if the new control strategy led to the desired result. This again
could be done pretty easy using the developed visualisation system.

Thus, iteratively the paw-scratch problem could be solved and today 90% less
coils are affected by paw-scratches than before the implementation of this system.

5.2 Cause-and-Effect Analysis

The occurrence of ripple defects in the course of the Hot Dip Galvanizing
(HDG) process on thick coils (i.e. thickness ≥ 1.5 mm) with low zinc coating (i.e.
in the range 50–71 g/m m2) has been examined at ILVA s.p.a. Ripples are vertical
line shaped defects that could be designed as diffuse coating ruffles so that they are
identified by ASIS systems without difficulty at the end of HDG lines [16]. The
process parameters, which mainly affect the occurrence and the significance of
ripples, are the air blades configuration, cooling techniques, process speed and
wiping medium. The real effects of each process variable deviation is still not very
clear; skilled personnel control ripple defects by employing nitrogen as wiping
medium in air blades but it is not always an effective method and this action could
increase costs uselessly. Moreover, a greater understanding of the phenomenon
under observation can improve the quality by decreasing reworked or scrapped
material.

The above-described problem has been dealt by analysing data from a HDG line
at ILVA, including 1D-continuous HR measurements of 20 process attributes that
can be categorised into four categories:
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1. Air blades;
2. Temperatures (zones before and after the zinc bath, top-roll, water bath);
3. Line speed;
4. Fan coolers.

The case study has been divided into two analysis considering the use of
nitrogen in the air blades. The first analysis is devoted to study the process con-
ditions that minimize the ripple presence despite only air is blown and the second
analysis regards the knowledge of process conditions that lead to a high defec-
tiveness while employing Nitrogen. This analysis is important as the Nitrogen is
expensive and it is interesting to minimize its use maximizing its effectiveness.

When only air is blown, the target is to find a set of process conditions that
allows minimizing the ripple occurrence, while, on the other side, when nitrogen is
employed, the target is to avoid the occurrence of ripples at all. Nitrogen is in facts
expensive, thus, its use should be minimized and its effectiveness maximized.

Due to this reason, two datasets were organized for air and nitrogen blowing,
respectively, which comprised HR measurements of the process attributes high-
lighted above as inputs, and a binary classification of the tiles (null value for tiles
without ripple defect and unitary values for highly defective tiles) has been carried
out. Dataset is composed by about 360 coils that are developed through the HR data
model dealt in 3.1 and pre-processed in order to remove outliers performing a
multivariate Fuzzy-based method (FUCOD) that is in detail designated in [17, 18].

Another issue regards the fact that the available variables are 1D-continuous,
while defects are 2D-continuous. In order to aggregate, input and target tiles are
combined into so-called ‘slices’ along the coil width by summing ripple defects
along that direction. An example of the stage 2 slices is shown in Fig. 8.

Fig. 8 Tile aggregation along coil width (top: tiles for stage 2, bottom: aggregation of tiles to
create associated slices)
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A binary classification based on Decision Tree (DT) has been developed; class 0
represents the slices with the total absence of defects, while class 1 identifies highly
defective slices. With the term highly defective, we indicate slices with a number of
defects that exceeds a threshold. The threshold is automatically computed and fixed
to the 95th quantile of the empirical cumulative distribution of the percentage area
of defects.

Dataset is randomly shuffled and a training and a validation set are defined
preserving the initial proportion among the two classes. The training include the
75% of the available samples while the validation set is composed by the remaining
25%. For both case studies (air and Nitrogen blowing), classifier based on Decision
Tree (DT) has been carried out and subsequently validated on the respective vali-
dation set [19].

The performance has been evaluated computing the Balanced Classification Rate
(BCR) as defined in Eq. 5.

BCR=
1
2

TP
TP+FN

+
TN

TN+FP

� 	
ð5Þ

where TP is the number of unitary values correctly classified, FN the number of
unitary values incorrectly classified, TN the number of null values correctly clas-
sified, and FP the number of null values incorrectly classified. BCR is more
appropriate for imbalanced datasets than the classical accuracy index, as in both
available datasets the null class is far more frequent [20–22].

Each node of the trained DT represents the associated process variable, each
branch corresponds to a range of values it can assume and finally the leafs corre-
spond to the two defined classes. Through a path from the root to a leaf the
procedure detects a process window leading to a specific result, taking into account
if the leaf value is unitary or null.

