
Studies in Big Data 44

Sanjiban Sekhar Roy · Pijush Samui
Ravinesh Deo · Stavros Ntalampiras
 Editors

Big Data in
Engineering
Applications

Studies in Big Data

Volume 44

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

The series “Studies in Big Data” (SBD) publishes new developments and advances
in the various areas of Big Data- quickly and with a high quality. The intent is to
cover the theory, research, development, and applications of Big Data, as embedded
in the fields of engineering, computer science, physics, economics and life sciences.
The books of the series refer to the analysis and understanding of large, complex,
and/or distributed data sets generated from recent digital sources coming from
sensors or other physical instruments as well as simulations, crowd sourcing, social
networks or other internet transactions, such as emails or video click streams and
other. The series contains monographs, lecture notes and edited volumes in Big
Data spanning the areas of computational intelligence incl. neural networks,
evolutionary computation, soft computing, fuzzy systems, as well as artificial
intelligence, data mining, modern statistics and Operations research, as well as
self-organizing systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

** Indexing: The books of this series are submitted to ISI Web of Science,
DBLP, Ulrichs, MathSciNet, Current Mathematical Publications, Mathematical
Reviews, Zentralblatt Math: MetaPress and Springerlink.

More information about this series at http://www.springer.com/series/11970

http://www.springer.com/series/11970

Sanjiban Sekhar Roy ⋅ Pijush Samui
Ravinesh Deo ⋅ Stavros Ntalampiras
Editors

Big Data in Engineering
Applications

123

Editors
Sanjiban Sekhar Roy
School of Computing Science
and Engineering

Vellore Institute of Technology
Vellore, Tamil Nadu
India

Pijush Samui
Department of Civil Engineering
National Institute of Technology Patna
Patna, Bihar
India

Ravinesh Deo
University of Southern Queensland
Springfield, QLD
Australia

Stavros Ntalampiras
Polytechnic University of Milan
Milan
Italy

ISSN 2197-6503 ISSN 2197-6511 (electronic)
Studies in Big Data
ISBN 978-981-10-8475-1 ISBN 978-981-10-8476-8 (eBook)
https://doi.org/10.1007/978-981-10-8476-8

Library of Congress Control Number: 2018935215

© Springer Nature Singapore Pte Ltd. 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
part of Springer Nature
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Contents

Applying Big Data Concepts to Improve Flat Steel Production
Processes . 1
Jens Brandenburger, Valentina Colla, Silvia Cateni, Antonella Vignali,
Floriano Ferro, Christoph Schirm and Josef Melcher

Parallel Generation of Very High Resolution Digital Elevation Models:
High-Performance Computing for Big Spatial Data Analysis 21
Minrui Zheng, Wenwu Tang, Yu Lan, Xiang Zhao, Meijuan Jia,
Craig Allan and Carl Trettin

Big-Data Analysis of Process Performance: A Case Study
of Smart Cities . 41
Alejandro Vera-Baquero and Ricardo Colomo-Palacios

Implementing Scalable Machine Learning Algorithms for Mining
Big Data: A State-of-the-Art Survey . 65
Marjana Prifti Skënduli, Marenglen Biba and Michelangelo Ceci

Concepts of HBase Archetypes in Big Data Engineering 83
Ankur Saxena, Shivani Singh and Chetna Shakya

Scalable Framework for Cyber Threat Situational Awareness
Based on Domain Name Systems Data Analysis 113
R. Vinayakumar, Prabaharan Poornachandran and K. P. Soman

Big Data in HealthCare . 143
Margarita Ramírez Ramírez, Hilda Beatriz Ramírez Moreno
and Esperanza Manrique Rojas

Facing Up to Nomophobia: A Systematic Review of Mobile Phone
Apps that Reduce Smartphone Usage . 161
David Bychkov and Sean D. Young

v

A Fast DBSCAN Algorithm with Spark Implementation 173
Dianwei Han, Ankit Agrawal, Wei-keng Liao and Alok Choudhary

Understanding How Big Data Leads to Social Networking
Vulnerability . 193
Romany F. Mansour

Big Data Applications in Health Care and Education 203
B. K. Tripathy

BWT: An Index Structure to Speed-Up Both Exact
and Inexact String Matching . 221
Yangjun Chen and Yujia Wu

Traffic Condition Monitoring Using Social Media Analytics 265
Taiwo Adetiloye and Anjali Awasthi

Modelling of Pile Drivability Using Soft Computing Methods 279
Wengang Zhang and Anthony T. C. Goh

Three Different Adaptive Neuro Fuzzy Computing Techniques
for Forecasting Long-Period Daily Streamflows 303
Ozgur Kisi, Jalal Shiri, Sepideh Karimi and Rana Muhammad Adnan

Prediction of Compressive Strength of Geopolymers
Using Multi-objective Feature Selection . 323
Lasyamayee Garanayak, Sarat Kumar Das and Ranajeet Mohanty

Application of Big Data Analysis to Operation
of Smart Power Systems . 347
Sajad Madadi, Morteza Nazari-Heris, Behnam Mohammadi-Ivatloo
and Sajjad Tohidi

A Structural Graph-Coupled Advanced Machine Learning
Ensemble Model for Disease Risk Prediction in a Telehealthcare
Environment . 363
Raid Lafta, Ji Zhang, Xiaohui Tao, Yan Li, Mohammed Diykh
and Jerry Chun-Wei Lin

vi Contents

Applying Big Data Concepts to Improve
Flat Steel Production Processes

Jens Brandenburger, Valentina Colla, Silvia Cateni,
Antonella Vignali, Floriano Ferro, Christoph Schirm
and Josef Melcher

Abstract In this chapter we present some results of the first European research
project dealing with the utilisation of Big Data ideas and concepts in the Steel
Industry. In the first part, it motivates the definition of a multi-scale data repre-
sentation over multiple production stages. This data model is capable to synchro-
nize high-resolution (HR) measuring data gathered along the whole flat steel
production chain. In the second part, a realization of this concept as a three-tier
software architecture including a web-service for a standardized data access is
described and some implementation details are given. Finally, two industrial
demonstration applications are presented in detail to explain the full potential of this
concept and to prove that it is operationally applicable. In the first application, we
realized an instant interactive data visualisation enabling the in-coil aggregation of
millions of quality and process measures within seconds. In the second application,
we used the simple and fast HR data access to realize a refined cause-and-effect
analysis.

J. Brandenburger (✉)
VDEh-Betriebsforschungsinstitut GmbH, BFI, Düsseldorf, Germany
e-mail: jens.brandenburger@bfi.de

V. Colla ⋅ S. Cateni ⋅ A. Vignali
Scuola Superiore Sant’Anna, SSSA, Pisa, Italy
e-mail: colla@sssup.it

S. Cateni
e-mail: s.cateni@sssup.it

A. Vignali
e-mail: a.vignali@sssup.it

F. Ferro
ILVA S.P.a, Novi Ligure, Italy
e-mail: floriano.ferro@gruppoilva.com

C. Schirm ⋅ J. Melcher
Thyssenkrupp Rasselstein GmbH, Andernach, Germany
e-mail: christoph.schirm@thyssenkrupp.com

J. Melcher
e-mail: josef.melcher@thyssenkrupp.com

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_1&domain=pdf

Keywords Big data ⋅ Manufacturing ⋅ Flat steel production
Data visualization ⋅ Analytics

1 Introduction

According to the German ICT industry association BITKOM.
Big Data means the analysis of large amounts of data from a variety of sources at

high speed aiming to generate economic benefit [1].
In other words, the aim of Big-Data is not to create vast data pools, but to make

use of the data in a target-oriented manner.
From the viewpoint of manufacturing industries, this means that it is much more

important how to combine the data with production knowledge than to process huge
amounts of data in real-time. In this context, the focus must be set on the usability
of Big-Data and not only on the technological limits of data processing. Therefore,
in [2] the concept of the domain expert is introduced. Contrary to the technological
expert, he does not care about the well-known Vs,1 but demands 3 Fs to Big-Data
applications:

For the domain expert the usage of Big Data should be Fast, Flexible and
Focused.

Thus, in this chapter we present a solution that tries to maximize data usability,
already before storage, by means of a multi-scale data representation. Accompanied
with the knowledge about the production history of each single product this can be
used to implement ETL-procedures providing tailored data for any kind of through
process analysis, enabling fast, flexible and focused Big-Data applications.

2 Problem Definition

Today modern measuring systems support the production of high quality steel and
provide an increasing amount of high resolution (HR) quality and process data
along the whole flat steel production chain. Although this amount appears to be
quite small compared to the huge amount of data that occurs e.g. in the world wide
web, especially the complexity of the flat steel production chain makes detailed
analytic tasks difficult for classical relational database management systems
(RDBMS).

1Volume, Variety, Velocity, Veracity

2 J. Brandenburger et al.

2.1 Spatial Querying

First reason impeding data analytic tasks in flat steel production is the fact, that the
product (steel coil) basically implies a 2-dimensional spatial object. Whereas on the
one hand it is no problem for a standard RDBMS to access the whole HR data for
each single coil produced quite fast, it is much more difficult to retrieve only partial
data.

If the task is:

Retrieve all available HR data within a certain coil-region over one whole production
period containing thousands of coils.

Standard data-warehouse concepts are approaching their limits very fast. To for-
mulate spatial queries using standard SQL leads to extremely complex statements.
Spatial extensions of common RDBMS like MS SQL Server 2008 [3] or postGIS
for PostgreSQL [4] are able to cope with spatial objects, apply spatial indices and
execute spatial queries, but they are devoted to supply geographical data.

For instance in case of the MS SQL Server the spatial indices are based on
regular grid structures in different resolutions approximating spatial objects [3]. The
main problem of this approach is that the regular grid structure should preferably be
small compared to each single spatial object described by this index to perform
well. However, in case of single surface defects measured by an automatic surface
inspection system (ASIS) this relation is just the opposite. There are many small
objects detected on the coil that would need a very small grid structure for the
spatial index and thus cannot be efficiently covered. The underlying index structure
is dedicated to less and larger objects as usually the case in geographic applications
but not for industrial data.

The addressing and aggregation of a multiple-coil request, as foreseen for HR
data evaluation is not supported directly and thus not of high-performance. Figure 1
shows the result of a trial setup using a geospatial database (Post-
greSQL + PostGIS) and GeoServer [5] as frontend, which is an open source
geospatial web service engine dedicated to process geographical data. The appli-
cability and performance of this architecture was tested by means of Apache JMeter
[6] measuring the querying and aggregating performance of surface defects of 5
coils at a time (different for each request).

In this trial, an average response time of 550 ms on the basis of 1500 requests
was obtained, but the response time increased exponentially with the number of
queried coils, leading to unacceptable results if more coils are analysed [7].

However, for quality monitoring and improvement of the production processes a
more statistical view on the data is mandatory. The absolute coil-position of a
measurement looses importance and a normalized view on the data should be used
to compare not only single coils but also full production cycles and/or material
groups regarding suspicious data distributions. This involves not only 5 but several

Applying Big Data Concepts to Improve Flat Steel … 3

hundred coils thus a new concept of HR data representation had to be found
allowing the fast aggregation of spatial information over a massive amount of
individual coils.

2.2 Product Tracking

To be able to locate a quality problem in the flat steel production chain it is
mandatory to be able to track each individual coil or part of a coil through the full
production process. As exemplary shown in Fig. 2 for the tinplate production, such
a production chain can be quite complex.

Moreover, it is very likely that an effect of a quality problem is measured at a
process step different from the step that causes that problem. Consider an ASIS
installed at a tinning line located at the end of the processing chain that detects
surface defects emerging at a degreasing line.

To be able to correlate process parameters with such a quality problem, it must
be possible to calculate the emerging position p* of each single surface defect from
the position p of the ASIS detection at the tinning line as

p* = Tc
d→ t

� �− 1 pð Þ ð1Þ

where Tc
d→ t is the individual position transformation of coil c from the degreasing

line to the tinning line. This transformation is a composition of the following base
transformations occurring in the flat steel production process:

Fig. 1 Distribution of response time for spatial querying the data of 5 coils

4 J. Brandenburger et al.

• winding—always causes a switch of coil start and end. Furthermore a switch of
top/bottom and left/right side is possible

• production process—rolling processes cause coil elongation and thus linear
position shifts

• cutting/welding—due to continuous production, customizing and repairing
operations coils may be cut and new coils assembled from multiple coil parts of
preceding process steps

In Fig. 3 each blue dot on the most right picture represents the relative position
of one or more surface defects as detected by an ASIS installed at the tinning line.
These defect positions are transformed to the preceding lines according to the
available tracking information for the individual coil. Consequently, the quality data
of each coil has to be transformed individually before they can be combined with
process data from preceding lines making this kind of through-process investiga-
tions very complex and time-consuming for standard data-warehouse concepts.
A dedicated storage concept should be able to consider tracking information already
in the ETL-procedures to provide fast query response times for data analytic tasks.

Fig. 2 Exemplary production chain for tinplate production [8]

Applying Big Data Concepts to Improve Flat Steel … 5

3 How to Apply Big Data Concepts in Flat Steel
Production?

The HR data that occurs in flat steel production are values provided by measuring
systems installed at different steps in the production chain. Thus for a suitable
production model, each processing step of a single product has to be considered as
one product instance.

Furthermore, all gathered data has to be assignable to an individual product and
each measurement to a single position on this product. This means in particular, that
time-series must be synchronized with the production and consequently all data
becomes spatial. To allow synchronization between different production steps
additionally the full tracking information of each coil should be available. Figure 4
shows the different data types that have to be considered as HR-data in flat steel
production.

Usually for further processing this kind of information is aggregated based on
constant length segments (e.g. 1 m) and stored in a factory-wide quality database
(QDB). Thus, already today common applications based on the available data in a
QDB can monitor the current production, support quality decisions or allow ded-
icated investigations in case of customer claims [9]. However, to realize a solution
supporting as well fast in-coil aggregations as displaying data from the viewpoint of
different production steps by considering material tracking information, a tailored
data model is needed.

Fig. 3 Position of surface defects tracked through the production chain

6 J. Brandenburger et al.

3.1 Production Data Model

A suitable data model that is able to provide efficient HR data access for flat steel
production was developed in the European research project ‘EvalHD’ [7]. The
general idea is to address the problem from the domain expert point of view. To
visualize HR-data on the screen an image has to be created representing a pixel
matrix I : = 0,Nx½ � × ½0,Ny�. Each pixel px, y ∈ I represents a rectangle Rx, y on the
coil that is located relative to each pixel position in I [10]. The color (resp. value) of
each pixel is calculated from the HR measurements within the corresponding
rectangle Rx, y.

Thus, for visualisation and a given image I it is sufficient to store only the
position x, y together with the aggregated value px, y in a production data model
without loosing any information. By means of a bijective function

μ: 0,Nx½ � × 0,Ny
� �

→ ½0,NxNy� ð2Þ

furthermore a unique TileID: = μ x, yð Þ ∈ ½0,NxNy� can be assigned to each pixel
position simplifying the aggregation over multiple coils significantly as this
aggregation can be directly performed over equal TileIDs.

Moreover, this means that using a grid structure fitted to the size and resolution
of the intended visualisation I is a minimal data representation as it stores exactly
the data that is required. On the other hand there are some applications where a
resolution much lower than Nx × Ny is reasonable. One example is the

Fig. 4 Example of measurement data entries in flat steel production, with coil length-position pmd ,
coil width-position pcd and measurement value v or event attributes: length l, width w and class c

Applying Big Data Concepts to Improve Flat Steel … 7

cause-and-effect analysis described in 5.2, but also for visualisation it may be
beneficial to use lower resolutions. They can be used to realize a ‘coarsest first’
visualisation and a user-experience similar to other modern rendering engines as
applied e.g. by the virtual globe “Google Earth” and in detail described in [11].
A parallel querying of the desired information over multiple resolutions and the
immediate visualisation of the finest available data as soon as it is completely
processed leads to a low response time and high user-acceptance of the system [12].

This idea leads to a multi-scale grid representation of measurement data as
shown in Table 1. According to Eq. (2) in this representation each grid cell can be
uniquely addressed by means of the pair (Stage, TileID), thus keeping the fast
aggregation capabilities of the single stage model.

For the final production data model a grid of 1 cell in cross direction (CD) times
2 cells in production direction (MD) was chosen as coarsest stage 0 resolution. The
different number of cells was chosen because of the unequal length to width ratio of
a steel coil (often < 1:10000). For the next stage, the resolution is multiplied by 2
in each dimension leading to the final grid hierarchy shown in Table 2. In this
setup, exactly 4 grid cells of stage i+1 fit in a grid cell of stage i and thus each
TileID of stage i+1 can be uniquely assigned to a single stage i grid cell.

To extract the raw data from the productive databases, transform and load them
into the common HR data model at first each coil has to be normalized to a length
and width of 1. This means that each point Pc : = ðx, yÞ on a coil c is converted to a
new point

Table 1 Visualisation of surface defect distribution over about 8000 coils in different resolution
stages

Stage 0

n = 2

Stage 1

n = 8

Stage 2

n = 32

Stage 3

n = 128

Stage 4

n = 512

Stage 5

n = 2048

Stage 6

n = 8192

Stage 7

n = 32768

Stage 8

n = 131072

8 J. Brandenburger et al.

Pc : =
x
cw

,
y
cl

� �
∈ 0, 1½ �2, with cw : = coil width and cl : = coil length. ð3Þ

Consequently, the reachable synchronization accuracy can be calculated
dependent on the coil c, the coil dimensions cw, cl and the resolution stage s ∈ 0, 8½ �
as

Δxc, s =
cw
s
resp Δyc, s =

cl
s

ð4Þ

Some exemplary values for Δxc, s and Δyc, s are also given in Table 2.
Once each coil position is normalized, the transformation of point-based raw

data into the grid structure can be performed quite easy by simple cell-based
aggregation of all measurements falling into one specific grid cell. Regarding 1D
and 2D continuous measurements, the aggregations stored in the grid structure are
minimum, maximum, mean and count of the measuring values. Event-based data
(like surface defects) are usually stored as rectangular regions combined with a
certain identifier describing the type of the event (e.g. defect class) and can either be
aggregated as absolute counts per grid cell or overlapping area relative to the full
cell area.

Given this multi-grid data representation, the question remains how to enable the
combination of data across production stages. This again can be easily solved by
not only simultaneous storage of data across different resolutions, but also across
different perspectives. Assumed that the information about all coil transformations
is given during data transformation, the data can be tracked upstream and/or
downstream and further grid data can be created and stored for each measurement
from the perspective of other production steps. The data is stored for each plant
separately according to the available material tracking information. Thus, the data is
available simultaneously in different plant coordinates enabling fast HR data access
by means of redundant data storage.

Table 2 Grid definitions and exemplary sizes of grid cells for a coil length of 7500 m and a coil
width of 1500 mm

Stage Tiles CD Tiles MD Δxc, s
(cw : = 1500 mm) (mm)

Δyc, s
(cl : = 7500 m) (m)

0 1 2 1500 3750
1 2 4 750 1875
2 4 8 375 937.5
3 8 16 187.5 468.75
4 16 32 93.75 234.38
5 32 64 46.88 117.19
6 64 128 23.44 58.59
7 128 256 11.72 29.3
8 256 512 5.86 14.65

Applying Big Data Concepts to Improve Flat Steel … 9

Finally, to analyse production data and find causes of quality problems it is
essential to be able to filter data according to different production parameters, like
material, thickness, production period, etc. Thus, further filter conditions have to be
added to each grid entry of the same HR-type (see Fig. 4) to keep filter capabilities
of the data representation. The grid attributes finally stored can be classified into
five different categories:

• Coil Filter—Unique coil identifier that allows filtering grid entries by coil
attributes like material type, thickness, process parameters, etc.

• Identifier—Unique grid cell identifier needed for fast aggregation (Stage,
TileID)

• Sub Filter—Further type specific filter conditions (defect class, measuring
device, etc.)

• Data—Per grid cell aggregated measuring data (min, max, mean, count)

This production data model is able to synchronize and aggregate HR data of
different kind from different perspectives very fast. Therefore, it acts as a kind of
database index on the available HR raw data supporting dedicated querying of grid
data.

4 Implementation

The production data model described above was implemented as classical three-tier
architecture as shown in Fig. 5. This architecture has the benefit that it separates
presentation, application processing, and data management functionality.

Fig. 5 Schema for HR data access

10 J. Brandenburger et al.

At the bottom of this architecture, a database management system (DBMS)
implements the HR-data model. In this approach, it is not relevant if the database is
a standard RDBMS or a Hadoop cluster. The application server has to cope with it
and use the correct query syntax to provide the desired grid data by means of
parallel querying the employed database. On top of this architecture, a browser
application communicates with the application server following a unified
web-service definition that is based on the Web-Map-Tile-Service (WMTS) stan-
dard provided by the Open-Geospatial Consortium [13]. In the implemented setup
the querying of the data follows a two-step approach:

1. Query all coils meeting certain filter conditions applied by the user
2. Query grid data according to the selected coils

The resulting grid data can be provided either aggregated (for visualisation) or
per-piece (for cause-and-effect analysis). If material tracking should be considered
one important detail of the final implementation is, that each coil queried in the first
step knows its own production history. This allows switching the viewpoint to
another process step without re-querying the selected coil-set. Furthermore, it is
possible to select only coils that where processed at a certain line being another
important aspect when searching for quality problem causes. For further details on
the web-service definition, please refer to [14].

5 Application

To proof the usability of the architecture depicted in Fig. 5 it was finally imple-
mented at two industrial sites. The production data was transformed to grid data and
continuously imported in the HR data model. Based on the available data a solution
for the fast data visualisation was realized supporting instant-interactive data
analysis and a solution for refined cause-and-effect analysis was implemented.

5.1 Visualisation

The system implemented at thyssenkrupp Rasselstein GmbH finally involved
1137 HR-measurements from 24 main aggregates of the complete tinplate pro-
duction chain together with the full material tracking information. This includes
data from the hot strip mill to the finishing lines at the end of the production. As
database, an MS SQL Server 2012 has been chosen with a capacity of 20 TB being
sufficient to cover approx. 1 year of full production grid data.

It was necessary to put a lot of effort in the implementation of the import services
to be able to store the available HR data to the server without flooding. Extensive
use of methods like bulk inserts, parallel processing and index-free temporary tables

Applying Big Data Concepts to Improve Flat Steel … 11

were required to finally achieve ‘coil-realtime’, meaning that the time required for
data storage can follow the production. It can be reasonable assumed that this will
be no issue using a database system dedicated to Big-Data processing. On the other
hand, it has to be investigated if the query performance of such a system can be
competitive with the index structures provided by the standard RDBMS.

Figure 6 shows a performance statistic over two months of system usage. In this
period the median response time of the system, providing defect data was 215 ms.
This response time refers to the first visualisation of the lowest resolution stage
queried. The querying process was implemented by means of parallel SQL-queries
for 8 equally sized full width stripes distributed over the full coil length. In this trial
the multi-scale visualisation started with stage 2 and refined over stage 6 before
finally stage 8 results were presented.

On average (median) the browser application was able to provide the full res-
olution defect data to the user (8 stripes at stage 8 resolution) in less than 1.5 s.
Furthermore, it can be seen that the usage of the system in the testing period was
mainly focused on the analysis of 1D and event-based data, whereas 2D-continuous
data played only a minor role.

5.1.1 Paw-Scratch Example

The following example clearly demonstrates the benefit of the developed solution
as it shows how a quality problem could be successfully solved using the interactive
visualisation solution presented in this chapter. The quality problem investigated
was the so-called ‘paw-scratch’—defect that often looks like a paw print of an
animal. This defect is well detected by ASIS and can be classified very reliable by
using context information in post-processing rules [9]. Thus, it is a good choice for

Fig. 6 Performance statistics of HR server over 2 months usage

12 J. Brandenburger et al.

a detailed ASIS data analysis as no manual data verification is required [15]. The
investigation started with the analysis of paw-scratch defects as detected by an
ASIS installed at the finishing line. The visualisation on top of Fig. 7 shows the
distribution of this type of defect over a set of more than 2000 coils affected by this
defect and combines more than 500.000 single defects in one image. Herein the
most blue grid positions represent more than 500 single paw-scratch detections.

The picture in the middle of Fig. 7 shows the same result as the top picture after
each single ASIS result of each individual coil has been tracked to one of the two
degreasing lines located at the thyssenkrupp site in Andernach. In this case, a
characteristic distribution of the paw-scratch defects becomes visible and it appears
that significant more paw-scratches were located at the beginning of the coils.

This example impressively shows what happens if no tracking information is
considered for data analysis. Due to the individual coil transformations as described
in Sect. 2.2, the characteristic defect distribution at the causative line gets com-
pletely lost throughout the production chain. Thus, in this case no reasonable

Fig. 7 Relative defect positions of paw-scratch defects at the finishing (top) and tracked to the
degreasing line (middle). Bottom: in-coil aggregated mean values of related process variables
(light: line speed, dark: strip tension)

Applying Big Data Concepts to Improve Flat Steel … 13

correlation analysis can be performed by means of the defect positions as measured
by the ASIS.

Generally, an almost uniform distribution as shown on top of Fig. 7 is a strong
indication that the cause of this defect is not located at the specific line. On the other
hand once there is a kind of characteristic distribution visible as in the middle, it
makes sense to correlate the relative positions of the surface defects with process
parameters of the plant.

The bottom picture of Fig. 7 shows an overlay of the paw-scratch distribution at
the degreasing line and the stage 8 grid mean values of the 1-dimensional process
data ‘line speed’ (light) and ‘strip tension’ (dark). It can be seen that there is a
strong correlation between the dark strip tension graph and the paw-scratch
locations.

For the quality engineers this correlation was taken as reason to perform some
trials, how to adapt the process parameters of the degreasing line in such a way that
a lower strip tension at the beginning of the coil can be achieved. To evaluate the
trial results again the ASIS data of the finishing lines had to be tracked back to the
degreasing line to see if the new control strategy led to the desired result. This again
could be done pretty easy using the developed visualisation system.

Thus, iteratively the paw-scratch problem could be solved and today 90% less
coils are affected by paw-scratches than before the implementation of this system.

5.2 Cause-and-Effect Analysis

The occurrence of ripple defects in the course of the Hot Dip Galvanizing
(HDG) process on thick coils (i.e. thickness ≥ 1.5 mm) with low zinc coating (i.e.
in the range 50–71 g/m m2) has been examined at ILVA s.p.a. Ripples are vertical
line shaped defects that could be designed as diffuse coating ruffles so that they are
identified by ASIS systems without difficulty at the end of HDG lines [16]. The
process parameters, which mainly affect the occurrence and the significance of
ripples, are the air blades configuration, cooling techniques, process speed and
wiping medium. The real effects of each process variable deviation is still not very
clear; skilled personnel control ripple defects by employing nitrogen as wiping
medium in air blades but it is not always an effective method and this action could
increase costs uselessly. Moreover, a greater understanding of the phenomenon
under observation can improve the quality by decreasing reworked or scrapped
material.

The above-described problem has been dealt by analysing data from a HDG line
at ILVA, including 1D-continuous HR measurements of 20 process attributes that
can be categorised into four categories:

14 J. Brandenburger et al.

1. Air blades;
2. Temperatures (zones before and after the zinc bath, top-roll, water bath);
3. Line speed;
4. Fan coolers.

The case study has been divided into two analysis considering the use of
nitrogen in the air blades. The first analysis is devoted to study the process con-
ditions that minimize the ripple presence despite only air is blown and the second
analysis regards the knowledge of process conditions that lead to a high defec-
tiveness while employing Nitrogen. This analysis is important as the Nitrogen is
expensive and it is interesting to minimize its use maximizing its effectiveness.

When only air is blown, the target is to find a set of process conditions that
allows minimizing the ripple occurrence, while, on the other side, when nitrogen is
employed, the target is to avoid the occurrence of ripples at all. Nitrogen is in facts
expensive, thus, its use should be minimized and its effectiveness maximized.

Due to this reason, two datasets were organized for air and nitrogen blowing,
respectively, which comprised HR measurements of the process attributes high-
lighted above as inputs, and a binary classification of the tiles (null value for tiles
without ripple defect and unitary values for highly defective tiles) has been carried
out. Dataset is composed by about 360 coils that are developed through the HR data
model dealt in 3.1 and pre-processed in order to remove outliers performing a
multivariate Fuzzy-based method (FUCOD) that is in detail designated in [17, 18].

Another issue regards the fact that the available variables are 1D-continuous,
while defects are 2D-continuous. In order to aggregate, input and target tiles are
combined into so-called ‘slices’ along the coil width by summing ripple defects
along that direction. An example of the stage 2 slices is shown in Fig. 8.

Fig. 8 Tile aggregation along coil width (top: tiles for stage 2, bottom: aggregation of tiles to
create associated slices)

Applying Big Data Concepts to Improve Flat Steel … 15

A binary classification based on Decision Tree (DT) has been developed; class 0
represents the slices with the total absence of defects, while class 1 identifies highly
defective slices. With the term highly defective, we indicate slices with a number of
defects that exceeds a threshold. The threshold is automatically computed and fixed
to the 95th quantile of the empirical cumulative distribution of the percentage area
of defects.

Dataset is randomly shuffled and a training and a validation set are defined
preserving the initial proportion among the two classes. The training include the
75% of the available samples while the validation set is composed by the remaining
25%. For both case studies (air and Nitrogen blowing), classifier based on Decision
Tree (DT) has been carried out and subsequently validated on the respective vali-
dation set [19].

The performance has been evaluated computing the Balanced Classification Rate
(BCR) as defined in Eq. 5.

BCR=
1
2

TP
TP+FN

+
TN

TN+FP

� 	
ð5Þ

where TP is the number of unitary values correctly classified, FN the number of
unitary values incorrectly classified, TN the number of null values correctly clas-
sified, and FP the number of null values incorrectly classified. BCR is more
appropriate for imbalanced datasets than the classical accuracy index, as in both
available datasets the null class is far more frequent [20–22].

Each node of the trained DT represents the associated process variable, each
branch corresponds to a range of values it can assume and finally the leafs corre-
spond to the two defined classes. Through a path from the root to a leaf the
procedure detects a process window leading to a specific result, taking into account
if the leaf value is unitary or null.

Decision tree classifier can be translated in a simple chain of IF-THEN-ELSE
rules becoming easily interpretable by no-skilled operators. This method provides
an actual way to support decisions and to extract good process windows to be
adopted during production to avoid defects; moreover, it can be adopted to provide
a degree (namely importance) of how much a process variable affects the analysed
target, so that the quality experts can further investigate on it [23].

Table 3 illustrates the very satisfactory performances of the classifier, while
Table 4 shows the selected variables that mostly affect the target for the two

Table 3 Classification performances in terms of BCR evaluated on the validation set

Case study BCR Accuracy class 0 Accuracy class 1

Air-blowing (%) 99.34 99.78 98.90
N2-blowing (%) 97.65 98.92 96.37

16 J. Brandenburger et al.

sub-problems, which is representive of the 95% of the information content. The
proposed method is generic and do not require any a priori assumptions, for this
reason it can be employed in other applications [24].

6 Comparison to Common Concepts

The described HR data model natively provides a solution for the problems of flat
steel production data synchronization and material tracking, which need to be
solved before a through-process data analysis can be performed in this environment.

In the present implementation, the model has been realized by means of a
common RDBMS as the available amount of data allows to realize the full model
data during ETL procedures and to store it completely on the server. However, this
model could also be realized using Big Data Management Technologies and
MapReduce to improve its scalabilty.

Figure 9 shows the median query response and finishing times, already men-
tioned in Sect. 5.1, depending on the number of queried coils. According to the
linear approximation (dotted lines), it can be stated that the response time seems to
be almost independent on the number of queried coils, whereas for the finishing
time there is a slight increase. This behaviour is mainly achieved due to the shift of
the tracking consideration and the data synchronization to the ETL procedures and
the use of an adequate index structure on the RDBMS.

In contrast, the situation for a common data-warehouse concept, which is opti-
mized for a fast per-coil data access, is shown in Fig. 10. It shows the finishing
times for a visualisation of coil-sets of 10, 100 and 1000 coils and indicates the
distribution of the finishing times measured in 5 runs for each coil-set size. Before
the visualisation result can be presented, each coil has to be tracked individually
and the data has to be synchronized. This leads to a clear dependency of the
finishing times on the number of queried coils and a query time of approx. 10 min
for a visualisation of 1000 coils.

In other words, when 1000 coils are queried, the presented data model is approx.
300 times faster than the common data-warehouse concept. This relation is even

Table 4 Most affecting process variables and the associated normalized relevance

Air blowing Nitrogen blowing
Air blade distance 1 Water bath temperature 1

Tunnel zone temperature 0.69 Air blade distance 0.46
Line speed 0.29 Hot briddle zone temperature 0.39
Air blade pression 0.25 Line speed 0.14
Fans speed 0.15 Air blade pression 0.14
Top-roll zone temperature 0.08 Fans speed 0.11
Water bath temperature 0.07 Air blade height 0.05

Applying Big Data Concepts to Improve Flat Steel … 17

increasing when more coils are queried making our concept outstanding fast. Thus,
for the first time ever the HR query response times allow an instant interactive
analysis of HR data as soon as a quality problem occurs, enabling a new dimension
of quality data assessment for flat steel production [14].

Fig. 9 Performance of the implemented visualisation solution (event-based data)

Fig. 10 Query performance of a common data-warehouse concept (event-based data)

18 J. Brandenburger et al.

7 Conclusion

For an effective application of Big-Data technologies in manufacturing industries, it
is not sufficient to store a massive amount of raw data. Instead, a full production
model is mandatory to enable through process synchronization of all available
measuring data.

Therefore, in this chapter we describe a suitable production model for flat steel
production, able to realize fast, flexible and focused access to industrial Big-Data,
due to a new multi-scale data representation across production steps. Using a
three-tier architecture, we could successfully implement this approach at two
industrial sites and proof its usability. Moreover, as well for a fast data visualisation
supporting the interactive investigation of quality problems as for providing source
data for HR cause-and-effect analysis using more than one aggregated value per
coil, we could show that this new concept performs far better than any
state-of-the-art data model in terms of query response time.

Concluding it can be stated that standard data-warehouse concepts are not
appropriate to utilise the full potential of modern measuring equipment in flat steel
production, as an efficient statistical evaluation of multi-coil HR data is not ade-
quately supported. On the other hand, new technologies combined with a suitable
production model can provide valuable input to quality engineers and plant oper-
ators already from the very beginning.

Acknowledgements The work described in the present paper was developed within the project
entitled “Refinement of flat steel quality assessment by evaluation of high-resolution process and
product data—EvalHD” (Contract No RFSR-CR-2012-00040) that has received funding from the
Research Fund for Coal and Steel of the European Union. The sole responsibility of the issues
treated in the present chapter lies with the authors; the Commission is not responsible for any use
that may be made of the information contained therein.

References

1. Bartel, J., Decker, B., Falkenberg, G., Guzek, R., Janata, S., Keil, T. et al. (2012). Big Data im
Praxiseinsatz: Szenarien, Beispiele, Effekte. Bundesverband Informationswirtschaft,
Telekommunikation und neue Medien e.V. (BITKOM).

2. Freytag, J.-C. (2014). Grundlagen und Visionen großer Forschungsfragen im Bereich Big
Data. Informatik-Spektrum, 37, 97–104.

3. Katibah, E., & Stojic, M. (2011). New Spatial Features in SQL Server Code-Named ‘Denali’.
SQL Server Technical Article. https://msdn.microsoft.com/en-us/library/hh377580.aspx.

4. PostGIS. http://postgis.net/.
5. GeoServer. http://www.geoserver.org.
6. Apache JMeter. https://jmeter.apache.org/.
7. Brandenburger, J., Schirm, C., Melcher, J., Ferro, F., Colla, V., Ucci, A., et al. (2016).

Refinement of Flat Steel Quality Assessment by Evaluation of High-Resolution Process and
Product Data (EvalHD). European Commission, Directorate-General for Research and
Innovation.

8. thyssenkrupp Rasselstein. (2015). Wege der Produktion. Brochure.

Applying Big Data Concepts to Improve Flat Steel … 19

https://msdn.microsoft.com/en-us/library/hh377580.aspx
http://postgis.net/
http://www.geoserver.org
https://jmeter.apache.org/

9. Brandenburger, J., Piancaldini, R., Talamini, D., Ferro, F., Schirm, C., Nörtersheuser, M.,
et al. (2014). Improved Monitoring and Control of Flat Steel Surface Quality and Production
Performance by Utilisation of Results from Automatic Surface Inspection Systems (SISCON).
European Commission, Directorate-General for Research and Innovation.

10. Brandenburger, J., Schirm, C., & Melcher J. (2016). Instant interactive analysis—how
visualisation can help to improve product quality. In Surface Inspection Summit SIS. Europe,
Aachen.

11. Tanner, C. C., Migdal, C. J., & Jones, M. T. (1998). The Clipmap: A virtual Mipmap. In:
Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques (pp. 151–158). ACM.

12. Nielsen, J. (1993). Usability Engineering. Morgan Kaufmann Publishers Inc.
13. OGC OpenGIS. (2010). Web Map Tile Service Implementation Standard. Open Geospatial

Consortium Inc.
14. Brandenburger, J., Colla, V., Nastasi, G., Ferro, F., Schirm, C., & Melcher, J. (2016). Big data

solution for quality monitoring and improvement on flat steel production. In 7th IFAC
Symposium on Control, Optimization and Automation in Mining, Mineral and Metal
Processing MMM, Vienna.

15. Brandenburger, J., Stolzenberg, M., Ferro, F., Alvarez, J. D.; Pratolongo, G., & Piancaldini,
R. (2012) Improved Utilisation of the Results from Automatic Surface Inspection Systems
(IRSIS). European Commission, Directorate-General for Research and Innovation.

16. Borselli, A., Colla, V., Vannucci, M., & Veroli, M. (2010). A fuzzy inference system applied
to defect detection in flat steel production. In IEEE World Congress on Computational
Intelligence, WCCI.

17. Cateni, S., Colla, V., & Nastasi, G. (2013). A multivariate fuzzy system applied for outliers
detection. Journal of Intelligent and Fuzzy Systems, 24, 889–903.

18. Cateni, S., Colla, V., & Vannucci, M. (2007) A fuzzy logic-based method for outliers
detection. In Proceedings of the IASTED International Conference on Artificial Intelligence
and Applications (pp. 561–566).

19. Cateni, S., Colla, V., & Vannucci, M. (2010). Variable selection through genetic algorithms
for classification purposes. In: Proceedings of the 10th IASTED International Conference on
Artificial Intelligence and Applications, AIA (pp. 6–11).

20. Vannucci, M., Colla, V., Cateni, S., & Sgarbi, M. (2011). Artificial intelligence techniques for
unbalanced datasets in real world classification tasks. In: Computational Modeling and
Simulation of Intellect: Current State and Future Perspectives (pp. 551–565).

21. Vannucci, M., & Colla, V. (2011). Novel classification method for sensitive problems and
uneven datasets based on neural networks and fuzzy logic. Applied Soft Computing Journal,
11, 2383–2390.

22. Vannucci, M., & Colla, V. (2015). Artificial intelligence based techniques for rare patterns
detection in the industrial field Smart Innovation. Systems and Technologies, 39, 627–636.

23. Cateni, S., Colla, V., & Vannucci, M. (2009). General purpose input variables extraction: A
genetic algorithm based procedure GIVE a GAP. In ISDA 2009—9th International
Conference on Intelligent Systems Design and Applications (pp. 1278–1283).

24. Cateni, S., Colla, V., Vignali, A., & Brandenburger, J. (2017). Cause and effect analysis in a
real industrial context: study of a particular application devoted to quality improvement. In
WIRN 2017, 27th ItalianWorkshop on Neural Networks June 14–16, Vietri sul Mare, Salerno,
Italy.

20 J. Brandenburger et al.

Parallel Generation of Very High
Resolution Digital Elevation Models:
High-Performance Computing for Big
Spatial Data Analysis

Minrui Zheng, Wenwu Tang, Yu Lan, Xiang Zhao, Meijuan Jia,
Craig Allan and Carl Trettin

Abstract Very high resolution digital elevation models (DEM) provide the
opportunity to represent the micro-level detail of topographic surfaces, thus
increasing the accuracy of the applications that are depending on the topographic
data. The analyses of micro-level topographic surfaces are particularly important for
a series of geospatially related engineering applications. However, the generation of
very high resolution DEM using, for example, LiDAR data is often extremely
computationally demanding because of the large volume of data involved. Thus, we
use a high-performance and parallel computing approach to resolve this big
data-related computational challenge facing the generation of very high resolution
DEMs from LiDAR data. This parallel computing approach allows us to generate a
fine-resolution DEM from LiDAR data efficiently. We applied this parallel com-
puting approach to derive the DEM in our study area, a bottomland hardwood
wetland located in the USDA Forest Service Santee Experimental Forest. Our study
demonstrated the feasibility and acceleration performance of the parallel interpo-
lation approach for tackling the big data challenge associated with the generation of
very high resolution DEM.

Keywords High-performance and parallel computing ⋅ Spatial domain
decomposition ⋅ Very high resolution DEM ⋅ LiDAR data

M. Zheng ⋅ W. Tang (✉) ⋅ Y. Lan ⋅ M. Jia ⋅ C. Allan
Department of Geography and Earth Sciences, University of North Carolina at Charlotte,
28223 Charlotte, USA
e-mail: wtang4@uncc.edu

M. Zheng ⋅ W. Tang ⋅ Y. Lan ⋅ M. Jia
Center for Applied GIScience, University of North Carolina at Charlotte,
28223 Charlotte, USA

C. Trettin
U.S. Forest Service, Center for Forested Wetlands Research, 29434 Cordesville, USA

X. Zhao
School of Resources and Environmental Science, Wuhan University, Wuhan, China

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_2&domain=pdf

1 Introduction

Digital elevation models (DEM) allow for representing the topographic surface of
the Earth by providing spatial location and the elevation information over a
geospatial area [26]. As a common data source for topographic analysis, DEM data
can be produced from a series of technologies, exemplified by Light Detection and
Ranging (LiDAR) technologies. Over the past few years, LiDAR data that provides
details of geographic features have been increasingly collected to generate DEMs for
the delineation and analysis of topographic surfaces, which are essential in a suite of
science and engineering domains, such as hydrologic engineering [8, 40], geo-
graphic information science and surveying engineering [27, 38], and environmental
engineering [13, 18, 41]. Since 1990s, a series of studies have been reported in terms
of using LiDAR-derived DEM to support, for example, microtopography analysis
[4, 10, 16, 19, 20], plant species distribution [21], and landslide detection [23].

The generation of very high resolution DEMs from LiDAR is well established
[6]. However, the computational demand of generating a DEM at very high reso-
lutions (e.g., 0.5, 0.05 m, or even 0.01 m) from LiDAR data is often problematic.
The generation of high or very high resolution DEM requires longer computing
times together with large storage space requirements as compared to low resolution
applications. In other words, the generation of very high resolution DEM is usually
accompanied with a big data issue [31, 42] because the volume of the data increases
exponentially as spatial resolution becomes finer. To resolve this big data issue
facing the generation of very high resolution DEM, high-performance and parallel
computing (HPC) represents one possible solution [11, 17, 22].

HPC employs multiple processors (e.g., CPUs) instead of a single one for
accelerating a computational problem of interest [39]. Typically, multiple proces-
sors used by HPC form into a computing cluster, each of which includes a head
node (or master node) and multiple computing nodes connected through network
switch [39]. The basic algorithm of parallel computing is to split the entire task of
the computational problem into sub-tasks, and then deploy these sub-tasks to
multiple processors on the computing cluster for concurrent computation. Once all
sub-tasks are completed, the computing nodes return the results to the head node for
aggregation. HPC have witnessed an increasing number of applications in scientific
fields, such as bioinformatics, molecular dynamics and environmental applications
[24, 28, 32, 33, 37].

Thus, to tackle the big data issue, in this study we will generate very high
resolution LiDAR-derived DEM using a HPC approach. Our results demonstrate
that the HPC is an efficient and effective approach for developing very high reso-
lution DEM that provide representations of topographic features. The parallel
computing approach to accelerate the generation of the very high resolution DEM

22 M. Zheng et al.

via spatial interpolation is applicable to the widely available LiDAR data thereby
expanding the potential application of this high resolution data. For this study we
utilized a landscape that is representative of the lower coastal plain in the South-
eastern U.S. where small difference in topographic features may have significant
ramifications to a wide array of considerations from water management to eco-
logical processes.

2 Study Area and Data

Our study area is the USDA (United States Department of Agriculture) Forest
Service Santee Experimental Forest (https://www.srs.fs.usda.gov/charleston/santee).
The USDA Forest Service Santee Experimental Forest (SEF) was established in
1937 with the Francis Marion National Forest, South Carolina, with a total area of
2,468 ha (latitudes are from 33.12165° to 33.192979°, and longitude from −79.
752968° to −79.839113°; see Fig. 1). The purpose of the SEF is to provide a basis
for experiments, demonstration trials and long-term monitoring of a variety of
field-scale ecological, hydrological, and climatic properties. The forest is repre-
sentative of the lower coastal plain landscape which is being rapidly developed. It is
characterized by very low relief, and gauged watersheds on the SEF are used for
monitoring hydrologic responses within 1st, 2nd and 3rd order watersheds that are
connected to the East Branch of the Cooper River that flows into Charleston estuary
and subsequently the Atlantic Ocean. The study area is characterized by mixed
pine-hardwood forests in the uplands and bottomland hardwood forested wetlands.
The wetlands are influenced by freshwater tidal cycles and non-tidal systems. An
important characteristic of the upland and wetland forests is the spatially distributed
microtopographic features (hummocks and hollows), which are impacted differen-
tially by fluctuating water levels in this low relief landscape. The microtopography
influences they hydrologic storage properties of a watershed [1] as well as biogeo-
chemical processes, especially related to the carbon cycle in forested wetlands
[2, 35].

This LiDAR contains 20 tiles covering our study area (in total 31,561,291
points). The averaged point density is 1 point/m2 of the LiDAR data managed in
point cloud form (see Table 1). Other geospatial data including road networks,
streams, and the boundary of the SEF were also available.

Parallel Generation of Very High Resolution Digital Elevation … 23

https://www.srs.fs.usda.gov/charleston/santee

Fig. 1 Study area: santee experiment forest (USDA forest service) within the lower coastal plain,
South Carolina

Table 1 Summary of
LiDAR data of the study area

Published year 2007

Total tiles of dataset 20
Total size of dataset 3.5G
Geometry type Point cloud
Unit Meter
Point density 1 point/m2

24 M. Zheng et al.

3 Methodology

In this study, we designed a parallel spatial interpolation approach to generate a
very high resolution DEM from the LiDAR data in our study region. We performed
a spatial domain decomposition on the LiDAR data. Based on the decomposition
results, we developed a parallel computing approach for accelerating the generation
of high-resolution DEM by applying spatial interpolation of the LiDAR points.

3.1 Spatial Interpolation of LiDAR Data

Spatial interpolation is an approach that predicts the value of an unknown region
(point here) based on a number of its surrounding points which values are known.
Spatial interpolation can be applied for generating a continuous surface of any
geographic variables (e.g., elevation, rainfall, temperature) from sampled locations
(as control points). Alternative spatial interpolation algorithms exist, including
inverse distance weighted (IDW), Kriging and Spline [25]. All interpolation algo-
rithm can be classified into two basic types: global and local interpolation. The
major difference between global and local interpolation is the scope of data used for
estimating values of points of interest. Global interpolation uses the entire dataset to
estimate points with an unknown value. Local interpolation only considers the
points located in a neighborhood distance from the point of interest [36]. IDW is a
form of local interpolation algorithms. For massive spatial data, local interpolation
has significant advantages because local interpolation can be partitioned into sub-
domains based on the location of the neighborhood.

In this study, we focus on using the IDW interpolation method for the generation
of very high resolution DEM from LiDAR data. As Zimmerman et al. [43] illus-
trated, IDW predicts the values of unknown locations using a weighted average of
points with known values within a certain distance or a given number of nearest
points (e.g., 10–30). The weight is inversely proportional to distance between
points. The formula for IDW is as follows:

r =
∑m

i=1 d
− p
i vi

∑m
i=1 d

− p
i

ð1Þ

where r is the value of a point to be estimated. vi is the value of a sampling point.
m is the number of nearest neighbors. p is the coefficient of the power function and
di is the distance from m known nearest sampling points to the estimated point
r. The power p controls the influence of neighboring points on determining the
estimated value of the unknown location of interest.

Cross validation is often needed to select optimal parameters of spatial inter-
polation from a number of candidates. In this study, we use a Jackknife method
(also known as leave-one-out approach) for cross validation. Jackknife is based on

Parallel Generation of Very High Resolution Digital Elevation … 25

removing one sample point of the dataset at a time, and repeatedly estimating value
using the remaining points in the dataset [34]. The cross validation performance can
be evaluated by the root-mean-square error (RMSE):

RMSE =

ffi

∑n
i=1ðVit − ViÞ2

n

s

ð2Þ

where Vit is the interpolated value of sample i using remaining n − 1 records, Vi is
the observed value of sample i, and n is the number of samples in the dataset of
interest.

3.2 Parallel Interpolation for the Generation of DEM

The generation of DEM data from massive LiDAR data faces computational
challenges. In this study, we developed a parallel spatial interpolation approach for
the generation of DEM based on LiDAR data. The past two decades have witnessed
a variety of studies on the use of parallel spatial interpolation to solve the com-
putational challenge facing massive spatial data. Armstrong and Mariciano [3] used
an IDW interpolation method with a MIMD (multiple instruction, multiple data)
parallel processing environment. A few years later, Cramer and Armstrong [5]
evaluated static and dynamic domain decomposition strategies for parallel inter-
polation on using IDW algorithm. Guan and Wu [11] investigated the power of
multicore-based parallel computing platforms for generating DEM from massive
LiDAR data, in which the IDW interpolation algorithm was used. Huang and Yang
[17] proposed a grid computing solution based on the Condor platform (aka,
Condor, see https://research.cs.wisc.edu/htcondor/) for the spatial interpolation of
DEM using IDW from a large spatial dataset. Li et al. [22] developed a general
framework for parallel processing of large-scale LiDAR data, and used DEM
generation for Colleton County in South Carolina as a case study to demonstrate the
utility of the framework implemented based on a map-reduce mechanism.

There are typically four steps to design a parallel computing algorithm, including
partitioning, communication, agglomeration and mapping [9, 29]. With these four
steps, Fig. 2 shows the framework of our parallel computing approach for the
generation of DEM based on spatial interpolation.

Partitioning is the first step of the parallel spatial interpolation for the generation
of DEM. In this study, we used spatial domain decomposition for the partitioning of
a large spatial interpolation problem into sub-problems for acceleration. Spatial
domain decomposition is one of the spatial strategies that is popular in parallel
spatial modelling particularly with big spatial data. The decomposition strategy
divides a dataset into several subtasks based on different task requirements, and
then schedule these tasks on multiple processors (i.e., computing node). All com-
puting nodes’ results are returned and aggregated on the head node. Over the past

26 M. Zheng et al.

https://research.cs.wisc.edu/htcondor/

several years, domain decomposition is already proved its benefits in accelerating
spatial modelling tasks when using parallel computing, and a number of publica-
tions on parallel processing based on spatial domain decomposition have been
reported. For example, Ding and Densham [7] stressed that one- or
two-dimensional decomposition can be used in many types of data: single data type
(i.e., binary or categorical) with regular (e.g., square, rectangular, triangle) or
irregular shape (e.g., LiDAR data in this study), mixed data types (i.e., binary and
categorical) with regular or irregular shape. Because two-dimensional decomposi-
tion needs less communication, they also pointed out two-dimensional decompo-
sition is more efficient than one-dimensional decomposition in regular shape data.
Besides the one- or two-dimensional decomposition method, there exists other
decomposition methods, such as quadtree domain decomposition [36]. We chose to
use two-dimensional regular spatial domain decomposition strategies in our study
for the parallel spatial interpolation for the generation of DEM data based on
LiDAR data. The spatial domain covering our study area is split into a matrix of
subdomains in rectangular shapes (see Figs. 2 and 3). Originally, these rectangular
sub-domains are non-overlapping.

Handing of communication among tasks associated with subdomains is the
second step of parallel computing algorithms. Overlapping spatial domain
decomposition is often associated with spatial analysis algorithms in need of
information from neighborhood scope [5, 7]. Usually, a non-overlapping domain
decomposition is the most efficient way for the parallelization of spatial analysis
algorithms. However, non-overlapping decomposition may lead to incorrect results
when spatial analysis algorithms depend on neighborhood information, such as
IDW algorithm in this study. Therefore, overlapping spatial domain decomposition
is often preferred for parallelizing spatial analysis algorithms with neighborhood
scope rather than the non-overlapping solution [7]. The overlapping regions of
subdomain depends on the neighborhood scope of the focal geospatial features for

Fig. 2 Framework of the parallel computing approach of spatial interpolation for the generation
of very high resolution DEM

Parallel Generation of Very High Resolution Digital Elevation … 27

the spatial analysis algorithms. For example, when using IDW algorithm, the radius
of overlapping subdomains is defined by the longest distance from neighboring
points to the focal point of interest. A series of meaningful extensions and appli-
cations of overlapping domain decomposition have been conducted through the
years. For example, Shepard [30] involved overlapping subdomains for paral-
lelizing nearest neighbor search operations. Hohl et al. [14, 15] implemented
overlapped subdomains to include neighborhood points within a threshold distance
(bandwidth here) to correct edge effects for parallel kernel density estimation.

IDW algorithm used in spatial interpolation in this study relies on the scope of
neighborhood because a number of neighboring points are used to estimate the
value of a focal point of interest. If the original subdomains that are
non-overlapping are directly used, the communication among computing nodes for
those neighboring points that may be located in different computing nodes needs to
be addressed (e.g., using a message-passing mechanism; see [39]). In this study,
instead of message-passing parallelism, we chose to use an alternative approach to
address this situation: each subdomain is extended based on a buffer analysis
operation (see Fig. 3). As a result, a series of overlapping subdomains are generated
that can be used to extract the sub-datasets for spatial interpolation. The radius of
the buffer analysis should be larger than the longest distance from neighboring
points to the focal point of interest. Thus, it is not necessary to directly handle
communication among computing nodes for the parallel spatial interpolation on
multiple processors. In other words, there is no overhead for inter-processor
communication.

The computing performance of our parallel approach is evaluated using speedup
and efficiency. Speedup and efficiency are the two indexes to evaluate the com-
puting performance of a HPC [39]. Speedup (s) is a measure of relative

Fig. 3 Illustration on the spatial domain decomposition of parallel spatial interpolation

28 M. Zheng et al.

performance between execution time using parallel computing (tp) with n CPUs and
execution time using sequential computing (ts; one CPU here), defined as:

s =
ts
tp

ð3Þ

The theoretically maximum speedup is n with n CPUs (say, linear speedup).
Efficiency (e) is a standardized metric that is the ratio of speed up over the number
of CPUs used for the computation:

e=
s
n

ð4Þ

Studies in the literature demonstrated parallel implementation of DEM inter-
polation can substantially accelerate the overall computation. For example, Guan
and Wu [11] used a parallel solution with pipelining algorithm in their spatial
interpolation for DEM generation. The computing time of their algorithm was
reduced from 50 to 12 min, with a speedup of 4.2 based on 8 processors. In Huang
and Yang [17]’s study, the best speedup for interpolating DEM interpolation using
Condor is 16, on the basis of 20 CPUs. Li et al. [22] applied their general-purpose
computing framework for parallel processing of DEM interpolation on a Hadoop
cluster, and the speedup with 10 computing nodes reached 5.38.

3.3 Implementation

The generation of very high resolution LiDAR-derived DEM in this study uses a set
of software packages. We used ESRI ArcMap (version 10.3; http://desktop.arcgis.
com/en/arcmap/) for IDW spatial interpolation and the mosaic function for the
aggregation of all results from different subdomains into a single dataset. Python
script is used to implement spatial domain decomposition. We developed a Python
script that combines a series of ArcGIS functionalities to automate our parallel
domain decomposition and spatial interpolation process.

4 Experiment and Results

4.1 Setting up of High Performance Computing
Environments

The high-performance computing resources used for this study are a Windows-
based cluster (Sapphire at the Center for Applied Geographic Information Science,
University of North Carolina at Charlotte). The Windows-based cluster consists of

Parallel Generation of Very High Resolution Digital Elevation … 29

http://desktop.arcgis.com/en/arcmap/
http://desktop.arcgis.com/en/arcmap/

20 computing nodes, each of which has 2 CPUs (Intel Core 2 Duo CPU with
3.00 GHz) and 4 GB of memory. The computing nodes are connected through a
gigabit band network switch. ArcGIS 10.3 and Python are installed on the head and
computing nodes of the cluster (see Fig. 4). We use Microsoft HPC Cluster
Manager [12] for job scheduling.

4.2 Result of Very High Resolution LiDAR-Derived DEM

We designed an experiment including five treatments to investigate the impact of
granularity level on parallel computing performance. The spatial domain decom-
position strategies for the five treatments are 10 × 10, 15 × 15, 20 × 20,
25 × 25, and 30 × 30. As a result, the number of decomposed tiles with LiDAR
data is 100, 225, 400, 625, and 900 subdomains for these five treatments (see
Fig. 5). Each decomposed tile corresponds to a sub-task that can be further
aggregated into a task deployed on a processor.

The distance of the buffer used for creating overlapping regions for each sub-
domain was set to 1 m. The parameter of power coefficient, p (Eq. 1) for
IDW-based spatial interpolation is 3.34 with 0.06 RMSE (Eq. 2) for leave-one-out
cross validation. Based on the 0.05 m spatial resolution, the number of rows and
columns of spatial interpolation results (as in raster data) is 148,217 × 140,105.
All the treatments are computed on the Window cluster discussed in Sect. 4.1.

Figure 6 depicts the microtopographic detail of this low relief bottomland
wetland environment derived from the high resolution DEM developed from our
computing procedure. Such data are required to apply spatially distributed hydro-
logic and biogeochemical models in this and similar wetland environments.

Fig. 4 Illustration on the architecture of a windows-based cluster

30 M. Zheng et al.

4.3 Computing Performance

Table 2 summarized the computing time of these five treatments in response to the
number of CPUs used for parallel acceleration. The number of CPUs increases from
2 to 28 with an increment of 2. Usually, the sequential time is computed using the
entire dataset on a single CPU. However, the spatial interpolation cannot be directly
applied to the entire dataset because the size of the matrix (148,217 × 140,105)
used to host the entire spatial interpolation results are too large (which consumes
huge amounts of computer memory). Thus, in this study, we used the summation of
computing time for each sub-task as an alternative of sequential computing time.
The sequential time of the five treatments are 74,866.51 s (about 20.8 h),
70,853.72 s (about 19.7 h), 64,543.72 s (about 17.9 h), 64,343.94 s (about 17.9 h),
and 66,869.5 s (about 18.6 h), respectively. As we could observe from Table 2, the
execution time for each of the five treatment decreases as more CPUs are added.
From Fig. 7, we could see that the execution time rapidly declines when 4 CPUs are
used. When the range of used CPUs from 4 to 18, computing time shows a slowly
decreasing trend. After 18 CPUs are involved, the parallel computing time is rel-
atively constant (most runs are within 1 h). In particular, when the number of CPUs
used for parallel spatial interpolation is 28, the lowest range of computing time is
from 3,734 to 2,512 s with increasing the number of decompositions.

From Fig. 7 and Table 2, we see that with the use of 25 × 25 or 30 × 30
decompositions results in limited reductions in parallel computing time. Instead,

Fig. 5 Map of spatial domain decompositions with different granularities (a 10 × 10 subdo-
mains, b 15 × 15 subdomains, c 20 × 20 subdomains, d 25 × 25 subdomains, e 30 × 30
subdomains)

Parallel Generation of Very High Resolution Digital Elevation … 31

very fine partitioning will likely lead to increase in computing time because the time
spent on spatial domain decomposition time is rapidly increasing. Figure 8 shows
computing time for each step of the parallel spatial interpolation (including
decomposition, spatial interpolation, and post-processing) over five treatments.
Figure 8a illustrates the scenario of sequential computing time and Fig. 8b parallel
computing time using 28 CPUs. We observe that spatial interpolation dominates the
entire process both for sequential and parallel computing. The computing time spent

Fig. 6 Map of very high resolution LiDAR-derived DEM (spatial resolution: 0.05 m; landscape
size: 148,217 × 140,105)

32 M. Zheng et al.

on post-processing generally tends to be the shortest among the three steps. For
sequential computing, the spatial interpolation and post-processing times decrease
slightly when spatial domain decomposition becomes finer, but decomposition time
tends to increase. Further, the total execution time tends to decrease since com-
puting time spent on spatial interpolation the step that dominates the entire

Table 2 Computing performance of the experiment of five decomposition granularity levels over
number of CPUs (unit: seconds)

CPU 10 × 10 15 × 15 20 × 20 25 × 25 30 × 30

2 37,560.69 35,984.50 32,394.33 32,247.05 33,449.69
4 19,422.50 18,258.56 16,298.61 16,225.25 16,756.99
6 12,981.45 12,129.59 10,892.55 10,894.40 11,240.28
8 10,257.82 9,248.81 8,492.82 8,164.69 8,465.50
10 8,528.61 7,437.02 6,813.05 6,732.07 6,802.18
12 7,250.45 6,351.11 5,605.52 5,512.69 5,705.71
14 6,285.16 5,693.98 4,913.88 4,733.35 4,871.34
16 5,158.56 5,084.68 4,913.88 4,194.72 4,306.56
18 5,329.11 4,494.84 3,893.03 3,863.67 3,784.10
20 4,592.07 3,819.58 3,525.73 3,463.27 3,486.67

22 4,083.29 3,816.80 3,209.88 3,064.32 3,115.70
24 3,950.40 3,360.74 2,961.28 2,869.90 2,937.03
26 3,889.81 3,255.98 2,735.48 2,679.55 2,690.08
28 3,733.85 2,982.76 2,644.97 2,492.91 2,511.66
Sequential 74,866.51 70,853.72 64,543.72 64,343.94 66,869.50

Fig. 7 Parallel computing time of the experiment of spatial domain decomposition granularities
over different numbers of CPUs (G1: 10 × 10 subdomains; G2: 15 × 15 subdomains; G3:
20 × 20 subdomains; G4: 25 × 25 subdomains; G5: 30 × 30 subdomains)

Parallel Generation of Very High Resolution Digital Elevation … 33

computing time exhibits a decreasing pattern in response to finer decomposition
granularity. Likewise, the parallel computing time (Fig. 8b) shows similar patterns
in response to increase in the granularity of spatial domain decomposition,

Fig. 8 Computing time for each step of parallel spatial interpolation over five treatments
(a sequential computing time, b parallel computing time; time unit: seconds; #CPUs: 28; G1:
10 × 10 subdomains, G2: 15 × 15 subdomains; G3: 20 × 20 subdomains; G4: 25 × 25
subdomains; G5: 30 × 30 subdomains)

34 M. Zheng et al.

but change in the total parallel computing time from 25 × 25 to 30 × 30
decompositions is marginal (about 20 s).

Figure 9 demonstrates speedup and efficiency results over the number of CPUs
for the five treatments. Generally, speedup tends to increase as the number of CPUs
increases (Fig. 9a). But, increase in speedup when more CPUs are used tend to be
slow for coarse spatial domain decomposition. Efficiency results (Fig. 9b) show a
decreasing pattern. When the number of CPUs employed is less than 6, the effi-
ciencies of five treatments are close to 1 because the computing performance for

Fig. 9 Speedup and efficiency results in response to the number of CPUs (a speedup; b efficiency;
G1: 10 × 10 subdomains, G2: 15 × 15 subdomains; G3: 20 × 20 subdomains; G4: 25 × 25
subdomains; G5: 30 × 30 subdomains)

Parallel Generation of Very High Resolution Digital Elevation … 35

each CPU is similar. But, except for the finest decomposition (30 × 30 tiles),
efficiencies of all decomposition treatments tend to decrease as the number of CPUs
becomes larger. For 30 × 30 tiles, the efficiencies stay close to the highest effi-
ciency (i.e., 1) under most circumstances. When spatial domain decomposition
becomes finer, the computing time associated with each decomposed subdomains
(tiles) tend to be smaller. Thus, the computing time for those tasks that are
aggregated from multiple subdomains tends to be balanced. As a result, the effi-
ciency of parallel computing for fine spatial domain decomposition tends to be
higher than coarse decomposition.

5 Conclusion

In this study, we demonstrated that a high performance and parallel computing
approach to interpolate LiDAR data for generating very high resolution DEM.
Those DEMs play an essential role in topographic analyses with a focus on
micro-level features, which are often of particular importance for a suite of
geospatially related science and engineering applications. In this study, the spatial
resolution of 0.05 m was used. Our parallel spatial interpolation results show that
very high resolution DEMs provide substantial support for delineating micro-level
detail of topographic surfaces such as hummocks or hollows in a low relief wetland
environment.

The high-performance and parallel computing solution proposed in this study
demonstrated its ability to accelerate the generation of very high resolution DEM
using spatial interpolation. As more CPUs were introduced, the execution time
tends to decrease substantially (e.g., from 20.8 h to 41 min when using 28 CPUs).
Our results suggest that when spatial domain decomposition becomes finer, the
efficiency of parallel computing tends to be lowered (though the generation of DEM
still gains acceleration benefits). In other words, spatial domain decomposition
strategies are pivotal in reaping the high-performance computing power for big
spatial data analytics.

Future work will concentrate on the following aspects. First, we will extend our
approach to a more in depth microtopography analysis. More DEM-derived metrics
(e.g., slope and surface roughness) will be introduced to explain and differentiate
the microtopography features in our study area. Second, we will further examine
other spatial domain decomposition strategies for the acceleration of the generation
of very high resolution DEM. Third, but not last, we will apply the proposed
parallel computing approach to other study regions.

Acknowledgements We thank support from US NSF XSEDE Supercomputing Resource Allo-
cation (SES170007), and USDA Forest Service grant “Development and Operation of a Web
GIS-enabled Data Management System for the Santee Experiment Forest”.

36 M. Zheng et al.

References

1. Amoah, J. K. O., Amatya, D., & Nnaji, S. (2013). Quantifying watershed surface depression
storage: determination and application in a hydrologic model. Hydrological Processes,
27(17), 2401–2413.

2. Anderson, C. J, & Lockaby, B. G. (2011). Forested wetland communities as indicators of tidal
influence along the Apalachicola River, Florida, USA. Wetlands, 31(5), 895.

3. Armstrong, M. P., & Marciano R. (1993). Parallel spatial interpolation. In
Autocarto-Conference.

4. Brubaker, K. M., Myers, W. L., Drohan, P. J., Miller, D. A., & Boyer, E. W. (2013). The use
of LiDAR terrain data in characterizing surface roughness and microtopography. Applied and
Environmental Soil Science, 13. https://doi.org/10.1155/2013/891534

5. Cramer, B. E., & Armstrong, M. P. (1999). An evaluation of domain decomposition strategies
for parallel spatial interpolation of surfaces. Geographical Analysis, 31(2), 148–168.

6. Deilami, K., & Hashim, M. (2011). Very high resolution optical satellites for DEM
generation: A review. European Journal of Scientific Research, 49(4), 542–554.

7. Ding, Y., & Densham, P. J. (1996). Spatial strategies for parallel spatial modelling.
International Journal of Geographical Information Systems, 10(6), 669–698.

8. Emerson, C. H., Welty, C., & Traver, R. G. (2005). Watershed-scale evaluation of a system of
storm water detention basins. Journal of Hydrologic Engineering, 10(3), 237–242.

9. Foster, I. (1995). Designing and building parallel programs (Vol. 78). Boston: Addison
Wesley Publishing Company.

10. Griffin, L. F., Knight, J. M., & Dale, P. E. R. (2010). Identifying mosquito habitat
microtopography in an Australian mangrove forest using LiDAR derived elevation data.
Wetlands, 30(5), 929–937. https://doi.org/10.1007/s13157-010-0089-8.

11. Guan, X., & Huayi, W. (2010). Leveraging the power of multi-core platforms for large-scale
geospatial data processing: Exemplified by generating DEM from massive LiDAR point
clouds. Computers and Geosciences, 36(10), 1276–1282.

12. HPC. (2016). Windows HPC Cluster Manager. https://technet.microsoft.com/en-us/library/
ff919397.aspx.

13. Hickey, R., Smith, A., & Jankowski, P. (1994). Slope length calculations from a DEM within
ARC/INFO GRID. Computers, Environment and Urban Systems, 18(5), 365–380.

14. Hohl, A., Delmelle, E. M., & Tang, W. (2015). Spatiotemporal domain decomposition for
massive parallel computation of space-time kernel density. ISPRS Annals of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, 2(4), 7.

15. Hohl, A., Delmelle, E., Tang, W., & Casas, I. (2016). Accelerating the discovery of
space-time patterns of infectious diseases using parallel computing. Spatial and
Spatio-Temporal Epidemiology, 19, 10–20.

16. Huang, C.-H., & Bradford, J. M. (1992). Applications of a laser scanner to quantify soil
microtopography. Soil Science Society of America Journal, 56(1), 14–21.

17. Huang, Q., & Yang, C. (2011). Optimizing grid computing configuration and scheduling for
geospatial analysis: An example with interpolating DEM. Computers and Geosciences, 37(2),
165–176.

18. Jensen, R. P., Bosscher, P. J., Plesha, M. E., & Edil, T. B. (1999). DEM simulation of granular
media—structure interface: Effects of surface roughness and particle shape. International
Journal for Numerical and Analytical Methods in Geomechanics, 23(6), 531–547.

19. Knight, J. M., Dale, P. E. R., Spencer, J., & Griffin, L. (2009). Exploring LiDAR data for
mapping the micro-topography and tidal hydro-dynamics of mangrove systems: An example
from southeast Queensland, Australia. Estuarine, Coastal and Shelf Science, 85(4), 593–600.

20. Komiyama, A., Santiean, T., Higo, M., Patanaponpaiboon, P., Kongsangchai, J., & Ogino, K.
(1996). Microtopography, soil hardness and survival of mangrove (Rhizophora apiculata BL.)
seedlings planted in an abandoned tin-mining area. Forest Ecology and Management, 81(1),
243–248.

Parallel Generation of Very High Resolution Digital Elevation … 37

http://dx.doi.org/10.1155/2013/891534
http://dx.doi.org/10.1007/s13157-010-0089-8
https://technet.microsoft.com/en-us/library/ff919397.aspx
https://technet.microsoft.com/en-us/library/ff919397.aspx

21. Lassueur, T., Joost, S., & Randin, C. F. (2006). Very high resolution digital elevation models:
Do they improve models of plant species distribution? Ecological Modelling, 198(1),
139–153.

22. Li, Z., Hodgson, M. E., & Li, W. (2016). A general-purpose framework for parallel
processing of large-scale LiDAR data. International Journal of Digital Earth, 1–22.

23. McKean, J., & Roering, J. (2004). Objective landslide detection and surface morphology
mapping using high-resolution airborne laser altimetry. Geomorphology, 57(3), 331–351.

24. Milne, L., Lindner, D., Bayer, M., Husmeier, D., McGuire, G., Marshall, D. F., et al. (2008).
TOPALi v2: A rich graphical interface for evolutionary analyses of multiple alignments on
HPC clusters and multi-core desktops. Bioinformatics, 25(1), 126–127.

25. Mitas, L., & Mitasova, H. (1999). Spatial interpolation. Geographical Information Systems:
Principles, Techniques, Management and Applications, 1, 481–492.

26. Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of
hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1),
3–30.

27. Naoum, S., & Tsanis, I. K. (2003). Hydroinformatics in evapotranspiration estimation.
Environmental Modelling and Software, 18(3), 261–271.

28. Prasannakumar, V., Vijith, H., & Geetha, N. (2013). Terrain evaluation through the
assessment of geomorphometric parameters using DEM and GIS: Case study of two major
sub-watersheds in Attapady, South India. Arabian Journal of Geosciences, 6(4), 1141–1151.

29. Rauber, T., & Rünger, G. (2013). Parallel programming: For multicore and cluster systems,
Springer Science & Business Media.

30. Shepard, W. E. (2000). A parallel approach to searching for nearest neighbors with minimal
interprocess communication. uga.

31. Tang, W., & Feng, W. (2017). Parallel map projection of vector-based big spatial data:
Coupling cloud computing with graphics processing units. Computers, Environment and
Urban Systems, 61, 187–197.

32. Tang, W., & Wang, S. (2009). HPABM: A hierarchical parallel simulation framework for
spatially-explicit agent-based models. Transactions in GIS, 13(3), 315–333.

33. Tang, W., Feng, W., Zheng, M., & Shi, J. (2017). Land cover classification of fine-resolution
remote sensing data. In Reference module in earth systems and environmental sciences.
Elsevier.

34. Tomczak, M. (1998). Spatial interpolation and its uncertainty using automated anisotropic
inverse distance weighting (IDW)-cross-validation/jackknife approach. Journal of Geo-
graphic Information and Decision Analysis, 2(2), 18–30.

35. Trettin, C. C., Czwartacki, B. J., Allan, C. J., & Amatya, D. M. (2016). Linking freshwater
tidal hydrology to carbon cycling in bottomland hardwood wetlands. In Stringer, C. E.,
Krauss, K. W., Latimer, J. S. (Eds.), Headwaters to estuaries: Advances in watershed science
and management-proceedings of the fifth interagency conference on research in the
watersheds (p. 302). March 2–5, 2015, North Charleston, South Carolina. e-General
Technical Report SRS-211. Asheville, NC: US Department of Agriculture Forest Service,
Southern Research Station.

36. Wang, S., & Armstrong, M. P. (2003). A quadtree approach to domain decomposition
for spatial interpolation in grid computing environments. Parallel Computing, 29(10),
1481–1504.

37. Wang, S., & Armstrong, M. P. (2009). A theoretical approach to the use of cyberinfrastructure
in geographical analysis. International Journal of Geographical Information Science, 23(2),
169–193.

38. Werner, M. G. F. (2001). Impact of grid size in GIS based flood extent mapping using a 1D
flow model. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere,
26(7–8), 517–522.

39. Wilkinson, B., & Allen, M. (1999). Parallel programming: Techniques and applications
using networked workstations and parallel computers. Prentice-Hall.

38 M. Zheng et al.

40. Wise, S. (2000). Assessing the quality for hydrological applications of digital elevation
models derived from contours. Hydrological Processes, 14(11–12), 1909–1929.

41. Wu, S., Li, J., & Huang, G. H. (2008). A study on DEM-derived primary topographic
attributes for hydrologic applications: Sensitivity to elevation data resolution. Applied
Geography, 28(3), 210–223.

42. Zikopoulos, P., & Eaton, C. (2011). Understanding big data: Analytics for enterprise class
hadoop and streaming data, McGraw-Hill Osborne Media.

43. Zimmerman, D., Pavlik, C., Ruggles, A., & Armstrong, M. P. (1999). An experimental
comparison of ordinary and universal kriging and inverse distance weighting. Mathematical
Geology, 31(4), 375–390.

Parallel Generation of Very High Resolution Digital Elevation … 39

Big-Data Analysis of Process
Performance: A Case Study
of Smart Cities

Alejandro Vera-Baquero and Ricardo Colomo-Palacios

Abstract This chapter presents a data-centric software architecture that provides
timely data access to key performance indicators (KPIs) about process performance.
This architecture comes in the form of an analytical framework that lies on big-data
and cloud-computing technologies aimed to cope with the demands of the
crowd-sourced data analysis in terms of latency and data volume. This framework is
proposed to be applied to the Smart Cities and the Internet of Things (IoT) arenas to
monitor, analyse and improve the business processes and smart services of the city.
Once the framework is presented from the technical standpoint, a case study is
rolled out to leverage this process-centric framework and apply its fundamentals to
the smart cities realm with the aim of analysing live smart data and improve the
efficiency of smart cities. More specifically, this case study is focussed on the
improvement of the service delivery process of the Open311 smart services
deployed in the city of Chicago. The outcomes of the test show the ability of the
systems to generate metrics in nearly real-time for high volumes of data.

Keywords Smart cities ⋅ Internet of Things ⋅ Big data ⋅ Cloud computing
Business process analytics

1 Introduction

Smart cities is an emerging discipline that is gaining ground in recent years with the
aim at offering advanced and innovative services to citizens. The smart city concept
encompasses a wide range of technology and ubiquitous ICT (Information and
Communications Technology) solutions that are applied to a city in multiple

A. Vera-Baquero (✉)
Universidad Carlos III de Madrid, Getafe, Spain
e-mail: averabaq@gmail.com

R. Colomo-Palacios
Østfold University College, Halden, Spain
e-mail: ricardo.colomo-palacios@hiof.no

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_3&domain=pdf

domains, such as e-government and public administration, intelligent transportation
systems, traffic management, public safety, social, health-care, educational,
e-commerce, building and urban planning, environmental, energy, etc. [1]. A myr-
iad of innovative services can be put in citizens’ hands in order to improve their
quality of lives. At nowadays, a large number of problems of big cities can be
avoided, or mitigated to some extent, by integrating smart cities technology into
service management [2]. Pervasive ICT systems and cloud technology can surround
urban citizens by an ubiquitous digital eco-system where a great variety of
internet-connected devices interact to each other [1] to provide a powerful envi-
ronment of smart objects with the capabilities to digitally manage, monitor and
track physical objects [3], thereby making valuable information of individuals
accessible within an Internet of Things (IoT) context.

IoT represents intelligent end-to-end systems that enable smart solutions to arise
by means of a diverse range of technologies, including sensing, communications,
networking, computing, information processing, and intelligent control technolo-
gies [4]. By extension, IoT aims to connect heterogeneous devices worldwide
which entail an enormous density of information connecting billions of objects.
These smart objects can be any technological equipment with Internet processing
capabilities, such as computers, tablets, smartphones, smart TVs, Global Posi-
tioning Systems (GPS), sensors, built-in vehicle devices, and so on. The interaction
of these systems throughout the provision of Smart City services may generate a
very large amount of data that can be used to analyse and improve the throughput
and operative efficiency of those services. Nevertheless, traditional approaches are
not suitable for dealing with high volumes of data to such extent. The exponential
growth of data within an IoT context demands the introduction of innovative and
emerging technologies with the capabilities to deal with high-latency response time
on systems that manage high volumes of data. Traditional RDBMS systems and
conventional data warehouses platforms are not suitable for managing vast amount
of data in the order of terabytes (TB) petabytes (PB) or even exabytes (EB) of
information, and drastic improvements are needed “to scale databases to data
volumes beyond the storage and/or processing capabilities of a single large com-
puter” [5].

Big-data technology has emerged as response to the existing limitation found on
traditional data systems for handling very large datasets [6]. The term “Big-data” is
commonly used to refer to a set of technological components that have the capa-
bilities to empower data-intensive analysis on very large and complex datasets
whose size spans beyond the ability of traditional software tools to capture, collect,
integrate, unify, store and analyse hundreds of millions terabytes of information [7].
According to recent studies [8], big data approaches, when aligned with business
and supported by the right people, can make a big impact in business. In the big
data field, research efforts are being driven by big-data technology to extract
meaning and infer knowledge from very large datasets [9], and the need to enable
data-intensive processing over massive datasets has introduced a new form of data
analytics called Big Data Analytics [10].

42 A. Vera-Baquero and R. Colomo-Palacios

The evolution of big data has been driven by the rapid growth of application
demands, cloud computing, and virtualized technologies. Cloud computing pro-
vides on-demand computational resources for offering data-intensive processing
over big data [11], and to a certain extent, the advances of cloud computing foster
the adoption and development of big data solutions [12]. Thereby, Big-data,
cloud-computing and IoT are terms that are closely related to each other, and these
are especially important on IT solutions when trying to analyse the operations
management involved in the services provided by IoT applications.

In a nutshell, ICT plays a key role when adopting smart city technology and
when supporting the provision of seamless ubiquitous services [1]. Big data tech-
niques are conceived as the powerful tool to exploit all the potential of the Internet
of Things and the smart cities [13]. In this regard, research effort must be conducted
to provide innovative ICT solutions that can deal with the demands aforementioned.
Herein, we presents a big-data and cloud-based analytic framework that can be
applied to the Smart Cities and IoT arenas to monitor, analyse and improve the
business processes and smart services of the city.

2 Smart Cities, IoT and Big-Data Analysis

Investing on smart city technology can become a business-competitive and
attractive environment [1], especially on a slowing-down economy such as the
present one. Paroutis et al. [14] study the positive impact of applying a smart city
strategy on urban areas in conditions of economic recession. The right choice of a
Smart City strategy is crucial for contributing to the sustainability and acceleration
of the economic growth of the city.

In this regard, business process improvement can help smart cities to make them,
not only even smarter but more efficient and profitable. For instance, health care
monitoring systems could help managers to reduce costs and improve the efficiency
of the service by alleviating the short-age of resources and personnel. Likewise,
intelligent transportation systems could assist traffic analysts in reducing congestion
and improving the roads safety. Additionally, the monitoring and analysis of
business processes that flow through smart distribution systems, could aid business
users to improve the quality and reduce the cost of goods and services in very large
and complex supply chains [4]. This is especially interesting in business scenarios
that involve very complex and highly distributed processes like supply chain
management [15]. For instance, manufacturing processes produce massive amounts
of data due to the continuous execution of process operation and control [16]. The
execution of business processes is lineal by nature, whereby their event data is
originated on a sequential manner. This leads analytical systems to process data
streams with a known start but an uncertain end. On very high transactional
environments, the adoption of big data technology become a must in order to
analyse event streams in real-time [17].

Big-Data Analysis of Process Performance … 43

The use cases aforementioned are only a mere illustration of the myriad of
potential opportunities to apply business process initiatives on smart cities services.
This converges to the adoption of smart cities, internet of things and big-data by the
industry as a means to apply business-process expertise in the improvement of
operation and production management.

Business process intelligence initiatives must address diverse technical chal-
lenges. One of the most challenging is the heterogeneity, also known in this context
as big data chain [18], where business process improvement (BPI) solutions have to
deal with the heterogeneous systems landscape of large enterprises and complex
administrative procedures that stands within and across several distinct units across
the city. This becomes even more complex when business processes run beyond the
software boundaries of a single organization. At nowadays, most of the business
transaction data involving stakeholders, processes, products and services, are
increasingly available beyond the corporate boundaries, “including significant data
from social networks and the Internet-of-things” [19]. In the case of smart cities,
these complexities are even intensified when the processes require the citizens’
interaction, and where the use of smart objects can become the main source to
interact with the public sector and governments affairs. The internet of things is a
clear example of how smart devices can be a powerful data source and key-enabler
to improve cities’ efficiency. By having a forward thinking, in a not so distant
future, we can forecast how home inter-connected devices could provide valuable
event data about processes such as energy consumption over time, or tracking
vehicles journeys as processes with in-vehicles smart devices. This would help local
authorities bringing sustainability to the city by reducing congestion, improving the
road safety and controlling CO2 emission [20].

Classic business intelligence (BI) platforms have become a powerful tool to
business users for decision making. These systems have been traditionally used for
discovering trends and relationships in large, complex business data sets. However,
the use of traditional BI systems is not sufficient to meet today’s business needs.
They normally are business domain specific and have not been sufficiently
process-aware to support the needs of process improvement type activities, espe-
cially on large and complex distributed processes, where it entails integrating,
monitoring and analysing a vast amount of dispersed event logs, with no structure,
and produced on a variety of heterogeneous environments. In addition, the con-
tinuous generation of event data in IoT contexts over time cannot be efficiently
managed by means of traditional storage systems, which are not adequate to
manage event data in the order of hundreds of millions of linked records. In turn,
the monitoring and analysis of high volumes of data is a data-intensive process that
usually exceeds the processing capabilities of a single large computer, thereby
requiring robust and complex supporting systems that can easily scale over time to
meet the processing demands in terms of latency and data volume. Hence, emerging
data-centric systems aimed to improve cities’ efficiency must be big-data ready for
enabling elastic-scalable data analysis.

In this chapter we leverage a former work in the area of big-data analytics with
the aim of bringing business-process expertise to the smart cities and internet of

44 A. Vera-Baquero and R. Colomo-Palacios

things arenas. This will help cities to make them, not only even smarter but more
efficient and profitable. We propose the adoption of its fundamentals to improve the
processes of urban services and we extend some of the core architectural compo-
nents to make the framework suitable to be applied on such domains, thus driving
city managers to achieving a well-running, smart and efficient city.

3 Technological Solution

The technological solution proposed is based on the analytical framework widely
discussed in [21–23], which is focused on the improvement of process performance
through the monitoring and analysis of the execution outcomes of business pro-
cesses. This framework has the ability to provide cloud computing services to
third-party applications in a timely fashion. These services rely on a big-data
infrastructure that enables the system to perform data-intensive computing on
processes whose executions produce a vast amount of event data that cannot be
efficiently processed by means of traditional systems. Furthermore, this data usually
comes from a variety of heterogeneous platforms that are continuously producing
enterprise business events which must be unified across disparate platforms.

Real-time, low latency monitoring and analysing of business events for decision
making is key, but difficult to achieve. The difficulties are intensified on processes
whose enterprise data cross organizational boundaries. Distributed processes usu-
ally flow across heterogeneous systems such as business process execution lan-
guage (BPEL) engines, ERP systems, CRMs, workflows, document management
systems, etc. The heterogeneity of these supporting systems makes the collection,
integration and analysis of high volume business event data extremely difficult [24].

The software architecture discussed herein overcomes this pitfall by introducing
a generic event model that is an extension of the BPAF (Business Process Analytics
Format) [25], hereinafter exBPAF [22]. This format enables heterogeneous systems
to produce interchangeable event information regardless of the underlying concerns
of the source systems, and it hosts the information required to enable the system to
perform analytical processes over them, as well as representing any derived mea-
surement produced during the execution of any process flow. This is essential to
provide the framework of a concrete understanding and representation of what
needs to be monitored, measured and analyzed, and it can contribute to the con-
tinuous improvement of processes by giving insights into process performance.

One of the major contributions of this approach, among others, relies on the
ability to offer to business users the opportunity of availing process execution path
information at very low latency rates. The monitoring of cross-organizational
business processes is achieved by listening (in or nearly real-time) state changes and
business actions from operational systems. This is attained by collecting, unifying
and storing the execution data outcomes across a collaborative network, where each
node represents a participant organization.

Big-Data Analysis of Process Performance … 45

Event Data Gathering
The data collection is done by bespoke listening software which is responsible for
capturing the events from crowd-sourced heterogeneous data and publishing them
to the network throughout the ActiveMQ message broker (see Fig. 1). The legacy
listener software emits the event information to different endpoints depending on
the message format provided. Currently, the platform supports a variety of widely
adopted formats for representing event logs such as XES, MXML or even raw
BPAF. Consequently, a different set of plug-ins are available per supported event
format, and in turn, each plug-in incorporates specific ETL (Extract, Transform and
Load) functions to convert source event streams into the proposed extended BPAF.
Once the events are transformed, then they are forwarded to a specific channel for
processing. The event correlation module is subscribed to this channel listening
continuously for new incoming events.

Event Data Correlation
The data unification is achieved by correlating hundred millions of unstructured
events across heterogeneous systems and devices. Event correlation refers to the
determination of the sequence of events produced by the execution of inter-related
and consecutive process instances or activities. Event correlation is an essential part
of the proposed framework for achieving the correct identification of process
execution sequences. Without the ability to correlate events it would not be possible
to generate metrics per process instance or activity [23]. The event correlation
algorithm is out of scope at the present paper, but it basically relies on finding the
associated process instance or activity in the event repository based on the exBPAF
definition [22].

Event Data Storage
Once the events are correlated, they are stored in the event repository in order it can
be found by its successors. This entails the event correlation mechanism to deal
with very large volumes of data in a global and distributed business process exe-
cution repository, whereby its events must be readily accessible at minimum

Fig. 1 Collection, unification and storage of live smart event data

46 A. Vera-Baquero and R. Colomo-Palacios

latency. This pitfall is addressed by designing the event repository as big-data cloud
storages that can be directly mined by the event correlation module. This repository
allows the system to scale out easily on readily available hardware, which is
essential for dealing with the data-intensive processing demands of the event cor-
relation process. Herein, the event repository is implemented using the HBase
product as big-data storage. HBase is a NoSQL, versioned, column-oriented data
storage system that provides random real-time read/write access to big data tables
and runs on top of the Hadoop Distributed Filesystem. HBase features powerful
scaling capabilities. HBase clusters expand on commodity of HRegionServers, thus
linearly increasing the storage and processing capacity. The technical documenta-
tion of this product reveals extraordinary clustering capabilities for providing
data-intensive processing on large data tables. The distributed event repository is
implemented as big-data tables over HBase, thereby exploiting its outstanding
features for providing timely access to key data.

The overall architect solution (see Fig. 2) is a cloud-based platform that com-
prises a set of cloud-computing nodes that provides analytical services to third party
applications, namely BASU (Business analytics service unit) and GBAS (Global
Business Analytical Service) modules. These service components have the capa-
bilities for collecting data originating from distributed heterogeneous systems,
storing the enterprise data and inferring knowledge from the gathered information.

Fig. 2 Architecture overview

Big-Data Analysis of Process Performance … 47

These modules monitor and analyse operational activities within both, local and
global contexts. In a local context, the processes reside within an organization
(inter-departmental) on where they can be analysed and optimized by the means of
BASU units. These units are attached to individual organizations for performing the
managerial activities of their internal processes. In contrast, the GBAS component
supports the monitoring, analysis and optimization of large and complex
supply-chain processes like manufacturing and retail distribution.

The successful integration of those components through enterprise service bus
adapters completes the high-level architecture depicted on Fig. 2. Each of these
components relies on the provision of a number of clustering nodes that provide big
data support. In turn, each clustered configuration is deployed on a cloud-based
environment, thereby empowering the scalability and performance features of the
IT solution proposed at the easily commodity of hardware.

Within the context of this work, any smart object such as tablets, smartphones,
smart TVs, sensors, built-in vehicle and home devices, etc. can be a potential source
of information for the analytical framework to monitor and track a myriad of
processes wherein those devices are involved across the city. Moreover, if that live
smart data is gathered and put together on a large enough scale, it could be used to
detect undesirable patterns in the process or even anticipate future actions by
incorporating predictive analysis or machine learning methods. The software
architecture discussed herein does no support those advanced analytic methods yet,
but it is part of on-going work. Nevertheless, and as it will be shown later in the
next section, the architecture has the capability to correlate large amounts of events
and generate metrics and KPIs in the order of few milliseconds with a small cluster
size, thereby making the system a big-data ready platform for enabling
elastic-scalable data analysis in the context of smart cities and IoT.

It is important to mention that the software architecture has evolved with respect
to the previous work in order to meet the actual IoT demands in terms of dealing
with the crowdsourcing heterogeneity and guaranteeing high performances with
zero downtimes. In the regard of dealing with heterogeneous devices and sensors
that produce event data, we have leveraged the work carried out by [26, 27] that
introduces the concept of Thingsonomy to tackle the variety of events in IoT. This
approach aims to decouple the event semantics between the smart objects (pro-
ducers) and the event listeners (consumers). In this way, there is no longer need to
construct the events in exBPAF format at source, which otherwise it might be
infeasible to achieve on an IoT scenario due to incompatibility issues among the
myriad of multiple devices and manufacturers. This new layer abstracts the IoT
event data generation from the data ingestion at the event gathering module.

With respect to guaranteeing high performance and reliability on the solution,
we have introduced a consistent hashing approach in front of the cluster of BASU
nodes in order to empower the concept of data locality and speeding up the event
sequence lookups. The generation of metrics and KPIs makes a heavily use of a
distributed cache which is key for featuring monitoring capabilities in nearly
real-time. In this regard, every time an event is correlated in the stream chain, that
event is cached and associated to the event stream. Upon process completion,

48 A. Vera-Baquero and R. Colomo-Palacios

the entire event stream is read from the cache for that particular instance and for-
warded to the subsequent modules for processing. In a crowd-sourced environment
such as IoT, it is crucial the event correlator module to scale out without sacrificing
performance. A consistent hashing solution on the event gathering module helps in
this matter by evenly forwarding the events of a particular instance to the exact same
BASU node, which has the predecessor events in-cache already, and hence it pre-
vents the KPI generator from performing repeated remote calls to other cache nodes,
thereby improving performance and reducing inter-communication costs.

4 Case Study: Smart Cities

We present a case study aimed to monitor and analyse the processes involved on
smart services offered by the city of Chicago. The city of Chicago adopted in 2012 a
common standard for 311 reporting known as “Open311” [28]. This open standard
is being adopted worldwide in multiple urban areas, and brings governments the
ability to build uniform interoperable systems that allow citizens to interact with
their cities in the form of a broad range of information and services.

These services allow people to submit a service request, track its progress, and
receiving a notification feedback when the issue is resolved. These Open311-based
systems also have the ability to provide residents with customized alerts based on
their localized area [29].

The main goal of using Open311 technology is to increase the efficiency of these
services while “providing the public with data on the city’s service delivery”.
Open311 aims to improve the efficiency of 311 call centres, i.e. reduce the number
of calls and abandon rates, remove the duplicate calls, reduce the caller wait times
or even improve distribution and management of agents. The Open311 standard
stands on the openness, innovation, and accountability in city services by offering
citizens multiple methods for requesting, track and acknowledges response of a
wide range of 311 services [30]. These services can be invoked from smart
applications that are built conformed to the Open311 standard and which are
accessible from multiple smart devices [31]. Whilst an individual can report a
non-emergency issue (ideally with a photo) at a given location, such as potholes,
broken streetlights, garbage, vandalism, and so on, these issues are recorded and
routed to the relevant authority by means of a Customer Relationship Management
(CRM) system that automatically forwards the service requests to the appropriate
City department, governmental or non-governmental agency [32].

This standard has been rolled out in the city of Chicago, and in order to leverage
the massive amount of data reported by their residents, we have connected our
framework to the real operational systems that register citizens’ reporting issues
through their public Open311 interface. This interface comes in the form of a set of
APIs that gives third party applications the ability to collect real residents’ request
data in real-time. As it will be covered later, we have implemented event listeners
that consume those services, thereby getting straight access to such data.

Big-Data Analysis of Process Performance … 49

In addition, those listeners are responsible for the transformation of the incoming
data streams into such a way that they can be processed by the analytical input
channels of the framework. In a nutshell, we aim to highlight that this case study
has been conducted on real use cases harnessed by a real dataset. These interfaces
are extensively documented and publicly available through the development site of
the city of Chicago (http://dev.cityofchicago.org/docs/open311).

The case study presented herein focuses on the improvement of the service
delivery process of the Open311 smart services deployed in the city of Chicago.
The Fig. 3 depicts the business process in BPMN notation that we aim to monitor,
analyse and improve. As stated in [32], the goals of the Open311 department of the
city of Chicago, and by analogy to the purposes of this case study, are:

(1) Record efficiently all requests for non-emergency City services and forward
them to the proper governmental and non-governmental agencies.

(2) Assist City departments, governmental and non-governmental agencies deliver
improved customer service and manage resources more efficiently.

(3) Monitor and provide consistent, essential performance management reports and
analysis of City services delivery.

We have leveraged the analytical framework proposed in this paper and applied
its fundamentals to this case study in conjunction with a methodology proposed as
part of the works [21, 22], so-called CBI4PI methodology (Cloud-based Infras-
tructure for process intelligence). This methodology aims to put real BPI technol-
ogy in hands of business users by following a methodical process that aims guide

Fig. 3 Open311 business process in BPMN notation

50 A. Vera-Baquero and R. Colomo-Palacios

http://dev.cityofchicago.org/docs/open311

the deployment of the analytical framework in the smart cities domain. The
implementation methodology is rolled out in the following sections and applied to
this case study.

Methodology to Apply the Analytical Framework in the Smart Cities Domain
(CBI4PI)

4.1 PHASE 1. Definition

4.1.1 Identification of Scope and Boundaries

In this phase we identify the business nodes that are globally involved on the
business process aforementioned. In this case study, the business entities determi-
nation would correspond to specify the different jurisdictions that the service
request goes through during processing. The Open311 API used in this case study
only provides one jurisdiction, so only one node is identified in this step.