Decision tree classifier can be translated in a simple chain of IF-THEN-ELSE
rules becoming easily interpretable by no-skilled operators. This method provides
an actual way to support decisions and to extract good process windows to be
adopted during production to avoid defects; moreover, it can be adopted to provide
a degree (namely importance) of how much a process variable affects the analysed
target, so that the quality experts can further investigate on it [23].

Table 3 illustrates the very satisfactory performances of the classifier, while
Table 4 shows the selected variables that mostly affect the target for the two

Table 3 Classification performances in terms of BCR evaluated on the validation set

Case study BCR Accuracy class 0 Accuracy class 1

Air-blowing (%) 99.34 99.78 98.90
N2-blowing (%) 97.65 98.92 96.37
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sub-problems, which is representive of the 95% of the information content. The
proposed method is generic and do not require any a priori assumptions, for this
reason it can be employed in other applications [24].

6 Comparison to Common Concepts

The described HR data model natively provides a solution for the problems of flat
steel production data synchronization and material tracking, which need to be
solved before a through-process data analysis can be performed in this environment.

In the present implementation, the model has been realized by means of a
common RDBMS as the available amount of data allows to realize the full model
data during ETL procedures and to store it completely on the server. However, this
model could also be realized using Big Data Management Technologies and
MapReduce to improve its scalabilty.

Figure 9 shows the median query response and finishing times, already men-
tioned in Sect. 5.1, depending on the number of queried coils. According to the
linear approximation (dotted lines), it can be stated that the response time seems to
be almost independent on the number of queried coils, whereas for the finishing
time there is a slight increase. This behaviour is mainly achieved due to the shift of
the tracking consideration and the data synchronization to the ETL procedures and
the use of an adequate index structure on the RDBMS.

In contrast, the situation for a common data-warehouse concept, which is opti-
mized for a fast per-coil data access, is shown in Fig. 10. It shows the finishing
times for a visualisation of coil-sets of 10, 100 and 1000 coils and indicates the
distribution of the finishing times measured in 5 runs for each coil-set size. Before
the visualisation result can be presented, each coil has to be tracked individually
and the data has to be synchronized. This leads to a clear dependency of the
finishing times on the number of queried coils and a query time of approx. 10 min
for a visualisation of 1000 coils.

In other words, when 1000 coils are queried, the presented data model is approx.
300 times faster than the common data-warehouse concept. This relation is even

Table 4 Most affecting process variables and the associated normalized relevance

Air blowing Nitrogen blowing
Air blade distance 1 Water bath temperature 1

Tunnel zone temperature 0.69 Air blade distance 0.46
Line speed 0.29 Hot briddle zone temperature 0.39
Air blade pression 0.25 Line speed 0.14
Fans speed 0.15 Air blade pression 0.14
Top-roll zone temperature 0.08 Fans speed 0.11
Water bath temperature 0.07 Air blade height 0.05
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increasing when more coils are queried making our concept outstanding fast. Thus,
for the first time ever the HR query response times allow an instant interactive
analysis of HR data as soon as a quality problem occurs, enabling a new dimension
of quality data assessment for flat steel production [14].

Fig. 9 Performance of the implemented visualisation solution (event-based data)

Fig. 10 Query performance of a common data-warehouse concept (event-based data)
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7 Conclusion

For an effective application of Big-Data technologies in manufacturing industries, it
is not sufficient to store a massive amount of raw data. Instead, a full production
model is mandatory to enable through process synchronization of all available
measuring data.

Therefore, in this chapter we describe a suitable production model for flat steel
production, able to realize fast, flexible and focused access to industrial Big-Data,
due to a new multi-scale data representation across production steps. Using a
three-tier architecture, we could successfully implement this approach at two
industrial sites and proof its usability. Moreover, as well for a fast data visualisation
supporting the interactive investigation of quality problems as for providing source
data for HR cause-and-effect analysis using more than one aggregated value per
coil, we could show that this new concept performs far better than any
state-of-the-art data model in terms of query response time.

Concluding it can be stated that standard data-warehouse concepts are not
appropriate to utilise the full potential of modern measuring equipment in flat steel
production, as an efficient statistical evaluation of multi-coil HR data is not ade-
quately supported. On the other hand, new technologies combined with a suitable
production model can provide valuable input to quality engineers and plant oper-
ators already from the very beginning.
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