4.1.2 Definition of Sub-processes, Activities and Sub-activities

In this case study we aim to analyse the performance of the service delivery process
of the Open311 smart services. For this purpose, we define a global process that
represents the service request that may flow through diverse business nodes (in this
case there is only one), whilst we define a sub-process as the set of activities and
tasks defined in the business process depicted in Fig. 3.

4.1.3 Determination of Level of Detail Within Business Processes

The level of detail is fixed by the information scope supplied by the Open311 API.
The data structure of the API is able to provide data according to the activities (with
some minor considerations) of the process thereof. Therefore, the data gathering
and analysis must include the activity level of those tasks specified in the business
process (see Fig. 3).

4.1.4 Development of Model Tables

For constructing the model table we have identified the list of 311 service requests
(process) and its activities (tasks). The following table outlines the process model
developed and highlights those activities that are discarded. These tasks are rejected
mainly because they are either irrelevant, supply useless information for decision
making or the operational systems (Open311 API) are unable to provide visibility
on those activities (Tables 1 and 2).

Big-Data Analysis of Process Performance … 51

5 PHASE 2. Configuration

5.1 Business Nodes Provisioning and Software Boundaries
Identification

We deployed one BASU node in a test environment for evaluating the approach and
loaded the process model developed in the previous step. This phase is crucial to
identify the specific software requirements and how to interact with the
Open311 API interface. Since there are no jurisdictions defined in the dataset, all
process execution flows cross just one business node. This is the simplest scenario
possible, notwithstanding this step is still useful to determine source software
elements that can affect to the proper identification of process instances (service
requests) upon the event sequence arrival.

Table 1 Service request process definition

Process definition ID Process name

4ffa4c69601827691b000018 Abandoned vehicle
4ffa9cad6018277d4000007b Alley light out
4fd3bd72e750846c530000cd Building violation
4fd3b167e750846744000005 Graffiti removal
4ffa971e6018277d4000000b Pavement cave-in survey
4fd3b656e750846c53000004 Pothole in street
4fd6e4ece750840569000019 Restaurant complaint
4fd3b9bce750846c5300004a Rodent baiting/rat complaint
4fd3b750e750846c5300001d Sanitation code violation
4ffa995a6018277d4000003c Street cut complaints
4ffa9f2d6018277d400000c8 Street light out
4ffa9db16018277d400000a2 Traffic signal out
4fd3bbf8e750846c53000069 Tree debris

Table 2 Service request process model

Process Activity Act.
Parent

Properties

[Service
Request]

Submit.Service.
Request

ServiceRequestId, Address, Location, Channel

Forward.Request ServiceRequestId, Address, Location, Channel

Review.Request ServiceRequestId, Address, Location, Channel

Resolve.Issue ServiceRequestId, Address, Location, Channel, Dupl

Close.Request ServiceRequestId, Address, Location, Channel, Dupl

52 A. Vera-Baquero and R. Colomo-Palacios

5.1.1 Selection of Event Data Format

We selected exBPAF as the event format since we do not require integration with
other process mining tools.

5.1.2 Event Correlation Data Determination

This phase is critical to recreate successfully the inbound service request paths at
destination. For the purpose of this case study, the correlation data to be used is the
service request identification number that is managed internally by the Open311
systems. This information will uniquely identify a specific request, and thus the
process instance along the sequence of events.

5.1.3 Listeners Implementation

For the implementation of the listener we developed an Open311 API client with
ETL (Extract, Transform and Load) support. The listener invokes the Open311
services to retrieve the status information of all requests available to date. The
Open311 API endpoint acts as data source (extract phase), the incoming data in
JSON format is analysed and converted into events in exBPAF format (transfor-
mation phase), and those events are then forwarded to the framework endpoint
(load phase).

Processes may have different activities for representing the “Resolve.Issue” task.
These activities could be merged into a single activity (“Resolve.Issue”) as mod-
elled, however, from an analytical perspective, it is worthwhile to analyse the
performance of its sub-tasks with the aim of identifying bottlenecks, perform root
cause analysis or diagnosis intents. For this purpose, the listener implements an
inner process interpreter that identifies different business patterns per process, and it
sets out its expected activities along with its events. This is possible to achieve as
long as the Open311 interface provides this information in the data payload. In such
a case the interpreter determines the sub-activities and infers their execution time
from the body response. Below it is outlined an event sample that is generated by
the listener along with the payload received from the API (Table 3).

5.1.4 Selection of Metrics and KPIs

The set of metrics and KPIs selected for the purpose of this case study are specified
below. The standard metrics are outlined in the Table 4 for representing beha-
vioural measures, and Table 5 for the structural ones.

Big-Data Analysis of Process Performance … 53

The metrics outlined above are deduced by querying and filtering the event data
gathered from the listeners. The details of how this calculation is performed are out
of scope in this paper but further information can be found at [22, 23]. Regarding to
the KPI selection, and only for illustration purposes, we outline some KPIs that the
framework can deal with, but not limited to.

Table 3 Sample of data conversion of an exBPAF event

Open311 API response payload exBPAF Data Event
 "notes": [
 {
 "datetime": "2014-12-15T16:39:54-06:00",
 "summary": "Request opened",
 "type": "opened"
 },
 {
 "datetime": "2014-12-16T12:42:00-06:00",
 "summary": "Inspect for Violation",
 "description": "Completed",
 "type": "activity"
 },
 {
 "datetime": "2014-12-16T12:42:04-06:00",
 "summary": "Request closed",
 "type": "closed"
 }
]

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:Event Timestamp="2014-12-16T12:42:00-06:00"
 ActivityDefinitionID="Inspect for Violation"
 ProcessName="Sanitation Code Violation"
 ProcessDefinitionID="4fd3b750e750846c5300001d"
 EventID="37ffca0a-c8b2-4e46-be23-5cd0ce6c8408"
 xmlns:ns2="http://www.uc3m.es/softlab/basu/event">
 <EventDetails PreviousState="Open.Running.InProgress"
 CurrentState="Closed.Completed"/>
 <Correlation>
 <CorrelationData>
 <CorrelationElement value="14-02142035"
 key="ServiceRequestId"/>
 </CorrelationData>
 </Correlation>
 <DataElement value="open" key="status"/>
 <DataElement value="Completed" key="statusNotes"/>
 <DataElement key="duplicate"/>
 <Payload value="4344 N HAMLIN AVE, CHICAGO, IL"
 key="address"/>
 <Payload value="41.95999687807092" key="lat"/>
 <Payload value="-87.72289882814333" key="long"/>
 <Payload value="phone" key="channel"/>
 <Payload value="60618" key="zip"/>
 <Payload value="17" key="police"/>
 <Payload value="39" key="ward"/>
</ns2:Event>

Table 4 Standard behavioural measures

DSS-standard
measure

Description

Throughput time Total amount of time for a process or activity
Change-over
time

Time elapsed for the process or activity to be forwarded to a specific
department or agency (process), or assigned to a specific operator
(activity)

Processing time Time elapsed since the process or activity is forwarded or assigned until
the task starts to be processed

Waiting time Effective amount of time taken for a process or activity to complete
Suspended time This metric is unused in this case study since this state is unknown by the

Open311 API

54 A. Vera-Baquero and R. Colomo-Palacios

Behavioural KPIs

Performance: This KPI measures the average time of request resolution per request
submitted. A threshold value may be agreed at design time during the KPIs defi-
nition stage or let the framework to infer this value after a given period of time.

Pf xð Þ=
∑
i
ithroughput

∑
i∈

1

Pf(x) Performance of the 311 service “x”.

Efficiency: This KPI measures the relation between the net processing time taken
for request resolution and the gross processing time. This measure gives an insight
into the efficiency of the resolution per process (service request type).

Ef xð Þ=
∑
i∈ x

iproce sin g

∑
i∈ x

itroughoput

Ef(x) Efficiency of the 311 service “x”.

Structural KPIs

Productivity: This KPI measures the production efficiency of the smart services by
calculating the ratio of request resolutions per request submissions.

Pd xð Þ= SC xð Þ
RC xð Þ

Pd(x) Productivity of the 311 service “x”
SC(x) Number of successful cases for all instances of process “x”
RC(x) Number of running cases for all instances of process “x”

Duplication rate: This KPI measures the rate of duplicate requests. This is cal-
culated by identifying the number of duplicated requests per submission. A high
rate indicates waste of resources that are assigned to review existing issues that are
already open, solved or in progress.

Table 5 Standard structural measures

DSS-standard
measure

Description

Running cases Number of service requests processed
Successful cases Number of service requests that were resolved successfully
Failed cases Number of service requests that were not solved (by any reason but

duplication)
Aborted cases Number of service requests that were cancelled due to duplication

Big-Data Analysis of Process Performance … 55

Dup xð Þ= AC xð Þ
RC xð Þ

Dup(x) Duplication rate of the 311 service “x”
AC(x) Number of aborted cases for all instances of process “x”
RC(x) Number of running cases for all instances of process “x”

Whilst the correlation of event data must be perform at very low latency rates,
the KPI’s generation can be generated in batch for historical or predictive analysis.
Notwithstanding, decision makers normally aim to react quickly to undesired sit-
uations, thus a quick identification of non-compliant scenarios is desirable.
Therefore, the BAM-like component of the framework plays an important role in
the KPIs configuration. This feature is very useful to managers as they may decide
whether or not establish thresholds per process or activity. This depends on whether
there already exists historical information, as this will allow the system to infer the
expected execution time. In such case, the thresholds might be set in the BAM
component to generate alerts for detecting bottlenecks and non-compliant situations
in nearly real-time.

5.2 PHASE 3. Execution

The evaluation has been accomplished successfully in a test environment that
follows the infrastructure depicted on Fig. 2. A large amount of event data was
generated by the Open311 API, and the analytical framework was fed with
up-to-date service requests status information.

5.3 PHASE 4. Control

Functional Perspective
Throughout the monitoring and analysis of the outcomes we detected a high rate of
duplicate requests. This high rate may indicate a significant waste of resources that
are assigned to review issues that are already open, solved or in progress. Due to
multiple citizens can potentially report simultaneously the same issue upon a time at
the same area, the process performance can be improved significantly by avoiding
the creation of false positive requests on the operating systems. This overhead could
be greatly alleviated by introducing a verification step during the request submis-
sion activity. Whereby the smart application might check or estimate whether the
same request has already been notified by another citizen according to the given
date, location, and estimated area. Likewise, the smart reporting service could
response back with the current status of the issue if duplicated, namely if it is
already in progress, resolved or rejected.

56 A. Vera-Baquero and R. Colomo-Palacios

Performance Perspective
For the evaluation of the architecture from a performance perspective, the frame-
work’s infrastructure was deployed on a Cloudera (CDH 4.7.1) instance using a
4-node configuration, thereby exploiting the clustering capabilities of the proposed
solution. The volume of data rose to nearly 500 GB of raw data, and the correlation
algorithm performed reading operations in the order of few milliseconds for such
volume of data. It is important to highlight that this is a prospective study and
further efforts are ongoing to progressively increase the volume of data to the levels
of TBs of information. As already sated, the most significant finding is that the read
operations performed in the order of few milliseconds (see Table 6) and read
execution time remained stable over time and did not increase as the number of
events grew. As discussed in previous sections, the framework correlates the events
as they arrive by finding their predecessors in the big data storage, whereby this
entails one read operation plus a write for storing the event in the repository in order
that it can be found by its successors. The table bellows summarizes the results of
the experiment and shows that the IT solution features a high performance and is
able to produce timely metrics by monitoring around 500 events per second using a
small cluster size.

5.4 PHASE 5. Diagnosis

According to the methodology description in [33], this steps aims to find
weaknesses on the model, and once they are detected and identified they must be
eliminated from the operational systems. In such a case, the business process is
re-designed and re-deployed on the operational environment, and the improve-
ment lifecycle starts over again on a continuous refinement basis. Since we are
using a dataset as an input, and we have no control over the operational systems,
we cannot go further on this case study. Hence, this phase is out of scope in this
paper.

Table 6 Performance analysis

IO operation Average
(ms)

Standard deviation
(ms)

Throughput
(events/s)

Event
correlation

Read 0.21791576 0.444654234 4589
Write 1.721771801 1.422962964 580

Metric
generation

1 read + 1
write

1.939687562 1.639354638 515

Big-Data Analysis of Process Performance … 57

6 Discussion: Frameworks Comparison

At this point, we have given an architectural overview of the analytical framework
and its associated BPI methodology. This has been applied to a real-world use case
in the area of smart cities and IoT by covering important aspects such as integrating
heterogeneous crowed-sourced data and timely data analysis. Despite of having
come up with a comprehensive vision of the solution, we consider that it is
worthwhile to compare it with other relevant existing frameworks in the research
community. Unfortunately, and to the best of authors’ knowledge, there does not
exist any solution that can be used for a like-for-like comparison with the one
presented in this chapter. The arguments for this assertion are manifold. First, our
approach consists of a BPI methodology that relies on the specific analytical
platform proposed, which in turn is based on a bespoke correlation algorithm [22].
Second, such algorithm has been implemented using a determined big-data tech-
nology based on secondary indexes in HBase for speeding up event lookups. And
third, the experiment was run on a specific environment with very specific settings,
and the outcomes may strongly vary depending on the infrastructure and hardware
configurations, i.e. cluster size and overall processing power. In addition, this is
intensified when the use case runs on big-data contexts, such as the present one,
whereby the computing capabilities become key for measuring framework’s
throughput. Hence, we cannot treat the solution as a whole for comparison pur-
poses, and thereby we have broken down the comparison analysis into two different
categories: Methodology and Frameworks for business process data analysis. In
order to simplify the analysis comparison, we have chosen the most relevant work
from the literature on each category, to the best authors’ criteria, and we have
undertaken a qualitative comparison between them from each category. As we will
see below, research efforts are still needed to contribute with big-data analytics
solutions that can serve as a link between existing BPI methodologies and data
analytics platforms, especially on big-data ready frameworks, which are key to
efficiently cope with the processing demands of heterogeneous data on IoT.

Methodology
The following table outlines relevant business process improvement methodologies
in the literature. They are all based on the concept of continuous process
improvement but with different lines of action. As we can see, there is a noticeable
absence of key-driving systems and tools that can support their process improve-
ment initiatives, whereby there is a clear disconnection between the improvement
program definition itself and the supporting tools that can carry them out. The
methodology used in the approach (CB4PI) tries to close the loop by focusing on
the performance dimension, which is the measure we are trying to improve on the
smart services (Table 7).

58 A. Vera-Baquero and R. Colomo-Palacios

Data Analytics Frameworks
The following table compares three well-known frameworks about inferring
knowledge from business processes’ execution. The proposed framework does
intend to complement the existing approaches by filling the existing gap in terms of
real-time monitoring on highly distributed big-data environments. As per previous
sections, the system has demonstrated to have great capabilities to provide moni-
toring activities in real-time as well as gathering disperse event logs regardless of
operational system technology and ubiquitous location. This could close the loop
between event generation and post-execution analysis by contributing with the
provision of real-time monitoring activity services. In this regard, the system could
complement existing tools and serve as event collector for supporting process
mining functionality in real-time. Likewise, it could also consume process mining
services to provide functionality beyond the monitoring and performance analysis
features. Whereby, crowed-sourced data collected from smart services could be
used in real-time for applying process mining techniques such as process model
discovering, conformance checking, and so forth (Table 8).

Table 7 Evaluation of different BPI methodologies

Main
oriented
goal

BPI
methodology

Lifecycle Supporting
tools

Authors

Process
quality

TQM (Total
Quality
Management)

PDCA (Plan Do Check Act) N [34, 35]

Six Sigma DMAIC (Define, Measure,
Analyse, Improve and
Control)

N [36–38]

Process
optimization

BPMM
(Business
Process
Maturity
Model)

CMM (Capability Maturity
Model)

N [39]

BPR (Business
Process
Reengineering)

Standard BPM N [40, 41]

Process
visibility

TAD (Tabular
Application
Development)

IMIDDI (Identification,
Modeling, Improvement,
Development, Design and
Implementation)

P [42]

Process
performance

CBI4PI Standard BPM F [43]

F Fully accomplished or mentioned; P Partially accomplished or implicitly mentioned; N Not
accomplished or not mentioned

Big-Data Analysis of Process Performance … 59

T
ab

le
8

E
va
lu
at
io
n
of

pr
oc
es
s-
or
ie
nt
ed

an
al
yt
ic
s
fr
am

ew
or
ks

Fr
am

ew
or
k

B
PI

M
et
ho

do
lo
gy

C
on

fo
rm

an
ce

C
he
ck
in
g

M
od
el

A
ut
o-
di
sc
ov
er
y

M
on
ito

ri
ng

C
on
tr
ol

Po
st
-e
xe
cu
tio

n
an
al
ys
is

H
et
er
og
en
eo
us

da
ta

D
om

ai
n

A
gn

os
tic

B
ig

D
at
a

en
ab
le
d

A
ut
ho

rs

Pr
oc
es
s
m
in
in
g

to
ol
s
(P
ro
M
,

D
is
co
)

–
F

F
N

F
F

F
F

N
[4
4]

iW
IS
E

Si
x
Si
gm

a
N

N
F

P
P

P
F

N
[4
5]

C
B
I4
PI

C
B
I4
PI

N
N

F
P

S
F

F
F

[2
2]

F
Fu

lly
ac
co
m
pl
is
he
d
or

m
en
tio

ne
d;

P
Pa
rt
ia
lly

ac
co
m
pl
is
he
d
or

im
pl
ic
itl
y
m
en
tio

ne
d;

S
Sc
he
du
le
d,

pl
an
ne
d
an
d/
or

on
-g
oi
ng

w
or
k
bu

t
no

t
th
er
e
ye
t;

N
N
ot

ac
co
m
pl
is
he
d
or

no
t
m
en
tio

ne
d

60 A. Vera-Baquero and R. Colomo-Palacios

7 Conclusions and Future Work

We have presented a data-centric architecture that supports business process
analysis on highly distributed environments. The big-data based analytical features
of the framework were exploited in order to enable the system to deal with very
large amount of data that can be generated by a myriad of smart objects during
service execution. Thereafter, we tested the applicability of the work’s funda-
mentals to the smart cities arena and we successful monitored and analysed the vast
amount of service requests submitted by citizens of Chicago. The analysis was
performed in a very short response time basis, and we detected potential areas of
improvement in the smart service processes. Likewise, big-data technology has
been used to effectively manage large volumes of event data and providing analysis
in nearly real time using low hardware costs. Likewise, the system relies on an
event-driven architecture to conduct the data integration and enabling a
platform-independent solution for collecting and unifying data from external sys-
tems and regardless of their underlying technology which is ideal for IoT based
constructions.

Further research may include the gradual incorporation of services for sup-
porting advanced functionality that can be supported by emerging technologies and
optimization techniques. The provision of simulation techniques would highly
empower the cloud-based functionality since the structured data may serve as an
input to simulation engines. This will enable business users to anticipate actions by
reproducing what-if scenarios, as well as performing predictive analysis over
augmented data that constitutes a base of hypothetical information. Likewise, this
would enable analysts to reproduce live process instances and re-run event streams
in simulation mode for diagnosis purposes and root cause analysis on
non-compliant situations along large and complex distributed processes.

References

1. Piro, G., Cianci, I., Grieco, L. A., et al. (2014). Information centric services in smart Cities.
Journal of Systems and Software, 88, 169–188. https://doi.org/10.1016/j.jss.2013.10.029.

2. da Silva, W. M., Alvaro, A., Tomas, G. H. R. P., et al. (2013). Smart cities software
architectures: A survey (pp. 1722–1727). New York, NY, USA: ACM.

3. Skiba, D. J. (2013). The Internet of Things (IoT). Nursing Education Perspectives, 34, 63–64.
4. Zheng, J., Simplot-Ryl, D., Bisdikian, C., & Mouftah, H. T. (2011). The Internet of Things

[Guest Editorial]. IEEE Communications Magazine, 49, 30–31. https://doi.org/10.1109/
MCOM.2011.6069706.

5. Borkar, V. R., Carey, M. J., & Li, C. (2012). Big data platforms: What’s next? XRDS, 19,
44–49. https://doi.org/10.1145/2331042.2331057.

6. Fosso Wamba, S., Akter, S., Edwards, A., et al. (2015). How ‘big data’ can make big impact:
Findings from a systematic review and a longitudinal case study. International Journal of
Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031.

Big-Data Analysis of Process Performance … 61

http://dx.doi.org/10.1016/j.jss.2013.10.029
http://dx.doi.org/10.1109/MCOM.2011.6069706
http://dx.doi.org/10.1109/MCOM.2011.6069706
http://dx.doi.org/10.1145/2331042.2331057
http://dx.doi.org/10.1016/j.ijpe.2014.12.031

7. Patel, A. B., Birla, M., Nair, U. (2012). Addressing big data problem using Hadoop and Map
Reduce. In 2012 Nirma University International Conference on Engineering (NUiCONE)
(pp. 1–5).

8. Wamba, S. F., Gunasekaran, A., Akter, S., et al. (2017). Big data analytics and firm
performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365.
https://doi.org/10.1016/j.jbusres.2016.08.009.

9. Park, H. W., & Leydesdorff, L. (2013). Decomposing social and semantic networks in
emerging “big data” research. J Informetr, 7, 756–765.

10. Mutschler, B., Reichert, M. U., & Bumiller, J. (2005). Towards an evaluation framework for
business process integration and management. Los Alamitos: IEEE Computer Society Press.

11. Talia, D. (2013). Clouds for scalable big data analytics. Computer, 46, 98–101. https://doi.
org/10.1109/MC.2013.162.

12. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications,
19, 171–209. https://doi.org/10.1007/s11036-013-0489-0.

13. Jara, A. J., Genoud, D., & Bocchi, Y. (2014). Big data for smart cities with KNIME a real
experience in the SmartSantander testbed. Software: Practice and Experience n/a-n/a. https://
doi.org/10.1002/spe.2274.

14. Paroutis, S., Bennett, M., & Heracleous, L. (2014). A strategic view on smart city technology:
The case of IBM Smarter Cities during a recession. Technological Forecasting and Social
Change, 89, 262–272. https://doi.org/10.1016/j.techfore.2013.08.041

15. Kache, F., & Seuring, S. (2017). Challenges and opportunities of digital information at the
intersection of big data analytics and supply chain management. International Journal of
Operations & Production Management, 37, 10–36. https://doi.org/10.1108/IJOPM-02-2015-
0078.

16. Qin, S. J. (2014). Process data analytics in the era of big data. AIChE Journal, 60, 3092–3100.
https://doi.org/10.1002/aic.14523.

17. Alippi, C., Ntalampiras, S., & Roveri, M. (2017). Designing HMMs in the age of big data.
In P. Angelov, Y. Manolopoulos, L. Iliadis, et al. (Eds.), Advances in big data (pp. 120–130).
Cham: Springer International Publishing.

18. Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors influencing big data
decision-making quality. Journal of Business Research, 70, 338–345. https://doi.org/10.1016/
j.jbusres.2016.08.007.

19. Baesens, B., Bapna, R., Marsden, J., & Vanthienen, J. (2016). Transformational issues of big
data and analytics in networked business. Management Information Systems Quarterly, 40,
807–818.

20. Hamilton, A., Waterson, B., Cherrett, T., et al. (2013). The evolution of urban traffic control:
Changing policy and technology. Transportation Planning and Technology, 36, 24–43.
https://doi.org/10.1080/03081060.2012.745318.

21. Vera-Baquero, A., Colomo-Palacios, R., & Molloy, O. (2013). Business process analytics
using a big data approach. IT Professional, 15, 29–35. https://doi.org/10.1109/MITP.2013.60.

22. Vera-Baquero, A., Colomo Palacios, R., Stantchev, V., & Molloy, O. (2015). Leveraging
big-data for business process analytics. The Learning Organization, 22, 215–228. https://doi.
org/10.1108/TLO-05-2014-0023.

23. Vera-Baquero, A., Colomo-Palacios, R., & Molloy, O. (2015). Measuring and querying
process performance in supply chains: an approach for mining big-data cloud storages.
Procedia Computer Science, 64, 1026–1034. https://doi.org/10.1016/j.procs.2015.08.623.

24. Vera-Baquero, A., & Molloy, O. (2013). Integration of event data from heterogeneous
systems to support business process analysis. In A. Fred, J. L. G. Dietz, K. Liu, & J. Filipe
(Eds.), Knowledge discovery, knowledge engineering and knowledge management
(pp. 440–454). Berlin, Heidelberg: Springer.

25. Müehlen, M. zur & Swenson, K. D. (2011) BPAF: A standard for the interchange of process
analytics data. In: M zur Muehlen & J Su (Eds.), Business process management workshops
(pp. 170–181). Berlin Heidelberg: Springer.

62 A. Vera-Baquero and R. Colomo-Palacios

http://dx.doi.org/10.1016/j.jbusres.2016.08.009
http://dx.doi.org/10.1109/MC.2013.162
http://dx.doi.org/10.1109/MC.2013.162
http://dx.doi.org/10.1007/s11036-013-0489-0
http://dx.doi.org/10.1002/spe.2274
http://dx.doi.org/10.1002/spe.2274
https://doi.org/10.1016/j.techfore.2013.08.041
http://dx.doi.org/10.1108/IJOPM-02-2015-0078
http://dx.doi.org/10.1108/IJOPM-02-2015-0078
http://dx.doi.org/10.1002/aic.14523
http://dx.doi.org/10.1016/j.jbusres.2016.08.007
http://dx.doi.org/10.1016/j.jbusres.2016.08.007
http://dx.doi.org/10.1080/03081060.2012.745318
http://dx.doi.org/10.1109/MITP.2013.60
http://dx.doi.org/10.1108/TLO-05-2014-0023
http://dx.doi.org/10.1108/TLO-05-2014-0023
http://dx.doi.org/10.1016/j.procs.2015.08.623

26. Hasan, S., & Curry, E. (2015). Thingsonomy: Tackling variety in Internet of Things events.
IEEE Internet Computing, 19, 10–18. https://doi.org/10.1109/MIC.2015.26.

27. Hasan, S. & Curry, E. (2014). Approximate semantic matching of events for the Internet of
Things. ACM Transactions on Internet Technology, 14, 2:1–2:23. https://doi.org/10.1145/
2633684.

28. (2012). Code for America innovation team arrives in Chicago to develop new open 311
system. US Fed News Service. US State News.

29. (2012). Text messaging capabilities are added to Chicago’s 311 and city alerts system. US
Fed News Service. US State News.

30. Nuttall, R. (2014). Bring Open311 to Pittsburgh. Pittsburgh City Pap.
31. (2014). What is Open311? Open311. Retrieved November 21, 2014 from http://www.

open311.org/learn/.
32. (2014). City of Chicago—311 City Services. Retrieved November 7, 2014 from http://www.

cityofchicago.org/city/en/depts/311.html.
33. Vera-Baquero, A., Colomo-Palacios, R., & Molloy, O. (2014). Towards a process to guide big

data based decision support systems for business processes. Procedia Technology, 16, 11–21.
https://doi.org/10.1016/j.protcy.2014.10.063.

34. Dale, B. G. & Cooper, C. L. (1994). Introducing TQM: The role of senior management.
Management Decision, 32, 20–26. https://doi.org/10.1108/00251749410050660.

35. Kiran, D. R. (2016). Total quality management: Key concepts and case studies (1st ed.).
India: Butterworth-Heinemann.

36. Pande, P. S., Neuman, R. P., & Cavanagh, R. R. (2000). The six sigma way: How GE,
Motorola, and other top companies are honing their performance. McGraw Hill Professional.

37. Breyfogle, F. W. (2003). Implementing six sigma, second edition: Smarter solutions using
statistical methods (2nd ed.). Hoboken, NJ: Wiley.

38. Harry, M., & Schroeder, R. (2006). Six sigma: The breakthrough management strategy
revolutionizing the world’s top corporations (51634th ed.). New York: Crown Business.

39. De Bruin, T., & Rosemann, M. (2005). Towards a business process management maturity
model. In D. Bartmann, F. Rajola, J. Kallinikos, et al. (Eds.), Faculty of science and
technology (pp. 1–12). CD Rom: Verlag and the London School of Economics.

40. Harrington, H. J. (1991). Business process improvement: The breakthrough strategy for total
quality, productivity, and competitiveness. McGraw-Hill Education.

41. James Harrington, H. (1995). Continuous versus breakthrough improvement: Finding the
right answer. Business Process Re-engineering & Management Journal, 1, 31–49. https://doi.
org/10.1108/14637159510103211.

42. Damij, N., Damij, T., Grad, J., & Jelenc, F. (2008). A methodology for business process
improvement and IS development. Information and Software Technology, 50, 1127–1141.
https://doi.org/10.1016/j.infsof.2007.11.004.

43. Vera-Baquero, A., Colomo-Palacios, R., & Molloy, O. (2014). towards a process to guide big
data based decision support systems for business processes. Toria, Portugal: SciTePress—
Science and and Technology Publications.

44. van der Aalst, W. (2016). Process mining. Berlin Heidelberg, Berlin, Heidelberg: Springer.
45. Molloy, O. & Sheridan, C. (2010). A framework for the use of business activity monitoring in

process improvement. E-Strategies for Resource Management Systems: Planning and
Implementation, 21–46.

Big-Data Analysis of Process Performance … 63

http://dx.doi.org/10.1109/MIC.2015.26
http://dx.doi.org/10.1145/2633684
http://dx.doi.org/10.1145/2633684
http://www.open311.org/learn/
http://www.open311.org/learn/
http://www.cityofchicago.org/city/en/depts/311.html
http://www.cityofchicago.org/city/en/depts/311.html
http://dx.doi.org/10.1016/j.protcy.2014.10.063
http://dx.doi.org/10.1108/00251749410050660
http://dx.doi.org/10.1108/14637159510103211
http://dx.doi.org/10.1108/14637159510103211
http://dx.doi.org/10.1016/j.infsof.2007.11.004

Implementing Scalable Machine
Learning Algorithms for Mining Big
Data: A State-of-the-Art Survey

Marjana Prifti Skënduli, Marenglen Biba and Michelangelo Ceci

Abstract The growing trend of Big Data drives additional demand for novel
solutions and specifically-designed algorithms that will perform efficient Big Data
filtering and processing, recently even in a real-time fashion. Thus, the necessity to
scale up Machine Learning algorithms to larger datasets and more complex
methods should be addressed by distributed parallelism. This book chapter con-
ducts a thorough literature review on distributed parallel data-intensive Machine
Learning algorithms applied on Big Data so far. The selected algorithms fall into
various Machine Learning categories, including (i) unsupervised learning,
(ii) supervised learning, (iii) semi-supervised learning and (iv) deep learning. The
most popular programming frameworks like MapReduce, PLANET, DryadLINQ,
IBM Parallel Machine Learning Toolbox (PML), Compute Unified Device Archi-
tecture (CUDA) etc., well suited for parallelizing Machine Learning algorithms,
will be cited throughout the review. However, this review is mainly focused on the
performance and implementation traits of scalable Machine Learning algorithms,
rather than on framework wide-ranging choices and their trade-offs.

Keywords Big Data ⋅ Data mining ⋅ Machine learning ⋅ Unsupervised
machine learning ⋅ Supervised machine learning ⋅ Semi-supervised machine
learning

M. P. Skënduli (✉) ⋅ M. Biba
Department of Computer Science, University of New York in Tirana, Tirana, Albania
e-mail: marjanaprifti@unyt.edu.al

M. Biba
e-mail: marenglenbiba@unyt.edu.al

M. Ceci
Department of Computer Science, University of Bari, Bari, Italy

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_4&domain=pdf

1 Introduction

During the recent years researchers have been witness to a dramatic, persistent
increase of the sheer size of Big Data, often referred to as the data deluge. This ever
growing surge of data continues to double every 2 years [1] as different format data
pours in from sensors, devices, smartphones, digital platforms, independent or
connected applications. As the amount of data expands exponentially, nearly all of
it carries everyone’s digital footprint, unleashing a new era of opportunities for
businesses and people around the world. According to the Digital Universe Study,
the projected size of our digital universe by 2020 will reach 44 zettabytes, or 44
trillion gigabytes [1]. This estimation opens up a whole new set of opportunities,
but also challenges that need tackled.

The term “Big Data” coupled with the relevant awareness of Big Data phe-
nomenon, was coined in 1998 from John Mashey, a SGI (Silicon Graphics) scientist
who wrote a slide deck entitled “Big Data and the Next Wave of InfraStress” [2].
While this prominent term has been initially spotted from the industry represen-
tatives of the computer science community, it was right after Mashey’s notes, when
the term was first used in an academic source, the book under the authorship of
Weiss and Indurkhya [3]. The concept of Big Data is continuing to evolve and to be
reassessed, as it becomes the driving force behind many ongoing waves of the
digital transformation, including artificial intelligence, data science and the Internet
of Things (IoT). It is already true that Big Data has drawn the attention of many
researchers, promising to revolutionize many fields like commerce, business, sci-
entific research, government, national security, global economy, society adminis-
tration, and so on [4].

There is huge potential and highly useful information hidden in the increasing
volume of data, which can only be harnessed through powerful and accurate
applications, tools and technologies that we still lag behind. Thus, a new scientific
paradigm has emerged, the data-intensive scientific discovery (DISD), often asso-
ciated to the evolving range of Big Data problems. Jim Gray’s definition of this
Fourth Paradigm, as a new method of pushing forward the frontiers of knowledge,
has enabled new data-intensive computing technologies for gathering, manipulat-
ing, analyzing and displaying data according to Big Data requirements [5].

Big Data’s nature is not simply defined by its volume, but far more from its
complexity. According to a research report carried from Doug Laney under the
META group in 2001 [6], it is described as being three dimensional. Subsequently,
it was widely accepted as the “3 V-s” model that stands for data Volume (quantity/
amount of data), Velocity (speed of data generation) and Variety (type, nature, and
format of data). In 2012, Gartner (former META) updated the definition grounded
on this model, and consequently two more dimensions were added; Value (insights
and impact) and Veracity (trustworthiness/quality of captured data), which con-
tributed in achieving a mature definition of Big Data. The best way to describe Big
Data according to Zhou et al. [7] is by organizing these five dimensions into a stack,

66 M. P. Skënduli et al.

comprising three layers respectively Big, Data and Value in a bottom—up fashion
(see Fig. 1).

The upper layer represented from the Value dimension is more concerned with
applications that exploit the strategic power buried in Big Data, while the bottom
layer consisting of Volume and Velocity relies mainly on technological advances
[7]. So far, we can envision Big Data as a messy compilation of large complex sets
of data, incredibly massive, “dirty”, noisy, vague, partial and moreover heteroge-
neous. Yet it offers myriad opportunities and valuable insights buried in the data,
worthy to be leveraged through altered thinking, tools, and techniques. It is fitting
therefore that we investigate some of the techniques that lie behind Big Data
mining. Current research confirms that, state-of-the-art data processing approaches
and traditional analytical platforms appear unsuitable to capture the full value
residing in Big Data. However, considerable effort has been dedicated to the
improvement of current approaches, aiming to give birth to novel multidisciplinary
ones [8].

The latest techniques applied for the Big Data analytics comprise several cutting
edge analytics, involving statistics, data mining, Machine Learning, neural net-
works, social network analysis, pattern recognition, signal processing, optimization
methods and visualization approaches [9]. Among them, Machine Learning
(ML) has received considerable attention from both industry and academia
researchers. ML is an important subfield of Artificial Intelligence (AI), whose core
principle is to design algorithms that permit machines to evolve behaviors (learn)
based on empirical data. ML tools are currently deemed ideal in learning to rec-
ognize patterns on their own and make predictions, which have resulted pretty
promising in the AI kit for business applications and human behaviors, such as
computer vision, speech recognition, facial recognition, object recognition, lin-
guistic translation, neuroscience, health, Internet of Things etc. The interest spurred
in ML paradigms and algorithms is tightly coupled with ML’s ability to exploit
complex large volume of data within limited run times, and uncover more
fine-grained patterns that are ultimately used to make more timely and accurate
predictions than ever before [7]. The Big Data era provides remarkable rich
information sources for ML algorithms to exploit hidden patterns and construct
predictive models. The authors Zhou et al. [7] have discussed about opportunities
and challenges that Big Data present to ML, thoroughly investigating most of them.

Fig. 1 Big Data Stack. Source [7]. Retrieved from http://www.sciencedirect.com/science/article/
pii/S0925231217300577

Implementing Scalable Machine Learning Algorithms … 67

http://www.sciencedirect.com/science/article/pii/S0925231217300577
http://www.sciencedirect.com/science/article/pii/S0925231217300577

Among the key opportunities they highlight the quest that Big Data poses on ML to
introduce a new way of thinking and novel algorithms to manage the technical
challenges [10]: (i) the key role that Deep Learning has come to play, (ii) the unique
opportunities for co-design of system and ML that have enabled hardware accel-
erations; the promised opportunity for research on workflow management and task
scheduling, (iii) the importance of privacy-preserving ML, (iv) the extraordinary
opportunity for learning with humans in the loop and (v) the high potential to create
real-world impact. Yet, Big Data present critical challenges for traditional ML in
terms of model scalability, adaptability, usability, high data dimensionality,
streaming data and distributed computing.

The exponential increase of data volume, drives additional demand for devel-
oping mechanisms that will perform efficient data filtering and processing, recently
even in real-time. Thus, the necessity to scale up Machine Learning to larger
datasets and more complex methods can only be addressed by distributed paral-
lelism, as suggested from current research. Distributed parallelism is the key to
delivering fast parallel execution of tasks combined with the optimal usage of
computational resources.

The increased attention to large-scale Machine Learning applications is attrib-
uted both to the evolution of hardware and programming frameworks and to the
proliferation of large datasets across many modern applications. The vast choice of
parallel and distributed platforms that implement efficient Machine Learning
algorithms on large-scale data, include customizable integrated circuits (e.g.,
Field-Programmable Gate Arrays-FPGAs), custom processing units (e.g., general
purpose Graphics Processing Units-GPUs), multiprocessor and multicore paral-
lelism, High-Performance Computing (HPC) clusters connected via fast local net-
works, and datacenter-scale virtual clusters which are lately offered on a rent base
from cloud computing providers [11].

Thus, the aim of this paper is to conduct a thorough literature review on dis-
tributed parallel data-intensive Machine Learning algorithms applied on Big Data
so far. The algorithms that will be in the focus of this review fall into various
Machine Learning categories, including unsupervised learning, supervised learning,
semi-supervised learning and deep learning. The most popular programming
frameworks like MapReduce, PLANET, DryadLINQ, IBM Parallel Machine
Learning Toolbox (PML), Compute Unified Device Architecture (CUDA) etc., well
suited for parallelizing Machine Learning algorithms, will be cited throughout the
review. According to Bekkerman [11] the key segregating aspects between these
frameworks relate to the parallelism granularity, algorithm customization degree,
flexibility to bring together various programming paradigms, dataset scaling and
online or offline execution fashion. However, this review will be mainly focused on
the performance and implementation traits of scalable Machine Learning algo-
rithms, rather than on platforms and framework wide-ranging choices and their
trade-offs.

The chapter is structured as follows: Sect. 2 discusses unsupervised Machine
Learning for Big Data, Sect. 3 presents recent work for supervised approaches,

68 M. P. Skënduli et al.

Sect. 4 describes research for semi-supervised methods, Sect. 5 presents deep
learning methods and Sect. 6 concludes with future work and challenges.

2 Unsupervised Machine Learning Algorithms on Big
Data

Unsupervised learning represents a canonical setting of Machine Learning. More-
over, unsupervised learning algorithms make use of training data to attain a pre-
diction function f, which is later applied to test instances. Given the fact that
training data is provided in the form of unlabeled data, it is exactly from the later
that we extract hidden value and insights. Data clustering is one of the most salient
forms of unsupervised learning. The clustering process aims to partition an unla-
beled dataset into a predetermined amount of disjoint sets (k), called clusters. Data
instances assigned to the same cluster (intra-cluster) should presumably share a high
degree of similarity, whereas the inter-cluster similarity is low. Intra-cluster simi-
larity is defined in various ways including Euclidean distance, cosine similarity
(especially applicable for vector data) etc. Indeed, clustering algorithms have been
successfully employed in frameworks that support applications such as document
retrieval, pattern classification, image segmentation and customer segmentation.

To begin with, one of the most popular yet simple clustering algorithm is
K-means clustering, which dates back in 1955. Nevertheless, K-means is still in use
and according to Wu et al. [12] it has been classified as one of the top 10 algorithms
in data mining. Given a dataset X = {x1, x2,…, xn}, the basic principle of K-means
is to assign n points to k clusters, while all points should belong to a center with the
nearest distance for each cluster. Particularly, in K-means, the total distance
between each data point and a representative point (centroid) of the cluster to which
it is assigned is minimized. Conventionally, the K-means clustering algorithm
adopts Euclidean distance to calculate the distances between data points and cen-
troids. It may be obvious that the most intensive task that occurs in K-means
algorithms is the calculation of distances, which is greatly tackled by introducing
parallel execution of distance calculations. Researchers [13] proposed a parallel
K-means clustering algorithm based on MapReduce, to which they namely refer as
Parallel K-means (PKmeans) algorithm. They proved that their algorithm achieves
reasonably good performance improvements in terms of speedup, size up and scale
up, by simply employing MapReduce iterative jobs for parallelism. This approach
is further improved from Anchalia et al. [14], that have successfully implemented
the K-Means Clustering Algorithm over a distributed environment using ApacheTM

Hadoop, stressing the key role of Mapper and Reducer routines introduced by them.
Another aspect considered for improvement in K-means algorithms, concerns

the selection of initial centroids. For a proper initialization of k-means, Arthur and
Vassilvitskii [15] proposed a modification of k-means namely k-means++, which
improves both speed and accuracy of k-means by augmenting k-means with a

Implementing Scalable Machine Learning Algorithms … 69

simple, randomized technique. As a result, k-means++ results O (log k)-competi-
tive with the optimal clustering [15]. Five years later, Bahmani et al. [16], proposed
a scalable k-means++ (K-means||) which samples O(k) points per iteration,
repeatedly for O(log n) iterations, thus resulting in O(k log n) points as candidates
[16]. Authors have proven that K-means|| outperforms k-means ++ in both
sequential and parallel settings, under experimental settings. Improvements of
k-means clustering algorithm in terms of reliability and efficiency, have been
introduced from [17, 18], that proposes a MapReduce k-means++ algorithm which
can drastically reduce the number of MapReduce jobs by using only one
MapReduce job to obtain k centers. In turn, this method addresses both issues
concerning proper initialization and communication costs. To a broad extent, the
K-means is often seen as a serialization algorithm, encompassing many iterative
processes. Recent research [19, 20] signals that exposure to increased data volume,
points out some challenges to traditional K-means clustering translated as expo-
nentially increased time and space complexity. The performance of the framework
employed in such cases, will worsen due to the increased number of iterations
carried from the computations and the vast amount of redundant distance calcula-
tions, resulting in waste of computing resources. A distinctive, recent proposal of
[19, 20] presents a twofold strategy behind a significant increase of efficiency and
performance of parallel k-means clustering algorithm based on MapReduce.
Authors’ novel proposal consists on eliminating redundant distance calculations
and replacing the intra-cluster Euclidean distance with Manhattan distance calcu-
lation model. The results they have gathered while conducting extensive experi-
ments on real medical data, show a significant outperformance of their algorithm
named IMR-KCA.

Density-based clustering algorithms are deemed popular given their relatively
easy implementation and straightforward nature. In principle, density-based clus-
tering algorithms can exploit clusters of different shapes and sizes even in noisy
datasets, without necessitating prior information on the number of clusters (unlike
K-means). With respect to the rationale behind them, clusters are dense regions in
the data space, separated by regions of lower object density, thus a cluster is defined
as a maximal set of density-connected points. The most representative clustering
algorithm of this family is DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise) proposed back in 1996 from Martin Ester, Hans-Peter Kriegel,
Jörg Sander and Xiaowei Xu. Eventual drawbacks discovered in the classical
DBSCAN algorithm, have inspired researchers to come up with various improved
extensions of the initial one. The main drawback of DBSCAN is the high com-
putational complexity in querying nearest neighbors. DBSCAN can suffer poor
performance when dealing with high-dimensional and large-scale datasets. In order
to respond to the ultimate challenges posed from the data deluge, there can be
employed three main strategies to retain the computation efficiency: data indexing
structures, parallel computing and dividing data sets [21]. With respect to the first
strategy, new indexing structures are being embodied into DBSCAN with the
purpose to reduce time complexity from O(n2) to O(n log n) and address large-scale
data requirements. The quest to deal with the second strategy, parallel computing,

70 M. P. Skënduli et al.

has put forward many extensions of the DBSCAN algorithm. P-DBSCAN is a
novel version of parallel DBSCAN in distributed environment, which was intro-
duced from [22]. An important contribution has been made from [23], who pro-
posed the so called DBSCAN-MR algorithm, tuned for parallel processing on the
Hadoop platform, to solve the scalability problem. Patwary et al. [24] proposed a
new parallel DBSCAN algorithm (PDSDBSCAN) relying on graph algorithmic
concepts mainly. An interesting density-based clustering algorithm for Big Data
using Hadoop, is Cludoop proposed from [25]. This algorithm is established on top
of the serial clustering algorithm CluC, acting as a plugged-in clustering on parallel
mapper together with cell descriptions (rather than the whole cell) during trans-
mission, significantly reducing the number of distance calculations. The third
strategy, consisting of data set division, aims to reduce time consumption by
breaking down large datasets into smaller ones, followed by the application of
DBSCAN. This approach assumes the employment of K-means and/or similar
clustering techniques, during the pre-processing stage.

Hierarchical clustering, as a widely used clustering technique provides richer
representation means, due to its native capacity to suggest the potential group
structures in large-scale datasets. It can be further classified as agglomerative (a
bottom-up approach) and divisive (a top-down approach). One of the most repre-
sentative algorithms here is the agglomerative clustering algorithm called
Single-linkage hierarchical clustering (SLINK). It’s still a preferred analysis tool
aimed to perform early-stage knowledge discovery, due to its simplicity and
quadratic time complexity. Yet enough, SLINK does not scale well for large
datasets, due to its high time complexity and inherent data dependencies. A recent
publication [26] presented an efficient Spark-based single linkage hierarchical
clustering algorithm, referred to as SHAS. SHAS algorithm translates the
single-linkage hierarchical clustering problem to the minimum spanning tree
(MST) problem. Authors have figured out that SHAS is memory efficient and can
be scaled out linearly in Spark based environment, unlike with MapReduce.
Additionally, there exists a new novel optimization of SLINK algorithm, Grid-
SLINK proposed lately from [27]. Authors managed to achieve the optimization in
GridSLINK, reducing the required number of distance calculations. This is attained
by manipulating spatial locality of data points along with an adaptive gridding
technique. In result, a second version dGridSLINk is also parallelized for dis-
tributed memory systems, showing good speedup and scalability.

Spectral clustering and its family methods have received increased attention.
Algorithms that fall under this category, cluster data points based on Eigenvalue
decompositions of affinity, dissimilarity or kernel matrices [28]. Spectral clustering
treats clustering as a graph partitioning problem, without making strong assump-
tions on the statistics of clusters. Consequently, the good clustering results make
spectral clustering algorithms, easy to implement and reasonably fast for sparse
datasets of several thousand elements. However, they appear to be sensitive to the
choice of parameters and computationally expensive for large-scale datasets. This
computational complexity issue has been addressed in several studies. One effective
approach to alleviate the time complexity was proposed from [29], who used the

Implementing Scalable Machine Learning Algorithms … 71

Nysttrom approximation method to the similarity matrix. Power iteration clustering
(PIC), is also deemed approriate to tackle the computational complexity of spectral
clustering. This is achieved by replacing the Eigen decomposition of the similarity
matrix with a small number of iterative matrix-vector multiplications. The original
PIC approach was pushed forward from [28], who implemented a parallel power
iteration clustering (p-PIC) based on the MPI message passing library interface, to
handle large-scale data. Further, Jayalatchumy and Thambidurai implemented
p-PIC in MapReduce achieving fast, scalable and accurate results for Big Data
handling [30]. A very recent study carried from Priscilla and Chilambuchelvan,
extended the original Power Iteration Clustering approach to the introduction of a
Parallel Deflated Power Iteration Clustering (P-DPIC) MapReduce framework [31].
The P-DPIC algorithm is proposed with the promise to overcome inter-class col-
lision problem in PIC. Experimental data revealed that by increasing the number of
nodes in the mapper, the overall performance of P-DPIC also increased. The
authors claim that their P-DPIC algorithm offers better accuracy, has smaller
complexity and it is suitable for large, sparse, and multiclass datasets [31].

Subspace clustering, often represented from the classical SUB-CLU algorithm,
aims to discover all lower-dimensional clusters hidden in subspaces of high
dimensional data. According to Parsons et al. [32] subspace clustering algorithms
fall under to main categories, top-down and bottom-up. The top-down algorithms
find an initial clustering in the full set of dimension and evaluate subspaces itera-
tively refining clusters with smaller subspaces. While, bottom-up algorithms seek to
find dense regions in low dimensional spaces and combine them to form clusters.
They are further divided into grid-based and density-based methods [32]. Zhu et al.
[33] proposed CLUS, a novel parallel algorithm rooted on SUBCLU algorithm and
implemented in Spark. CLUS makes full use of Spark’s in-memory primitives,
while applying a new dynamic data partitioning method and executing multiple
tasks density-based clustering (DBSCAN) tasks in parallel. Obviously, CLUS
outperforms SUBCLU in terms of execution time, as it succeeds to minimize
communication costs between nodes, to maximize overall CPU usage and to bal-
ance the load among them time. CLU is very promising with regards to Big Data
exploitation, since it scales well with respect to the number of dimensions and the
size of datasets. Bo Zhu and Alberto Mozo have further extended their work, with
the presentation of a very recent parallel subspace clustering algorithm which was
implemented on top of Spark, called Spark2Fires. It reduces time complexity (from
exponential to quadratic) of both base and final cluster subspace generation, via
approximation. Spark2Fires has been tested synthetic large datasets, demonstrating
good scalability, accuracy and efficiency [34].

Bi-clustering, also known as co-clustering, aims to cluster both rows and col-
umns of a matrix into groups, in a simultaneous fashion. Bi-clustering examines
inter-related submatrices of rows and columns, which is pretty different compared
to simple clustering. Additionally, it appears powerful in discovering hidden local
patterns that remain unapparent to basic unsupervised algorithms such as K-means.
Research shows that bi-clustering has high applicability in various application
including text mining, bioinformatics, collaborative filtering, and graph mining.

72 M. P. Skënduli et al.

There is evidence on several co-clustering algorithms proposed so far. Bongjune
Kwon and Hyuk Cho have conducted an extensive review of co-clustering algo-
rithms, focusing on the unified view of co-clustering algorithms, also known as
Bregman co-clustering (BCC) framework, which includes six Euclidean distance
and six I-divergence co-clustering algorithms. Subsequently, they face the scala-
bility challenge by successfully parallelizing the twelve co-clustering algorithms in
the BCC framework using message passing interface (MPI) [35]. A later, yet very
interesting proposal came from Papadimitriou and Sun, who designed a distributed
Co-clustering (DisCo) framework, developed on MapReduce. DisCo introduces
practical approaches in the context of distributed data pre-processing and
co-clustering [36].

3 Scaling of Supervised Machine Learning on Big Data

Supervised learning is a Machine Learning task, which infers a function from
supervised data standing for labeled training data. Ultimately, supervised learning
aims to identify and construct a function f that produces accurate predictions on
previously unseen data or just test data, which are further subjected to verification
and classification. Two most classical supervised tasks are classification and
regression. Classification is a technique which is widely applied to determine the
class of variables, equal to future trends prediction in real world scenarios.
A classification algorithm is a supervised learning algorithm that analyzes the
training data and produces an inferred function, which is called a classifier if the
output is discrete. Whereas, a regression algorithm produces an inferred function
which is called a regression function because the output is continuous. Supervised
learning is widely applied in applications such as spam filtering, image recognition,
speech recognition, text categorization, fraud detection, information extraction and
retrieval, bioinformatics etc. A brief summary of noted classification and regression
algorithms follows below.

Decision tree classification is one of the most popular classification methods in
the rich context of data mining applications. A decision tree is a directed tree
consisting of a root node, internal node or decision node and leaf nodes. The root
has no incoming edges, while the rest of nodes with exactly one incoming edge are
noted as decision nodes. During the training phase, each decision node splits the
instance space so that the tree is constructed in a recursive fashion and the per-
formance of the classifier is optimized. The decision rule constitutes the path from
the root node to the leaf node, and is used to determine which class a new instance
belongs to. A popular decision tree algorithm is C4.5. It has gained the attention of
several researchers, which have continuously introduced improved to C4.5. How-
ever, the challenges posed from Big Data cannot be afforded from traditional
decision tree algorithms including the classical C4.5 algorithm. First of all, building
a decision tree on large-scale data appear time consuming, and secondly even
though decision trees classification algorithms can accommodate parallel

Implementing Scalable Machine Learning Algorithms … 73

computing, data distribution should be optimized. Several C4.5 algorithm draw-
backs are addressed very recently from [37]. In their paper the authors presented a
parallelized version of the C4.5 decision tree learning algorithm called
MR-C4.5-Tree based on MapReduce. The construction of MR-C4.5-Tree nodes is
achieved via two different parallel methods; first ensuring the best splitting attribute
via the information entropy-based parallelized attribute selection method (MR-A-S)
and then by partitioning training data into subsets via a data splitting method called
(MR-D-S). The authors tackled the over-partitioning issue using three termination
conditions respectively, the depth of tree, the minimum of samples, and the mini-
mum accuracy rate. During the experimental stage, MR-C4.5-Tree exhibits feasi-
bility and the good performance [37].

Random forest is an ensemble classifier consisting on many (an arbitrary
number) decision trees, that can be applied on both classification and regression
tasks. Random forest grows an arbitrary number of classification trees. For clas-
sification problems, the ensemble of decision trees vote for the most popular class.
While, in the regression problems, the ensemble uses averaging to achieve an
estimate of the dependent variable. Using tree ensembles can lead to significant
improvement in prediction accuracy and control over-fitting. With respect to this
category, [38] have presented SMRF, a scalable Random Forest algorithm that
performs data classification based on MapReduce. SMRF algorithm has three
stages: initializing, generating and voting. The authors draw the conclusion that
SMRF algorithm is much more suitable for Big Data classification as compared to
any traditional Random Forest algorithm [38].

Fuzzy Rule-Based Classification Systems often referred to as FRCB-s, represent
classification systems that can handle uncertainty and ambiguity effectively [39].
A promising algorithm has been proposed from [40], who extends the existing
linguistic fuzzy rule-based classification system called Chi-FRBCS to a new version
suited to Big Data, called Chi-FRBCS-BigData. This algorithm used MapReduce
framework to learn and fuse rule bases. The interpretable model behind this
algorithm is able to exploit large-scale data with fast response times and good
accuracy. Authors have developed two versions of the algorithm, respectively
Chi-FRBCS-BigData-Max and Chi-FRBCS-BigData-Ave. The first one achieves
better accuracy, while the second one achieves faster results. According to authors
the best version of the algorithm is the one that fits best with user’s needs [40].
A subsequent recent study carried from almost the same researchers [41], proposed
the very first Evolutionary Fuzzy system suited for Big Data problems. The initial
knowledge base is built from the Chi-FRBCS-BigData algorithm and by means of a
genetic tuning of the 2-tuples Data base. As a result, the fuzzy labels will be
perfectly contextualized within every subset of the problem, and the coverage of the
Rule Base will be enhanced. In the final step, the knowledge Bases from each Map
process are joined to build an ensemble classifier [41].

Naïve Bayes is a supervised learning method as well as a statistical method for
classification, grounded on the statistical Bayes’ theorem (named after Thomas
Bayes who proposed this theorem) with independence assumptions among vari-
ables [39]. This learning method assumes an underpinning probabilistic model,

74 M. P. Skënduli et al.

allowing us to capture uncertainty about a model by defining probabilities of the
outcomes. In summary, Bayesian classification offers a convenient perspective for
assessing and evaluating many learning algorithms. It has been extensively
employed in applications such as text classification, spam filtering, collaborative
filtering, sentiment analysis, etc. Among many implementations and a wide range
of developed algorithms, a recent version of Naive Bayes classifier has been
implemented on MapReduce for sentiment analysis. The authors’ goal has been to
evaluate how well scales up the Naïve Bayes classifier (NBC) in large-scale
datasets. The results provided from this study are very promising, in that the NBC
accuracy improved and approached 82% when the dataset size increases [42].

Support vector machines (SVM) represent a core Machine Learning technology
that reveal robust theoretical foundations and excellent empirical successes in many
pattern recognition applications such as isolated handwritten digit recognition, text
categorization and information retrieval according to Bekkerman [11]. Support
Vector Machines are key classification and regression tools, based on which have
been developed several SVM software models, such as lightSVM, ls-SVM, libSVM
and so on. LibSVM is often referred to as the most proficient and applicable SVM.
Needless to say but, SVM-s also suffer from a widely recognized scalability
problem in both terms of memory use and computational time. The improvement of
SVM based algorithms has increasingly attracted many researchers of the field. Sun
and Fox [43], developed a parallel SVM model (parallel LibSVM) based on the
existing research on SVM-s and on Twister MapReduce framework. The model
proposed from the researchers, divides the training samples into subsections. Then,
each subsection goes through a training session provided from the SVM model.
More specifically, mappers using LibSVM accomplish the task to train in parallel
every subSVM. The non-support vectors are filtered via subSVMs. The support
vectors of each subSVM are used as the input of the next layer subSVM. As a
result, the global SVM model will be obtained through iteration [43]. Variations of
the parallelized SVM algorithm on MapReduce but not limited to it, have been
successfully implemented in email classification [17], sentiment analysis [44],
biotechnology for protein to protein interaction prediction [45] and so on.

Artificial neural networks (ANNs) are also efficient and attractive to be
employed in classification and regression tasks. The most common ANN is the
back-propagation neural network knowns as PBNN due to its sensational function
approximation and generalization properties. Initially it was developed as a solution
to the problem of training multi-layer perceptrons. The paper [46] proposed a
parallelized back propagation neural network algorithm PBPNN. The challenging
goal to improve the algorithm accuracy is met by including bootstrapping and
majority voting. Substantially, bootstrapping assures original data information are
maintained in sub-dataset, while majority voting provides the means to generate
strong classifiers. The experimental work carried from the authors, underlines that
PBPNN can significantly outperform the classical BPNN in terms of accuracy and
stability. Additionally, given the iterative nature of the jobs to be carried, the
evaluations of the authors point out that amongs Spark, HaLoop and MapReduce,
the first one fits best with the proposed PBPNN algorithm [46].

Implementing Scalable Machine Learning Algorithms … 75

Multiple linear regression is a widely adopted regression task, which is char-
acterized from a very high training time and may be prone to failure when applied
on large datasets. An audacious work in this subtle area, has been completed from
Rehab and Boufares. The authors have proposed a multiple linear regression model
on MapReduce (MLR-MR) to enhance speedup and scalability over large-scale
datasets. The distributed training method behind MLR-MR, combines the QR
decomposition and the ordinary least squares method adapted to MapReduce
environment. Technically speaking, the MLR-MR algorithm comprises three steps.
Initially, the matrix is divided in smaller blocks, then mappers compute a local QR
for each block, and finally the results of all the mappers are combined in order to
provide the final results. The results contemplated from the authors present a very
promising algorithm, whose parallelized version can handle large datasets and
solves the out-of-memory problem also [47].

4 Semi-supervised Machine Learning on Big Data

Semisupervised learning is another Machine Learning task that makes use of data
collections containing small amounts of labeled data and large amount of unlabeled
data. This mixture of labeled and labeled data is used as training data. Generally
speaking, semisupervised learning is quite appropriate when dealing with large
amounts of unlabeled Big Data, whose labelling cost is both high and time con-
suming. The two most important techniques in semisupervised learning are:
co-training and active learning [39].

The co-training learning process requires two views of the data. It assumes that
each example is partitioned into two distinct views and both views are indepen-
dently sufficient. Initially, it learns to separate classifiers for each view, and further
the most confident predictions of each classifier on unlabeled data is used to iter-
atively create labeled trained data [39]. An interesting co-training Machine
Learning algorithm is the one proposed from Hariharan and Subramanian [48]. This
is one of the few (still limited number) research project focused explicitly on large
scale multi-view learning on programming models such as MapReduce. The
researchers came up with a co-training Multiview learning algorithm, using both
consensus and complementary principles. They proposed a computational design
based on data structures such as mapping table, label file and bi-directional
Reducers. In turn, this design reduces the overall I/O requirements, and computa-
tional needs, since it is not necessary to broadcast all the labels.

Active learning is another semisupervised learning technique in which the
learner actively chooses which examples to label and the final goal is to reduce the
number of labeled examples needed for learning. The Back-Propagation BP
(PCAL-BP) algorithm, is a decent neural network algorithm adaptable to Big Data
requirements [49]. The PCAL-BP algorithm choses samples and punishments based
on the absolute value of the prediction error, aiming to improve the efficiency of
learning large data. This approach induces reduction of the learning effort and

76 M. P. Skënduli et al.

provides high precision. Compared to 16 varied classical classification algorithms,
the PCAL-BP algorithm clearly outperformed 14 of them [49].

5 Deep Machine Learning on Big Data

Deep learning is a growing field of interest, a subset of Machine Learning (ML),
which aims to solve problems that have resisted the best attempts of the artificial
intelligence community so far. Deep Learning can be definitely seen as ML’s
bleeding edge. It encompasses a set of supervised and unsupervised ML techniques
that are based on learning hierarchical representations of data in deep architectures
for classification [50]. Early representations were inspired by the advances in
neuroscience, and specifically on the human brain mechanisms and neural coding.
Subsequently, other representations turned out to be better at simplifying the
learning task. One of the most applicable frameworks for deep learning is the
combination of a Deep Belief Network (DBN) with Restricted Boltzman Machine
(RBM). RBMs are successfully used to construct a training model under unsu-
pervised conditions. Afterwards, the DBN uses it for supervised classification [39].
Deep learning has dramatically improved the state-of-the-art in many applications.
In terms of deep learning strengths, impressive results have been achieved in audio
classification, image recognition, natural language processing, fraud detection,
threat detection, biomedical informatics, sentiment analysis, and log analysis. Deep
neural network architectures can be adapted to many types of problems and
domains and apparently their hidden layers reduce the need for feature engineering.
In terms of limitations, deep learning algorithms are usually not suitable as
general-purpose algorithms because they require a very large amount of data. In
fact, they are usually outperformed by tree ensembles for classical machine learning
problems. In addition, they are computationally intensive to train, and they require
much more expertise to tune. In spite of all the compelling achievements in
large-scale deep learning, this field is still in its early stages. A lot of research efforts
should be paid to address many significant challenges posed from the Big Data
realm.

6 Challenges and Future Work

The Big Data era is already underway, and we are invited to accommodate
large-scale data and make use of the gold mine insights we can get out of them.
According to estimations [1], this year we are going to cross into the zettabyte
regime in terms of data volume. Handling these high volume, heterogeneous and
dynamic data is becoming a must. Hence, next to the problem of collecting and
storing the data sea, the subject of efficient learning and adaption in the Big Data
context becomes paramount. Amounts of data that we store should be coupled with

Implementing Scalable Machine Learning Algorithms … 77

novel algorithms, customized applications and scalable tools. The emergence of
new sources of data, the quick release of Big Data platforms, advanced business
analytics, the existence of too many engines and so on, have contributed in creating
a messy and large Big Data ecosystem. We need to gain control over this data
deluge, standardize the ecosystem so that it can deliver high quality information on
the promise to make our life healthier, our tasks effortless, and our businesses more
agile and successful.

With respect to this big picture the aim of this review is to acknowledge the
challenges along with the opportunities in the Big Data era. An extensive review of
seminal research has been conducted to ensure that the audience will be informed
on the most distinctive and/or promising Machine Learning algorithms augmented
so far in scalable Big Data platforms. While conducting this technical review on
scalable Machine Learning algorithms, the authors include an appreciation of their
performance against computational complexity. Categorizing Machine Learning
algorithms is an intricate goal. Scientific literature suggests several reasonable
approaches; they can be grouped into generative/discriminative, parametric/
non-parametric, supervised/unsupervised, and so on. However, the authors here
introduce another approach to categorizing algorithms by machine learning task.
Despite advantages and disadvantages, no one algorithm works best for every
problem. Of course, the algorithms you select must be appropriate for your
problem/domain, which is exactly about picking the right machine learning task.

Machine Learning is showing the most promise at providing tools that will
benefit science, industry, and society. The authors guide the reader through the
difficult process of assessing and deploying the best-fit Machine Learning algo-
rithms to the Big Data context. Closed attention has been given to the identification
of challenges imposed from Big Data on current Machine Learning tools. These
challenges are summarized below:

1. Scalability: The data deluge is all about those voluminous data, pouring in from
sensors, devices, smartphones, digital platforms, independent or connected
applications that we need to distill and harness. Algorithms that mine Big Data
should be designed with care, taking into account the growing pace and the
increasing complexity of data. They should be flexible enough to adapt with the
evolving nature of Big Data, while sticking to the accuracy and time efficiency
requirements.

2. Distributed data: Conventional data analytic tools relied on centralized/
standalone tools that process quantifiable datasets. As opposed to that, Big Data
are generated from diverse, multiple, autonomous and heterogeneous sources,
often distributed across multiple physical and technical sites. Therefore, algo-
rithms that mine Big Data need to be distributed in order to genuinely handle the
data sea.

3. Evolving data: The shift from static data to dynamic data generated on the go,
in real time pace, brings up the necessity to come up with sophisticated mining
algorithms. They should be well-suited to fast and accurate real-time analysis
performed on dynamic datasets.

78 M. P. Skënduli et al.

4. Heterogeneous data: Big Data can be envisioned as a messy compilation of
large complex sets of data, incredibly massive, unstructured, “dirty”, noisy,
vague, partial and moreover heterogeneous due to their provenience. Yet, it
offers myriad opportunities and valuable insights buried in the data, questing to
be handled from new algorithms, altered tools and techniques.

The above challenges divulge into future goals to be meet from research and
development.

References

1. IDC/EMC. (2014, April). The digital universe of opportunities: Rich data and the increasing
value of the internet of things. Retrieved from https://www.emc.com/leadership/digital-
universe/2014iview/executive-summary.htm.

2. Mashey, J. R. (1999). Retrieved from http://static.usenix.org/event/usenix99/invited_talks/
mashey.pdf.

3. Weiss, S., & Indurkhya, N. (1998). Predictive data mining: A practical guide. Morgan.
4. Jin, X., W. Wah, B., Cheng, X., & Wang, Y. (2015). Significance and challenges of Big Data

research. Big Data Research, 59–64.
5. Hey, A. J., Tansley, S., & Tolle, K. M. (2009). The fourth paradigm: Data-intensive scientific

discovery. WA: Microsoft Research Redmon.
6. Laney, D. (2001). 3-D data management: Controlling data volume, velocity and variety.

META Group Research Note.
7. Zhou, L., Pan, S., Wang, J., & V. Vasilakos, A. (2017, May 10). Machine learning on Big

Data: Opportunities and challenges. Neurocomputing, 237, 350–361. http://doi.org/10.1016/j.
neucom.2017.01.026.

8. Alippi, C., Ntalampiras, S., & Roveri, M. (2016). Designing HMMs in the age of big data. In
Advances in Big Data: Proceedings of the 2nd INNS Conference on Big Data (pp. 120–130).
Springer International Publishing.

9. Chen, P., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and
technologies: A survey on Big Data. Information Sciences, Elsevier.

10. Chen, X.-W., & Lin, X. (2014). Big data deep learning: challenges and perspectives. In IEEE
Access, 2, 514–525. https://doi.org/10.1109/access.2014.2325029.

11. Bekkerman, R. A. (2011). Scaling up machine learning: parallel and distributed approaches.
In Proceedings of the 17th ACM SIGKDD International Conference Tutorials (pp. Article 4,
1). San Diego, California. http://dx.doi.org/10.1145/2107736.2107740.

12. Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., … Steinberg, D.
(2008, January). Knowledge and Information Systems, 14(1), 1–37.

13. Zhao, W., Ma, H., & He, Q. (2009). Parallel k-means clustering based on MapReduce. In
IEEE International Conference on Cloud Computing. CloudCom 2009 (Vol. 5931, pp. 674–
679). Berlin, Heidelberg: Springer.

14. Anchalia, P. P., Koundinya, A. K., & Srinath, N. K. (2013). MapReduce design of k-means
clustering algorithm. In 013 International Conference on Information Science and
Applications (ICISA) (pp. 1–5). Suwon. https://doi.org/10.1109/icisa.2013.6579448.

15. Arthur, D., & Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(pp. 1027–1035). New Orleans, Louisiana: Society for Industrial and Applied Mathematics.

16. Bahmani, B., Moseley, B., Vattani, A. K., & Vassilvitskii, S. (2012). Scalable k-means++. In
Proceedings of the VLDB Endowment (pp. 622–633). VLDB Endowment. http://dx.doi.org/
10.14778/2180912.2180915.

Implementing Scalable Machine Learning Algorithms … 79

https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://doi.org/10.1016/j.neucom.2017.01.026
http://doi.org/10.1016/j.neucom.2017.01.026
http://dx.doi.org/10.1109/access.2014.2325029
http://dx.doi.org/10.1145/2107736.2107740
http://dx.doi.org/10.1109/icisa.2013.6579448
http://dx.doi.org/10.14778/2180912.2180915
http://dx.doi.org/10.14778/2180912.2180915

17. Xu, K., Wen, C., Yuan, Q., He, X., & Tie, J. (2014). A MapReduce based parallel SVM for
email classification. Journal of Networks, 9(6), 1640–1647.

18. Xu, Y., Qu, W., Li, Z., Min, G., Li, K., & Liu, Z. (2014). Efficient k-means++ approximation
with MapReduce. IEEE Transactions on Parallel and Distributed Systems, 3135–3144.

19. Tang, Z., Liu, K., Xiao, J., Yang, L., & Xiao, Z. (2017, March 23). A parallel k-means
clustering algorithm based on redundance elimination and extreme points optimization
employing MapReduce. Concurrency and Computation: Practice and Experience. http://dx.
doi.org/10.1002/cpe.4109.

20. Tang, Z., Liu, K., Xiao, J., Yang, L., & Xiao, Z. (2017). A parallel k‐means clustering
algorithm based on redundance elimination and extreme points optimization employing
MapReduce. Concurrency and Computation: Practice and Experience. https://doi.org/10.
1002/cpe.4109.

21. Lv, Y., Ma, T., Tang, M., Cao, J., Tian, Y., Al-Dhelaan, A., & Al-Rodhaan, M. (2016,
January 1). An efficient and scalable density-based clustering algorithm for datasets with
complex structures. Neurocomputing, 9–22. http://doi.org/10.1016/j.neucom.2015.05.109.

22. Chen, M., Gao, X., & Li, H. (2010). Parallel DBSCAN with priority r-tree. In 2010 2nd IEEE
International Conference on Information Management and Engineering (pp. 508–511).
Chengdu. https://doi.org/10.1109/icime.2010.5477926.

23. Dai, B.-R., & Lin, I.-C. (2012). Efficient map/reduce-based DBSCAN algorithm with
optimized data partition. In 2012 IEEE Fifth International Conference on Cloud Computing
(pp. 59–66). Honolulu. https://doi.org/10.1109/cloud.2012.42.

24. Patwary, M. A., Palsetia, D., Agrawal, A., Liao, W.-K., Manne, F., & Choudhary, A. (2012).
A new scalable parallel DBSCAN algorithm using the disjoint-set data structure. In
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis (pp. 1–11). Salt Lake City, Utah: IEEE Computer Society Press.

25. Yu, Y., Zhao, J., Wang, X., Wang, Q., & Zhang, Y. (2015). Cludoop: An efficient distributed
density-based clustering for Big Data using Hadoop. International Journal of Distributed
Sensor Networks, 11(6).

26. Jin, C., Liu, R., Chen, Z., Hendrix, W., Agrawal, A., & Alok, C. (2015). A scalable
hierarchical clustering algorithm using spark. In Proceedings of the 2015 IEEE First
International Conference on Big Data Computing Service and Applications (pp. 418–426).
Washington, DC, USA: IEEE Computer Society.

27. Goyal, P., Kumari, S., Sharma, S., Kuma, D. R., Kishore, V., Balasubramaniam, S., & Goyal,
N. (2016). A fast, scalable SLINK algorithm for commodity cluster computing exploiting
spatial locality. In 2016 IEEE 18th International Conference on High Performance
Computing and Communications; IEEE 14th International Conference on Smart
City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/
DSS) (pp. 268–275). IEEE. https://doi.org/10.1109/hpcc-smartcity-dss.2016.0047.

28. Yan, W., Brahmakshatriya, U., Xue, Y., Gilder, M., & Wise, B. (2013, March). p-PIC:
Parallel power iteration clustering for Big Data. Journal of Parallel and Distributed
Computing, 73(3), 352–359. http://doi.org/10.1016/j.jpdc.2012.06.009.

29. Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004). Spectral grouping using the
Nystrom method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 214–
225.

30. Jayalatchumy, D., & Thambidurai, P. (2014). Implementation of P-Pic algorithm in Map
Reduce to handle Big Data. IJRET: International Journal of Research in Engineering and
Technology, 113–118.

31. Priscilla, G. A., & Chilambuchelvan, A. (2016). A fast and parallel implementation of
reduction based power iterative clustering algorithm in cloud. International Journal of
Computer Science and Information Security, 81–87.

32. Parsons, L., Haque, E., & Liu, H. (2004). Subspace clustering for high dimensional data: A
review. SIGKDD Explorations Newsletter, 90–105.

33. Zhu, B., Mara, A., & Mozo, M. (2015). CLUS: Parallel subspace clustering algorithm on
Spark* (pp. 175–185). Poitiers, France.

80 M. P. Skënduli et al.

http://dx.doi.org/10.1002/cpe.4109
http://dx.doi.org/10.1002/cpe.4109
http://dx.doi.org/10.1002/cpe.4109
http://dx.doi.org/10.1002/cpe.4109
http://doi.org/10.1016/j.neucom.2015.05.109
http://dx.doi.org/10.1109/icime.2010.5477926
http://dx.doi.org/10.1109/cloud.2012.42
http://dx.doi.org/10.1109/hpcc-smartcity-dss.2016.0047
http://doi.org/10.1016/j.jpdc.2012.06.009

34. Zhu, B., & Mozo, A. (2016). Spark2Fires: A new parallel approximate subspace clustering
algorithm. In I. et al. (Ed.), Communications in computer and information science (pp. 147–
154). Prague, Czech Republic.

35. Kwon, B., & Cho, H. (2010). Scalable co-clustering algorithms. In Algorithms and
Architectures for Parallel Processing: 10th International Conference (pp. 32–43). Busan,
Korea: Springer Berlin Heidelberg.

36. Papadimitriou, S., & Sun, J. (2008). DisCo: Distributed co-clustering with Map-Reduce: A
case study towards petabyte-scale end-to-end mining. In Proceedings of the 2008
Eighth IEEE International Conference on Data Mining (pp. 512–521). Washington, DC,
USA: IEEE Computer Society. https://doi.org/10.1109/icdm.2008.142.

37. Mu, Y., Liu, X., Yang, Z., & Liu, X. (2017). A parallel C4.5 decision tree algorithm based on
MapReduce. Concurrency and Computation: Practice and Experience. https://doi.org/10.
1002/cpe.4015.

38. Han, H., Liu, Y., & Sun, X. (2013). A scalable random forest algorithm based on MapReduce.
In 2013 IEEE 4th International Conference on Software Engineering and Service Science
(pp. 849–852). IEEE. https://doi.org/10.1109/icsess.2013.6615438.

39. Gupta, P., Sharma, A., & Jindal, R. (2016). Scalable machine-learning algorithms for Big
Data analytics: A comprehensive review. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 194–214.

40. del Río, S., López, V., Benítez, M., & Herrera, F. (2015). A MapReduce approach to address
big data classification problems based on the fusion of linguistic fuzzy rules. International
Journal of Computational Intelligence Systems, 422–427.

41. Fernandez, A., del Río, S., & Herrera, F. (2016). A first approach in evolutionary fuzzy
systems based on the lateral tuning of the linguistic labels for Big Data classification. In 2016
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1437–1444). IEEE.
https://doi.org/10.1109/fuzz-ieee.2016.7737858.

42. Liu, B., Blasch, E., Chen, Y., Shen, D., & Chen, G. (2013). Scalable sentiment classification
for Big Data analysis using Naïve Bayes classifier. In 2013 IEEE International Conference on
Big Data (pp. 99–104). IEEE.

43. Sun, Z. S., & Fox, G. (2012). Study on parallel SVM based on MapReduce. In Proceedings of
the International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA) (p. 1).

44. Khairnar, J., & Kinikar, M. (2014). Sentiment analysis based mining and summarizing using
SVM-MapReduce. International Journal of Computer Science & Information Technology, 5
(3), 4081.

45. You, Z.-H., Yu, J.-Z., Zhu, L., Li, S., & Wen, Z.-K. (2014). A MapReduce based parallel
SVM for large-scale predicting protein–protein interactions. Neurocomputing, 145, 37–43.
http://doi.org/10.1016/j.neucom.2014.05.072.

46. Liu, Y., Xu, L., & Li, M. (2016). The parallelization of back propagation neural network in
MapReduce and spark. International Journal of Parallel Programming, 1–20.

47. Rehab, M. A., & Boufares, F. (2015). Scalable massively parallel learning of multiple linear
regression algorithm with MapReduce. In 2015 IEEE Trustcom/BigDataSE/ISPA (Vol. 2,
pp. 41–47).

48. Hariharan, C., & Subramanian, S. (2013). Large scale multi-view learning on MapReduce. In
Proceedings of 19th International Conference on Advanced Computing and Communications.

49. Wang, S., Zhao, Q., & Ye, F. (2013). A new back-propagation neural network algorithm for a
Big Data environment based on punishing characterized active learning strategy. International
Journal of Knowledge and Systems Science, 32–45.

50. Ranzato, M. A., Boureau, Y.-L., & LeCun, Y. (2007). Sparse feature learning for deep belief
networks. In Proceedings of the 20th International Conference on Neural Information
Processing Systems (pp. 1185–1192). USA: Curran Associates Inc.

Implementing Scalable Machine Learning Algorithms … 81

http://dx.doi.org/10.1109/icdm.2008.142
http://dx.doi.org/10.1002/cpe.4015
http://dx.doi.org/10.1002/cpe.4015
http://dx.doi.org/10.1109/icsess.2013.6615438
http://dx.doi.org/10.1109/fuzz-ieee.2016.7737858
http://doi.org/10.1016/j.neucom.2014.05.072

Concepts of HBase Archetypes in Big
Data Engineering

Ankur Saxena, Shivani Singh and Chetna Shakya

Abstract All the technology that has been used for the big data handling is
inspired by technology that was explain in the Google paper back in 2003. HBase is
of the top most used and preferred open source distributed system developed by the
Apache including apache zookeeper, apache Hadoop HBase provide random access
for the storing and retrieving the data. In HBase we can store any type of data in any
format, data can be structured and semi structured. It is very malleable and dynamic
in case of data model. It is a No-SQL database i.e. it doesn’t let any inter row
transactions to occur. Unlike traditional systems HBase run on multiple or a cluster
of computers instead of single one, number of computer in a cluster can be
increased or decreased as per the requirement. This type of design provide a more
powerful and scalable approach for the data handling. This chapter explains about
the how efficient HBase architecture and its command, operations are different from
traditional systems.

1 Introduction

HBase is a database. You were probably thinking: “why we are studying about it,
there are many database out there what so special about it?”

So let’s start with its fundamental difference, that it’s a non-relational database.
For putting it in perspective it don’t mind storing integer in one row and string in

A. Saxena (✉) ⋅ S. Singh ⋅ C. Shakya
Amity University, Noida, UP, India
e-mail: ankursaxena1434@gamil.com; asaxena1@amity.edu

S. Singh
e-mail: ssinghsivani6@gmail.com

C. Shakya
e-mail: chetna12shakya@gmail.com

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_5

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_5&domain=pdf

another for same column. Also it don’t worry about the type of data and it can store
both structure and semi-structure data as well. It has dynamic and flexible data
models to work with, also it stores the data differently as it uses row key, column
key and timestamp like parameters for indexing, these parameters are also called the
key value store and this method of storing is called the multidimensional sorted
maps, in some cases these maps can even hold the image of itself previous copy
specially in rapidly changing data like in weather pattern related data, etc.

Now let’s talk about other key points of HBase. It supports scalability to another
level by allowing it to use distributed computing or cluster computing, in this it uses
multiple commodity hardware’s instead of a single server hardware, and each of
these commodity hardware’s will provide a bit of storage, cache and computing
also all these nodes (commodity hardware system in this case) are equal in their
work so even if one of the nodes will come down or went offline due to some reason
still the system will work, also as we are using cheaper hardware this makes the
whole system non-expensive to setup.

It set’s a benchmark in OLAP (online analytical processing) which is essentially
the processing of metadata, thanks to its flexible data models, also although rela-
tional databases were doing a fine job with ACID (atomicity, consistency, isolation
and durability) insurance but HBase is doing it better.

HBase helps in overcoming one of the biggest problem that relational database
had of object-relational mismatch.

There are bunch of interesting facts about HBase. So it starts with the devel-
opment of nutch which was essentially a web-searching project, so what happened
is that Hadoop was developed out of nutch in 2007 and eventually become a
top-level product of apache its open source nature let curious people to tingle with
its code and so it happened, a man named cafarella released an experimental code
based on big table (a part of Hadoop), he called this code the HBase and from here
on HBase keeps on developing across communities thanks to its open source
nature.

HBase is proven to be a powerful tool to be used in places where Hadoop is
already implemented also HBase had become a top-level project of apache now
HBase is being used by corporations like stumbleupon, Adobe, Facebook, Twitter
and many more.

1.1 Installation Requirements

There are different requirement for HBase system installation, we can start with
hardware, servers, software, networking etc.

Hardware
It is difficult to specify the particular type of the server Hardware for running HBase
as it is capable of running over a wide variety of hardware configurations.

84 A. Saxena et al.

The commonly used one is commodity hardware, region server requires more
space for the internal structure management such as the block cache or the mem store
whereas the name node servers require more memory for softly processing, so we can
make their hardware configurations accordingly which provides greater flexibility.

Hardware requirements for HBase installation can be categorised into 2: servers
and networking

Servers
There are 2 type of machines in Hadoop and HBase: masters and slaves, in masters
the name node, job tracker and H masters are included and in slave machines data
nodes, task trackers and HBase region servers are present. It is not compulsory to
use different configurations for different machines but it can be a little beneficial if
there is a slight difference between hardware specifications, if possible but mostly
the same hardware are used for both because of convince. The master machine
doesn’t need much storage so there is no requirement to add many disks, since they
are more important than slave machines, we require redundant hardware component
in case of failure for backup purpose, Slave machines store data and therefore they
require plenty of space it depend on the task weather it is for read/write or pro-
cessing purpose.

Disk: The number of disk is needed to be balanced with the number of CPU
core, commonly we have minimum 1 core per disk, 6 disk is a good number
in an 8—core server adding any more will not increase the performance.

Networking
In a data centre, servers are typically mounted into 19 racks with 40U or more in
height. Switches usually have 24 or 48 ports, and for the channel bonding, the size
of the networking should be large enough to provide enough bandwidth. Installing
40 1U servers would need 80 network ports in practice, you need a different setup
where you can use multiple rack switches and then shift to a much larger core
aggregation switch (CaS). This gives a two-tier architecture, where the distribution
is handled by the ToR (Top-of-Rack) switch and the aggregation by the CaS.

Software
This can range from the operating system itself to files system choices and con-
figuration of various auxiliary services.

• Operating system

It work’s on all different Operating Systems which supports Java platform.

Java verification: enter java-version on the command line and verify that it
works and that it prints out the version number.

Concepts of HBase Archetypes in Big Data Engineering 85

• Java

Java is required for HBase. At minimum java version 6, or later version of java is
required. If HBase fails to start with a warning that it was not able to find java then
edit the conf/HBase-env.sh file by commenting out the JAVA_HOME line and
changing its path to your Java installation path.

• Hadoop

For using HBase to its fullest you need Hadoop.

• SSH

To manage remote Hadoop and HBase daemons you require ssh. A commonly used
software package providing these commands is OpenSSH. The supplied shell
scripts make use of SSH to send commands to each server in the cluster.

1.2 Java Installation

Check java version in your system

$ java–version

The output will show the version configuration, path and running environment.
Check the configuration of the operating system to install the java according to it
(34 bits, 64 bits). Create the directory for the Java by removing JDK/JRE binary.
Download the JDK/JRE for the Linux. Copy the binary to the usr/local/java
directory, in few cases the binary will be download at the home. After that check
your directories then edit the file path for java Fig. 1.

1.3 Installation of HBase

Hear, you will learn about the installation of HBase and its running mode, how to
deploy and configure HBase (Fig. 2).

There are two modes to run HBase, Standalone and distribution mode. It is
important to understand the configuration requirement for the HBase installation, it
also depend on your requirement and the program that need to be run on the system.
How much storage is required by your system for configuration matters a lot in the
HBase installation and running of different nodes on machines. Not just hardware
but software also affects the installation, which platform you are using for the
HBase whether it is windows, Linux. It can affect the program run (Fig. 3).

86 A. Saxena et al.

1.4 Mode

There are three modes to run the program in HBase, Standalone, distributed which
is divided into two parts fully distributed and Pseudo-distributed mode. Large-Scale
tabular storage format is use in Hadoop (HDFS) Apache HBase. When you have to
run HBase in the standalone mode, change the configuration by editing the conf
directory of the HBase files, for the file distribution deployment. Despite which
mode you will use to run HBase, you need to edit the conf/HBase-env.sh to tell the
HBase of the type of java file to use. HBase environment variables like log files
location, JMV, heap size etc. will be mention in this file. Set the java point
java_home at it installation.

Fig. 2 HBase installation

Fig. 1 Export java home path

Concepts of HBase Archetypes in Big Data Engineering 87

1.4.1 Standalone Mode

Standalone mode is a default mode or a “quick start” to install HBase, rather than
HDFS (Hadoop distributed File system) it use local file system instead. Local
zookeeper is run in the JMV (Fig. 4).

This mode is used for testing bugs and test run programs. It has no Job Tracker,
Task Tracker, Name node or Meta-data to store the information. With no data node
on the system it will store the file locally on hard disk.

Fig. 3 HBase running

Fig. 4 Changing environmental variable

88 A. Saxena et al.

1.4.2 Distributed Mode

As mention above there are two type of distributed mode pseudo and fully, we will
learn about them in detail in this section. Let’s start with Pseudo-distributed mode.

Pseudo-distributed Mode

This mode unlike standalone mode have name node, data node, Job tracker, task
tracker. It runs on the multiple nodes or the systems. There are two for the dis-
tributed mode to work, Pseudo distributed Mode and fully distributed mode. Both
work on the multi-server machine.

Pseudo mode run on the multi-server on a single machine, it mimics that process.
It stores the file in the HDFS. The number of the cluster you can run 1000 of node
on it. We will see how installation is done to for the pseudo-distributed mode. It is
important that you have installed the java and Hadoop in your system (Ubuntu), as
shown above in the Figs. 1 and 2. Now how to install the HBase on the
pseudo-distributed mode.

HBase installation starts with downloading the package from the Apache official
site. Extract the tar file

tar –xvf HBase-1.2.2.bin.tar.g2

and copy it in the directory. After the extraction the file will be transfered to the
distend file location. After this update the environmental variable with the HBase
path.

Create the directory cd HBase-1.2.2
(to keep the location of HBase on the home)
>sudo mkdir/usr/lib/HBase

Create storage for the new directory in the file. Then update the configuration file of
the changes you made in the file HBase-site.xml and HBase env.sh then run >cd/
usr/lib/HBase/habse-1.1.2/conf and >sudo gedit HBase-site.xml

Copy paste the configuration then exit the geditor. Edit the habse-env.sh on
command prompt and export your java home path then exit it. In the next run
export, the HBase_home path in the. bashrc file and run it. After all this start
Hadoop services by running yar and dfs file. Then start the Hadoop services
by >start-HBase.sh use >jps to check and display the services name on the
command prompt. Check whether the Hfile is created on HDFS or not.

Fully Distributed Mode

This is the mode which actually run on the Hadoop cluster. It is much more
powerful cluster than the pseudo-distributed mod. With the different number of
cluster present, it will be difficult to debug the system which will happen in the
stand alone mode because of the working on the only single virtual machine (JMV).
Running the fully distributed on the multiple hosts you need to add HBase.cluster.
distributed property in the HBase-site.xml. And then need to add the location of the
name node, HDFS to write the data in the Hfile. You also need to modify the

Concepts of HBase Archetypes in Big Data Engineering 89

configuration of the region server file. A fully distributed mode depends upon the
zookeeper. Zookeeper runs as the default in the HBase configuration if you need to
change or run it independently from the other nodes than go to the zookeeper
management use HBASE_MANAGES_ZK variable in conf/habse-env.sh. This will
change the management configuration of the zookeeper ensemble. Then go to the
zookeeper configuration for any configurationally change, this option will be pre-
sent in the HBase-site.xml. If you don’t change this configuration then it will be
store as default single ensemble member in the local host. Which make client to
contact it by storing the setting and functioning on the local file system. The other
installation process is similar to the pseudo-distribution mode.

1.5 Deployment

When the HBase is properly configured you need to deploy it on the cluster, since
Hadoop and HBase is written in the java it is easier to process that. All files can be
copied form server to server; each data shared is same. There is some way to do
that, Script-based, Apache whirr, Puppet and Chef.

Script-Based, this approach is used for all list type of cluster from small tomedium,
but it ismore considerate for the advance one. It uses the region server configuration of
having all files which contain the list of all servers present in the cluster.

Apache Whirr, use of cluster in dynamic environment in now day it is very
demanding, like in public or private clouds, Amazon EC2 etc. The main purpose is
to quickly provision the servers and then to run the analytical work load. After
result extraction simply shut down the cluster, restart it in case of another dynamic
workload run. When the cluster is operational, it is easier and useful to abstract
provision part because it will not be trivial to program against every one of the
API’s giving dynamic cluster infrastructure. This is where Whirr show its purpose
by supporting the different type of clouds (private and public type mainly) API’s
and allow the provision of cluster running a different range of services.

Puppet and Chef, it works very much similar to the Apache Whirr, it has central
provisioning server which can store all of the configuration, client software, on each
server execute that communicate with central sever to keep it update and locally
apply them. It supports changing of the running clusters. Master process is used to
monitor the updates on the configuration and repository, and then start with
appropriate action. This is used as on-the-fly or re-configuring clusters.

Full Operation Configuration

Once you have decided which machines will run which process, revise the con-
figuration such that nodes can be locating by each other. In Order to do that, make
sure that all configuration files are synchronized across the cluster. Use a config-
uration management system to synchronize the configured files, rsync will be a
simpler and quick way for doing that. The addition of the zookeeper quorum

90 A. Saxena et al.

address in HBase-site.xml is required as well as necessary move for the configu-
ration change of pseudo-distribution to fully distributed mode. XML property to
configure the nodes, are given below and also with the address of the node where
the zookeeper quorum peer is running:

..<name>HBase.zookeeper.quorum..</name>

<Value>mymasternode</value>

HBase.zookeeper.quorum property is the comma-separated list of hosts. Zoo-
keeper servers are running on it. If any of the zookeeper servers are down, then
another list will be used by HBase. As a default, the zookeeper service will be
bound to the port 2181. For changing the port, HBase.zookeeper.property.client
Port property will be added to HBase-site.xml and a value will be set for the port
that you want for Zookeeper to use.

<name> HBase.zookeeper.quorum</name>

<Value>

zk1.example.com:2181,zk2.example.com:20000,zk3.example.com:31111</value

2 HBase Architecture

HBase is a system composed of several different systems which are complex
enough on their own rights so in order to understand its architecture you need to
dive a bit in those systems as well, then we will put those systems together to see
the big picture a.k.a the working of HBase.

For the beginners we can start with the types of servers required to set up HBase.
Basically, there are 3 type of servers required for HBase’s master and slave con

figuration built these are:

• Region servers—they provide regions for read and write purpose.
• HMaster—they are responsible for the coordination between the region servers

and for the administration tasks.
• ZooKeeper—they act as the distributed coordination service to maintain server

state in the cluster also checks over the availability of the servers and provide
notification in case of server failures and many more.

All three of them explained were the basic building blocks of HBase systems we
will cover all of them in detail as the chapter progresses (Fig. 5).

Concepts of HBase Archetypes in Big Data Engineering 91

2.1 HMaster

HMaster is the part of master server of HBase architecture. The main work of
HMaster region is to monitor all region servers that are present in the cluster at that
time. It serve as an edge for the metadata changes. It runs on name node in a
distributed cluster environment (a cluster of computers that are loosely or tightly
connected to each other and work together. Figure 2 shows the main functions of
HMaster server in HBase [1]. The communication between client and master server
is bi-directional, client communicate with HMaster as well as zookeeper for data
handling. Communication sometimes depends upon the size of the data or the
information that has been provided by the client.

HMaster allot region to region server, to known their working progress and also
to know if they are working properly or not. It also monitors the health of region
server. DDL operations were oriented by metadata such as remove, create, enable,
disable the table, modify the column family by adding column in column family
and also moving and assigning of regions.

Some important roles of HMaster in HBase are written below:-

• For the changes in schema and metadata operations as per the client requirement
are done by the HMaster.

• It controls the load balancing as well as failure of handling of the load over the
other nodes in the distributed cluster.

• Allotting the services to different regions and monitoring their performance.
• It helps in maintaining the performance of nodes in the cluster as well as

maintenance of nodes (Fig. 6).

Fig. 5 Architecture of HBase

92 A. Saxena et al.

2.2 Hregion Server

Region servers are the salve nodes in the HBase. These nodes perform client
requests to read, write and delete. It also runs on ever y Hadoop cluster node.
Region server runs on HDFS. It has following components:

Block cache: it is the read cache (temporary memory) and frequently stores the
memory of read data. Whenever the block cache memory gets full, it deleted/evict
the recent used data.

MemStore: it is to write cache. The new data that has yet to be written on disk is
stored here. It sorts the data before writing it on the disk. It is present in every
region server as per column family.

Hfiles: these are the file which stores the rows which are sorted in key values
form on the disk.

WAL: Also known as the write ahead log, it run on the DFS (distributed file
system). It stores the new data which is still not persevered over the permanent
storage (i.e. disk). In case of failure the stored data is use for recovery of the lost one
(Fig. 7).

While splitting the region by region server the master don’t participate. The split
region will then store in the meta table, which we will talk later. The split region
will open on the host region server to report the split to master server.

Fig. 6 HMaster in HBase (1) monitoring of region servers, (2) DDL operation handling (create,
delete table), (3) assigning of region to region server for recovery and load balancing

Concepts of HBase Archetypes in Big Data Engineering 93

2.3 Zookeeper

Zookeeper is the apache open-source distributed application use to coordinate
service. It helps in maintain and coordinating the servers. It maintains configuration
information of the region server on which assignments or the task is assign to, it
also provides synchronization between them, provides recovery if any of the region
server crash down and loads the data on other available region server. In most of the
cases the client will directly contact the zookeeper to get in touch with HMaster or
Region Server. It also helps in repairing the failed nodes in the cluster. It keeps
track of all data nodes in the region server and their task. We learned how many
things zookeeper manage in HBase and how important it is for the better func-
tioning of the cluster, but it is really important to know how HBase is able to do all
this, to understand this we need to learn its technical architecture that has been
shown in the Fig. 4. Technical structure of the zookeeper consist of the following
nodes (Fig. 8).

Leader Node: It is the node responsible for processing the client write request.
Other nodes present in there are follower nodes which simply follow the instruction
of leader node to write the data for client.

Not every node present in the zookeeper is the leader node, it is not randomly
selected. Leader node is elected by other nodes in the cluster; the node with highest
number of vote will be elected as the leader node. For this type of selection the
server requires odd number of nodes in the cluster. For example if the cluster is of
four nodes and two of them get crash, the zookeeper will be down by half of the
number and it would help in deciding a leader node through election. But in odd

Fig. 7 Inside look of Region server in HBase

94 A. Saxena et al.

number case even two of the nodes goes offline, there are three of them available to
vote and elect a leader with majority number of nodes in services.

Follower Nodes: These nodes are able to process the client read request on their
own. But write request need to process through leader node first. They also elect
their leader nodes by voting.

Request Processor: This is only present in the leader node for processing the write
request of the client to the follower nodes. Once the request is processed through
them it will broadcast or transfer the changes to the follower nodes for the data state
update.

Atomic Broadcast: This receives the change notification of request from follower
nodes and transfer them to the leader node; they are present in both node types.

In-Memory Database/Replicated Database: This component is responsible for
storage of the data in zookeeper. Each node has it own database which enable it to
process the read request. In file system the data is store in case of recovery during
cluster failure. After data is store into the file the only the database will be update
for the changes.

Fig. 8 Zookeeper and client interaction and how client request process through different nodes of
the zookeeper quorum

Concepts of HBase Archetypes in Big Data Engineering 95

2.4 HBase Meta Data File System

HMeta data file system is maintained by the name node. Name node will com-
municate with client either directly or through the zookeeper. It ensures the
availability in the cluster for the data load and auto sharing. Meta tables are the
tables which keep list of all regions in the HBase system. It is used to find the
region server for the given table key. How data is stored in these table format. It is
column-oriented database. The data is stored in the column format table. The
Table 1 shows the collection of column families and row id. As shown in the table
the column families were present in the key-value schema pairs. Each column
family have multiple numbers of columns in the table. These column values will be
stored in the disk memory. Row represents the column family collection, column
family is the collection of column and collection of row and column is the table
(Fig. 9 and Table 1).

When enough amount of data accumulate by the Memstore the whole key-value
set pair will written to the new HFile (data is store in key-value pair in HFile) in

Fig. 9 META Table in HBase, show how data store in HRegion server

Table 1 Shows the storage mechanism in the HBase and column family

96 A. Saxena et al.

the HDFS. Then the sequential write is done very quickly on the disk. Now the big
question is how HBase read and write the data.

2.5 Write and Read in HBase

2.5.1 Write

Client request for write firstly go through the DFS then to the name node for the
processing, the request is forward back to the client node. Where after the name
node approval the HDFS client forward the request to FSD output stream which put
it through the data node i.e. region server. In region server the WAL (write ahead
log) store the first important write log, we will study about it in detail later in the
chapter. WAL is important to store data in case of any error occurrence while
writing the data, that’s why it is used. See Fig. 5 (Fig. 10).

After the log entry of the data, it is further forwarded to the memstore where the
data is stored on the RAM of data node. Writing process is much faster than the
RDBMS. After storing the file it forward to the HFile where data is stored in the
HDFS, when the MemCache memory is full, the HFile store the data file directly.
After the task is done the acknowledgement is send to the FDS output of the stream
of the client node where it transfer the information of task completion to the client,
which then revert back the request to close the file after task is done (Fig. 11).

Fig. 10 Write in HBase

Concepts of HBase Archetypes in Big Data Engineering 97

2.5.2 Read

A read request is directly or indirectly send to zookeeper from the client node. In
client node the client transfers the request to the DFS from where it transfers to the
zookeeper to give the block location as shown in the Fig. 8. Zookeeper is the place
where all data status and record of their location is stored on the HRegion server in
the META table. It gives the table address to the client as shown in the Fig. 9 step 1.
The client goes to the Region where the data table is present which need to be read.
Block Cache keeps the record of the previous read on the data. If the client table is
found, the block cache returns the result if not then it search the table on the
MemStore since data could have been written on the Hfile due to WAL. Even if the
file is not present then the client will moved to the HFile because it’s where the file
could have been stored. After the needed file is located, the required data is taken
from here and moves towards the client node FDS input system from where it
update the Client of the completed task and acknowledgement is done, the client
request to close the file. This is how read and write is done in HBase. Now let’s talk
about what is WAL (Figs. 12 and 13).

2.6 WAL-Write Ahead Log

WAL is write ahead log which work as life savior in case all data gets lost. It is
much more helpful in case for the primary memory damage, in case of server crash
WAL restore the data just where it was before the crash happens. Now understand
how WAL is able to restore the data from its initial point. The client request for the
data modification, which can be delete, put, update or any other command. The
modification is done in the key value format which use remote procedure call
(RPC) for the wire. These calls are given to different server on the HRegion server.
Data written into WAL, and then stored in the MemStore. Which stores on the hard
disk. From MemStore the data is written in the HFile after some time period.

Fig. 11 Write in HBase and how file write in HRegion server

98 A. Saxena et al.

2.7 HLog

Instantiation of every single passing HLog on parameter to HRegion server.
Class that implements the WAL is known as the HLog. It keeps tracking of changes
in the data. WAL provide amoric, consistency to the data. Sequencing the data
makes it easier to keep the track of it, as the region is open to process the request for
read or write by the client, it start to read for the high sequence number that stores
on the META table in the HFile. Each table store data in key and value range in the

Fig. 12 HBase read operation in client node

Fig. 13 HBase read operation and how it done step by step in HRegion server

Concepts of HBase Archetypes in Big Data Engineering 99

META table, Whenever the data is arrived at a region it is firstly written to the
WAL in unpredictable order. HLog work as the searcher for the data location and
for the split of the log on different region of HRegion server. This process is done
by the help of the HMaster to assign the region server for the task in the split.

2.8 HLog Key

As mention in the Meta table section, the key-value only represent the key type,
timestamp, row, column family in it. The write time or the time stamp of the key is
noted by the HLogKey which help in keeping the sequential record in the order as
per the time of their record. This time stamp help in recording the edit in the written
log at that time.

2.8.1 Log Flusher

HRegion Server sort on the basis of Key Value then transfer to WAL. It is then
made to a Sequence File. While this has every one of the reserves of being petty, it
is unquestionably not. This is one of the base classes in Java IO Stream. Particularly
streams structure which is to record a framework from time to time cushioned to
redesign and execution as the OS is impressively faster in creating work infor-
mation in the packs or squares. In the event that you make records independently,
IO throughput would be truly unpleasant. In any case, regarding the WAL, this
understands a gap where information is the degree that anyone knows written to
head yet honestly it is nowhere to be found. To lessen the issue the main stream
should be flushed continually. This handiness is given by the LogFlusher class and
string. It essentially calls HLog.optionalSync(), which checks if the HBase.re-
gionserver.optional log flush interval, set to 10 s as is ordinarily done, has been beat
and if that is the situation conjures HLog.sync(). The other place concerning the
synchronizing strategy is HLog.doWrite(). When it has framed the current change
in agreement with the stream to check if the HBase.regionserver.flushlogentries
parameter, set to 100 according to the typical system, has been beaten and call
synchronization additionally. Synchronization itself summons HLog.Writer.sync()
and is finished in Sequence File Log Writer. For the present, we expect it flushes the
stream to a plate and all is well.

2.8.2 Log Roller

It is important to maintain the persistence of the log on the regular basis and also to
restrict the size of the write log, all these things were done bye the Log roller.
HBase.regionserver.logroll.period path in the $HBASE_HOME/conf/HBase-site.

100 A. Saxena et al.

xml file. Other parameter that control the role are HBase.regionserver.hlog.block-
size and HBase.regionserver.logroll.multiplier. There are different methods which
help in maintaining the sequential file by checking the highest to lowest number of
file written in the storage file, it is needed to be done to keep the update persistence.
HLog.rolwriter() and HLog.cleanoldlogs() are the those methods. The later method
is used to un-edit any log that is left in the file, if there is, it is then deleted and leave
the other one in the file.

3 HBase Shell

There are multiple ways by which we can interact with the HBase. One is shell, it
executes various commands which can perform diverse operations. These opera-
tions are performed on the data tables that enhance the data storage efficiency and
provide flexible interactions with the clients. Interaction of habse shell with the
HBase is for data modeling, table operations and table management.

3.1 HBase versus RDBMS

HBase has many advantages over the traditional RDBMS/Mysql/DB2. Traditional
databases has various limitations like larger amount of data (petabytes of data) and
diverse variety of data (videos, images, audio etc) cannot be stored in it, it has
limited memory and processing capability. Habse has overcome all these limita-
tions. It is the NoSQL, that is the schema less data model. It has non locking
concurrency control mechanism so that the real time reads will not conflict with the
writes. It can store huge volume and variety of data.

It has one important feature called versioning, this feature is not present in the
RDBMS. For example if we consider a customer table having row_id, 2 column
families named (personal, order). The personal column family would further have
column named (name, location) and order column family would have column (o_id,
product). If we enter the record say (row_id = 1, name = robin, location = x,
o_id = 01, product = phone). Second record (row_id = 2, name = scot, loca-
tion = delhi, o_id = 02, product = calculator). Within the first record the location
column is empty. In RDBMS this would be stored as NULL and would have
internal space. But in case of HBase if particular value is missing it is just absent
and won’t take extra space. Secondly if we update the second record as row_id = 2,
SET order: product = book, this is possible in both RDBMS as well as HBase. But
the difference is of versioning. In versioning we need to specify how many versions
of a particular column family have to be maintained. Suppose if we set the version

Concepts of HBase Archetypes in Big Data Engineering 101

value = 2 then last two values would be maintained. In RDBMS if we update the
value the previous value would be overwritten and older value would be lost. But in
HBase with versioning feature both the values (calculator and book) would be there
which means a particular column would have two values and every value would
have a timestamp. Timestamp represents the time at which the value was inserted.
With the help of timestamp we can compare the older and the fresh value.

The commands of the HBase shell include the general and the table management
commands which is categorized as data manipulation language (DMLcommands)
and the data definition language (DDL) commands.

3.2 General Commands in HBse Shell

The general HBase shell includes the status, version, table help, whom commands
which basically, gives the description about the HBase version that is being used,
how we can manipulate the table and the current user of the HBase.

Status—This command will display the details related to the status of the system.
The status of the system can be defined in terms of the total number of the server
present in the cluster, average load value of the server, the active server count. The
different parameters like summary, simple and detailed can be used depending on
how detailed status we need.

Syntax:

HBase > status

HBase > 'summery'

HBase > 'simple'

HBase > 'detailed'

Table help—It includes the commands (gets, puts etc.) that can be used for
manipulating the table. It provides help for table reference commands.

Syntax

HBase > table_help

Whoami—gives the description or the information of the current HBase user.

Syntax

HBase > whoami

102 A. Saxena et al.

3.3 Data Definitional Language (DDL Commands)

The DDL commands operates on the table. They are responsible mainly for the
structural or change in the schema of the table. The data definition language
includes create, alter, list, disable, is_disabled, enable, is_enabled, describe, exists,
drop, drop_all commands.

Create—used for creating the table which would be specified with the name of
the table and the column family name. table configuration can be mentioned
optionally.

Syntax

Create '< table name >' '<column family>'

Alter—In order to alter the schema of the column family we use this command.
The table name and the dictionary that would specify the new schema of the column
family would be passed.

Syntax

HBase > alter < table name > name = 'new column family', version

List—it will enlist and display all the tables that are present and created in the
HBase.

Syntax

HBase > list

Disable—whenever we need to delete or drop a table we first need to disable it.
This command would disable the named table.

Syntax

HBase > disable '<table name>'

Is_ disabled—It will verify whether the table that we need to drop is disabled. It
will disable all the table that are matching the given regex.

Syntax

HBase > is_disable '<table name>'

Concepts of HBase Archetypes in Big Data Engineering 103

Enable—it will enable a particular named table.
Syntax

HBase > enable '<table name>'

is_enabled—it checks or verifies the named table is enabled or not.
syntax

HBase > is_enabled '<table name>'

Describe—it gives the detailed structural information about the named table
along with its column families, version, filters etc.

syntax

HBase > describe '<table name>'

Drop—this command is used when we need to delete or drop the table that is
created on the HBase. For this the table must first be disabled by using the disable
command.

syntax

HBase > drop '<table name>'

Drop_all—It will delete all the tables which is matching the given regex.
syntax

HBase > drop_all '<matching regex>'

Exists—it will check for the particular named table if its existing or not.
syntax

HBase > exists '<table name >'

3.4 Data Manipulation Language (DML Commands)

The DML commands operate on the data of the table and not on the structure.
These commands are applied when we need to manipulate the data present in the
table. The data manipulation language includes put, get delete, delete all, count,
scan and trunicate commands in it.

104 A. Saxena et al.

Put—when we need to enter the value to the specified table/column/row/cell we
use put command.

syntax

HBase > put '<table name>' '<row name>' '<column name>' 'value' time stamp

Get—to get the content of the specified row and column we use get command. It
fetches the contents from the row or the cell.

syntax

HBase > get '<table name>' '<row>' '<column>' time stamp version

Delete—to delete the value of the mentioned cell of specified table/row/column.
It deletes the cell value in the table.

syntax

HBase > delete '<table name>' '<row>' '<column>' time stamp

delete_all—this command will delete all the values or the cell of the given row.
A table name, row is passed. Column name and time stamp is optional.

syntax

HBase > delete_all '<table name>' '<row>'

Count—this command will retrieve the rows in the table and count the number
of rows present in it.

syntax

HBase > count '<table name>' cache = value

Scan—the entire table is scanned and the contents of the table are displayed. It
scans and returns the data to the table.

syntax

HBase > scan '<table name>'

Trunicate—In this command the specified table is disabled, dropped and
recreated.

syntax

HBase > trunicate '<table name>'

Concepts of HBase Archetypes in Big Data Engineering 105

4 Data Models in HBase

It is responsible for managing the structured as well as semi structured data that is
the data with higher level of information in the relation database. The HBase
manages such data with high performance, service availability as well as the
scalability which is in terms of data size and index size. HBase is an open source,
no SQL, column oriented, distributed and sorted data store which is modeled after
the google’s big table. This HBase is built on the top of the Hadoop distributed file
system/Hadoop. Further the data in the HBase can be stored in the form of tables
which have multiple rows and fixed number of column families. Variety of data is
stored in HBase in the column oriented manner that is data is stored and retrieved in
the column. Since all the data is stored together in the column it is easy and quick to
retrieve the data.

This column oriented storing technique of HBase is advantageous over the row
oriented technique. If we compare in row oriented the data is stored and retrieved in
one row at a time and therefore it can read the irrelevant data when only relevant
data is required whereas in column oriented the data is stored in columns and it
reads and picks up only the data which is required. Also it merges many rows and
columns hence is able to perform all its operations over the entire datasets. Thus its
very much suited for OLAP (online analytical process).

The data model in the HBase comprises of various logical components in it like
tables, column families, columns, rows and cells. This model is basically designed
in order to accommodate the structured as well as semi—structured data that could
have different field size, data types and columns. The figure mentioned below
basically describes the outline of the data model in HBase. It stores semi structured
data and having different datatypes data. In HBase Rowkey are used to identify the
data in rows. HBase data model having following components. HBase Tables,
HBase Row, column, column Family, Column Qualifier and cell (Fig. 14).

HBase Table
Any data that is to be stored in the HBase is stored in the tables. These tables are the
collection of rows which are stored in the separate partitions called as regions.
Every region is then served by the region server by HBase master. The values that
are stored in the region server are directly available to the clients. The number of
tables to store the same amount of data in HBase is lower as compared to relational
database, the reason is that the HBase is column oriented that allows to store many
details in the same table. The normalization rules are not applied here thus reducing
the number of tables (Fig. 15).

106 A. Saxena et al.

Fig. 14 Schema of HBase storage technique

Fig. 15 Logical layout of rows in the regions

Concepts of HBase Archetypes in Big Data Engineering 107

To construct the table in the HBase you need to create it with new name or the
existing descriptor, the table descriptor in java looks like:

HTableDescriptor (final TableName)
HTableDescriptor (HTableDescriptor desc) (Fig. 16)

HBase Rows

Hbase row consists of row key. Main Purpose of row key is to sort the data at
alphabettically and row consists one or more column with value to associate the
value so row key is most important. A row is one instance of information in a table
and is recognized with the aid of a Rowkeys, they are specific and constantly dealt
with as a byte. Each row key in the table is connected to the list of column families
which are further connected to the list of time stamp. These row keys is similar to
the primary key in the relational database (Fig. 17).

Column Families

It having a set of columns with their values and has storage properties also, column
family are common to all rows in hbase table. The data present in the row is clubbed
together in column family. One column family can have more than one columns
which are stored together in the low level storage file called as Hfile. Column
families are basically the strings that are composed of characters. They are
responsible for the physical arrangement of the data which is stored in the HBase.
Thus they are designed up and can not be easily modified. Column members within
the column family would be having the same prefix (Fig. 18).

Fig. 16 A HBase table representing column families, rows sorted on the basis of rowkey and a
cell that contains the data

108 A. Saxena et al.

Column Qualifier

It used to index the piece of data and it fixed in table creations. Column is present
within the column family. It can be identified with the column qualifier which is
having the column family name along with the column name. The columns
included in each column family consist of related data. For example if we consider
the table of employee details, having personal and professional information as
separate column family. Inside the personal column family the name of the
employee, phone number, address, email id could be the separate columns while in
professional information the project title, salary can be the columns (Table 2).

The table gives the description of the various columns (name, address, phone,
project title and salary) that comes under the column family (personal and pro-
fessional information).

Fig. 17 Representation of row in HBase table

Concepts of HBase Archetypes in Big Data Engineering 109

Cell

Cell is the combination of row, column family and qualifier with their values. Value
of cell is bytes of array. The data inside the HBase table is stored within the cells.
It’s a unique combination of row key, column family and column qualifier. Data in
the cells is represented as values. A (row, column, version) defines the cell in the
HBase. Rows and columns intersect to form the cell that comprises of the value
which is the data stored in the HBase.

Fig. 18 Column families having separate storage files

Table 2 .

Row
id

Personal
information

Professional
information

Name Address Ph. no Project title Salary

101 Robin Street4 gandhi
nagar (MP)

121–4860 Drug development by
analyzing structural data of
proteins

56,000

102 Akansha Street1 apartment
no. 41flora
apartments.

121–5430 Protein structure prediction 60,000

110 A. Saxena et al.

References

1. Gopalani, S., & Arora, R. (2015). Comparing apache spark and map reduce with performance
analysis using K-means. International Journal of Computer Applications, 113(1).

2. Wiewiórka, M. S., et al. (2014). SparkSeq: Fast, scalable, cloud-ready tool for the interactive
genomic data analysis with nucleotide precision. Bioinformatics, btu343.

3. Shoro, A. G., & Soomro, T. R. (2015). Big data analysis: Apache spark perspective. Global
Journal of Computer Science and Technology,15(1).

4. Gu, L., & Li, H. (2013). Memory or time: Performance evaluation for iterative operation on
hadoop and spark. In 2013 IEEE 10th International Conference on High Performance
Computing and Communications & 2013 IEEE International Conference on Embedded and
Ubiquitous Computing (HPCC_EUC). IEEE.

5. Chen, H., et al. (2012). Hog: Distributed hadoop mapreduce on the grid. High Performance
Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion. IEEE.

Concepts of HBase Archetypes in Big Data Engineering 111

Scalable Framework for Cyber Threat
Situational Awareness Based on Domain
Name Systems Data Analysis

R. Vinayakumar, Prabaharan Poornachandran and K. P. Soman

Abstract There are myriad of security solutions that have been developed to tackle
the Cyber Security attacks and malicious activities in digital world. They are fire-
walls, intrusion detection and prevention systems, anti-virus systems, honeypots
etc. Despite employing these detection measures and protection mechanisms, the
number of successful attacks and the level of sophistication of these attacks keep
increasing day-by-day. Also, with the advent of Internet-of-Things, the number of
devices connected to Internet has risen dramatically. The inability to detect attacks
on these devices are due to (1) the lack of computational power for detecting
attacks, (2) the lack of interfaces that could potentially indicate a compromise on
this devices and (3) the lack of the ability to interact with the system to execute
diagnostic tools. This warrants newer approaches such as Tier-1 Internet Service
Provider level view of attack patterns to provide situational awareness of Cyber
Security threats. We investigate and explore the event data generated by the Internet
protocol Domain Name Systems (DNS) for the purpose of Cyber threat situational
awareness. Traditional methods such as Static and Binary analysis of Malware are
sometimes inadequate to address the proliferation of Malware due to the time taken
to obtain and process the individual binaries in order to generate signatures. By the
time the Anti-Malware signature is available, there is a chance that a significant

R. Vinayakumar (&) � K. P. Soman
Amrita School of Engineering, Coimbatore, Centre for Computational Engineering
and Networking (CEN), Amrita Vishwa Vidyapeetham, Amrita University,
Coimbatore, India
e-mail: r_vinayakumar@cb.amrita.edu; vinayakumarr77@gmail.com

K. P. Soman
e-mail: kp_soman@amrita.edu

P. Poornachandran
Amrita School of Engineering, Centre for Cyber Security Systems and Networks,
Amrita Vishwa Vidyapeetham, Amrita University,
Amritapuri, Coimbatore, India
e-mail: prabasuja@gmail.com

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_6

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_6&domain=pdf

amount of damage might have happened. The traditional Anti-Malware systems
may not identify malicious activities. However, it may be detected faster through
DNS protocol by analyzing the generated event data in a timely manner. As DNS
was not designed with security in mind (or suffers from vulnerabilities), we explore
how the vast amount of event data generated by these systems can be leveraged to
create Cyber threat situational awareness. The main contributions of the book
chapter are two-fold: (1). A scalable framework that can perform web scale analysis
in near real-time that provide situational awareness. (2). Detect early warning
signals before large scale attacks or malware propagation occurs. We employ deep
learning approach to classify and correlate malicious events that are perceived from
the protocol usage. To our knowledge this is the first time, a framework that can
analyze and correlate the DNS usage information at continent scale or multiple
Tier-1 Internet Service Provider scale has been studied and analyzed in real-time to
provide situational awareness. Merely using a commodity hardware server, the
developed framework is capable of analyzing more than 2 Million events per
second and it could detect the malicious activities within them in near real-time.
The developed framework can be scaled out to analyze even larger volumes of
network event data by adding additional computing resources. The scalability and
real-time detection of malicious activities from early warning signals makes the
developed framework stand out from any system of similar kind.

Keywords DNS log analysis � Big data analytics � Machine learning
Deep learning

1 Introduction

Nowadays, Internet has become the largest critical global communication medium
and infrastructure. It connects several billions of nodes enabling them to commu-
nicate with each other. At its heart, Internet uses one important protocol—Domain
Name System (DNS). The DNS protocol translates, difficult to remember Internet
addresses to human readable names and vice versa. With the increasing dependency
and usage of the Internet by users and systems, all the malicious activities that used
to occur in the physical world moved to the connected digital world of Internet. The
vectors of malicious activities mainly include Virus, Worms, Trojans, Cyberattacks,
Phishing, Spam and Cyber-intrusions. With the exponential growth of hosts con-
nected to the Internet, the usage of the DNS protocol by the systems and networks
is progressively increasing to a very high level. This in turn produces very large
volume of event data amounting to trillions of events per minute at the Tier-1
Internet Service Provider (ISP).

114 R. Vinayakumar et al.

2 Related Work

This section discusses the selected research works previously done on cyber threat
analysis and detection. In order to analyze the cyber threat or to provide cyber threat
situational awareness, we investigated the event data and status information gen-
erated by Internet protocols—Domain Name Systems (DNS). The Internet com-
munity is facing serious threats from everywhere. Nowadays the behavior and
operation of such threats are undergoing a crucial transformation and evolution.
One of the widely used attacking strategies is to use botnets. Botnets are generally
used for large-scale Cyber Security attacks that include Distributed Denial of
Service (DDoS) attacks, large-scale spam campaign, identity theft etc. Botnets try to
increase the number of affected hosts by incorporating executable programs that are
present in several hundred compromised hosts, which receives its instructions or
commands from Command and Control (C&C) server that is operated by the
malicious actors known as bot-master [1]. One of the security measures to protect
against this threat is to blacklist the C&C server with whom the botnets tries to
contact for getting instructions. However, to evade being blacklisted by organiza-
tions, the attackers use DNS agility or fluxing approach by changing their domain
names or IP addresses frequently in rapid succession [2]. This technique is known
as Fast Flux and several families of Botnets use fast flux to hide their criminal
activities and evading detection by changing the compromised hosts that acts as
proxies for malware distribution. Fast Flux networks can be of two types, they are
IP-Flux and Domain-Flux respectively [3]. IP-Flux can be further classified as
Single-Flux, and Double-Flux. Constant registering and de-registering of IP
addresses for a given malware domain are the main characteristics of Single Flux.
In Double-Flux, the SRecord or the name server record for a DNS zone of a
malicious site is also changed in addition to ‘A’ records. These techniques provide
additional redundancy for botnet. Unlike IP-flux, Domain-Flux assigns several fully
qualified domain names to a single IP address or C&C infrastructure. Usually
hundreds of thousands of domain names are employed in a Domain-Flux.
Bot-masters achieved this by using Domain Generated Algorithms (DGA) that
generates domain names randomly on a large scale for registration. Examples for
such botnets are Conflicker [4], Torpig [5], Kraken [6], Murofet [7]. ‘Kwyjibo tool’
is a special malicious program which uses a sophisticated domain generation
algorithm for generating domain names that are similar to English Dictionary words
[8]. These generated words cannot be used in botnets because there could be an
ambiguity with existing domain names. However, botnets try to contact their C&C
server with these randomly generated domain name using hit and trial method. For
example, out of several thousand DGA generated domain names, the bot master
will procure only a handful of domain names. As a result, lots of Non-Existent
(NX) response queries get generated. This process makes the security strategy very
expensive for the defender and very economical for the attacker. In this scenario,
the attacker has to buy just a handful of domain names, but at the same time, the
defender will have to procure/block/sinkhole millions of domains that makes the

Scalable Framework for Cyber Threat Situational Awareness Based … 115

effort very expensive. A Non-Existent (NX) response or Name Error response are
those domain queries for which no IP addresses or any record exists [9]. Pleiades
[10] was the first system that was able to detect DGA based domains without
reverse engineering the bot malware. The core of Pleiades consists of two modules
—DGA discovery module and DGA classification and C&C detection module.
DGA discovery module detects and clusters the botnet queries, given all NX
domain features. For clustering botnet queries, extracted features from the observed
domain names such as n-gram, entropy based features, structural domain features
are used with X-means clustering algorithm. The latter module used Alternating
Decision Tree learning algorithm for the identification and comparison of
NX-Domain clusters, whereas C&C detection module used Hidden Markov Model.
It is reported that detection rate of Pleiades’ DGA classifier is 99.7% while C&C
detection system was said to have detection rate greater than 91% for five out of six
tested botnets and 22.67% for the remaining bot. Another work on the detection of
botnets is done by Schiavoni et al. [11] and they did an elaborate survey on existing
domain flux related C&C server detection systems. They propose an unsupervised
algorithm which does not require any prior knowledge of the DGAs and no reverse
engineering of the malware samples. In [12], J. Raghuram et al. proposed another
unsupervised way for detecting malicious domain names. They used linguistic
features and Expectation-Maximization for solving the problem. One of the main
reasons for generating the non-pronounceable domain name is to avoid collusion
that might occur due to the presence of an existing domain name. While IP-Flux
networks make it time consuming and expensive to disrupt, Domain-Flux makes
the process of purchasing the malware domains expensive for the purpose of
sinkhole, as it will require the purchase or sinkhole several Millions of domain
names. In [13], Thomas et al. analyzes DNS traffic from several authoritative name
servers to identify strongly connected DGA based domains. Fast fluxing takes the
advantage of DNS based load balancing by masking its own activities as it is done
in the case of Content Delivery Networks (CDN). Fast Fluxing uses several IP
addresses that are hidden behind a single domain name just as large CDNs and
Antivirus providers architect their systems. The IP addresses of domains involved
in Fast Fluxing changes with extreme frequency in round-robin fashion with very
short Time-To-Live (TTL) for each DNS Resource Record (RR).

A dictionary based approach with Smith-Waterman algorithm was proposed for
predicting the malicious domain detection [14]. Moreover, the experiments were
done with the data captures from real-time systems. Zdrnja et al. [15] proposed a
passive DNS anomaly detection project based on data captured at the University of
Auckland Internet gateway with a view to detect and correlate domains used for
botnet controls using a passive DNS monitor. A passive data capturing sensor was
deployed at the network edge and extracted query name, resource record type,
resource record data, TTL and first seen time stamp from the DNS data. This
information can further be used for analyzing the historical behavior of certain
DNS records and how they are linked with each other. Ramachandran and
Feamster [16] studied the network-level behavior of spammers such as range of IP
addresses which send spams, common bot modes, persistent time of each spam

116 R. Vinayakumar et al.

host, spamming bot characteristics etc. From the analysis, they could identify the
region of IP addresses from which maximum bot attacks being sent. Anderson et al.
[17] proposed a scam-hosting infrastructure in which patterns in emails are iden-
tified to track the spam servers. Image shingling method is then applied to find the
scams whose webpages are graphically similar to a cluster of spam servers. All
these approaches propose botnet detection based on DNS dictionary lookup. These
approaches will fail in botnet detection when the number of incoming queries is
very high in real-time. In other words, these approaches are not scalable and
storage requirements and time requirement for decision making are also very high.

Major drawbacks of this approach are (1) computational complexity is very high
with large volume of data. (2) Over fitting may occur with huge data. An old
concept of artificial intelligence called as neural network (in recent times typically
termed as deep learning) has achieved a significant result in various multitudinous
fields namely natural language processing, image processing, speech recognition
and many others [18]. Deep learning mechanisms itself facilitated to extract features
by taking massive amount of raw data set as input. This provides significant con-
tribution towards big data analytics. Deep learning algorithms are mainly catego-
rized into two types (1) Convolution neural network (CNN) (2) recurrent neural
network (RNN); CNN are largely used in the field of image recognition mainly due
to the fact that, CNN applies a set of filters on rectangular region to extract complex
features by travelling through layer by layer. The complex features are composed
from a set of lower level features that forms a hierarchical feature representation. As
a result CNN captures the features in various level of abstraction. CNN primarily
use a pair of convolution, pooling operations and a non-linear activation functions.
[19] adopted CNN in character level towards large scale text classification including
several languages. The effectiveness of CNN model is compared with the other
traditional mechanisms such as bag of words, n-grams and tf-idf. RNNs are initially
proposed for time-series data-modeling [20] and later this has been applied in
sequence data modeling tasks in the field of speech processing, natural language
processing. As the research goes, [21] found the vanishing and exploding gradient
issue when dealing with large sequences. On alleviating the vanishing and
exploding gradient issue, researchers worked in the 3 directions; (1) enhancement
of optimization methods for example Hessian-free optimization [22], (2) proposing
a new architecture; LSTM [23] and its variants GRU [24], (3) appropriate weight
initializations for example I-RNN [25, 26]. Moreover, researchers have also used
hybrid network, in which the first layer is used as CNN and the CNN outputs are
given as input to other recurrent network layers [27].

The effectiveness of various classical and deep learning approaches is studied for
various Cyber Security tasks like Android malware detection [28, 29], DGA
analysis [30, 31], traffic analysis [32, 33], malicious URL detection [34], intrusion
detection [35, 36], anomaly detection [37], ransomware detection [38], encrypted
text categorization [39], network traffic prediction [40].

Scalable Framework for Cyber Threat Situational Awareness Based … 117

3 Background

3.1 Domain Name System (DNS)

Domain Name System (DNS) is considered as the core Internet protocol. The
hierarchical level of DNS is shown in Fig. 1. The present work is based on the
analysis and detection of attacks that can be detected by observing the behavior of
the DNS protocol and studying the events that are produced when the DNS protocol
is used by the systems and networks. The section below gives an overview about
the DNS protocol.

Fig. 1 Hierarchical domain name system

118 R. Vinayakumar et al.

End users usually access Internet by using a browser that renders the web pages
and portals. This is done by typing a domain name in the address bar of the
browser. When this is done in a right fashion, Internet helps the users in information
exchange and transactions. DNS servers can be classified into two types:
Non-recursive/Iterative servers and Recursive servers. Non-recursive DNS servers
act as the Start of Authority (SOA). They answer queries inside the governed
domains without querying other DNS servers even if they cannot provide the
requested answer. Whereas, Recursive DNS servers (an example is shown in
Fig. 2) respond to queries of all types of domains by querying other servers and
passes the response back to the client. Distributed Denial of Service (DDoS)
attacks, DNS cache poisoning, unauthorized use of resources, root name server
performance degradation, etc. are some of the major attacks suffered by
Recursive DNS servers. DDoS is an attack which makes a network resource
unavailable to the legitimate intended users by flooding it with fraudulent or forged
requests continuously to the targeted DNS server that overwhelms the system.
Cache poisoning/DNS spoofing attacks are the fraudulent activity of inserting a
fake address record for an Internet domain into the DNS. The cache is considered as
poisoned, if the server accepts this fake record and after which, subsequent requests
for the domain will be answered by attacker’s server. This cached entry will remain
there till it’s Time-To-Live (TTL) expires and during this period the subscriber’s
browser will go to the address provided by the compromised DNS server. This is an
attack that diverts Internet traffic away from legitimate servers to fake servers by the
malicious actors. Since it spreads across DNS servers, it is considered as a dan-
gerous attack. For example, on 11th October, 2013 Google’s Malaysian domains
google.com.my and google.my were hijacked and redirected users to a web page
that announced that the attack was perpetrated by a Pakistani group called Madleets

Fig. 2 Recursive DNS query

Scalable Framework for Cyber Threat Situational Awareness Based … 119

[41]. This attack was a DNS cache poisoning attack that lasted a few hours and
while it was active, it redirected users to a website hosted in Canada. Hijacking of a
server is simple in recursive DNS query enabled servers as attackers can poison the
response while it is coming back from the root servers [2]. DNS servers that are not
configured correctly are more vulnerable to these types of attacks. In several cases,
many organizations do not even know or does not have situational awareness
system that can quantify the number of compromised systems in their networks.
These organizations could be Internet Service Providers, or small, medium and
large enterprise networks [27].

In the case of enterprise networks, the visibility and situational awareness is limited
to the anti-virus systems that are installed. And in the case of Internet Service
Providers, over 63% of surveyed respondents do not know the proportion of the
devices in their network which are compromised and involved in botnet or other
malicious activities [27]. One of the sophisticated and popular types of malware that
wreaks havoc on the Internet is botnets. When a bot infects a system or host, it can be
commandeered to do various automated malicious activities that include sending
malwares, stealing private and sensitive information, key stroke logging, and par-
ticipation in C&C based DDoS attacks. In addition to the above-mentioned attacks, it
might affect the local system with various malwares like Clickfraud, Adwares,
Spywares, etc. Clickfraud is an automated fraud computer program which will click
an advertisement without the knowledge of the actual user with intent to give false
clicks to an advertisement in order for the advertiser to make more financial gains
illegitimately. A pictorial diagram of the various activities of a Botnet is shown in
Fig. 3. Fast flux is termed as one of the malicious activities that are being done using
botnets. Fast flux service networks use many IP addresses that are mapped to a single
domain name.

Fig. 3 Botnet activities

120 R. Vinayakumar et al.

3.2 Scalable Algorithms

In real-time, it is required to process extremely large volume of data that result from
the system and network events on the use of DNS system. The algorithms that are
computationally efficient and that can be distributed across multiple systems have
been studied in the current research work. We use deep learning algorithms for this
research work to detect the attacks. The deep learning algorithm contains billions of
parameters. In order to train them in the context of detecting the dga generated
domain, we use distributed TensorFlow framework. This facilitates parallelism of
deep learning models in two aspects; one is within a machine through multi-
threading and second one is across machines through message passing. Moreover,
the framework also supports the data parallelism where multiple replicas of deep
learning models are used to achieve a single task.

4 System Architecture

4.1 Scalable Architecture

Since, DNS and BGP together produce several Billions of data events per minute,
a highly scalable framework has been developed that can collect and process the
data in real-time. The framework consists of DNS and BGP sensors that collect the
data in a distributed manner. These sensors receive data directly from the DNS
servers and BGP enabled routers. To ensure that, the introduction of this system
does not impact the functionality of the DNS and BGP systems, they are designed
to collect the passive information in the form of out-of-band mode. The collected
data is parsed and aggregated and then sent to real-time and non-real-time analysis
engine that runs highly scalable distributed deep-learning algorithms. The
query-router (standalone) services that controls the communication between dif-
ferent modules. The query-router also provides an interface with the message
broker. A subsystem known as Front-End Message Router controls the commu-
nication between the Interactive Visualization and analysis engine on the processed
data. The Figs. 4 and 5 depict the standalone and scalable architecture of the
framework respectively.

The present research work proposes to deploy the standalone architecture in
individual Tier-1 ISPs. Each standalone system is capable of handling few millions
of DNS and BGP data per second without any stability issues. Hence, Terabytes
(TB) of data were able to collect within a day. However, monitoring a single ISP
might not be enough to get an overall situational awareness of a malware propa-
gating through a zone or country, thus resulting in monitoring and correlating the
network activity of several Tier-1 ISPs. The proposed scalable architecture in this
research work employs distributed and parallel algorithms with various optimiza-
tion techniques that make it capable of handling huge volume of data. The scalable

Scalable Framework for Cyber Threat Situational Awareness Based … 121

architecture also leverages the processing capability of the General Purpose
Graphical Processing Unit (GPGPU) cores for faster and parallel analysis of DNS
data. The framework architecture contains two types of analytic engines—real-time
and non-real-time analytic engines. The purpose of analytic engine is to detect
malicious activities thereby generate an alert in case of threat.

4.2 Supporting Services

The important supporting services needed for this project are explained below.

1. Passive Sensor: The Passive Sensor collects DNS Query/Response from the
DNS Servers (Any DNS Server). The passive sensor captures Network Traffic
from DNS Servers and passes it to an application. The parser inspects the DNS
Response Packet, converts it into human readable format and forwards it to DNS
Log Collector. The Passive Sensor could be installed inside the DNS Server
itself or any mirrored traffic could be sent to the sensors. Each Sensor could
process the data from multiple DNS Servers if needed. It collects data passively
from DNS Servers without affecting the DNS Server.

2. Active Sensor: This sub-system performs an active DNS Query related to the
given sources, to collect data and perform various analyses. Its main sources are
DNS server, WHOIS server, application programming interfaces such as Google
Safe browsing Application programming interface (API), and other DNS
databases.

Fig. 4 Architecture of data collection framework

122 R. Vinayakumar et al.

3. WHOIS Server: This will provide information associated with a Domain or IP
Address. Queries will be forwarded to corresponding WHOIS server for that
particular Domain/IP address. The information related to domain and IP are
explained below: For a domain, query is sent to retrieve the following
information:

• Registrant name, address, email, phone.
• Administrator name, address, email, phone.
• Domain registered date, expiration date, authoritative name server etc.

For an IP address the fields are:

• Owner
• Prefix (Network)
• ASN
• Location
• Expiration Date

Fig. 5 High-level architecture correlating data from multiple ISPs

Scalable Framework for Cyber Threat Situational Awareness Based … 123

4. Online API’s: Some of the analysis results could be correlated with the online
external systems for validation and cross-correlation.

5. Log Collector and Parser: This subsystem collects the parsed DNS Responses
from distributed sensors and forwards it to the collector. The collector looks up
the Geo-Location and details of ASN of each IP address (Client IP, DNS
Server IP, and A Records in Resource records) in the DNS Responses. The
parser uses the Geo IP database to find Geo-location (city, country, latitude,
longitude) of an IP Address. ASN database is used for finding details of ASN
(AS Number, AS Name) of an IP Address. This data will be appended with
original data coming from sensors and publish to queue for real-time and batch
analysis.

6. Query Router Service: It is a standalone service, which controls the commu-
nication between different modules. It also interfaces with public message
broker.

7. Front-End Message Router: As a standalone service, this subsystem controls all
the communication to-and-from the front-end UI. It also interfaces with the
respective back end subsystems.

8. Internal Router: Internal router software is peered with the BGP Router to get
BGP Updates in a configurable time interval such as 5 min etc.

9. BGP Monitor: The BGP monitor subsystem is responsible for collecting BGP
Update-messages in real-time. It gets updates from the TCP port as a stream and
stores them in an XML file format. The parsers will produce BGP update
messages in one single format, after extracting the data from two different
sources. A Distributed Log Aggregator collects this parsed data to store it in a
distributed database for further analysis.

4.3 Data Collection

DNS data are collected in a passive manner by reading from the mirrored traffic
using promiscuous mode on DNS communication information between the DNS
server and the DNS clients. The data consists of DNS queries and the corresponding
DNS answer made by the DNS client and DNS server respectively. The extracted
data is analyzed for malicious events. The BGP data is collected by adding a
read-only peer to a BGP speaking router. The read-only peer collects the data that
occurs in the form of BGP updates, announcements, neighbor information etc.
The BGP data consists of the route and prefix information. To identify the mali-
cious announcements, malware propagation and activities, the prefix announce-
ments, route announcements and updates information can be used.

124 R. Vinayakumar et al.

5 A Sub System for Detecting DNS Anomalies Based
on Deep Learning and GPGPU

5.1 Introduction

Recursive DNS servers, responds to queries of all types of domains, by querying
other servers and passes the response back to the client as shown in Fig. 6.

DeepBot primarily focuses on identifying botnets using the Domain Flux ser-
vice. In Domain Flux, the Botmaster changes the domain name that has to be
mapped with the IP address of the C&C server frequently. For this, they use
Domain Generated Algorithms (DGA) to generate domain names randomly on a
large scale for registration. Botnets use different DGA’s for domain name genera-
tion. For example: Conflicker [4], Torpig [5], Kraken [6], Murofet [7] etc. Kwyjibo
[8] uses a sophisticated domain generation algorithm for generating domain names
that is similar to English Dictionary words. In Domain Flux, the botnets try to
contact their C&C server with the randomly generated domain name using hit and
trial method. As a result, in most of the cases, a lot of Non-Existent (NX) response
queries get generated. A Non-Existent (NX) response or Name Error response are
those domain queries for which no IP addresses or any record exists [9].

The DeepBot framework is based on an assumption that the botnets sitting in an
infected system generate large sets of NX queries before actually getting resolved
(if successful). Also, since botnets using the same DGA’s generate similar domain
names, comparing the patterns in NX-Domains and the resolved domain names of a

Fig. 6 Working flow of a legitimate DNS query

Scalable Framework for Cyber Threat Situational Awareness Based … 125

particular host, one could identify the malicious C&C server. NX-Domains could
also get generated due to human errors like spelling mistakes while querying a
domain name. Hence, to distinguish between a human error and DGA generated
NX-Domains, the framework employ deep learning algorithm. This implicitly
obtains optimal feature representations to distinguish the domain name as benign or
DGA generated. Once the framework classifies a particular NX-Domain as a DGA
domain, the framework assumes that the host is infected and analyses its resolved
domain list for finding the corresponding C&C server. Thus by analyzing the
NX-Domain queries, the Deep Bot framework is not only able to find out the
compromised hosts infected by botnets but also the malicious C&C server.

5.2 System Architecture

This section describes the overall architecture and working of the analysis, along
with the methods used for data collection. Figure 7 shows the high level archi-
tecture diagram of Domain Flux analysis. The analysis consists of three main
modules: Identifying DGA Infected Hosts module, C&C Detection module and
finally Time Analysis. The system consists of mainly 2 modes: Training mode and
Testing mode.

Fig. 7 High level architecture diagram of domain flux analysis

126 R. Vinayakumar et al.

1. Training Mode: The system is trained using the white list and malicious data-
sets. In the white-list dataset, there are top 1 million domains provided by Alexa
[42] whereas approximately 50 million malicious domains were collected from
April, 2012 to 2016. The system is trained using these features in an on-line
mode. In due course, thresholds were set for various analyses performed, which
are being used for testing.

2. Testing Mode: In this mode, the system analyses DNS log streams which were
acquired from the local DNS server. The data coming from the sensors are first
stored in a distributed database. The data is fetched from the distributed database
periodically with a time interval. The implementation of this module is given
bellow.

As mentioned earlier the system has mainly three main modules. Throughout
this chapter, for convenience, some terms were used. Suppose a domain d, where
d = “abc.example.com”. Here, the term “com” is termed as the TLD i.e. the Top
Level Domain. Likely, “example.com” is called as 2LD (Second Level Domain)
and “abc.example.com” is called as 3LD (Third Level Domain).

5.3 Details of Implementation

This section explains in detail the steps employed to identify the hosts that are
already infected by a DGA based bot. The analysis is based on an assumption that
an infected host on the process of communicating to a C&C server generates many
NX queries. Thus, by analyzing the malicious NX-Domains it could easily be
understood that whether the host is infected or not.

However, not all of the NX queries made could be termed as malicious. For
example, human typing mistakes also lead to NX queries. Hence, the challenge lies
in classifying the human mistake and the malicious queries into different sets. From
the distributed database, a set of data were taken which is in the form of a tuple
Tðts; hi; di; sÞ. The tuple t has four values namely, ts-Timestamp, hi-host IP address,
di-domain queried, s-query status. Here, since the focus is only for the NX queries,
the status is kept as NX. So NX queries made by all the hosts were recursively
analyzed within a time period of 10 min. Once all the 10-min logs were collected,
send it to this module in the tuple format mentioned above. Thereafter the domain
name is split and only its 2LD label is extracted. The 2LD name thus extracted is
sent for Similarity Checker Analysis.

1. Similarity Checker: The objective of this analysis is to find whether any legit-
imate domains are present which are quite similar. The 2LD domain label is
compared with all of the domains in the 1 million Alexa set with the help of
Approximate String matching algorithm [43]. Using the Damerau-Levenshtein
[44] Edit Distance algorithm the distance between two strings is calculated. If
the distance is more than a threshold value then it is considered that the

Scalable Framework for Cyber Threat Situational Awareness Based … 127

particular 2LD domain name is not a typing mistake and it is sent for Statistical
Analysis. The advantage is that domain queries like “ggoole” which is caused
by typing mistake could be excluded easily.

2. Statistical analysis: The system was developed and deployed with an aim to
detect DGA domains automatically in real-time. After detecting the DGA
domain, the system monitors its activities in an interval of 5 seconds on a regular
basis. Figure 10 presents the architectural diagram of the implemented system
which consists of three modules (1) Data Collection (2) Deep learning for
detecting DGA (3) Dynamic reputation.

The data for the system is collected by deploying passive sensors across the four
geographically distributed University campuses comprising of more than 30,000
unique users. The Passive Sensor collects DNS Query/Response from the deployed
DNS Servers (Any DNS Server). Hence in this work data were collected from four
DNS servers. The sensor captures the network traffic from DNS servers and passes
it to an application, which takes only the traffic that is originated from DNS Server
(DNS Response Traffic). It will then dissect the DNS Response Packet, converts it
into human readable format and forward it to DNS Log Collector. The Passive
Sensor could be installed inside the DNS Server itself (for Linux/Unix Platform) or
mirror the traffic to a server which is dedicated for DNS Passive Sensors. The
sensors get the data by port mirroring the traffic from the DNS Servers present in
the deployed network. The logs received from the 4 campus sensors are received by
a distributed log parser. The parser finds Geo Location and ASN Details of each IP
address (Client IP, DNS Server IP, and A Records in Resource records) in the DNS
Responses. The parser uses the Maxmind Geo IP database to find Geo location
(city, country, latitude, longitude) of an IP Address. Maxmind ASN database is
used for finding ASN details (AS Number, As Name) of an IP Address. A Query
Router Service is then used to control the communication between different mod-
ules. The Front End Message Router controls all the communication to and from the
front end UI. It also interfaces with the respective back end modules. Dynamic
reputation subsystem analyses the DNS traffic in a network and detect and alert the
presence of suspicious domains receiving anomalous hits. The architectural details
of the developed framework are provided in Fig. 8.

1. Domain names encoding in character level: In recent days, deep learning
approaches have achieved a significant performance in various tasks such as
language modeling, text classification and many others in the area of natural
language processing (NLP) [18]. They have an ability to learn appropriate
feature representations by considering the input as in the form of raw data.
A primary task in NLP is how to represent the text into numeric vectors.
Primarily 2 views of representation are used by researchers (1) Texts are rep-
resented as a stream of characters (2) Texts are represented as a sequence of
words. Domain name representation is called as domain name encoding.
Domain name encoding consists of 2 steps. In first step raw domain names are
preprocessed and tokenized to characters. Preprocessing involved in removal of

128 R. Vinayakumar et al.

top-level domain followed by transforming the characters to lower case,
otherwise, results in a regularization issue [19]. In second step, a vocabulary is
formed by assigning a unique id to each character. The unknown characters are
assigned to default id 0. These unique ids of vectors are passed batch-size of 64
to embedding layer. An embedding layer facilitates to learn the semantics and
contextual similarity structures of domain names by coordinating with the other
layers in the deep network during optimizing in the backpropogation process.
The high-dimensional vectors of embedding layer are passed to t-SNE [45] for
visualizing the character clustering. The Fig. 9 showed that the similar char-
acters are clustered together. Most importantly, the special characters and
numbers are appeared in a separate cluster. Thus, the embedding layer has learnt
the semantic and contextual similarity of domain names. Finally, the embedding
layer output is passed to the other layers such as (1) RNN (2) LSTM (3) GRU
(4) I-RNN (5) CNN (6) CNN-LSTM. Based on the parameter tuning, the
number of units/memory blocks is set to 128 for recurrent hidden layers, 64
filters with filter length 3 for CNN. These layer obtains the optimal feature
representation for classifying the domain name as either benign or DGA gen-
erated. Finally, the various RNN layers output is passed to the dropout layer.
This facilitates to avoid the state of over fitting by randomly removing the
neurons with its connections to other neurons.

Fig. 8 Ensemble based dynamic reputation system for DNS

Scalable Framework for Cyber Threat Situational Awareness Based … 129

2. Classification: The dropout layer output is passed to the dense layer. A dense
layer is a fully-connected layer and it composed of two layers. One is dense with
unit 1 and followed by an activation layer i.e. sigmoid with loss function as
binary cross-entropy, as shown below.

lossðpr; exÞ ¼ � 1
N

XN

j¼1

exj log prj þ 1� exið Þ log 1� prj
� �� �

Here ex is a vector of expected class label, pr is a vector of predicted probability
for all domain names in testing data set.

3. Evaluation results: All the deep learning architectures are trained using the most
recent software framework Google’s open source data flow engine, TensorFlow
[46]. TensorFlow allows programmers to build numerical systems as unified
data flow graphs. The data flow graph has nodes and edges that represent
mathematical operations and the tensors respectively. In addition, programmers
can also deploy computations on heterogeneous platforms: one or more CPUs,
GPU, or mobile devices. To accelerate the gradient descent computations all
experiments are run on GPU enabled TensorFlow in single NVidia GK110BGL
Tesla k40. The performance of the trained model was evaluated on the testing
data set. LSTM and CNN-LSTM have followed improvement in accuracy till

Fig. 9 Embedded character vectors learned by LSTM model is represented using 2-dimensional
linear projection (PCA) with t-SNE

130 R. Vinayakumar et al.

epochs 700. After, accuracy has seen a sudden decrease due to over fitting.
IRNN has performed well till epochs 400. The performance of both CNN and
GRU is good till epochs 250 epochs. RNN has started to over fitting once it
reaches epochs 800. This infers that each deep layer has required different
number of epochs to attain the best performance in classifying the domain name
as benign or DGA generated. To compare the performance of deep learning
models with the traditional machine learning classifiers [47, 48], we followed
the feature engineering approach. The detailed performance of traditional
machine learning and deep learning algorithms performance is reported in
Table 1. Deep learning models performed well in comparison to the traditional
machine learning classifiers. Moreover, LSTM has performed well in compar-
ison to the other deep layer (Fig. 10).

To verify the accuracy of the built model, the binary cross-entropy is calculated.
The binary cross-entropy is a standard measure used to identify the inefficiency of
the classifier to predict the data based on the premise truth. In other words, binary
cross-entropy is a cost function used to measure the inaccurateness of the built
model. To minimize binary cross-entropy, the model employs gradient descent
algorithm with a learning rate of 0.01. Gradient descent is a first order optimization
algorithm, where the model shifts each variable a little bit in the direction that
reduces the cost. The classifier is trained with both malicious and non-malicious
datasets. If the classifier suggests the domain di to be randomly generated, a flag is
assigned to that domain di as a DGA domain name and mark the host hi as infected.
The domain di and the host IP along with the timestamp ti is then stored in the
distributed database for further analysis. Figure 11 illustrates the detailed imple-
mentation of the above process.

Table 1 Test results for detecting DGA

Algorithm Accuracy Precision Recall F-score Loss

LSTM 0.999 0.999 0.998 0.999 0.00

GRU 0.998 0.991 0.996 0.993 0.01

CNN-LSTM 0.997 0.985 0.996 0.990 0.01

RNN 0.968 0.795 0.943 0.863 0.09

I-RNN 0.979 0.866 0.966 0.913 0.06

CNN 0.965 0.777 0.936 0.849 0.10

Bigram-LR 0.937 0.577 0.892 0.701 0.16

Hand-crafted features

RF 0.926 0.483 0.858 0.618

DT 0.908 0.564 0.966 0.712

MT 0.892 0.483 0.951 0.641

AB 0.924 0.664 0.936 0.777

NB 0.909 0.564 0.967 0.712

Scalable Framework for Cyber Threat Situational Awareness Based … 131

5.4 C&C Detection

The Deep Bot framework goes a step further by analyzing the response queries of
the infected hosts hi. The idea behind is to find domain names with similar patterns
as DGA domains and getting the IP address it actually resolves to. The entire
domains that got resolved when queried by an infected host are analyzed. For this
analysis, the same procedure of passing it through similarity checker then statistical

Fig. 10 An intuitive overview of employed deep learning architectures

Fig. 11 Detailed diagram of identifying DGA infected hosts module

132 R. Vinayakumar et al.

analyzer followed by the DGA classifier is followed. However, the output of this
analysis also includes some false positive domains that could be also termed as
noise. The presence of these noisy domains reduces the efficiency of the entire
system. To avoid this, a noise filter is employed. In noise filtering two analyzes are
performed namely: Abbreviation Checker and 3-Way Scoring, which is explained
in detail bellow:

(a) Abbreviation Checker: Here the presences of any abbreviations are checked
inside a domain name. Generally, an abbreviation is a short form of a com-
mittee or organization. In this analysis, not only check the presence of an
abbreviation term but also perform three statistical analyses mentioned bellow:

• Length ratio of the abbreviation to the domain name.
• Position of the abbreviation.
• Presence of any date before or after the abbreviation.

(b) 3-Level Reputation Scoring: Given a domain name or an IP address, a repu-
tation score was annotated to it accordingly. The reputation score is based on a
3-level check which involves spanning through the Passive DNS Intelligence,
Malware Knowledge Base and WHOIS Data Base.

1. Malware Knowledge Base: A knowledge base is created by continuous crawling
of public block lists, blacklists, online malware dumps and information related
to known botnet IPs and domains from open Internet.

2. Passive DNS Intelligence: Passive DNS or pDNS is the methodology of con-
structing the duplicate copies of zone data from the captured name server
responses. For the collection of pDNS data, the preliminary condition is to
capture the inter-server DNS message by multiple sensors and then to forward
all the data to collection point for analysis. Once the analysis on the captured
data is over, every individual DNS record is stored in a database from where
data lookup could be performed for any analysis.

3. WHOIS Database: WHOIS provides information associated with a Domain or
IP Address. Queries will be forwarded to corresponding WHOIS server for that
particular Domain/IP address. The information related to domain and IP are
explained below: For a domain, query is sent to retrieve the following
information:

• Registrant name, address, email, phone.
• Registrar name, address, email, phone.
• Administrator name, address, email, phone.
• Domain registered date, expiration date, authoritative name server etc.

Scalable Framework for Cyber Threat Situational Awareness Based … 133

For an IP address the fields are:

• Owner
• Prefix (Network)
• ASN
• Location
• Expiration Date etc.

Higher the reputation score of a particular domain, lesser are its chances of being
malicious. Based on these measure it was understood that the history of this IP and
have a say whether it could be malicious or not. Using the noise filter a lot of false
positives could be reduced significantly. The final output is the malicious domain
name of the C&C server along with the IP address it resolved to. Both these details
along the timestamp containing the query time is then stored back to the distributed
database.

5.5 Time Based Analysis

Deep Bot additionally performs time based to analyze the behavioral patterns of the
C&C server. For this Deep Bot analyzes the timestamps of the entire DGA requests
made by an infected host. Based on the query patterns with which a host queries,
Deep Bot classify it into three groups namely,

1. Continuous: When the host is generating queries at an equal interval of time.
2. Quick: When a lot of queries are generated in a small period of time.
3. Random: Host queries DGA requests at random time periods.

By classifying the host into these three categories, the nature of the C&C server
can be understood. Also one could know the number of hosts belonging in a
particular category. Now analyses the domains (both NX and resolved ones)
queried by different host residing in the same category. If any similar patterns are
found in the domains queried by different hosts, it can be concluded that both the
hosts are infected by the same DGA and thus controlled by the same bot-master. All
such hosts and the domains are clustered accordingly.

5.6 Case Studies

In this section, three case studies of DGA based domains and its resolved server
details as per the DNS data collected on 16th May, 2016 are discussed.

1. Case Study 1: IP—xxx.xxx.213.30 The network activity of all domains con-
tacting a sinkhole server was monitored for a day. Sinkhole servers are generally
operated by multiple security organizations whose tasks are to monitor and

134 R. Vinayakumar et al.

mitigate the malware infections propagating in a network [49]. This is achieved
by redirecting the malicious traffic to trusted and reputed hosts and analyzing
them scrupulously. On 16th May, 2016 this sinkhole IP received approximately
1.1 million hits from more than 9 k unique clients. The timeline of the hits
received is illustrated in Fig. 12.

There was a sudden surge in the hits received after 9 PM. Figure 13 shows DGA
network queries made by a client to this sinkhole IP address. The client also queried
a multiple DGA domains, which resolved to a Portugal IP xxx.xxx.26.248. On
analysis the DeepBot framework was able to identify the similar patterns between
queries made by this client. A vast majority of the domains started with a prefix
HLD ‘five’ followed by a one or two digit number and ended with either ‘.ru’ or
‘.com’ TLD. Some of the DGA domain patterns observed is illustrated in Tables 2
and 3 respectively.

2. Case Study 2: Infected Host IP—xxx.xxx.153.192 The DGA like domains
queried by host xxx.xxx.153.192 were monitored. Figure 14 illustrates the DGA
domains and its resolved IP addresses identified by DeepBot framework.

The IP address xxx.8.69.25 is a conflicker sinkhole IP hosted in China. Some
conflicker domains resolving to this IP address on 16th May, 2016 is provided in
Table 4.

3. Case Study 3: Domain Name—hzmksreiuojy.biz: DeepBot framework also
found out another conflicker set of domains with the prefix ‘hzmksreiuojy’ on
May 16, 2016. Details of these domains are provided in Fig. 15 and are tabu-
lated in Table 5. DeepBot went also found out many suspicious domains con-
nected to xxx.xxx.249.128. Some of them are shown in Table 6

Fig. 12 Hits gained by IP xxx.xxx.213.30 on 16th May, 2016

Scalable Framework for Cyber Threat Situational Awareness Based … 135

Fig. 13 DGA queries made by a client to the IP xxx.xxx.213.30

Table 2 DGA domains
starting with prefix ‘five’
resolving to 202.159.213.30

five30.lnjgukh.ru five30.jzgjldk.ru five30.mcuyfnh.ru five30.
usildbq.ru

five25.cxabxmn.ru five25.bjqlscz.ru five25.jzgjldk.ru five25.
qlpyewm.ru

five3.klcgduk.ru five3.whtjpzk.ru five3.jjetwqy.com
five3.coqqtuy.ru

five12.usildbq.ru five12.kcyiskl.com five12.gmdqfbb.ru five12.
cxabxmn.ru

five6.jjetwqy.com five6.kcyiskl.com five6.uqhbgyb.ru five6.
bjqlscz.ru

five28.dpyabij.ru five28.whtjpzk.ru five28.kdcmwuz.ru five28.
mefzluk.ru

Table 3 DGA domains
starting with prefix ‘green’
resolving to 202.159.213.30

green32.qfmtsvxp.ru green28.qfmtsvxp.ru green5.qfmtsvxp.ru
green13.qfmtsvxp.ru

green32.ztcgyuyh.ru green28.ztcgyuyh.ru green5.ztcgyuyh.ru
green13.ztcgyuyh.ru

green32.entggmuq.ru green28.entggmuq.ru green5.entggmuq.
ru green13.entggmuq.ru

green32.rsfdhhez.ru green28.rsfdhhez.ru green5.rsfdhhez.ru
green13.rsfdhhez.ru

green32.czectdfl.ru green28.czectdfl.ru green5.czectdfl.ru
green13.czectdfl.ru

136 R. Vinayakumar et al.

Fig. 14 DGA domains queried by infected host xxx.xxx.153.192

Table 4 Conflicker domains observed on 16th, May 2016

Domain name Resolved IP address Name server

abhumk.cn xxx.xxx.69.25 ns.conflicker-sinkhole.cn

aidmj.cn

akkbzhqnfv.cn

aapvv.cn

adphpkx.cn

afxddfgcmqq.cn

bmiusjs.cn

achrszijz.cn

agwjrlfycyf.cn

aidjgjsr.cn

bdvuzzi.cn

atdja.cn

bdgnsjdqcdo.cn

Scalable Framework for Cyber Threat Situational Awareness Based … 137

Fig. 15 Conflicker domains with prefix ‘hzmksreiuojy’

Table 5 DNS Information of domains with prefix ‘hzmksreiuojy’ as on 16th May, 2016

Host IP Domain name Resolved IP Name server Blacklisted

120.57.156.81 hzmksreiuojy.biz 52.28.249.128 ns.conficker-sinkhole.com
ns.conficker-sinkhole.net
ns.conficker-sinkhole.org

Yes

hzmksreiuojy.ru ns1.101domain.com
ns2.101domain.com
ns5.101domain.com

No

hzmksreiuojy.com ns1.dynadot.com
ns1.dynadot.com

Yes

hzmksreiuojy.in 195.22.28.196
195.22.28.197
195.22.28.198
195.22.28.199

a0.in.afilias-nst.in
a1.in.afilias-nst.info
a2.in.afilias-nst.info
b0.in.afilias-nst.org
b1.in.afilias-nst.in
b2.in.afilias-nst.org
c0.in.afilias-nst.info
ns1.csof.net
ns4.csof.net

Yes

hzmksreiuojy.nl 176.58.104.168 sinkhole.sidnlabs.nl
proteus.sidnlabs.nl

Yes

138 R. Vinayakumar et al.

6 Conclusion, Future Work and Limitations

In the current research work, situational awareness on Cyber Security threats have
been thoroughly studied and created a highly scalable framework for the same. This
framework analyses DNS event data as its input without making any significant
architectural changes to the networking infrastructure. This distributed framework
is highly scalable to combine and correlate the attack information from several
Tier-1 service provider networks. This is the first of its kind framework to employ
deep learning techniques for handling very large scale data to be processed in near
real-time. This framework has been compared with other commercially available

Table 6 Domains resolving to IP 52.28.249.128 observed on 16th May, 2016

0-0-1-4-5-5-2-5-7-8-0-7-4-2-2-0-2-7-8-0-2-8-4-4-3-4-0-3-8-2-2-
.0-0-0-0-0-0-0-0-0-0-0-0-0-49-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-0-2-4-3-5-4-7-3-4-3-7-6-1-5-4-4-3-7-0-8-1-4-2-8-8-7-8-0-5-7-
.0-0-0-0-0-0-0-0-0-0-0-0-0-49-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-0-5-6-4-3-0-5-0-6-8-6-2-8-2-7-7-0-2-2-1-6-1-6-5-7-8-2-5-1-4-
.0-0-0-0-0-0-0-0-0-0-0-0-0-49-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-0-7-2-1-0-5-7-5-6-2-3-1-5-7-2-2-8-8-7-3-5-5-3-5-7-0-6-7-1-5-
.0-0-0-0-0-0-0-0-0-0-0-0-0-53-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-0-8-7-5-7-0-7-8-6-8-3-8-4-4-6-0-0-6-4-0-1-1-3-6-7-7-7-7-3-8-
.0-0-0-0-0-0-0-0-0-0-0-0-0-49-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-1-1-6-4-6-0-0-0-1-1-8-3-2-8-2-4-5-0-7-5-8-4-1-8-5-3-1-8-8-6-
.0-0-0-0-0-0-0-0-0-0-0-0-0-53-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-1-5-8-7-7-7-4-1-7-1-0-2-7-4-7-6-3-4-5-8-2-8-0-1-5-6-3-8-5-5-
.0-0-0-0-0-0-0-0-0-0-0-0-0-49-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-1-6-7-6-4-0-0-4-4-4-6-2-5-8-2-5-6-5-4-6-2-3-2-5-7-5-4-5-3-2-
.0-0-0-0-0-0-0-0-0-0-0-0-0-49-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-1-7-1-6-2-4-7-7-1-7-7-6-6-6-4-2-4-7-3-5-1-7-7-7-7-2-3-0-3-6-
.0-0-0-0-0-0-0-0-0-0-0-0-0-53-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-1-7-3-7-4-5-6-6-6-7-4-8-1-7-7-2-4-1-4-5-1-1-1-8-5-3-7-3-4-2-
.0-0-0-0-0-0-0-0-0-0-0-0-0-49-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-2-8-1-4-1-3-5-8-3-2-4-5-8-0-5-5-8-6-3-1-2-1-7-3-7-7-8-0-6-4-
.0-0-0-0-0-0-0-0-0-0-0-0-0-53-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-2-8-1-8-4-6-0-6-1-5-2-4-6-8-2-3-5-4-7-4-8-1-0-5-2-2-5-4-7-2-
.0-0-0-0-0-0-0-0-0-0-0-0-0-53-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-3-0-1-7-4-3-0-8-1-2-5-6-7-5-2-2-5-8-8-6-7-7-4-3-4-3-2-3-4-1-
.0-0-0-0-0-0-0-0-0-0-0-0-0-49-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-3-0-7-4-1-7-6-5-7-3-0-8-8-6-3-2-6-3-5-8-2-8-1-6-8-7-6-4-8-8-
.0-0-0-0-0-0-0-0-0-0-0-0-0-49-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-3-4-6-1-8-8-3-0-7-2-7-5-4-6-1-3-3-3-3-3-0-6-8-4-0-8-8-5-1-5-
.0-0-0-0-0-0-0-0-0-0-0-0-0-53-0-0-0-0-0-0-0-0-0-0-0-0-0.info

0-4-1-4-4-1-1-5-3-8-3-2-6-1-8-5-5-0-5-3-4-0-5-3-2-1-2-8-7-8-0-
.0-0-0-0-0-0-0-0-0-0-0-0-0-49-0-0-0-0-0-0-0-0-0-0-0-0-0.info

Scalable Framework for Cyber Threat Situational Awareness Based … 139

solutions and found that this framework outperforms (in terms of features and
performance) all the existing solutions. Due to the confidential nature of the
research, details of the comparison cannot be disclosed. To the best of our
knowledge, this is the only framework that works across several Internet Service
Providers as a single unified system providing situational awareness across the
country.

The current research does not include malware binary analysis that provides
detailed information on the structure and behavior of the malware. Since the
framework does not have access to the end hosts, the damage done to the end
systems cannot be measured. Also, the framework will not be able to detect the
malicious communications that avoids DNS by using direct IP addresses for their
communication. This limitation can be mitigated by the inclusion Net Flow. As a
future direction, the framework will be enhanced by adding multi-lingual
Internationalized Domain Names (IDN) domain name support as it does not per-
form the analysis of IDN based domain names. Though we developed a distributed
platform for collecting and correlating the BGP events, the analysis is not done.

Acknowledgements This research was supported in part by Paramount Computer Systems and
Ministry of Electronics and Information Technology (MeitY), Government of India. We are also
grateful to NVIDIA India, for the GPU hardware support to research grant. We are grateful to
Computational Engineering and Networking (CEN) department for encouraging the research.

References

1. Abu Rajab, M., Zarfoss, J., Monrose, F., & Terzis, A. (2006). A multifaceted approach to
understanding the botnet phenomenon. In Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement (pp. 41–52). ACM.

2. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., & Feamster, N. (2010). Building a
dynamic reputation system for DNS. In USENIX Security Symposium (pp. 273–290).

3. Ollmann, G. (2009). Botnet communication topologies. Retrieved September 30, 2009.
4. Foster, K. (2010). The conicker worm and variants.
5. Torpig. (2016). Retrieved January 11, 2016 from http://en.wikipedia.org/wiki/Torpig.
6. Royal, P. (2008). Analysis of the kraken botnet. Damballa, Apr 9.
7. Looking back at murofet, a zeusbot variant’s active history. (2015). Wikipedia: The Free

Encyclopedia. Wikimedia Foundation, Inc. Retrieved August 1, 2014 from https://blog.
dambella.com/archives/1008.

8. Crawford, H., & Aycock, J. (2008). Kwyjibo: Automatic domain name generation. Software:
Practice and Experience, 38(14), 1561–1567.

9. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W., & Dagon,
D. (2012). From throw-away traffic to bots: Detecting the rise of dga-based malware. In
Presented as part of the 21st USENIX Security Symposium (USENIX Security 12) (pp. 491–
506).

10. Will, C. (2014) Botnet detection with dns monitoring. Network, 25.
11. Schiavoni, S., Maggi, F., Cavallaro, L., & Zanero, S. (2014). Phoenix: Dga-based botnet

tracking and intelligence. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (pp. 192–211). Springer.

140 R. Vinayakumar et al.

http://en.wikipedia.org/wiki/Torpig
https://blog.dambella.com/archives/1008
https://blog.dambella.com/archives/1008

12. Raghuram, J., Miller, D. J., & Kesidis, G. (2014). Unsupervised, low latency anomaly
detection of algorithmically generated domain names by generative probabilistic modeling.
Journal of Advanced Research, 5(4), 423433.

13. Thomas, M., & Mohaisen, A. (2014). Kindred domains: detecting and clustering botnet
domains using DNS traffic. In Proceedings of the 23rd International Conference on World
Wide Web (pp. 707–712). ACM.

14. Ashwini, B., Menon, V. K., & Soman, K. P. (2016). Prediction of malicious domains using
smith waterman algorithm. In International Symposium on Security in Computing and
Communication (pp. 369–376). Singapore: Springer.

15. Zdrnja, B., Brownlee, N., & Wessels, D. (2007). Passive monitoring of dns anomalies. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (pp. 129–139). Springer.

16. Ramachandran, A., & Feamster, N. (2006). Understanding the network-level behavior of
spammers. In ACM SIGCOMM Computer Communication Review (vol. 36, no. 4,
pp. 291–302). ACM.

17. Anderson, D. S., Fleizach, C., Savage, S., & Voelker, G. M. (2007). Spamscatter:
Characterizing internet scam hosting infrastructure. In Usenix Security (pp. 1–14).

18. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
19. Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text

classification. Advances in Neural Information Processing Systems.
20. Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179211.
21. Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157166.
22. Martens, J. (2010). Deep learning via hessian-free optimization. In Proceedings of 27th

International Conference on Machine Learning.
23. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,

9(8), 1735–1780.
24. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., & Bengio, Y. (2014).

Learning phrase representations using rnn encoderdecoder for statistical machine transla-
tion. arXiv:1406.1078, http://arxiv.org/abs/1406.1078.

25. Le, Q. V., Jaitly, N., & Hinton, G. E. (2015). A simple way to initialize recurrent networks of
rectified linear units. arXiv:1504.00941 (2015).

26. Talathi, S. S., & Vartak, A. (2015). Improving performance of recurrent neural network with
relu nonlinearity. arXiv:1511.03771.

27. Anstee Darren, C. F. C. P. B., & Sockrider, G. (2015). Worldwide infrastructure security
report.

28. Vinayakumar, R., Soman, K. P., Poornachandran, P., & Sachin Kumar, S. Detecting android
malware using long short-term memory-LSTM. Journal of Intelligent and Fuzzy Systems, IOS
Press [In press].

29. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Deep android malware
detection and classification. In International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2017 (pp. 1677–1683). IEEE.

30. Vinayakumar, R., Soman, K. P., Poornachandran, P., & Sachin Kumar, S. Evaluating deep
learning approaches to characterize and classify the DGAs at scale. Journal of Intelligent and
Fuzzy Systems, IOS Press [In press].

31. Vinayakumar, R., Soman, K. P., & Poornachandran, P. Detecting malicious domain names
using deep learning approaches at scale. Journal of Intelligent and Fuzzy Systems, IOS Press
[In press].

32. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Evaluating shallow and deep
networks for secure shell (ssh) traffic analysis. In International Conference on Advances in
Computing, Communications and Informatics (ICACCI), 2017 (pp. 266–274). IEEE.

33. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Secure shell (ssh) traffic
analysis with flow based features using shallow and deep networks. In International

Scalable Framework for Cyber Threat Situational Awareness Based … 141

http://arxiv.org/abs/1406.1078

Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017
(pp. 2026–2032). IEEE.

34. Vinayakumar, R., Soman, K. P., & Poornachandran, P. Evaluating deep learning approaches
to characterize, signalize and classify malicious URLs. Journal of Intelligent and Fuzzy
Systems, IOS Press [In press].

35. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Applying convolutional neural
network for network intrusion detection. In International Conference on Advances in
Computing, Communications and Informatics (ICACCI), 2017 (pp. 1222–1228). IEEE.

36. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Evaluating effectiveness of
shallow and deep networks to intrusion detection system. In International Conference on
Advances in Computing, Communications and Informatics (ICACCI), 2017 (pp. 1282–1289).
IEEE.

37. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Long short-term memory
based operation log anomaly detection. In International Conference on Advances in
Computing, Communications and Informatics (ICACCI), 2017 (pp. 236–242). IEEE.

38. Vinayakumar, R., Soman, K. P., Velan, K. S., & Ganorkar, S. (2017). Evaluating shallow and
deep networks for ransomware detection and classification. In International Conference on
Advances in Computing, Communications and Informatics (ICACCI), 2017 (pp. 259–265).
IEEE.

39. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Deep encrypted text
categorization. In International Conference on Advances in Computing, Communications and
Informatics (ICACCI), 2017 (pp. 364–370). IEEE.

40. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Applying deep learning
approaches for network traffic prediction. In International Conference on Advances in
Computing, Communications and Informatics (ICACCI), 2017 (pp. 2353–2358). IEEE.

41. Tripwire, google’s malaysian domains hit with DNS cache poisoning attack. (2013).
Retrieved October, 2013 from http://www.tripwire.com/state-of-security/top-security-stories/
googlesmalaysian-domainshit-dns-cache-poisoning-attack/.

42. Alexa-the top 500 sites on the web. (2014). Retrieved October 10, 2014 from http://www.
alexa.com/topsites.

43. Hall, P. A., & Dowling, G. R. (1980). Approximate string matching. ACM Computing
Surveys (CSUR), 12(4), 381–402.

44. Dameraulevenshtein distance. (2014). Retrieved December 12, 2014 from http://en.wikipedia.
org/wiki/DamerauLevenshtein.

45. Van der Maaten, L., & Hinton, G. (2008). Visualizing data using T-Sne. Journal of Machine
Learning Research, 9(2579–2605), 85.

46. Abadi, M., et al. (2016). TensorFlow: A system for large-scale machine learning. In OSDI
(Vol. 16).

47. Soman, K. P., Loganathan, R., & Ajay, V. (2009). Machine learning with SVM and other
kernel methods. Ltd: PHI Learning Pvt.

48. Soman, K. P., Diwakar, S., & Ajay, V. (2006). Data mining: Theory and practice [WITH
CD]. Ltd: PHI Learning Pvt.

49. Kuhrer, M., Rossow, C., & Holz, T. (2014). Paint it black: Evaluating the effectiveness of
malware blacklists. In International Workshop on Recent Advances in Intrusion Detection
(pp. 1–21). Springer.

142 R. Vinayakumar et al.

http://www.tripwire.com/state-of-security/top-security-stories/googlesmalaysian-domainshit-dns-cache-poisoning-attack/
http://www.tripwire.com/state-of-security/top-security-stories/googlesmalaysian-domainshit-dns-cache-poisoning-attack/
http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://en.wikipedia.org/wiki/DamerauLevenshtein
http://en.wikipedia.org/wiki/DamerauLevenshtein

Big Data in HealthCare

Margarita Ramírez Ramírez, Hilda Beatriz Ramírez Moreno
and Esperanza Manrique Rojas

Abstract This chapter presents an analysis of the infrastructure of big data, the
elements that make it up, the types of data that define it, and the characteristics that
distinguish it as a child: Volume, speed, variety, veracity and volatility. In a con-
crete way, different applications based on this architecture are analyzed, from which
it is possible to find health, internet of things, among other applications. A de-
scription of the data used in health is performed, which is possible to manage
effectively with a model based on big data. Finally, the proposal of a health model
for Mexico is presented, based on an infrastructure that allows the integration and
sharing of information, the administration of medical histories, public health and
research data in the health area, all of them as a basis to carry out data analysis, to
support decision-making and to serve as a basis for the creation of Institutional
health programs. It concludes with evidence of the significant contribution that a
big data model can give to the health sector in Mexico.

1 Introduction

The accelerated growth of the amount of information that is generated every
moment through the connected devices, the use of social networks as well as the
increase in data consumption, evidences the need to create, design and manipulate a
Big Data. In particular a Big Data in health can be very useful to give an adequate
follow-up to healthcare issues in a society, as well as store information that once
analyzed serves as a basis for decision making and the generation of knowledge

M. R. Ramírez (✉) ⋅ H. B. R. Moreno ⋅ E. M. Rojas
Facultad de Contaduría y Administración, Universidad Autónoma de Baja California,
Tijuana, BC, México
e-mail: maguiram@uabc.edu.mx

H. B. R. Moreno
e-mail: ramirezmb@uabc.edu.mx

E. M. Rojas
e-mail: emanrique@uabc.edu.mx

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_7

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_7&domain=pdf

through research. This chapter contains the description and characteristics of a Big
Data, the infrastructure and the elements that make it up, it describes in general the
type of applications existing in Big Data and some of the most recognized mobile
applications. The topic of information technologies in health is analyzed. A de-
scription of the data management in health organizations is presented and finally a
model of Clinical Record is presented with the use of Big Data that can be adapted
to public and private healthcare in Mexico.

2 Big Data

The term big data was first employed in 1997 by NASA researchers Michael Cox
and David Ellsworth, and they defined it as: The management and analysis of
massive volume of data that cannot be treated in a conventional way, since they
exceed the limits and capacities of software that are commonly used in the gath-
ering, management and processing of data [1].

Today the quantity of data that is generated by everyday practices such as: social
networking, email, instant messaging, online profile updates, GPS, among other
activities and devices is increasingly larger, however it is possible to store, process
and transmit this information through “Big Data”. According to one study
“A decade of digital universe of growth” From 2005 to 2020, the digital universe
will grow by a factor of 300, from 130 to 40,000 EB, or 40 trillion gigabytes (more
than 5,200 GB for every man, woman, and child in 2020). From now until 2020, the
digital universe will double about every two years [2].

This study shows projections of the volume of data generated between 2005 and
what is considered will be generated by global users by 2020.

The term Big Data is referred to as the set of massive volume of data which can
be composed by heterogeneous formats: Structured, semi-structured and unstruc-
tured data:

• Structured data is the type of data which has defined format, type and length,
and can be stored in tabular format, such as a relational database or spreadsheet.

• Semi-structured data does not have a set type of data, they contain flags or
markers which differentiate its elements, they might contain metadata that
describe the objects and the co-relation between them, these can files such as
HTML, XML, among others [3].

• Unstructured data is stored just as it is gathered, with no specific format; it
cannot be stored in tabular format such as PDF files, emails, multimedia files,
images among others.

In Big Data the unit of measure for information is: terabytes, petabytes, exabytes
or zettabytes. One terabyte (TB) contains 1012 characters, while one petabyte
(PB) is integrated by 1015 characters, and zettabytes by 1024, and in order to be able

144 M. R. Ramírez et al.

to process this volume of data, special units and advanced technological resources
are required.

Analysis of large volumes of data also provide large benefits for organizations,
big data is a resource that companies were awaiting for according to various authors
and while it is true that “Information is power” as stated by a popular saying, it is
important to highlight that the one who has the information is not powerful, but the
one who uses it properly. The optimal use of data is synonym of innovation, growth
and competitiveness [4]. The adoption of big data allows for a wide variety of
advantages in areas such as: e-commerce, e-government, healthcare, among others.

Most data scientists and experts define Big Data by the following three main
characteristics (called the 3 Vs) [5]. On the other hand there are new concepts that
consider big data as a large gathering of information that includes among its
characteristics the rule of the 4 Vs or the four dimensions of big data [6]. And there
are contributions that consider as much as 5 Vs. We will briefly describe each one
of these characteristics.

2.1 Volume

According to Gartner, by 2020 one thousand million devices will be connected to
the internet, which will increase the volume of data, it is even possible that in a few
years it is multiplied by 10.

A massive amount of data is generated from millions of devices and applica-
tions, for instance, in 2013, the total volume of created, replicated and consumed
data was of 4.4 zettabytes (ZB) according to the International Data Corporation, and
this volume is considered to double every two years. By 2015 data volume grew to
8 ZB [7], and this report also states that the volume of data will reach as much as 40
ZB by 2020 with a 400 times increase from then on [8].

2.2 Velocity

Data is generated every day in ever faster processes, the velocity at which is
produced is measurable according to the rhythm in which old data travels from
different sources, such as: businesses, social networks and mobile devices, among
others. Data integrated in real time can support decision making for organizations,
just as research teams can generate new knowledge. We can identify examples such
as Wal-Mart’s amount of generated data, with as much as 2.5 PB each hour in
customer’s transactions only, or for instance YouTube, which operates at a very
elevated speed of transactions [8].

Big Data in HealthCare 145

2.3 Variety

Big Data gathers information provided by different sources and kinds of data,
whether they are structured or unstructured. While before, information stored as big
data was provided by databases and files generated from tools such as information
systems and even spreadsheets, today information stored as big data comes from
social networks, emails, videos, sound files, instant messaging and more, this
diversification in data creates a huge complexity when storing, managing and
analyzing information, due to this problem, special tools have been developed for
analyzing data regardless of how diverse and varied it is.

2.4 Veracity

This is about the trust we can have, the bias, the noise and the alteration of data.
Ensuring the veracity of the stored information is of extreme importance for the big
data responsible, just as the guarantee that data is clean, valid, correct, and precise.

2.5 Volatility

Data is valid by the time it’s gathered, but depending on how long it’s stored, it can
satisfy the needs of the user, for instance, some organizations only store data and
transaction from certain periods such as the latest year, due to certain restrictions
like limited storage.

2.6 Big Data Infrastructure

Infrastructure used for big data involves technologies that offer services for a
specific solution to the processing of various kinds of data, gathered form numerous
sources such as: files, networks, sensors, microphones, cameras, scanners, images,
videos and others.

Analyzed data becomes information in real time and it is possible to generate
new information that allows solving problems that were not possible before. In
some cases big data is employed to know information about clients through dif-
ferent ways. We can identify big data infrastructure in the information and its real
time processing, the users interacting, the various kinds of data integrated and the
tools that enable the visualizing, storing, analysis and processing blocks of data
with technologies such as computers for processing and storing, telecommunication
networks, and cloud storage. In Fig. 1 we can identify the components of big data.

146 M. R. Ramírez et al.

3 Big Data Applications

The application field for big data is very varied, among them we can consider the
smart grid case, E-health, Internet of things, transportation, logistics, E-government
services and many others.

Smart Grid Case The connection of millions of devices requires an intelligent
network that enables to identify the behavior of connected devices and establish
preventive strategic plans to reduce the cost of co reactive actions and the calcu-
lation of energy required to plan the use of resources and maximize support [9].

Internet of Things (IoT) Stands as one of the major applications of big data and it
involves a wide variety of subjects, this area evolves every day, this application
support logistics in companies, with the use of big data it is possible to determine
the routes and location of the vehicles through sensors, adapters and GPS, these
applications are used to follow up with their employees in the delivery routes, times
of travel, and related information [10].

E-Heath Connected health platforms are used to personalize healthcare [11]. Big
data is generated from different heterogeneous sources such as laboratory files,
medical history, patient’s symptoms, and pharmaceutical information among
others.

Advanced analysis of joint medical data are of great benefit for healthcare, for
instance doctors can monitor symptoms of patients and adjust prescriptions in real
time, in the same way public healthcare institutions can create plans and programs

Fig. 1 Big data infrastructure

Big Data in HealthCare 147

about illnesses, advances in treatments and optimization of operation in hospitals,
just as a support in creating clinical files.

According to the estimations of the McKinsey Global Institute, the use of big
data could increase efficiency and quality of healthcare services by a value worth
220,000 million euros only for American healthcare and some 250,000 million
euros for the whole public sector in Europe [12].

In 2016, Langkafel presents a diagram in which he shows different scenarios that
can be presented in a big data environment (See Fig. 2), which is developed starting
from three coordinates’:

• Horizontal, in which it is possible to visualize information generated by the
patients, (internal and external patient), information gathered from the treat-
ments history and attention that includes ambulance, hospitalization and
recovery, just as any other meaningful part of the process.

• Vertical, this coordinate integrates information generated by the medical unit
and research from the health industry, information generated from administra-
tive, clinical and research data. This allows to maintain strong, reliable data
updates for a permanent support for experts.

• Diagonal, allows integrating information proceeding from different moments
and making a full analysis of data, information obtained from the past that can
be used to make better decisions, just as information generated in real time to
come up with a more accurate forecast.

Health Information Technologies (HIT)
Information technologies are required in all areas, but in health it becomes essential
due to the progress that offers along with the benefits of creating a better healthcare
environment, efficiency and financial [13]. When speaking of medicine we refer to
the science that cures and prevents human illness where health is a detonating
element.

Health information technologies are used in surgery, clinical laboratories,
imaging files, such as magnetic resonance imaging, management software, medical
research data, medical logs, etc.; enabling access to data for an immediate response
and better decision making [14].

The clinical data that one person can generate from birth to death are of critical
importance to prevent and to take care of health, some of them can be stored in a
medical history where others may not. Medical History is composed by various
documents that are generated in medical appointments, integrating medical notes,
logs, treatments, reports, and follow up process by the doctor [15]. It is important to
highlight that one person can have various medical history records if they’ve visited
different healthcare professionals. All information that is generated can amount to
large volumes of data, so complex that it cannot be successfully processed using
conventional management software.

This problem gives way for Big Data in health, as mentioned by Bonnie Feld-
man and other colleagues in October 2012 [16] “Big data is becoming an increasing
force of change in the health industry scenario, and it’s potential resides in the

148 M. R. Ramírez et al.

possibility of combining structured, unstructured or semi-structured data to an
individual or population level”. In the same year Forbes magazine published an
article “Big data the future of health” [17] represents one opportunity for innovators
and all those interested in healthcare, rising substantially the possibility of obtaining
more effective information of all data processed and lower mortality rates.

To process all data contained in the Medical history or medical file big data is
required and technologic tools that can support its management, since recent studies
remark it is the key for healthcare [18], and to prevent some illnesses. Other
scientific studies have demonstrated that the majority of diseases that have afflicted
humanity can be avoided by modifying lifestyle and environment [19].

Analyzing the information that we have on health and the information tech-
nologies available make it possible for global statistics, since they provide a
comparison on traditional data and national, regional, and even global trends. The
institution overseeing this information is the Global Health Observatory
(GHO) [20].

3.1 Mobile Healthcare

With new technologies we can have access to all kinds of information anytime,
anywhere, due to internet connection through a smartphone. These devices have
become the basis of the day to day communication, to be informed, for social
networks, to transmit personal or work information.

In recent years, the use of smartphones has increased more and more and with it
the use of apps. An app is a mobile Smartphone program with a specific end, apps
can be downloaded online and the number of apps available in the market has
increased enormously. According to Statista, there are more than 5 million apps
available between the largest providers such as Google Play, Apple Store, Win-
dows, Amazon and Blackberry [21]. App Annie comments that in less than 5 years
the amount of downloads will be over 352 billion compared to the 197 billion
estimated for this 2017. The impact of revenue estimated figures around 139 billion
dollars as opposed to the 82 billion dollars generated this year. See Fig. 3.

Health applications are the third most downloaded, only after games and utilities
and an increase of 23% is expected in the following years according to Deloitte, in
its study mHealth in an mWorld: How mobile technology is transforming health
care [22]. Another important aspect is provided by IMS Health Institute, one of the
largest evaluation institutions on health, where it is mentioned that the number of
mobile applications dedicated to health surpasses 165,000 [23]. 70% is for general
public through wellness and exercise and the rest are for a more specific target:
health professionals and their patients. The main use of these applications is related

Big Data in HealthCare 149

to prevention or lifestyles (nutrition, physical activities, rest, relaxation, addiction
control, etc.).

It is very hard to classify health applications but we will describe 5 Apps of a
study made by the THE APP intelligence, inform of the 50 best health APPS in
Spanish by level of quality and content, design and utility to offer solutions to
concrete issues (See Fig. 4).

Doctoralia: both for iOS and Android, allows to search healthcare facilities and
medical professionals, it even allows to filter according to healthcare provider or by
their insurance, management of appointments, and users can rate their specialist, it
was awarded by the App circurs 2012.

Mobile MIM: for iOS only, it is for professionals and allows visualization,
exchange and register of images, such as: SPECT, PET, CT, MRI, X-rays, and
ultrasounds. It can be used to review images, contours, insulated glass and isodose
curves of the radiation treatments. It was awarded with the Apple Design Award to
the best health App in 2008.

Ablah: for both iOS and Android. It’s main goal is to contribute to the better
communication between people with language barriers such as autism, down
syndrome, or adults with ictus or strokes, among others. It enables the interaction of
these people with their relatives, physicians and social environment. It has been
awarded as the best app in the wellness category by the Smart Accessibility Awards
2012 of the Vodafone foundation, also as the best Spaniard app 2010 by The App
Date.

Social Diabetes: available on iOS and Android alike, this is an aid in controlling
type 1 and 2 diabetes, it can calculate the dose of hydrates and the dosage of insulin,
just as the physicians can control remotely its patients parameters. It has the award
@appsaludable and was among the finalist for Ideas Saintes 2013 awards.

Endomondo: available on iOS, Android, WP, BB, Symbian. It promotes a healthy
lifestyle through physical activity, acting as a personal trainer; it registers tracks,
calorie intake, heart rate, among other parameters, motivating users to stay active. It
also promotes social workout, planning challenges with friends and sharing through
social networks.

In the universe of mobile apps we must be informed about the function and
utility of them because not all of them meet the expected quality, besides the lack of
knowledge on how to use them or the poor support by healthcare professionals, it is
important to highlight that the apps developed so far do not correspond to areas of
major expense, such as the ones related to chronic disease, opening a scenario of
opportunity for software developers or future professionals.

150 M. R. Ramírez et al.

Fig. 3 Application downloads forecast

Fig. 4 Healthcare applications

Fig. 2 Environment of big data in health

Big Data in HealthCare 151

4 Data Management in Healthcare Organizations

Within the health industry there are numerous sources of heterogeneous data that
issue a significant amount of co-related information about patients, disease and
healthcare centers. When this information is analyzed, it is of great utility to
healthcare professionals (doctors, nurses and pharmaceuticals) in decision making,
which allows a more adequate healthcare service [24].

The incorporation of an electronic universal medical history in Mexico will
improve healthcare services in the country. Having an electronic medical history
file not only replaces paper when it comes to registering patient’s updates, but it
takes it further, allowing an electronic database with patient’s information readily
available to strengthen activities. With the support of technology and Big Data, a
full analysis is possible due to patterns found in data, creating a more solid service
and becoming the starting point for healthcare institutions in having an integration
that connects not only the areas of a hospital, but also public and private services
once for all [25].

According to Siemens, in Mexico, there are about 23,260 healthcare units, of
which 86.8% belong to the public sector and 17.2% to the private sector and while
every healthcare unit has various devices to collect information about its users, 80%
of that data is not structured [26].

Through the NORMA Official Mexicana, NOM-168-SSA1-1998 legislation the
Mexican health department defines medical history or clinical history as the tech-
nical and legal document which is fundamental for healthcare on patients and also
the organization of its users. It is an indispensable instrument to systematically
register the healthcare process and the clinical evolution that reflects the different
forms and moments in which healthcare specialists intervene. These file must be
kept for at least 5 years, starting from the date of the last medical appointment.
Meeting the scientific and ethical standards that govern healthcare institute or the
physician responsible for safeguarding this information [27].

On November 30th of 2012, the NORMA Official Mexicana
NOM-024-SSA3-2012 legislation establishes that Electronic information registry
systems for health, exchange of information have the objective of regulating these
electronic systems, as well as establishing the mechanism for healthcare providers
to register, exchange and consolidate information in the public, private and social
sectors of the national healthcare system in Mexico [28].

5 Big Data Model on Health. The Case of Mexico

As mentioned before, a Big Data model is of great utility to the health industry. In
Mexico, extraordinary efforts are made to improve day after day healthcare ser-
vices; however, it has not been possible to integrate collected information by the
numerous healthcare providers.

152 M. R. Ramírez et al.

We propose a model that allows to integrate the needed information for the
treatment of a patient during the various stages of life, as well as the gathering of
useful information in creating programs that support health conditions in Mexico.

Big Data model proposal integrates user’s medical history information in one
single clinical file with an identifier for each user. The file would be created at the
date of birth, when the birth certificate is generated. This file will integrate basic
general information such as: registration number, name, nationality, date of birth,
religion, address, telephone number, weight, date of file annexation, physiological
data, personal background, family background and later, information collected
through anamnesis, or heteroanamnesis, information like vaccine registry, medical
history, diagnose of illnesses, treatments, integration of clinical results, X-rays,
tomography and magnetic resonance, etc.

Below, the areas of the Big Data model in health, the case of Mexico, are
described. In Fig. 5, it is possible to observe the distribution and interrelation of
each of these areas.

Institutional health programs

Data analysis, support in decision making

Integration and sharing of data

Data collection

Infrastructure

Public
Health Data

Research
Data

Medical
History Data

Fig. 5 Big data model on health. Mexico case

Big Data in HealthCare 153

6 Institutional Health Programs

This phase of the model will allow the integration of institutional health programs,
which will receive information and data from different programs generated for
specific purposes through the health area. This system in Mexico is comprised of
two sectors: public and private.

In the public sector there are social security institutions such as: Mexican
Institute of Social Security (IMSS), Institute of Security and Social Services of State
Workers (ISSSTE), Mexican Petroleums (PEMEX), Secretariat of National Defense
(SEDENA), Naval Secretariat (SEMAR) and institutions that provide care to the
population without social security: Ministry of Health (SSA), Popular Health
Insurance, among others, in the private sector there are insurance companies, clinics
and private hospitals.

In Mexico it is common that users take advantage of the services of several
institutions and can be attended by different specialists or medical areas. The
information generated by the patient in each clinic or office is stored exclusively in
its archives; however, it is important and it may be necessary to share this infor-
mation among the different health agencies.

A standardized Big Data model that integrates clinical records in health services
in Mexico will allow the optimization of resources, the adequate monitoring of each
case, as well as the integration of data that are raw material for decision making.

A case of application of a Big Data in the health system may be the national
cancer registry, created by the Ministry of Health in Mexico, which aims to collect
information on cancer cases that occur in different regions of the country Through
this program it is possible to follow up the cases for at least five years, to know
behaviors of this disease, number of patients, real situation of the disease and thus
be able to undertake actions such as prevention and timely care.

This registry has national coverage, integrates data related to the identity of the
patients, diagnostic data and specific characteristics of the condition, as well as
information regarding the treatment and follow-up received and the current status of
the patient.

With this registry, it will be possible for scientists to analyze medical histories
and medical databases to achieve better research and, above all, better treatment for
patients.

Another proposed institutional health program is the e-card program, which is an
application that allows easy accessibility to vaccination card information in all
public health entities in the country, which will serve as a support to the population
and to the staff of these institutions so that it is feasible to consult from any device
with an internet connection the child’s vaccination status.

154 M. R. Ramírez et al.

6.1 Data Analysis, Support for Decision Making

In this phase, the analysis of the data coming from the different sources of data is
carried out, such as: clinical files, public health and research data. Having all these
data for processing, storage and optimal management, provides an additional value
beyond what they have on their own to support decision making. The sources of
data are described below.

6.2 Medical History Data

This area of Big Data integrates with structured data (general information, physi-
ological data, family background, vaccine registry, clinical results, etc.).

Semi-structured Data: information gathered through interview (anamnesis,
diagnose, treatments).

Unstructured Data: Imaging, topographies, X-rays, diagnose files or treatment
description, pdf files, etc.

6.3 Public Health Data

This area will integrate information generated by public healthcare programs in the
country, information from ongoing programs such as national development plan
and sectorial health plan 2013–2018.

Information or indicators that can serve as the base for creating public regula-
tions that contribute in the achievement of health goals defined by national pro-
grams. Structured, unstructured and semi-structured are included, data resulting by
statistics generated by healthcare services, prevalence of chronic diseases, main
causes of death, mortality rate in children, causes for maternal death, information
that supports decision making, as well as the creation of plans and new health
programs.

7 Research Data

Once the information from different areas has been integrated in a medical history
and public health data, it is possible then to make an analysis and integration of
information that will be the material for research and generation of knowledge in
the health industry.

Big Data in HealthCare 155

Each component of the model will allow to integrate a solid base of information
that supports decision making and the creation of institutional programs in benefit
of health.

7.1 Integration and Sharing of Data

These data are analyzed to obtain statistical information from which new knowl-
edge is derived in the health area. With this new information, decisions can be made
in the areas of public health, patient care or new research. Figure 6 indicates the
way in which (structured and unstructured) data are generated from a population.

Fig. 6 Representation of information generated by the population in the healthcare area

156 M. R. Ramírez et al.

7.2 Data Collection

Data can be obtained through smartphones, wearables and cutting-edge technolo-
gies. Other data can be obtained from X-ray studies, clinical and case reports, and
clinical records.

7.3 Infrastructure

An important aspect that stands out in the infrastructure is the technological plat-
form with organizations or institutions must have, such as: hardware, software,
mobile technology, communication technology, and networks, to name a few, since
they form the basis for working with large-scale data and the analysis of huge
amounts of information that cannot be treated in a conventional manner.

8 Conclusions

The information generated by medical history or clinical file, correspond to the
different types of data mentioned above, which is why Big Data has become a
crucial element for the processing of these large amounts of information and to
obtain a more detailed and comprehensive analysis for the prevention, diagnosis
and monitoring of healthcare.

With the implementation of the Big Data Model in Healthcare, support is gen-
erated in the decision making process as well as in the development of predictive
and probabilistic models in the health area. It is feasible to have the possibility of
saving millions of pesos in the public healthcare sector, through the different types
of data that could be generated for analysis in a region of the country [8]. All the
information that can be obtained for your manipulation of a Big Data can be: by
individual, by city, by state, by country, by gender, etc. so it would be a powerful
technological tool in the prevention and care of human health.

In this context, basic features of Big Data health applications go beyond volume,
variety and speed, as they incorporate important aspects such as veracity, allowing a
reuse by adding new information to the data history. These new ways of storing,
processing and analyzing information as well as the use of technological tools can
improve health care and provide opportunities for professionals in both health and
technology areas.

© All rights reserved, the marks, logos, content, design and photographs shown
are only illustrative, are registered and are property of each manufacturer.

Big Data in HealthCare 157

References

1. Salazar, A. (2016). Infraestructura para big data. Revista Digital Universitaria. Retrieved
September, 2017, from http://www.revista.unam.mx/vol.17/num11/art77/.

2. Gantz, J. The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in
the far east. Retrieved August, 2017, from https://www.emc.com/collateral/analyst-reports/
idc-the-digital-universe-in-2020.pdf.

3. López-Messa, J. Tipos de big data. Revista Electrónica de Medicina Intensiva. Retrieved
August, 2017, from http://www.medicina-intensiva.com/2017/07/A232.html.

4. Arvizu, L. Big Data Lo que las empresas esperabas, México Forbes. Retrieved January, 2017,
from https://www.forbes.com.mx/big-data-lo-que-las-empresas-esperaban/.

5. Furht, B., & Villanustre, F. (2016). Introduction to big data. Big data technologies and
applications (pp. 3–11). Cham: Springer.

6. Gagnon, C., John, E., & Theunissen, R. (2017). Organizational health: A fast track to
performance improvement.

7. Rajaraman, V. (2016). Big data analytics. Resonance, 21, 695–715.
8. Oussous, A., et al. (2017). Big Data technologies: A survey. Journal of King Saud

University-Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2017.06.001.
9. Stimmel, C. L. (2014). Big data analytics strategies for the smart grid. CRC Press.

10. Chen, C. P., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and
technologies: A survey on big data. Information Sciences, 275, 314–347.

11. Namblar, Bhardwaj, Sethi, & Vargheese. A look at challenges and opportunities of big
data analytics in healthcare. In 2013 IEEE International Conference of Big Data, IEEE
(pp. 17–22).

12. Langkafel, P. (2016). Big data in medical science and healthcare management: Diagnosis,
therapy, side effects. De Gruyter.

13. Koppers, B., & Thorogood, A. (2017). Ethics and big data in health. Current Opinion in
Systems Biology, 4, 53–57.

14. Ramirez, M., Ramirez, H., Osuna, N., Salgado, M., & Alanis, A. (2017). In Big Data and
Health “Clinical Records”, Innovation in Medicine and Healthcare 2017, Smart Innovation,
Systems and Technologies. Springer.

15. Martínez, H. J. (2006). Historia Clínica, Sistema de Información Científica Redalyc Red de
Revistas Científicas de América Latina y el Caribe, España y Portugal, vol. XVII, núm. 1,
pp. 57–68.

16. Bonnie, F., Ellen, M., & Tobi, S. (2012). Big data in healthcare hype and hope. Dr. Bonnie
360° business development for digital health. Retrieved June, 2017, from http://es.scribd.com/
doc/107279699/Big-Data-in-Healthcare-Hype-and-Hope.

17. Riskin, D. The next revolution in healthcare. Retrieved June, 2017, from en Forbes. www.
forbes.com/sites/singularity/2012/10/01/the-next-revolution-in-healthcare.

18. Castillo, Y. L. (2017). Big Data, clave en el cuidado de la salud, Saludiario el Medico para
Médicos. Retrieved June, 2017, from http://saludiario.com/big-data-clave-en-el-cuidado-de-
la-salud-estudio/.

19. Secretaria de Salud de Baja California, Tu Salud Promoción de la Salud. Retrieved January,
2017, from http://www.saludbc.gob.mx/tu-salud.

20. Organización Mundial de la Salud. Datos del Observatorio mundial de la salud. Retrieved
January, 2017, from http://www.who.int/gho/es/pdf.

21. e-growing online and mobile marketing, Evolución del mercado de las apps hasta 2021.
Retrieved August, 2017, from http://e-growing.com/evolucion-mercado-de-las-apps-2021/.

22. The APP inteligence, Informe 50 mejores APPS de salud en Español. Retrieved August,
2017, from http://boletines.prisadigital.com/Informe-TAD-50-Mejores-Apps-de-Salud.pdf.

23. QuintilesIMS Formerly Known as IMS Health. Retrieved August, 2017, http://www.
imshealth.com/en/thought-leadership/quintilesims-institute#.

158 M. R. Ramírez et al.

http://www.revista.unam.mx/vol.17/num11/art77/
https://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
https://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.medicina-intensiva.com/2017/07/A232.html
https://www.forbes.com.mx/big-data-lo-que-las-empresas-esperaban/
http://dx.doi.org/10.1016/j.jksuci.2017.06.001
http://es.scribd.com/doc/107279699/Big-Data-in-Healthcare-Hype-and-Hope
http://es.scribd.com/doc/107279699/Big-Data-in-Healthcare-Hype-and-Hope
http://www.forbes.com/sites/singularity/2012/10/01/the-next-revolution-in-healthcare
http://www.forbes.com/sites/singularity/2012/10/01/the-next-revolution-in-healthcare
http://saludiario.com/big-data-clave-en-el-cuidado-de-la-salud-estudio/
http://saludiario.com/big-data-clave-en-el-cuidado-de-la-salud-estudio/
http://www.saludbc.gob.mx/tu-salud
http://www.who.int/gho/es/pdf
http://e-growing.com/evolucion-mercado-de-las-apps-2021/
http://boletines.prisadigital.com/Informe-TAD-50-Mejores-Apps-de-Salud.pdf
http://www.imshealth.com/en/thought-leadership/quintilesims-institute
http://www.imshealth.com/en/thought-leadership/quintilesims-institute

24. Instituto de Ingeniería del conocimiento, Big Data en Salud. Retrieved September, 2017, from
http://www.iic.uam.es/soluciones/salud/.

25. Medina Alejandro, A México le urge el Expediente Clínico Electrónico Universal, Forbes
México.

26. Ramírez, A., Abraham, Retos del Big Data para el sector salud. Retrieved September, 2017,
from https://www.the-emag.com/theitmag/blog/2017/04/14/retos-del-big-data-sector-salud.

27. Secretaria de Salud en México, NORMA Oficial Mexicana, NOM-168-SSA1-1998, Del
Expediente Clinico. Retrieved September, 2017, from http://www.salud.gob.mx/unidades/cdi/
nom/168ssa18.html.

28. Secretaria de Salud en México, NORMA Oficial Mexicana NOM-024-SSA3-2012. Retrieved
September, 2017, from http://www.dgis.salud.gob.mx/descargas/pdf/NOM-024-SSA3-2012.
pdf.

Big Data in HealthCare 159

http://www.iic.uam.es/soluciones/salud/
https://www.the-emag.com/theitmag/blog/2017/04/14/retos-del-big-data-sector-salud
http://www.salud.gob.mx/unidades/cdi/nom/168ssa18.html
http://www.salud.gob.mx/unidades/cdi/nom/168ssa18.html
http://www.dgis.salud.gob.mx/descargas/pdf/NOM-024-SSA3-2012.pdf
http://www.dgis.salud.gob.mx/descargas/pdf/NOM-024-SSA3-2012.pdf

Facing Up to Nomophobia: A Systematic
Review of Mobile Phone Apps
that Reduce Smartphone Usage

David Bychkov and Sean D. Young

Abstract Excessive smartphone use has been linked to adverse health outcomes
including distracted driving, sleep disorders, and depression. Responding to this
growing trend, apps have been developed to support users in overcoming their
dependency on smartphones. In that vein, our investigation explored the “big data”
available on these types of apps to gain insights about them. We narrowed our
search of apps, then reviewed content and functionality of 125 Android and iOS
apps that purport to reduce device usage in the United States and elsewhere. This
sample was curated based on popularity through the market research tool, App
Annie (which indicates revenue and downloads per category of app and by country).
The apps fell into 13 broad categories, each of which contained several different
features related to filters, usage controls, and monitoring programs. Findings sug-
gest that social media technologies, including smartphone apps, are being attempted
for use for health behavior change. We discuss methods of sorting through “big
data” generated by apps that purport to curb smartphone addiction. Finally, we
propose data-driven features, such as social facilitation and gamification, that
developers might use to enhance the effectiveness of these apps.

Keywords Smartphone ⋅ Phantom vibration syndrome ⋅ Social cognitive
theory ⋅ Cognitive behavioral therapy

D. Bychkov
Whiting School of Engineering, Institute for Nano-Bio Technology in Health Measurement
Corps, Johns Hopkins University, Baltimore, MD, USA

S. D. Young (✉)
Department of Family Medicine, University of California, Los Angeles,
10880 Wilshire Blvd., Ste. 1800, Los Angeles, CA 90024, USA
e-mail: sdyoung@mednet.ucla.edu

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_8

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_8&domain=pdf

1 Introduction

The proliferation of smartphones and access to wireless and data networks has
enabled people to learn, connect, and navigate worldwide. Despite the clear
advantages of these “smart” devices, their near-constant use has given rise to
negative social and health consequences such as smartphone addiction, lowered
sleep quality [15], and decreased road safety [18].

This is not surprising, given a 2013 Harris poll which revealed that 72% of
United States (US) adults claimed they were so dependent on their smartphones that
they kept them within 5 feet of their bodies the majority of the time. In fact, some
respondents noted they kept their smartphone nearby while showering, during
sexual intercourse, and/or attending religious services [19]. Findings like these have
given rise to a new term, “nomophobia.” The fear of being without one’s phone is
so pervasive that it not only has a name, it was recently proposed for inclusion into
the DSM-V [4, 12]. Symptoms of excessive smartphone use and nomophobia
include compulsive text messaging and phantom vibration syndrome, wherein a
user feels the sensation of a device’s vibration even when it is not in use [17, 20].

Fortunately, these symptoms may be resolved through behavioral interventions,
as the technology itself may be a useful tool for that very behavior therapy. For
example, public health announcements have been conveyed by television and radio
advertisements, text messages, and mobile apps [24].

More precisely, behavior change techniques include gaining end-user acceptance
and commitment (“commitment”) [5], goal-setting and promotion of standards
(“setting standards”) [21], offering tools for self-awareness and monitoring
(“self-tracking”) [22], customization of feedback based on the audience and situa-
tion (“tailoring messages”) [11], encouraging the end user to strengthen relation-
ships with family, friends, and peers (“social facilitation”) [2, 7, 23, 26, 27] and
implementation of rewards, competition, or other game elements (“gamification”)
[8, 16]. Therefore, although smartphones may be associated with addiction, they
may also serve as a platform that enables positive behavior change [9].

We provide a review of the “big data” from these types of apps based on data
from the data aggregator, App Annie. This review aimed at: (i) illustrating the
content and functionality of the new generation of apps that serve to mitigate the
problems associated with smartphone addiction and excessive device usage; and
(ii) exploring (indirectly) ideas on how to enhance the effectiveness of these “detox
apps”.

162 D. Bychkov and S. D. Young

2 Methods

2.1 Keyword Search Terms

Prior to initiating the review process, we conducted research via Google Trends to
identify relevant keyword terms related to mobile phone “over-usage.” First, we
entered the expression “smartphone addiction” into Google Trends on September 1,
2016. Three related search terms were returned, all of which were relevant, namely:
“smartphone addiction test,” “smartphone addiction scale,” and “phone addiction.”
Entering the term “phone addiction” yielded a total of 11 results, of which 3 were
relevant, i.e. “cell phone addiction,” “internet addiction,” and “social media
addiction.” Entering “smartphone addiction scale” and “smartphone addiction test”
did not generate additional results.

2.2 App Selection Process

Google Play and iTunes App Store were used to conduct a systematic review of
apps on September 1, 2016. Our inclusion criteria were composed of the noted
search terms. Exclusion criteria were: (i) the app description did not feature content
related to excessive device usage, (ii) the app was a duplicate, or slight adaptation,
of another app already under investigation, (iii) the app had no English-language
user interfaces, (iv) the app claimed to increase device usage, or (v) the app could
harm (even judge) the end user.

2.3 Ranking

Popularity was assessed using App Annie [1]. AppAnnie.com is a market research
website that collects aggregate data from its clients (comprised of approximately
94% of the top smartphone app publishers), and then extrapolates rankings for all
apps [6]. Given that neither Google nor Apple provide precise data about the total
revenue or downloads achieved by an app, App Annie’s estimates are a valuable
resource for contextualizing and interpreting the data provided on these platforms.
Furthermore, App Annie’s data have high credibility, in that it has been successfully
applied in other research studies for evaluating the market visibility of health apps
[3, 25].

Facing Up to Nomophobia: A Systematic Review of Mobile Phone … 163

2.4 Statistical Analysis

Data were expressed as percentages for categorical variables and as median (in-
terquartile range [IQR]) for ordinal/continuous variables. Comparisons between
groups were performed by Chi-squared or Fisher’s exact tests for categorical
variables, and by the Mann-Whitney test or Kruskal-Wallis with Dunn’s post hoc
test for continuous variables.

A logistic regression model was built so that we could explore the relationship
between ranking and the characteristics of the selected apps (e.g. platform and fea-
tures). Because the ranking did not have a normal distribution, the variable was
included in the model as a dichotomous variable (i.e. ranking less than or greater than
500). The independent variables were chosen based on an exploratory analysis and a
hierarchical backward approachwas then used to determinewhich variables to keep or
drop from the model [13]. A generalized variance inflation-factor (VIF) greater than 5
served to identify multicollinearity. Following this, the Durbin Watson test was
applied to evaluate the model’s validity. From this foundation, statistical analysis was
performed using STATA-10. A p value <0.05 was considered significant.

3 Results

The Google Play and iTunes filtering search resulted in 125 apps that were available
on Android (n = 67), iOS (n = 37) or both platforms (n = 21). While the search
term “smartphone addiction” returned the greatest number of results across both
operating systems, the iTunes search engine provided, on average, 56.0% more
relevant results to our queries than Google Play. The flow chart of the selection
process is shown in Fig. 1.

3.1 Content and Functionality of Selected Apps in the US
and the Rest of the World

The selected apps fell into the following categories: productivity (52.0%), tools
(12.0%), lifestyle (9.6%), and health and fitness (8.8%). The remaining 17.6% is
represented by business, communication, education, medical, parenting, personal-
ization, photography, social networking, and utilities apps. Each app had at least
one of the following features: blocking, parental control, tracking, rewards,
reminders, coaching, and/or social media. As demonstrated in Table 1, reminders
and tracking were the most represented (90.4% and 82.4%, respectively). Half of the
categories included at least 3 features and there were no significant differences
among app categories in terms of average number of features (KW = 7.75,
p = 0.101).

164 D. Bychkov and S. D. Young

Since roughly half of the data (56.7%) originated in the US, we focused our
analysis on the possible differences in app preferences and usage between countries.
Specifically, Android and iOS platforms showed a different distribution between the
US and the rest of the world. In the US, the prevalence of iOS users (40.3%) was
comparable to the prevalence of Android users (41.7%), while in the rest of the
world the choice of the platform was polarized (χ2 = 11.2, p = 0.004) toward
Android (69.8%) rather than iOS (15.1%). Tracking and reminder features were the
most represented, at 80.0% (Table 1).

Because sample size was not always representative when stratified by category,
the least numerically relevant categories were grouped in “other” (e.g. business,
communication, education, medical, parenting, personalization, photography, social
networking, and utility). Android and iOS showed a statistically significant dif-
ference in apps related to productivity (χ2 = 7.94, p = 0.019) and tools
(p < 0.001). These categories were the least and most represented on the Android
platform, respectively (Table 2).

3.2 Popularity of Apps in the US and the Rest of the World

Ranking was available for 91 out of 125 of the apps. On average, Annie’s rank was
significantly higher (KW = 22.50, adjusted p < 0.001) on the iOS platform (917;
577.3–1310.0) than on Android (477.5; 332.3–526.5). The lowest ranked 25% of
iOS apps were still better ranked than Android’s top 25% (Fig. 2). Within app

Mobile apps identified through database searching and
screened

Google Play (n=1450)
iTunes (n=108)

Potentially relevant apps identified
for full evaluation

Google Play (n=208)
iTunes (n=76)

Apps included in the review (n=125)

Android (n=67)
Android/iOS (n=21)
iOS (n=37)

Excluded after screening (1242+32)
Feature content not related to excessive device usage (n=1156+26)
Not in English (n=10+2)
Increase device usage (n=68+3)
Harm or judge the end user (n=8+1)

Excluded apps (120+18)
Duplicates (n=73+1) or Adaptation (n=24+1)
No longer available (n=10+6)
Technical difficulties (n=7+5)
Impossible to test (n=6+5)

Id
en

ti
fi

ca
ti

on
Sc

re
en

in
g

E
lig

ib
ili

ty
In

cl
ud

ed

Fig. 1 Flow chart of the app selection process

Facing Up to Nomophobia: A Systematic Review of Mobile Phone … 165

Table 1 Prevalence distribution of the 125 selected apps into the seven different features

Feature Apps among
platforms %(N)

Apps between country
blocks %(N)

Overall
apps
%(N)

Android
(n = 67)

Android/iOS
(n = 21)

iOS
(n = 37)

US
(n = 72)

Rest of the
world (n = 53)

Blocking 55.2 (37) 33.3 (7) 18.9 (7) 37.5 (27) 45.3 (24) 40.8 (50)
Parental
control

13.4 (9) 14.3 (3) 0.0 (0) 9.7 (7) 9.4 (5) 9.6 (12)

Tracking 80.6 (54) 90.5 (19) 81.1 (30) 80.6 (58) 84.9 (45) 82.4 (103)
Rewards 3.0 (2) 14.3 (3) 8.1 (3) 5.6 (4) 7.5 (4) 6.4 (8)
Reminders 86.6 (58) 95.2 (20) 94.6 (35) 87.5 (63) 94.3 (50) 90.4 (113)
Coaching 13.4 (9) 9.5 (2) 24.3 (9) 13.9 (10) 18.9 (10) 16.0 (20)
Social
media

7.5 (5) 4.8 (1) 13.5 (5) 8.3 (6) 9.4 (5) 8.8 (11)

Note The data refer to the total number of apps and to the apps stratified among platform and
country blocks; the prevalence is expressed as percentage and absolute frequency (N) in brackets

Table 2 Prevalence distribution of the 125 selected apps into the 13 different categories

Category Apps among
platforms %(N)

Apps between country
blocks %(N)

Overall
apps
%(N)

Android (n
= 67)

Android/
iOS
(n = 21)

iOS
(n = 37)

US
(n = 72)

Rest of the
World
(n = 53)

Productivity 40.3 (27) 66.7 (14) 64.9 (24) 62.5 (45) 37.7 (20) 52.0 (65)
Tools 22.4 (15) 0.0 (0) 0.0 (0) 12.5 (9) 11.3 (6) 12.0 (15)
Lifestyle 14.9 (10) 4.8 (1) 2.7 (1) 5.5 (4) 15.1 (8) 9.6 (12)
Health and
fitness

7.5 (5) 4.8 (1) 13.5 (5) 8.3 (6) 9.4 (5) 8.8 (11)

Business 0.0 (0) 4.8 (1) 0.0 (0) 0.0 (0) 1.9 (1) 0.8 (1)
Communication 4.5 (3) 0.0 (0) 0.0 (0) 2.8 (2) 1.9 (1) 2.4 (3)
Education 1.5 (1) 0.0 (0) 5.4 (2) 0.0 (0) 5.7 (3) 2.4 (3)
Medical 0.0 (0) 0.0 (0) 5.4 (2) 1.4 (1) 1.9 (1) 1.6 (2)
Parenting 1.5 (1) 0.0 (0) 0.0 (0) 1.4 (1) 0.0 (0) 0.8 (1)
Personalization 4.5 (3) 0.0 (0) 0.0 (0) 1.4 (1) 3.8 (2) 2.4 (3)
Photography 0.0 (0) 0.0 (0) 2.7 (1) 1.4 (1) 0.0 (0) 0.8 (1)
Social
networking

2.9 (2) 4.8 (1) 2.7 (1) 1.4 (1) 5.7 (3) 3.2 (4)

Utilities 0.0 (0) 14.3 (3) 2.7 (1) 1.4 (1) 5.7 (3) 3.2 (4)
Note The data refer to the total number of apps and to the apps stratified among platform and
country blocks; the prevalence is expressed as percentage and absolute frequency (N) in brackets

166 D. Bychkov and S. D. Young

categories and features, ranking did not show any statistical difference (KW = 3.09,
p = 0.543 and KW = 5.54, p = 0.476, respectively).

Based on the results attained in the explorative phase, we built a logistic
regression model of Annie’s rank on platforms as a significant, independent variable
(β = 1.46, standard error = 0.535; p = 0.006). Note, “parental features” was
included as a covariate, since it was differently distributed within the three platform
groups. Our model suggested that of the apps available for iOS, the opportunity to
have a medium/high rank (>500) was approximately four times greater than apps
available for Android.

3.3 Review of Three Randomly Selected Smartphone Apps

We randomly selected three apps with a broad range of features. The apps
BreakFree and Unplug were downloaded to an iPhone 5S, and QualityTime to a
Samsung Galaxy S5. Breakfree included 3 features and presented an average rank
(Annie rank = 491), Unplug included the greatest number of features (n = 5) and
presented a high rank (Annie rank = 1394) and, finally, QualityTime included 2
features and presented a low rank (Annie rank = 316). Then, we explored whether
the apps implemented any of the 6 behavior change methods that were noted in the
introduction, that is: commitment, setting standards, self-tracking, tailoring,
social-facilitation, and/or gamification.

Based on our assessments, we highlight features and functions in what follows,
with the expectation that it may address outstanding issues for end users seeking to
reduce their device usage.

QualityTime, BreakFree, and Unplug include key features consistent with at
least 4 behavior change principles. Two apps—BreakFree and Unplug—contain
key features consistent with gamification (i.e. “achievement titles” and “last high
score”). The only app to provide key features consistent with social facilitation

Fig. 2 Boxplot showing App Annie rank of apps developed in the three groups of platforms,
Android, iOS and the shared one’s (a), stratified by category (b) or by feature (c). Whiskers were
drawn based on Tukey method

Facing Up to Nomophobia: A Systematic Review of Mobile Phone … 167

(i.e. “parental notification” and “family time”) is BreakFree. This is also the only
app of the group to require the use of GPS to deliver a key feature, while Unplug is
the only app to integrate the “Airplane Mode” feature of iOS as one of its key
functions.

QualityTime provides several features that require users to commit to behavior
change, such as auto-blocking inbound calls and sending an auto-reply to inbound
text messages. It also features self-tracking, in the form of summaries that report
usage and standard settings in the form of a configurable screen and app auto-locks.
Still, QualityTime does support tailoring, insofar as it enables the user to tune
auto-locks, auto-replies, and restriction periods (with exceptions).

Unplug immediately, repeatedly, and colorfully prompts the user to set their
phone to “Airplane Mode” and to put the phone down until the user complies. It is
important to note that Unplug also blocks graphics and alerts. It is perhaps best
described as a nomophobia version of the “cold turkey” method.

BreakFree embraces gamification by using a points-and-title system. Unlike
Unplug and QualityTime, BreakFree features an animated character, “Sato” that
notifies the user to “slow down” after an hour of phone usage. Moreover, users can
schedule “family time” hours in advance, during which the Internet and sound are
disabled on the device. This app also comes with parental control settings that
enable users to monitor their children’s usage. The latter feature differentiates
BreakFree from the other apps investigated, as supporting “social facilitation.”

4 Discussion

To our knowledge from this analysis, there are no apps for nomophobia that rely on
evidence-based research. In fact, the most promising evidence-informed apps, such
as PTSD Coach—an app used to mitigate acute distress in veterans who experience
post-traumatic stress disorder—has no long-term data regarding its effectiveness
[14]. Nevertheless, the Veterans Administration has successfully used PTSD Coach
to generate “big data” related to patient satisfaction and VA mental health outreach
services on the order of 130,000 downloads (as of 2013). On the clinical side,
several smartphone apps have been effective in studies for managing depression and
anxiety, though their examination is outside the scope of this paper [10]. Generally
speaking, these apps help users commit to new behaviors; learn about and set
quantifiable goals and standards; self-monitor and track trends; receive tailored
messages from professional counselors; enjoy elements of games; and they bring
users closer to friends and family.

Given that we were unable to directly explore associations between the use of
behavior change techniques and changes in health behavior, or other health-related
outcomes, we posit some key observations in app features and usage patterns
between the US and other countries. Foremost, there were no significant differences

168 D. Bychkov and S. D. Young

in app categories as a function of their average number of features, or the most used
types of apps in the US as compared to other countries. Platforms, however, are
used differently across countries. For instance, apps showed, in some cases, a
different distribution among platforms in terms of feature and category. Of note, the
platform seems to play a crucial role in defining the popularity of an app, insofar as
iOS ranks significantly better than Android.

4.1 Recommendations for Developers to Use Big Data
from Apps

Big data from apps, such as aggregate data from App Annie, can be used to inform
developers about new features they can use to improve apps, such as apps to
address nomophobia. Smartphone app developers interested in addressing the
challenges of nomophobia might focus on features that address the key principles of
behavior change that are underrepresented in the apps featured in this review,
namely: commitment, setting standards, self-tracking, tailoring, gamification, and
social facilitation. “Big Data” from nomophobia apps can also inform app pub-
lishers whether their users find these apps acceptable. They can evaluate this, for
example, by analyzing data on device usage provided by Google and Apple, daily
information from App Annie, potential data from in-app advertisers, as well as data
that end users may choose to volunteer on their experiences with features.

4.2 Limitations

One of the feasibility and time-challenges of this review was that individual apps in
Google Play and iTunes had to be opened to determine whether they were intended
to reduce smartphone usage. To minimize the harm to end users who are using
devices while searching for apps that address nomophobia, developers can create
logos that clarify the app’s key features and/or behavior change techniques.

A further limitation is that App Annie could not be used for the purposes of an
academic research article to unlock raw or “premium” content, such as estimated
downloads and lifetime advertising dollars earned by each app. To date, there is no
more timely way to conduct a systematic review of nomophobia apps without using
the leading provider of such data.

Finally, it was not possible to directly determine the effectiveness of “detox
apps” against a range of processes and health-related outcomes. Additional
well-designed studies are needed to explore associations between the use of these
behavior change techniques and smartphone addiction recovery.

Facing Up to Nomophobia: A Systematic Review of Mobile Phone … 169

5 Conclusion

Big data from apps can be used to study the usability and acceptability of apps. This
information can incorporated into analyses to determine how apps are being used,
and for example, in the case of nomophobia apps, whether they are based on
scientific research on how to reduce nomophobia. QualityTime, BreakFree, and
Unplug are nomophobia-focused apps that are marketed to smartphone users
seeking to reduce their usage. Each of these apps has achieved notable success
among non-nomophobia users within the “productivity” app store category, as
validated by App Annie. Of the 3 apps, BreakFree includes the most features
consistent with the principles of behavior change. However, this review using data
found no evidence-based smartphone apps to thoroughly address nomophobia, and
so recommends further research efforts devoted to this area. Future research using
smartphone data can help to guide the integration of scientific research findings into
nomophobia apps to help address nomophobia.

References

1. App Annie (2017) About. https://www.appannie.com/en/about/.
2. Bandura, A. (1998). Health promotion from the perspective of social cognitive theory.

Psychology and Health, 13(4), 623–649. https://doi.org/10.1080/08870449808407422.
3. BinDhim, N. F., Freeman, B., & Trevena, L. (2015). Pro-smoking apps: Where, how and who

are most at risk. Tobacco Control, 24(2), 159–161. https://doi.org/10.1136/tobaccocontrol-
2013-051189.

4. Bragazzi, N. L., & Del Puente, G. (2014). A proposal for including nomophobia in the new
DSM-V. Psychology Research and Behavior Management, 7, 155–160. https://doi.org/10.
2147/prbm.s41386.

5. Bricker, J. B., Mull, K., Kientz, J. A., Vilardaga, R. M., Mercer, L. D., Akioka, K., et al.
(2014). Randomized, controlled pilot trial of a smartphone app for smoking cessation using
acceptance and commitment therapy. Drug and Alcohol Dependence, 143, 87–94. https://doi.
org/10.1016/j.drugalcdep.2014.07.006.

6. Clancy H (2016) Mobile insights firm App Annie adds new investor, director. Forbes. http://
fortune.com/2016/01/14/mobile-insights-app-annie-director-financing/.

7. Cohen, S. (2004). Social relationships and health. American Psychologist, 59(8), 676–684.
https://doi.org/10.1037/0003-066x.59.8.676.

8. Cugelman, B. (2013). Gamification: What it is and why it matters to digital health behavior
change developers. JMIR Serious Games, 1(1), e3. https://doi.org/10.2196/games.3139.

9. Dennison, L., Morrison, L., Conway, G., & Yardley, L. (2013). Opportunities and challenges
for smartphone applications in supporting health behavior change: Qualitative study. Journal
of Medical Internet Research, 15(4), e86. https://doi.org/10.2196/jmir.2583.

10. Donker, T., Petrie, K., Proudfoot, J., Clarke, J., Birch, M. R., & Christensen, H. (2013).
Smartphones for smarter delivery of mental health programs: A systematic review. Journal of
Medical Internet Research, 15(11), e247. https://doi.org/10.2196/jmir.2791.

11. Fjeldsoe, B. S., Marshall, A. L., & Miller, Y. D. (2009). Behavior change interventions
delivered by mobile telephone short-message service. American Journal of Preventive
Medicine, 36(2), 165–173. https://doi.org/10.1016/j.amepre.2008.09.040.

170 D. Bychkov and S. D. Young

https://www.appannie.com/en/about/
http://dx.doi.org/10.1080/08870449808407422
http://dx.doi.org/10.1136/tobaccocontrol-2013-051189
http://dx.doi.org/10.1136/tobaccocontrol-2013-051189
http://dx.doi.org/10.2147/prbm.s41386
http://dx.doi.org/10.2147/prbm.s41386
http://dx.doi.org/10.1016/j.drugalcdep.2014.07.006
http://dx.doi.org/10.1016/j.drugalcdep.2014.07.006
http://fortune.com/2016/01/14/mobile-insights-app-annie-director-financing/
http://fortune.com/2016/01/14/mobile-insights-app-annie-director-financing/
http://dx.doi.org/10.1037/0003-066x.59.8.676
http://dx.doi.org/10.2196/games.3139
http://dx.doi.org/10.2196/jmir.2583
http://dx.doi.org/10.2196/jmir.2791
http://dx.doi.org/10.1016/j.amepre.2008.09.040

12. King, A. L. S., Valença, A. M., Silva, A. C. O., Baczynski, T., Carvalho, M. R., & Nardi, A. E.
(2013). Nomophobia: Dependency on virtual environments or social phobia? Computers in
Human Behavior, 29(1), 140–144. https://doi.org/10.1016/j.chb.2012.07.025.

13. Kleinbaum, D.G., & Klein, M. (2010) Logistic Regression, Statistics for Biology and Health
(3rd ed.). Springer.

14. Kuhn, E., Greene, C., Hoffman, J., Nguyen, T., Wald, L., Schmidt, J., et al. (2014).
Preliminary evaluation of PTSD Coach, a smartphone app for post-traumatic stress symp-
toms. Military Medicine, 179(1), 12–18. https://doi.org/10.7205/milmed-d-13-00271.

15. Lanaj, K., Johnson, R. E., & Barnes, C. M. (2014). Beginning the workday yet already
depleted? Consequences of late-night smartphone use and sleep. Organizational Behavior
and Human Decision Processes, 124, 11–23. https://doi.org/10.1016/j.obhdp.2014.01.001.

16. Lewis, Z. H., Swartz, M. C., & Lyons, E. J. (2016). What’s the point? A review of reward
systems implemented in gamification interventions. Games for Health Journal, 5(2), 93–99.
https://doi.org/10.1089/g4h.2015.0078.

17. Lin, Y. H., Chang, L. R., Lee, Y. H., Tseng, H. W., Kuo, T. B., & Chen, S. H. (2014).
Development and validation of the smartphone addiction inventory (SPAI). PLoS One, 9(6),
e98312. https://doi.org/10.1371/journal.pone.0098312.

18. National Highway Transportation and Safety Administration (2015). Distracted driving.
https://www.nhtsa.gov/risky-driving/distracted-driving.

19. Roberts, D. J. A. (2015). Too much of a good thing: Are you addicted to your smartphone?
Austin: Sentia Publishing Company.

20. Rothberg, M. B., Arora, A., Hermann, J., Kleppel, R., St Marie, P., & Visintainer, P. (2010).
Phantom vibration syndrome among medical staff: A cross sectional survey. BMJ (Clinical
Research Ed.), 314, c6914. https://doi.org/10.1136/bmj.c6914.

21. Tate, D. F., Wing, R. R., & Winett, R. A. (2001). Using Internet technology to deliver a
behavioral weight loss program. JAMA, 285(9), 1172–1177. https://doi.org/10.1001/jama.
285.9.1172.

22. Toscos, T., Faber, A., An, S., & Gandhi, M. P. (2006). Chick clique: Persuasive technology to
motivate teenage girls to exercise. In: CHI ‘06 Extended Abstracts on Human Factors in
Computing Systems (pp. 1873–1878).

23. Umberson, D., Crosnoe, R., & Reczek, C. (2010). Social relationships and health behavior
across life course. Annual Review of Sociology, 36, 139–157. https://doi.org/10.1146/annurev-
soc-070308-120011.

24. Webb, T.L., Joseph, J., Yardley, L. & Michie, S. (2010). Using the Internet to promote health
behavior change: A systematic review and meta-analysis of the impact of theoretical basis, use
of behavior change techniques, and mode of delivery on efficacy. Journal of Medical Internet
Research (1), e4. https://doi.org/10.2196/jmir.1376.

25. Winestock, C., & Jeong, Y. K. (2014). An analysis of the smartphone dictionary app market.
Lexicography, 1(1), 109–119.

26. Young, S. D., Cumberland, W. G., Lee, S. J., Jaganath, D., Szekeres, G., & Coates, T. (2013).
social networking technologies as an emerging tool for HIV prevention: A cluster randomized
trial. Annals of Internal Medicine, 159(5), 318–324. https://doi.org/10.7326/0003-4819-159-
5-201309030-00005.

27. Young, S. D., Cumberland, W. G., Nianogo, R., Menacho, L. A., Galea, J. T., & Coates, T.
(2015). The HOPE social media intervention for global HIV prevention in Peru: A cluster
randomised controlled trial. Lancet HIV, 2(1), e27–e32. https://doi.org/10.1016/s2352-3018
(14)00006-x.

Facing Up to Nomophobia: A Systematic Review of Mobile Phone … 171

http://dx.doi.org/10.1016/j.chb.2012.07.025
http://dx.doi.org/10.7205/milmed-d-13-00271
http://dx.doi.org/10.1016/j.obhdp.2014.01.001
http://dx.doi.org/10.1089/g4h.2015.0078
http://dx.doi.org/10.1371/journal.pone.0098312
https://www.nhtsa.gov/risky-driving/distracted-driving
http://dx.doi.org/10.1136/bmj.c6914
http://dx.doi.org/10.1001/jama.285.9.1172
http://dx.doi.org/10.1001/jama.285.9.1172
http://dx.doi.org/10.1146/annurev-soc-070308-120011
http://dx.doi.org/10.1146/annurev-soc-070308-120011
http://dx.doi.org/10.2196/jmir.1376
http://dx.doi.org/10.7326/0003-4819-159-5-201309030-00005
http://dx.doi.org/10.7326/0003-4819-159-5-201309030-00005
http://dx.doi.org/10.1016/s2352-3018(14)00006-x
http://dx.doi.org/10.1016/s2352-3018(14)00006-x

A Fast DBSCAN Algorithm with Spark
Implementation

Dianwei Han, Ankit Agrawal, Wei-keng Liao and Alok Choudhary

Abstract DBSCAN is a well-known clustering algorithm which is based on
density and is able to identify arbitrary shaped clusters and eliminate noise data.
Parallelization of DBSCAN is a challenging work because there is an inherent
sequential data access order and based on MPI or OpenMP environments, there
exist the issues of lack of fault-tolerance and there is no guarantee that workload is
balanced. Moreover, programming with MPI requires data scientists to handle
communication between nodes which is a big challenge. We present a new parallel
DBSCAN algorithm using Spark. kd-tree technique is applied in our algorithm to
reduce search time. More specifically, a novel merge approach is used so that no
communication between executors is required while partial clusters are generated.
Appropriate and efficient data structures are carefully used in our study: Using
Queue to contain neighbors of the data point, and using Hashtable when checking
the status of and processing the data points. Also other advanced data structures
from Spark are applied to make our implementation more effective. We implement
the algorithm in Java and evaluate its scalability by using different number of

D. Han (✉) ⋅ A. Agrawal (✉) ⋅ W. Liao (✉) ⋅ A. Choudhary (✉)
EECS Department, Northwestern University, Evanston, IL 60208, USA
e-mail: dianweih@eecs.northwestern.edu

A. Agrawal
e-mail: ankitag@eecs.northwestern.edu

W. Liao
e-mail: wkliao@eecs.northwestern.edu

A. Choudhary
e-mail: choudhar@eecs.northwestern.edu

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_9

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_9&domain=pdf

processing cores. Our experiments demonstrate that the algorithm we propose
scales up very well. Using data sets containing up to 1 million high-dimensional
points, we show that our proposed algorithm achieves speedups up to 6 using 8
cores (10 k), 10 using 32 cores (100 k), and 137 using 512 cores (1 m). Another
experiment using 10 k data points is conducted and the result shows that the
algorithm with MapReduce achieves speedups to 1.3 using 2 cores, 2.0 using 4
cores, and 3.2 using 8 cores.

Keywords DBSCAN ⋅ Scalable data mining ⋅ Big data ⋅ Spark framework

1 Introduction

Clustering is a data mining approach that divides data into different categories that
are meaningful, useful, or both [20]. Cluster analysis has been successfully applied
to many fields: bioinformatics, machine learning, information retrieval, and statis-
tics [20]. Well-known algorithms include K-means [13], BIRCH [24], WaveCluster
[19], and DBSCAN [6]. Current clustering algorithms haven been categorized into
four types: partitioning based, hierarchy-based, grid-based, and density-based [6].
Density Based Spatial Clustering of Applications with Noise (DBSCAN) is a
density based clustering algorithm [6].

Parallel DBSCAN has been implemented with MPI and OpenMP [4, 7, 15, 25].
Generally, an MPI implementation can obtain better performance but it requires the
programmers to take care of implementation in detail, such as how to partition the
data, how to deal with communication, synchronization, file location, and workload
balancing. Besides parallelization with MPI, MapReduce-based approach is pre-
sented as well [7, 9, 14].

We propose a new distributed parallel algorithm with Spark that implements
DBSCAN. A master-slave based approach is as follows. The algorithm first reads
data from the Hadoop Distributed File System (HDFS) and forms Resilient Dis-
tributed Datasets (RDDs), transforming them into data points. Certainly, this pro-
cess is done in Spark driver. It then sends the RDDs into multiple executors. Within
each executor, partial clusters are generated and sent to driver at the end of foreach
statement. Each executor just performs its computation without communicating
with others. This way we avoid shuffle operations that are very expensive. So we
place some additional points (SEEDs: the new term we introduce in our paper) in
each partial cluster. After all the partial clusters are collected through shared
variable accumulator, the algorithm identifies the clusters that are supposed to be
merged by SEEDs. Merging is done in driver code too. In our new design and
implementation, we use the power of shared variables of Spark framework:

174 D. Han et al.

broadcast and accumulator. Also, in order to shorten the search time for points’
neighbors, we implement Java-based kd-tree [3] to reduce complexity from O(n2) to
O(nlogn). The experiments performed on a distributed-memory machine show that
the proposed algorithm can obtain scalable performance.

The organization of the paper is as follows: In Sect. 2, we briefly give an
overview of two frameworks based on big data: Map Reduce and Spark, and the
basic idea of DBSCAN algorithm. Our proposed DBSCAN algorithm is introduced
in Sect. 3. In Sect. 4, we present the parallel implementation with Spark. The
experiments and the results are presented in Sect. 5, followed by some concluding
remarks in Sect. 6.

2 Background

In this section, we first briefly review the basic idea of DBSCAN algorithm. And
then we introduce two distributed computation frameworks that are very powerful
and widely used in big data applications.

2.1 DBSCAN Algorithm

DBSCAN is a clustering algorithm proposed by Ester et al. [6]. And it has become
one of the most common clustering algorithms because it is capable of discovering
arbitrary shaped clusters and eliminating noise data [6]. The basic idea of this
algorithm is finding all the core points and forming the clusters by clustering core
points with all points (core or non-core) that are reachable from them. Essentially,
DBSCAN algorithm is based on three basic definitions: core points, directly
density-reachable, and density-reachable [25]. Given a data set D, of points.

eps-neighborhood of a point p is the neighborhood of p∈D within a radius eps.

Definition 1 A point p is a core point if it has neighbors within a given radius
(eps), and the number of neighbors is at least minpts (which is a threshold). In this
case, the number of neighbors is called density.

Definition 2 A point y is directly density-reachable from x if y is within eps-
neighborhood of x and x is a core point.

Definition 3 A point y is density-reachable from x if there is a chain of points p1,
p2,…, pn, with p1 = x, pn = y and pi + 1 is directly density-reachable from pi for
all 1 <= i < n, pi ∈ D. 

A Fast DBSCAN Algorithm with Spark Implementation 175

The pseudocode of the DBSCAN algorithm is given in Algorithm 1 [8]. The
algorithm starts with an arbitrary point p ∈ D and checks its eps-neighborhood
(Line 4). If the eps-neighborhood size is bigger than pre-defined number minpts, the
code generates a new cluster C. The algorithm then retrieves all density reachable
points from p in D, and add them to the cluster C (Line 8–20). Otherwise, if the eps-
neighborhood contains less than minpts points, then p is marked as noise (Line 6).
The computational complexity of Algorithm is O(n2) where n is the number of data
points. If we use spatial indexing, the complexity reduces to O(nlogn) [3].

2.2 Two Powerful Frameworks Based on Big Data:
MapReduce and Spark

In Hadoop version 1, MapReduce is the only data processing framework that is
available for distributed computation. But in Hadoop version 2, based on Yarn
(resource manager), MapReduce, Spark, and other data processing frameworks are

176 D. Han et al.

available. MapReduce and Spark may share the same HDFS, but it should be
pointed out that Spark jobs can be run with or without Yarn (Standalone mode).

(1) Map Reduce: In big data domain, MapReduce is a simple but powerful
framework which makes programmer easily implement parallel processing. It is
based on Hadoop Distributed File System (HDFS), which allows programmers
to focus mainly on the problem itself instead of the low level implementation
details. Figure 1 tells us about how this programming model works. MAP
workers read data from HDFS and process the data based on the business logic
and then write intermediate data to local disk for sorting and shuffling process.
It is also in the form of key-value pair. After a reduce worker is notified by
master, it uses remote procedure call to read data from local disk of MAP
workers, and then sorts data so that all occurrences of the same key are grouped
together. The output of reduce function will be appended to final output files
(generally HDFS).

Compared with the other distributed computation frame-work, MapReduce has
the following advantages:

• Extremely Scalable. It does not require the support from centralized
RAID-based SAN or NAS storage systems. Every node has its own local
hard-drives. The nodes are loosely coupled and connected with standard net-
work devices. So adding and removing nodes to a cluster becomes very easy and
convenient, and has no impact to running MapReduce jobs [17].

• Highly Parallel and Abstracted. Based on the frame-work’s principle, pro-
grammers do not have to take care of low level implementation details such as
message transferring between master and workers, file location, and workload
balancing. They only need focus on the problem itself. One of the major con-
tributions of MapReduce is that it supports parallelization automatically. The
programmers only need to implement map() method of Mapper class and reduce
() method of Reducer class and the framework will do the rest. However, for

Split

Split

Split

Input files

read
Worker

Worker

Worker

Map phase Intermediate
Data

write

Output filesReduce
phase

Worker

remote read

local write
Worker

Output
file

Fig. 1 An overview of data
flow in MapReduce

A Fast DBSCAN Algorithm with Spark Implementation 177

complicated job, the programmers still need to figure out the number of Mappers
and how to split the input data.  

• Highly Reliable and Fault-tolerant. From the data source perspective, HDFS
uses the replication strategy to handle data source reliability. A single process
failure in MPI will cause the whole job to fail. In MapReduce framework,
another task will be automatically launched if one task fails and the job will
continue running. This feature is especially useful and important for
long-running jobs.  

(2) Spark: At a high level, a running Spark application has one driver process
talking to many executor processes, sending them work to do and collecting the
results of that work. The first thing a Spark program must do is to create a
SparkContext object in driver code, which tells Spark how to access a cluster.
Then it reads one file or multiple files in HDFS and processes them as Dis-
tributed Datasets (RDD), which is a collection of elements partitioned across
the nodes and can be operated on in parallel. RDD is the main abstraction Spark
provides, and RDDs can be created from a file in the Hadoop file system or by
transforming other RDDs. We want to point out that Spark can use not only its
own APIs to read data but also Hadoop API to read data (newAPIHadoopFile
method in this case). TaskScheduler launches tasks to executors via Resource
manager, which in this case, is YARN. After executors complete their tasks,
they will send the results back to the driver (see Fig. 2) (if it is the final RDD of
an action such as count()) [12], or write output to external storage. Spark
framework captures all the important features that MapReduce have. In addi-
tion, it has the following new features.

• In-memory computations. In Spark, Resilient Distributed Datasets (RDDs)
are the first abstraction that allows programmers to perform in-memory
computations on large clusters. RDDs are motivated by two types of
applications that MapReduce handle inefficiently: iterative algorithms and
interactive data mining [22]. Figure 1 depicts that MapReduce frameworks
does not fit iterative algorithms. In order to use MapReduce model to tackle
iterative algorithms, many rounds of map-reduce executions will be per-
formed which is not very efficient because map’s intermediate results should
be written to local disks and then they are remotely read to reduce workers,
and disk I/O operations are very expensive in this case. In Spark, the benefit
of keeping everything in memory is the ability to perform iterative com-
putations at blazing fast speeds.

178 D. Han et al.

• Supporting Streaming data, complex analytics, and real time analysis.
MapReduce offers a very simple but powerful programming model that are
efficient for data-intensive algorithms [11]. But we can not use MapReduce
to perform real time analysis and implementing complex graph based
algorithms in an efficient manner.  

• Fast fault recovery. In MapReduce old version, if the JobTracker does not
receive any heartbeat from a TaskTracker for a specified period of time, the
JobTracker understands that the worker associated to that TaskTracker has
failed. When this situation happens, the JobTracker needs to reschedule all
pending and in-progress tasks to another TaskTracker, because the inter-
mediate data belonging to the failed TaskTracker may not be available
anymore [21]. After hadoop-0.21, checkpointing was added where Job-
Tracker records its progress in a file. When a JobTracker starts, it can restart
work from where it left off. MapReduce uses replication strategy to handle
fault recovery. On the other hand, Spark reconstructs RDDs via lineage to
handle this issue. Compared to the replication method, which consumes
more memory, reconstruction of RDDs takes shorter time [23].

  Even though spark is very efficient, offers parallelization automatically, we still
need to put much effort to avoid shuffle operation. So in our implementation of
DBSCAN we avoid all-to-all communication.

SparkContext

Spark Driver

Spark Executor

Spark Executor

Spark Executor

DAG
Scheduler

TaskSet

Task
Scheduler

Task

Result

Result

Result

Task

Task

Fig. 2 An overview of data flow in spark

A Fast DBSCAN Algorithm with Spark Implementation 179

3 Novel DBSCAN with Spark Implementation

To our best knowledge, there are many DBSCAN implementations with Hadoop’s
MapReduce [9, 14, 17]. But very few people implement DBSCAN with Spark
because the programmers need to design a new algorithm to avoid shuffle opera-
tions to make their parallelization more efficient. For example, after one data point’s
state is updated in one executor we need to spread this updating across the cluster.
So this will introduce shuffle operations which are very expensive in Spark. Let us
take a look at the pseudocode of our new DBSCAN’s algorithm.

3.1 DBSCAN Algorithm with Spark

The pseudocode of the DBSCAN algorithm with Spark implementation is given in
Algorithm 2. The algorithm starts with the code in Spark driver, which reads data,
generates RDDs and transforms them into appropriate RDDs (Line 1, Line 2, and
Line 3). The code in Spark executor is in Lines 4 through 32. After comparing with
Algorithm 1, we can see that two places are new: Line 15 and Lines 29 through 31.
We assume each executor only deals with the points that belong to it. Otherwise,
there would be a lot of overlap of computation between different executors. Placing
SEEDs is in Line 15. The detailed description regarding it will be given in next
Section. The partial clusters are sent back to driver right before the executor finishes
its task by accumulator, which also will be explained in detail in the next Section.
This implementation is meant for ensuring that merging process will not be started
until all the executors finish their tasks. Lines 33 through 34 perform merging
partial clusters and produce the final global clusters (see Algorithm 4). So the code
[1–3] is run in Driver mode, code [4–32] is run in Executor mode, and code [33–34]
is run in Driver mode.

180 D. Han et al.

3.2 Two Important Data Structures Affecting Performance

Using Java as the programming language in our implementation, we need to
consider using the appropriate data structures for efficiency. Here, two data struc-
tures Hashtable and Queue are discussed.

A Fast DBSCAN Algorithm with Spark Implementation 181

If we take a look at Line 14, this operation should be put(key, value), which is
usually O(1 + n/K) where K is the hash table size. If K is large enough, the result is
effectively O(1). Method containsKey(key) is performed in Line 5, Line 7, and Line
20. Again, under normal circumstances, it is O(1). The add operations on Queue are
performed in Line 7 and Line 20, and remove operation on Queue is performed in
Line 13. The number of add operations should be the same as the number of remove
operations according to the condition in Line 12 (while loop will not terminate until
it is empty). Among LinkedList, ArrayList, and Vector, the best performance on
both add and remove operations is obtained using LinkedList. In our code, we thus
use LinkedList to implement Queue.

4 Novel Techniques in Parallel DBSCAN with Spark

In this Section, we will present the implementation details of our parallel DBSCAN
algorithm with Spark. The pseudocode of algorithms is given in the first part. Then
we analyze the time complexity of the whole algorithm.

182 D. Han et al.

4.1 New Clustering Algorithm Without Communication
Between Executors

We need to update data points’ state by map function if we apply the traditional
method, and then propagate this update to other executors. However, that imple-
mentation will introduce a shuffle operation in order to make this update visible by
other executors. Here, we propose a novel clustering algorithm to get around the
shuffle operation. After data points have been partitioned to each executor, we just
let each executor compute the partial clusters locally for data points that are
assigned to this executor. The merging process is deferred until all the partial
clusters have been sent back to the driver. This new design, however, introduces
new challenges: how to create the partial clusters in executors so that they can be
merged in the driver? And how to identify those partial clusters which are supposed
to be merged into one cluster? The pseudocode of algorithms and an example are
given as follows.

Algorithm 3 gives the basic idea of our design. In order to avoid overlap of
computation of partial clusters, we would let individual executors only deal with the
points that belong to this partition so that the executors do not have to communicate
to spread points’ updated states across the clusters. However, we could not merge
the partial clusters into the global clusters after all the partial clusters are collected
in driver because there are no global states of these partial clusters. Therefore, we
come up with a new idea, using SEEDs, which are points that do not belong to the
current partition. And these SEEDs serve as something like markers so that we can
easily identify the outer master partial clusters by using them and merge them into a
bigger cluster. The SEEDs are not related to the locations. If the current point’s
index is beyond the range of current partition it is taken as a SEED. So the main
goal on executor side is to place SEEDs, and on driver side, we find out SEEDs and
identify master partial clusters and merge them.

Before moving on to the algorithm of digging out SEEDs from partial clusters in
Spark driver, we would like to use an example to display how to identify SEEDs
and search for master partial clusters. Figure 3a shows that there are 2 partial
clusters from 2 partitions. SEEDs are those points whose indexes are beyond the
partition’s range. For example, for C[0], its range is from 0 to 2499. So the point
whose indexe is greater than 2499 is 3000. Then the algorithm will identify the
master partial clusters. Obviously, for 3000, the master partial cluster is C[5]
because it contains 3000 and 3000 is a regular element in this cluster. When we
merge two partial clusters we need to remove duplicate elements. Figure 3b show
the resulting cluster C[0].

A Fast DBSCAN Algorithm with Spark Implementation 183

In Spark driver, Algorithm 4 shows how to use SEEDs to merge partial clusters
into global clusters. First of all, it identifies the SEEDs by comparing elements with
its range. In general, the number of SEEDs should be equal to or greater than the
number of partitions. So we obtain an array of seeds (see Line 3). Lines from 4
through 8 form a for loop, which finds the master cluster that contains the seed as a
regular element, then merges the two clusters, and finally, updates the status of
master cluster. When the for loop terminates the status of current cluster is updated
from ‘unfinished’ to ‘finished’.

4.2 Time Complexity Analysis

We define some related notations as follows:

n the number of data points; 
p the number of partitions;

(a)

(b)

c[0] 0 5 6 3000 11 223 2300 23 45 1000

Number of points: 5000 Number of partitions: 2

Range: 0 2499 Status: unfinished

c[5] 3000 2501 4200 2800 2600 3401 3678

Range: 2500 4999 Status: unfinished

c[0] 0 5 6 3000 11 223 2300 23 45 1000

 2501 4200 2800 2600 3401 3678

Number of points: 5000 Number of partitions: 2

Range: 0 4999 Status: finished

Fig. 3 An example showing
the proposed merging cluster
algorithm at different stages.
a There are two partitions and
two partial clusters. Integers
in squares are SEEDs. b After
C[0] merges C[5], C[0] status
is updated as “finished” from
“unfinished”

184 D. Han et al.

m the number of partial clusters;
K the maximum size of partial clusters;
tstraggling the average wait time for framework to allow all stragglers to finish. 
Ts the average time complexity of the sequential algorithm;
Tp the average time complexity of the parallel algorithm;
Save the average speed-up.

Basically, there are three parts in our algorithm.
In the first part, the driver reads data points from HDFS and transforms the data

points into appropriate form that can be processed in executors and constructs the
kd-tree. The time for this phase includes reading file, transforming RDDs, and
building kd-tree. We assume we use Δ for the first two items. For kd-tree con-
struction, we use O(nlogn) [10]. So summing them up, we use Δ + O(n � logn).

In the second part, the local partial clusters are generated in executors. Basically,
in the best case, searching a point from a balanced kd-tree takes O(logn) time. In the
worst case, the time could be n. Some researchers have reported that (near neigh-
bor) range search’s upper bound is O(n1 − 1/d + k) [10]. So we use V to represent
the search time, which is between logn and n1 − 1/d + k; If we use parallel pro-
cessing, we need to add the time for SEEDs placement part. Let us assume an
additional O(m � V) time is added. So in parallel processing, we would spend O((n/
p � V) + (m � V)) + tstraggling time in our case.

In the last part, after all the partial clusters have been sent back from executors to
the driver, the driver merges them and produces the global clusters. Based on our
Algorithm 4, the search operations takes O(n) time at most if we check each
element in the partial clusters. For merging phase, it takes Km times which is less
than n. So we use O(n + Km) time.

To sum up:  Ts =OðΔ+ n*logn+ n*V + n+KmÞ.

Tp =OðΔ+ n*logn+ n ̸pð Þ*V +m*V + tstraggling + n+ KmÞ

Save= Ts ̸Tp.

5 Experiments and Analysis

A series of experimental tests are conducted to evaluate the effectiveness and
efficiency of our DBSCAN algorithm with Spark and MapReduce’s implementa-
tions. We need to note that all parallel executions generate the same result as the
serial execution. The dimension of data is relevant to the computational cost of
querying the kd-tree. We do not perform tests based on varying number of attributes
because we focus on Spark implementation instead of kd-tree implementation in
our work. The tests are done on different sizes of data points with multiple
dimensions. Our experimental results have been reported in terms of the CPU times.

A Fast DBSCAN Algorithm with Spark Implementation 185

After comparing with the results from Patwary et al. [15], we find that our results
match them so we do not list the accuracy in our paper.

5.1 Experimental Setup

To perform the experiment for our DBSCAN’s parallel implementation with Spark,
we use Edison (operated by Lawrence Berkeley National Laboratory and the
Department of Energy Office of Science), a Cray XC30 distributed memory parallel
computer. It has 5576 compute nodes, 133,824 cores in total. Each node has two
12-core Intel “Ivy Bridge” processors at 2.4 GHz and 64 GB DDR3 1866 MHz
memory. Each core has its own L1 and L2 caches, with 64 KB (32 KB instruction
cache, 32 KB data) and 256 KB, respectively; A 30 MB L3 cache shared between
12 cores on the “Ivy Bridge” processor [5]. The algorithms have been implemented
in Java (1.7) using the Spark (1.5) and Hadoop (2.4).

Our testbed consists of 5 datasets, which are divided two groups: (c10 k,
c100 k), and (r10 k, r100 k, r1 m). Both groups of datasets (synthetic-cluster) have
been generated synthetically using the IBM synthetic data generator [1, 16].
Table 1 lists the properties of our test data.

5.2 Comparison of the Time Taken by MapReduce
and Spark

As we are not able to get source code from the other research teams [7, 9, 14], we
have implemented our own DBSCAN with MapReduce approach. From Fig. 4, it is
seen that 9–16 times faster performance is obtained from Spark than MapReduce.
Due to the length of time taken by MapReduce, we have not conducted further tests
on medium scale and large scale data sets.

Table 1 Properties of test data

Name Points d eps Minpts

c10 k 10,000 10 25 5
c100 k 102,400 10 25 5
r10 k 10,000 10 25 5
r100 k 102,400 10 25 5
r1 m 1,024,000 10 25 5

186 D. Han et al.

5.3 Comparison of the Time Spent in Driver
and in Executors

In this part, we discuss the time taken in our program. Figure 5a–d shows the time
taken between executors and driver according to our experiments. Based on the
Algorithm 2, we expect to see more time will be spent in driver with the number of
partial clusters increasing. Let us take a look at Fig. 5a first. When we use more
cores (1–8) to run our program, we see the number of partial clusters becomes
bigger (10–392), but the time spent in driver does not change very much. That is
because the data set is too small. Take a look at Fig. 5c, d, their patterns are exactly
the same. When using more cores (4–32), more partial clusters are produced (from
720 to 9279), and the time spent in driver gradually becomes more. This is con-
sistent with our analysis on the time complexity that we conduct in Sect. 4, where
when the number of partial clusters m increases, the time n + Km becomes large as
well. Figure 5b follows the complexity analysis as well.

5.4 Scalability of Parallel DBSCAN with Spark

Before we discuss the scalability of our algorithm, we need to mention that for large
data sets (>=1 million data points), we use kd-tree with pruning branches to shorten
search time.

The speedup obtained by our DBSCAN algorithm with Spark is given in Fig. 6.
The left column in Fig. 6 shows the speedup considering only the computation in
executors while the right column shows the results considering the computation in

Fig. 4 Time used by
MapReduce and spark.
Number of points: 10,000,
dimension: 10, eps, 25.0,
minPnts: 5

A Fast DBSCAN Algorithm with Spark Implementation 187

executors and driver. It is obvious that the local computation in executors scales
better than the whole computation since their computations are independent. For
10 k data sets, we obtain speedup up to 1.9, 3.6, and 6.2 respectively using 2, 4, and
8 cores. For 100 k data sets, speedup up to 3.3, 6.0, 8.8, and 10.2 respectively using

(a) r10k. (b) r1m.

 (c) c100k. (d) r100k.

Time unit: seconds

1 2 4 8

10 20 78

392

55 58
53 52

178

91
78

28

T
im

e
sp

en
t i

n
ex

ec
ut

or
s

T
im

e
sp

en
t i

n
dr

iv
er

200

100

0

200

100

0

N
um

be
r

of
pa

rt
ia

l c
lu

st
er

s

0
100
200
300
400

Cores

0

4000

Cores

Time Unit: min

Time Unit: sec

64 128 256 512

5123

2764

1875 1480

129 320

800

850 1803

3750

7532

T
im

e
sp

en
t i

n
ex

ec
ut

or
s

T
im

e
sp

en
t i

n
dr

iv
er

pa

rt
ia

l c
lu

st
er

s
N

um
be

r
of

8000

0

2000

1000

0

10000
8000
6000
4000
2000

4000

Time unit: seconds

Cores

T
im

e
sp

en
t i

n
ex

ec
ut

or
s

T
im

e
sp

en
t i

n
dr

iv
er

N

um
be

r
of

pa
rt

ia
l c

lu
st

er
s

7088

3902

2689 2478

8000

0

2000

1000

0

10000
8000
6000
4000
2000

0

4 8 16 32

720 2226

4649

9279

104 121
249

1745

4000

Time unit: seconds

Cores
4 8 16 32

607 2225

6040

9260

64 91

1786

7012

3886

2887 2480

8000

0

2000

1000

0

T
im

e
sp

en
t i

n
ex

ec
ut

or
s

T
im

e
sp

en
t i

n
dr

iv
er

10000
8000
6000
4000
2000

0N
um

be
r

of
pa

rt
ia

l c
lu

st
er

s

776

303

Fig. 5 The time distribution between driver and executors

188 D. Han et al.

(a) Computation in executor. (10k points) (b) Computation in executor and driver.
(10k points)

(c) Computation in executor. (100k points) (d) Computation in executor and driver.
(100k points)

(e) Computation in executor. (1m points) (f) Computation in executor and driver.
(1m points)

0.00

O

O

128 256 512

64.00

128.00

256.00
r1m

O

O

O

64

512.00

Sp
ee

du
p

Cores

Fig. 6 Speedup of DBSCAN algorithm with spark. Left side: time spent in executor. Right side:
time spent in driver and executor

A Fast DBSCAN Algorithm with Spark Implementation 189

4, 8, 16, and 32 cores. For 1 m data set, speedup up to 58, 83, 110, and 137
respectively using 64, 128, 256, and 512 cores.

Take a look at right column, Fig. 6b, d, f show the speedup when total time is
considered. The curves seem more flat compared with the ones in left column. For
10 k data sets, because the total time is less, the merging time is not significant. For
100 k data sets, more partial clusters are collected in driver. When using 4, 8, and
16 cores, the local computation time still dominates the total time, so speedup does
not change very much. When using 32 cores, 9279 partial clusters are generated in
executors and collected in driver. So the speedup drops to 5.6 from 10.2.

For r1 m, we use pruning branches technique, and thus the neighbor size of each
point is decreased. Also we filter out those partial clusters whose size is too small,
and their removal does not impact the accuracy significantly. Therefore, the
speedup of total time does not change a lot compared with local computation.

6 Conclusions

DBSCAN algorithm has been very powerful and popular because it is able to
identify arbitrary shaped clusters as well as handle noisy data. However, paral-
lelization of DBSCAN based on MPI and OpenMP suffers from lack of
fault-tolerance. Moreover, in order to implement parallelization with MPI or
OpenMP, data scientists need to take care of implementation in detail, such as
handling communication, dealing with synchronization, and so forth, which can
pose a challenge for many users. In this paper, we proposed a new Paral-
lel DBSCAN algorithm with Spark, which avoids the communication between
executors and thus leads to a better scalable performance. The results of these
experiments demonstrate that our new DBSCAN algorithm with Spark is scalable
and outperforms the implementation based on MapReduce by a factor of more than
10 in terms of efficiency. In the future, we would try to apply partitioning strategy
with Spark implementation and try to use larger datasets in our study.

Acknowledgements This work is supported in part by the following grants: NSF awards
CCF-1409601, IIS-1343639, and CCF-1029166; DOE awards DESC0007456 and
DE-SC0014330; AFOSR award FA9550-12-1-0458; NIST award 70NANB14H012. This research
used Edison Cray XC30 computer of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

190 D. Han et al.

References

1. Agrawal, R., & Srikant, R. (1994). Quest synthetic data generator, IBM Almaden Research
Center.

2. Beckmann, N., et al. (1990). The r*-tree: An efficient and robust access method for points and
rectangles. In: Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data (Vol. 19, no. 2, pp. 323–331).

3. Bentley, J. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9), 509–517.

4. Brecheisen, S., et al. (2006). Parallel density-based clustering of complex objects. Advances in
Knowledge Discovery and Data Mining, pp. 179–188.

5. DOE Office of Science (2015, September 17). Edison Configuration (Online). https://www.
nersc.gov/users/computational-systems/edison/configuration/.

6. Ester, M., et al. (1996). A density-based algorithm for discovering clusters in large spatial
databases with noise. In: Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining (Vol. 1996, pp. 226–231). AAAI Press.

7. Fu, Y., et al. (2011). Research on parallel DBSCAN algorithm design based on mapreduce.
Advanced Materials Research 301, 1133–1138.

8. Han, J., et al. (2011). Data mining: Concepts and Techniques. Morgan Kaufmann.
9. He, Y., et al. (2014). MR-DBSCAN: A scalable mapreduce-based DBSCAN algorithm for

heavily skewed data. Frontiers of Computer Science, 8(1), 83–99.
10. Kakde, H. M. (2005, August 25). Range Searching using Kd Tree (Online). http://www.cs.

utah.edu/lifeifei/cs6931/kdtree.pdf.
11. Kang, S. J., et al. (2015). Performance comparison of OpenMP, MPI, and MapReduce in

practical problems. Advances in Multimedia 2015.
12. Karau, H., et al. (2015). Learning Spark: Lightning-fast Data Analysis. O’Reilly Media.
13. MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate

observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and
Probability (Vol. 1, pp. 281–297). USA.

14. Noticewala, M., & Vaghela, D. (2014). MR-IDBSCAN: Efficient parallel incremental
DBSCAN algorithm using mapreduce. International Journal of Computer Applications 93(4),
13–17.

15. Patwary, M. M. A., et al. (2012). A new scalable parallel DBSCAN algorithm using the
disjoint-set data structure. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC 2012, pp. 62:1–62:11.
IEEE Computer Society Press.

16. Pisharath, J., et al. (2010). NU-MineBench 3.0. Technical Report CUCIS-2005-08-01,
Northwestern University (Technical Report).

17. Sakr, S., & Gaber, M. M. (2014). Large Scale and Big Data: Processing and Management.
CRC Press.

18. Spark, A. (2015). Spark Programming Guide (Online). http://spark.apache.org/docs/latest/
programming-guide.html.

19. Sheikholeslami, G., et al. (2000). WaveCluster: A wavelet based clustering approach for
spatial data in very large databases. The VLDB Journal, 8(3), 289–304.

20. Tan, P., et al. (2005). Introduction to Data Mining. Pearson.
21. White, T. (2011). Hadoop: The Definitive Guide. O’Reilly Media.
22. Zaharia, M., et al. (2012) Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation (pp. 2–2). USENIX Association.

A Fast DBSCAN Algorithm with Spark Implementation 191

https://www.nersc.gov/users/computational-systems/edison/configuration/
https://www.nersc.gov/users/computational-systems/edison/configuration/
http://www.cs.utah.edu/lifeifei/cs6931/kdtree.pdf
http://www.cs.utah.edu/lifeifei/cs6931/kdtree.pdf
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html

23. Zaharia, M. (2014). An Architecture for Fast and General Data Processing on Large
Clusters. Technical Report UCB/EECS-2014-12, University of California, Berkeley (Tech-
nical Report).

24. Zhang, T., et al. (1996). BIRCH: An efficient data clustering method for very large databases.
In ACM SIGMOD Record (Vol. 25, Issue. 2, pp. 103–114). ACM.

25. Zhou, et al. (2000). Approaches for scaling DBSCAN algorithm to large spatial databases.
Journal of Computer Science and Technology, 15(6), 509–526.

192 D. Han et al.

Understanding How Big Data Leads
to Social Networking Vulnerability

Romany F. Mansour

Abstract Although the term “Big Data” is often used to refer to large datasets
generated by science and engineering or business analytics efforts, increasingly it is
used to refer to social networking websites and the enormous quantities of personal
information, posts, and networking activities contained therein. The quantity and
sensitive nature of this information constitutes both a fascinating means of inferring
sociological parameters and a grave risk for security of privacy. The present study
aimed to find evidence in the literature that malware has already adapted, to a
significant degree, to this specific form of Big Data. Evidence of the potential for
abuse of personal information was found: predictive models for personal traits of
Facebook users are alarmingly effective with only a minimal depth of information,
“Likes”. It is likely that more complex forms of information (e.g. posts, photos,
connections, statuses) could lead to an unprecedented level of intrusiveness and
familiarity with sensitive personal information. Support for the view that this
potential for abuse of private information is being exploited was found in research
describing the rapid adaptation of malware to social networking sites, for the
purposes of social engineering and involuntary surrendering of personal
information.

1 Introduction

Exactly how much can be known from a user’s online social networking profile or
profiles? These days, more and more people are spending significant portions of
time every day on social networking. In 2011, the worldwide average for Facebook
was 40 min for 800 million users, according to Los Angeles Times (2011). In fact,
the sheer quantity of social interaction now occurring over social networking is
such that a qualitative shift is taking place in our globalized society. This shift is

R. F. Mansour (✉)
Faculty of Science, Department of Mathematics, New Valley,
Assiut University, Asyut, Egypt
e-mail: romanyf@aun.edu.eg

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_10

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_10&domain=pdf

towards a replacement, in many ways, of in-person social interaction with inter-
action over social networking [1]. For example, social rituals or rites such as
deciding whether a person would be suitable for dating now often occur first over
Facebook or other social networking sites. There is a rise in the studies in social
networking through its development, its effect to the global economy and the
human psychology behind the use of these social networks [2]. Employers are also
likely to screen prospective employees through an examination of their social
networking profiles, especially Facebook and LinkedIn. The iniquitousness of
social networking websites makes them immense repositories of personal infor-
mation, carrying grave risks for abuse of privacy at the hands of malware. It is
important that malware that depends on such Big Data techniques to perform social
engineering and other unethical or socially compromising activities be more fully
identified, characterized, and ultimately addressed.

Objectives of the study

I. To find out how much personal information can be obtained from the social
networking sites.

II. To find out the privacy risks associated with personal information on social
networking sites.

Significance of the study

Understanding social networking is an important aspect for users. This study will
help the users identify the risks that are associated with the exposure of their
personal information and how well they can mitigate these risks. Maintaining
privacy of the users in the social networks is a necessary agenda for the users of the
social networks.

2 Methods

The literature was examined for two separate lines of evidence related to the risk of
dire loss of privacy as a result of Big Data—based mining of social networking
website information. First, literature dealing with the theoretical potential for
inferring personal details of users of social networking websites was searched for.
Searches were performed on Google Scholar and Web of Science, using the terms
“social networking”, “social engineering”, “big data”, and “predictive models”.

The second line of literature research aimed to discover evidence the malware is
already adapting to exploit the potential of social networking websites and
degrading privacy of users. Again, Google Scholar and Web of Science were used.
However, in this case, the search terms were extended to include “malware”,
“phishing”, and “hacking”.

For both lines in literature research and inquiry, only articles from the last
5 years (2010–2015) were considered.

194 R. F. Mansour

3 Results

3.1 Potential of Big Data Techniques for the Inference
of Sensitive Personal Information

The study by [3] used six different features of a sizeable sample of 180,000
Facebook users’ profiles to predict personality traits. The personality trait mea-
surement method used was the standard Five Factor Model, which measures the
level of the following personality traits: Extraversion, Neuroticism, Agreeableness,
Openness, and Conscientiousness. The six features used by [3], summarized in
Table 1, are numbers of: Facebook friends, associations with groups, Facebook
“likes”, photos uploaded by user, status updates by users, and times others “tagged”
user in photos. The 180,000 volunteers who provided information from their
facebook profiles also completed the Five Factor Model personality test. Therefore,
it was possible to compare predictions from the Facebook model to objective results
from the Five Factor Model. Using multiple regression, the authors found that
predictions from the Facebook model could be generated that were very accurate,
assuming that the results from the Five Factor Model did not incorporate any
misrepresentations of personality. These findings supported findings from an earlier
work that social networking profiles do not present an idealized or skewed version
of a user’s persona, but rather a realistic and fairly objective summary [4]. The [3]
study did find, however, that the traits of “Agreeableness” and “Openness” were
significantly (p < 0.05) less accurately predicted than were the other three traits.
A somewhat later, but similar, study reported the ability to predict personality traits
using a natural-language parsing model to automatically analyze individuals’ sta-
tuses [5]. This model was trained on a corpus of over 700 essays that had been
manually curated and assigned labels with the appropriate amounts of the five
favors (Openness, Agreeableness, Extraversion, Neuroticism, and Conscientious-
ness) assigned. This study corroborated the findings of the [3] study that personality
traits could be accurately inferred.

Perhaps the most recent transformative research on the subject of inferring
personal details from facebook or other social networking information was reported
by [6]. This group took a sample of 58,000 volunteers who had made part of their
Facebook information available (Facebook ‘Likes”). The authors were able to show
that a list of a person’s likes, which are highly visible as they are generally

Table 1 Features used by [3]
to predict Facebook user
personality traits (according
to Five Factor Model)

Feature Details

Friends Number of Facebook friends
Groups Number of associations with groups
Likes Number of Facebook “likes”
Photos Number of photos uploaded by user
Statuses Number of status updates by user
Tags Number of times others “tagged” user in photos

Understanding How Big Data Leads to Social … 195

publically available, can be used to predict certain demographic and personal pieces
of information with great accuracy. The categories of personal information that
were predicted were diverse, but among those that could be predicted with high
accuracy were sexual orientation, ethnicity, religion, political orientation, person-
ality, IQ, drug use and various other pieces of personal and family information. The
most accurately predicted demographic and personal factors were sexual orientation
in men (88%), African American versus Caucasian American (95%), and political
orientation (Democrat or Republican) (85%). Thus, a large amount of personal
information of great relevance to potential employers can be predicted from an
individual’s collection of “Likes” on Facebook [4, 7], argue that such information
on the web can be used in carrying bout advertisements targeting a specific group of
people. Social networks can provide useful information about the users that can be
useful to the marketers in laying down their marketing strategies.

Jernigan and Mistree [8], carried out a study among MIT students based on the
hypothesis that the number of an individual’s Facebook friends can be used to
determine the sexual orientation group of the user. A thorough analysis was carried
out on the students who used the MIT browsers. The study revealed that the number
of friends that an individual has can be used to predict the sex orientation of the
user. For instance is a user has more homosexual friends then the likeliness that the
individual is homosexual is very high. The findings are summarized in the Table 2.

It has also been found that people’s social strategies, and therefore possibly even
the underlying social motivations, can be inferred from a careful analysis of
Facebook and social networking patterns. For example, through an analysis of the
evolution of Facebook connections over time, [9] were able to differentiate
non-social capital seeking from social capital seeking friends. The researchers
developed a predictive model based on the patterns of connectivity over time, and
found that these patterns only differed significantly from normal when an individual
was making connections with the intentional goal of seeking social capital. For

Table 2 Percentage friends per sex orientation group

Sex orientation group Percentage friends per group
Heterosexual
(%)

Bisexual (%) Homosexual
(%)

Heterosexual

Female 19.0 22.4 0.7 0.5 0.4 0.8
Male 13.9 28.3 0.5 0.4 0.3 0.7
Bisexual

Female 15.5 20.7 1.4 1.1 0.3 1.2
Male 12.6 22.3 0.8 0.6 0.3 1.9
Homosexual

Female 18.0 23.6 0.9 0.7 0.2 0.8
Male 13.1 21.4 1.1 1.1 0.4 4.6

Retrieved from: [8]

196 R. F. Mansour

example, if an individual has recently been introduced to a new group, he or she is
likely to first connect with a central hub in the Facebook environment for the group
of people, and then rapidly add connections (which then become mutual connec-
tions between the individual and the central hub). This central hub is often someone
in a position of power or privilege. Not only can analysis of a person’s friend
connection patterns reveal social intent, but it can reveal who a person’s real friends
are more likely to be, and who a person has “friended” merely as acquaintances. In
a reversal of the predictive methodology, [10] used measured traits of personality to
predict Facebook usage. Specifically, the researchers were able to find that certain
personality traits (neuroticism foremost) were strong predictors of wall posting
“regret”, or the tendency to remove a posting on a user’s own, or a friend’s wall.
Hughes et al. reviewed work done to create predictors with data from Facebook
versus from Twitter, finding the two sites to be very similar overall.

Ross et al. [1], carried out a similar study on how personality traits and com-
petency influenced the way in which university students utilized Facebook for
social purposes and came up with different results centrally to the ones discussed
above. The research utilized 97 students from the Southwestern Ontario as the
respondents, in which 85 were women and 25 were men. A 28 item questionnaire
was used as the study tool. The authors found out that some personality charac-
teristics influenced the Facebook use but their level on the impact of Facebook use
differed greatly. The students who scored highly in the extraversion characteristics
belonged to more Facebook groups but had very few friends. The reason behind
this is that some of the users prefer instant contact with the friends a feature which
is not enabled with the Facebook. Therefore they choose not to use Facebook as
their primary source of interaction. Those high in the neuroticism character pre-
ferred their walls as compared to those low in the same personality as they preferred
photos. Those who preferred wall posting are associated with the ability to think out
well before positing. Those who post photos are exposed to privacy intrusion as
such photos contain some personal information such as place where the photo was
posted from. Openness and experience in utilization of Facebook was associated
with the ability to understand on how to use the several elements if Facebook, how
to comment and how to use other Facebook feature. However more agreeable
individuals contained lesser online contacts, also there was no significant rela-
tionship between conscientiousness with the utilization of Facebook.

In their study [11] carried out a comparison between the social culture of
interaction between the two social virtual world of China, Uworld and HiPiHi.
Unlike Uworld, HiPiHi makes the use of the social networking to promote its
business products. This has become another strategy for promoting business
activities through the virtual games online. On the other hand Uworld provides
entertainment games which are in different forums that are not related to businesses.
In these forums. In the Uworld the users can make and chat with friends in the
virtual room and also playing games. This makes it possible to create more friends
in the Uworld than in the HiPiHi.

In summary, it appears that there is currently a surprising amount of information
that can be inferred from a user’s social networking profile. As emphasized by [12],

Understanding How Big Data Leads to Social … 197

people social agendas could be revealed. Indeed, in some cases, it seems possible
that models based on Facebook “Likes”, for instance, might be able to correctly
make predictions that an individual himself would never have known. This is
possible thanks to the vast sample size available (nearly a billion users worldwide,
just for Facebook), as well as the richness, standardization, and quantity of infor-
mation that is routinely deposited on Facebook by users. One cannot help but
speculate that this diversity and potency of information could be used to intelli-
gently craft tools and traps to manipulate users of social networking websites, or
indeed, other websites (after saving information from the users’ profiles).

3.2 Social Networking Sites and Malware Risk

Social engineering occurs perhaps most directly on websites where malware and
phishing programs are able to induce internet browsers and users into places where
security is less available or effective. Quite often, bright-colored ads or links arti-
ficially placed high in the results from search engines lead users stray into areas
where their ability to detect malware is reduced [13], as a result of a weaker
firewall, less visible pop-ups, or the leverage of anti-anti-malware tools.

Tracking the behavior and attack styles of these socially-engineering forms of
malware could be a very interesting and compelling, modern and promising way to
go about thesis research. A recent article collected information on the intensity and
frequency of malware [14]. This article found, for example, that the pervasiveness
of malware is generally due to the use of common avenues of attack. The group
further found that such malware relies on two primary strategies, technological and
psychological manipulation. Technological manipulation includes placing fake
versions of functional navigational buttons over the actual buttons on the graphical
user interface of social networking websites, or having the link pop up the instant
the user clicks. Psychological manipulations involve listing unsponsored pop-ups in
the side bar that supposed the user finds appealing enough to want to click on,
regardless of prior plans on the website. The advantage, from the perspective of the
malware, of hijacking personal information on social networking websites, is that
users are often rather less rushed or focused in their browsing habits, and therefore
can be more easily led astray [14]. Further elucidating sub-types of these two
primary types of social engineering (technological and psychological manipulation)
could be a compelling goal for thesis research. The limiting factor in this case might
be access to sufficient user profiles, and the resistance one would likely encounter
when trying to avail oneself of the user profiles when the users are informed that a
virus is to be run on their system or targeted at their user profile.

A number of other areas exist in the internet wherein fraud in its various forms
takes place. In general, whenever a great deal of technological competence is
required, it becomes easier for malware to defraud an individual by false or alter-
native navigation around the website(s). In general, any area or circumstance in
which the individual is suddenly faced with a request or demand seeming to

198 R. F. Mansour

emanate from a technically-knowledge authority are far more likely than average to
lead to incidences of internet fraud [15].

3.3 Social Engineering on Social Networking Sites

Social networking sites are particularly prone to unknowingly or unwillingly giving
a platform for the attack of such malware. Social networking sites are some of the
biggest and most popular, and although incredible amounts of data exist, the study
of social networking is still in its infancy. Because most social-engineering types of
viruses are found on social networking sites, it would be fairly direct and intuitive
to design a thesis around the habits of users who fall victim to more malware (or to
generate and provide evidence for/against other hypotheses [13]. This malware
could take a number of forms, as the information on Facebook is sufficient, for
nearly all individuals, to infer a great deal of additional very personal and sensitive
information.

Not only are social websites ideal for leading user astray, but by virtue of their
sheer size and versatile functionality these websites also contain unprecedented
amounts of valuable personal information. Even if such personal information is not
directly provided by the user on the website himself or herself, it may still be
obtainable for malware, by dint of tunneling through privacy restrictions and
reading, e.g., information from instant message conversations [16]. Through these
conversations unauthentic messages can be sent. Often, these messages are not
obviously “robotic” in nature, but rather have greetings from supposed people
(users on facebook) as their first line of attack to disarm and socially position the
victim for further information attacks. “Bots”, for example, may replicate them-
selves and even generate false pictures and histories, and by first friending a victim
and then posting indirectly related material, induce the victim to actually make first
contact and assume himself/herself to be in charge of the social situation. In fact,
this trust and “belief” in the legitimacy of the communication disarms the user,
compelling him or her to surrender valuable personal information or even money.

4 Conclusion and Discussion

Even without soliciting information directly from a user of a social networking site,
hackers, malware distributors, or other internet social engineers could quite easily
infer a great deal of personal information from users, based simply on the users’
profiles and networking behavior. The potential for abuse is clear—[3] show that
analysis of profile information about Facebook users at the Big Data level (thou-
sands of users) can lead to profiling of personal characteristics across a broad range

Understanding How Big Data Leads to Social … 199

of factors. More profoundly, [6] find that just using Facebook “likes” allows for the
creation of predictive models that indicate an individual’s range, sexual orientation,
and other sensitive demographic and personal details with alarming accuracy, up to
98% in the case of race. Undoubtedly, models can only be made stronger with the
addition of more complex and rich data, e.g. from the mining of status updates,
history, social connections, groups, and even pictures. Facebook is already capable
of identifying facial features and other features of environs presented in photos.

Equally importantly, it is clear that bots and malware have already evolved that
take advantage of the social milieu and at least some personal details of users to
lead users astray, e.g. into less secure sites where further personal information can
be stripped away. These bots and malware take advantage of the high level of
activity the users engage in, when navigating through social networking sites.
Mimicry of more legitimate ads targeted to users makes malware difficult to spot,
especially for a distracted and enthusiastic user. It is important that these trends are
recognized and reversed, before they can become even more powerful and
insidious.

4.1 Recommendations

Enhancing privacy settings is a key strategies in mitigating privacy risks in the
social networks. Setting privacy settings and cookies that can detect malwares and
block them automatically help in dealing with vulnerabilities in social networks
[17]. Authentication mechanisms can also be used to avoid hijackers or
non-authorized users from login in into an individual’s account [18]. The operators
have also provided internal protection mechanisms that protect and detect spams or
other such messages which are designed to collect user’s personal information
secretly [19]. Commercial solutions too can work by purchasing specialized soft-
wares that have ability to defend user against any form of cyber-attacks [20].

4.2 Future Research

The need for personal security in the social networks has become increasingly
important. Several solutions have been suggested and implemented but still the
problem persists and several people have lost a lot of their resources due to these
attacks. There is need to carry out research on how effective the adopted solutions
are in helping solve these problems in the ever dynamic field of technology and
need for coming up with new strategies of solving the problem.

200 R. F. Mansour

References

1. Ross, C., Orr, E. S., Sisic, M., Arseneault, J. M., Simmering, M. G., & Orr, R. R. (2009).
Personality and motivations associated with Facebook use. Computers in Human Behavior,
25(2), 578–586.

2. Zhang, X., Wang, W., de Pablos, P., Tang, J., & Yan, X. (2015). Mapping development of
social media research through different disciplines: Collaborative learning in management and
computer science. Computers in Human Behaviour, 51, 1142–1153.

3. Bachrach, Y., Kosinski, M., Graepel, T., Kohli, P., & Stillwell, D. (2012, June). Personality
and patterns of Facebook usage. In Proceedings of the 3rd Annual ACM Web Science
Conference (pp. 24–32). ACM.

4. Back, M. D., Stopfer, J. M., Vazire, S., Gaddis, S., Schmukle, S. C., Egloff, B., et al. (2010).
Facebook profiles reflect actual personality, not self-idealization. Psychological Science, 21
(3), 372–374.

5. Farnadi, G., Zoghbi, S., Moens, M. F., & De Cock, M. (2013). How well do your Facebook
status updates express your personality? In Proceedings of the 22nd Edition of the Annual
Belgian-Dutch Conference on Machine Learning (BENELEARN).

6. Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable
from digital records of human behavior. Proceedings of the National Academy of Sciences,
110(15), 5802–5805.

7. De Bock, K., & Van Den Poel, D. (2010). Predicting website audience demographics for Web
advertising targeting using multi-website clickstream data. Fundamenta Informaticae, 98(1),
49–70.

8. Jernigan, C., & Mistree, B. F. (2009). Gaydar: Facebook friendships expose sexual
orientation. First Monday, 14(10).

9. Ellison, N. B., Steinfield, C., & Lampe, C. (2011). Connection strategies: Social capital
implications of Facebook-enabled communication practices. New Media & Society, 13(6),
873–892.

10. Moore, K., & McElroy, J. C. (2012). The influence of personality on Facebook usage, wall
postings, and regret. Computers in Human Behavior, 28, 267–274.

11. Zhang, X., de Pablos, P., Wang, X., Wang, W., & Sun, Y. (2014). Understanding the users’
continuous adoption of 3D social virtual World in China: A comparative case study.
Computers in Human Behaviour, 35, 578–585.

12. Butler, D. (2007). Data sharing threatens privacy. Nature, 449(7163), 644–645.
13. Algarni, A., Xu, Y., Chan, T., & Tian, Y.-C. (2013). Social engineering in social networking

sites: Affect-based model. In Proceedings of the 8th IEEE International Conference for
Internet Technology and Secured Transactions (ICITST-2013) (pp. 508–515). London: The
Institute of Electrical and Electronics Engineering, Inc.

14. Abraham, S., & Chengalur-Smith. (2010, August). An overview of social engineering
malware: Trends, tactics, and implications. Technology in Society, 32(3), 183–196.

15. Rusch, J. J. (1999). The “social engineering” of Internet fraud. USA: United States
Department of Justice.

16. Laszka, A., Felegyhazi, M., & Buttyan, L. (2014). A survey of interdependent information
security games. ACM Computing Surveys (CSUR), 47(2), 23.

17. Tipton, H. F., & Krause, M. (2012). Information security management handbook. CRC Press.
18. Whitman, M., & Mattord, H. (2011). Principles of information security. Cengage Learning.
19. Rasool, M. A., & Jamal, A. (2011). Quality of freeware antivirus software.
20. Sukwong, O., Kim, H. S., & Hoe, J. C. (2011). Commercial antivirus software effectiveness:

An empirical study. Computer, 44(3), 0063–70.

Understanding How Big Data Leads to Social … 201

Big Data Applications in Health Care
and Education

B. K. Tripathy

Abstract Technology plays a major role in all spheres of life and higher education
and health care are no exceptions. The use of big data in higher education and
health care are relatively new. The dynamics of higher education is passing through
a phase of rapid changes. Also, the amount of data available in this field and proper
analytics can reap the benefits and highlight on future techniques to be followed in
handling the complex situations arisen from pressure exerted by accrediting
agencies, governments and other stake holders. Higher education is becoming more
and more complex with several institutes entering into the market with more and
more diversified approaches. This makes the functionalities of all institutes of
higher education to revise their approaches frequently to cope up with this pressure.
The educational institutes have to ensure that the quality of learning programmes is
at par with that of their counterparts at the national and global level. Analysis of
vast data sources generated in this connection being more often not available for
analysis is a major concern. The analysis of these volumes of data plays a major
role in understanding and ensuring that institutions are aware of the changes
occurring everywhere and they are taking care of their social responsibilities. Due
to digitization of medical records in an attempt to make them available for research
and development over the past ten to fifteen years, there is a huge amount of data,
which besides being voluminous are complex, diverse and temporal which is col-
lected by healthcare stockholders. An analysis of these data could collectively help
the healthcare industry to find out problems related to variability in healthcare
quality and escalating healthcare expenditure. In this chapter we shall make a
critical analysis of these aspects of higher education and healthcare with respect to
big data analysis and make some recommendations in this direction.

Keywords Big data ⋅ Health care ⋅ Higher education ⋅ Learning management
systems ⋅ Analytics

B. K. Tripathy (✉)
SCOPE, VIT University, Vellore 632014, Tamil Nadu, India
e-mail: tripathybk@vit.ac.in

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_11

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_11&domain=pdf

1 Introduction

Big data has no universally accepted definition. It can be classified into two sources;
physical data, which is obtained through sensors, scientific experiments and
observations and human centric data, which is the data acquired from social net-
works, internet, health, finance, economics and transportation. Big data has now
become equally important in industry and academia. To differentiate big data from
small data, we can say that small data are mainly sampled whereas big data are
automatically harvested using different techniques such as data crawling or appli-
cation programming interfaces from a large population of users. Big data are
defined at an individual level rather than an aggregated level. Technology plays a
major role in all spheres of life and higher education and health care are no
exceptions [1].

So, instead of trying to define big data, it is worthwhile to state their charac-
teristics [2]. Even here, there are several approaches and the number of V’s used as
a characteristic of big data is in its ever increasing trend. But mainly, researchers
focus on four of the V’s; Volume, Variety, Velocity and Veracity. Volume refers to
size of the data set under consideration and now has reached zettabytes (1021 bytes).
Variety deals with the structure of the data under consideration, which can be
structured, semi-structured or unstructured. The rate at which data is generated and
the rate at which it needs to be attended define velocity. It extends from any-time
batch processing to real-time streaming. Veracity deals with quality of data, which
is very much essential in getting useful information from it. It also means the
relevance of the data with the context, its predictive value and its semantics.

The sources responsible for the huge growth of data are Internet, Internet of
Things (IoT) and Cloud Computing. It has occurred in almost every institution,
business house and industry. As a result we find a sudden resurgence in Big data
research among the academicians, government organisations and private industrial
set ups [3].

Modern day higher education is becoming more and more complex with several
institutes being coming up in the market with more and more diversified approa-
ches. This makes the functionalities of institutes of higher education to revise their
approaches frequently to cope up with this pressure. They have not only to stand up
to the competition from their peers but also have to keep up an eye from the
government policies. A lot of economic and political changes are coming up at the
national and global level and also the social changes are occurring at fast pace. So,
the educational institutes have to ensure that the quality of learning programmes is
at par with that of their counterparts at the national and global level.

In addition to making decisions to face the rapid changes occurring in their
environment, which is complex in character, analysis of vast data sources generated
in this connection being more often not available for analysis is a major concern.
The analysis of these volumes of data plays a major role in understanding and
ensuring that institutions are aware of the changes occurring everywhere and they
are taking care of their social responsibilities [4].

204 B. K. Tripathy

Big Data analytics has emerged recently and like other data mining activities it
helps in getting patterns in these volumes of data, generating rules and drawing
decisions as and when required. Some of the thrust areas where it is currently being
explored are business, government and health care. The reason for these fields being
thrust area is the collection of large amount of data generated in these environments.
Research in Big Data is focused to find out methods for efficiently aggregating and
correlating massive volumes of data in order to find behavioral patterns and
meaningful trends [4].

Digitization of existing hard copies available in healthcare systems has led to the
accumulation and hence increasing the volume of data there in [5]. Already there is
a large volume of such data in the form of personal medical records, clinical trial
data, genomic sequence, radiology images FDA submission, human genetics and
population data etc. There were a lot of healthcare data available in the form of
records of patients in hospitals, the prescriptions written by doctors and nurses,
records maintained by the medical record persons at the time of admission and at
the time of leaving the hospitals, reports generated from various testing devices like
scanners in the form of MRI, CT etc. Every now and then volumes of data are
added to the healthcare system, which are both structured and unstructured from the
devices used to maintain fitness, several social media, genetics and genomics,
innovations and sources related to this. From the utility point of view, only a small
fraction of this volume of data is being used by computer scientists through sim-
ulation or otherwise and are analysed to generate useful information. There is a
strong necessity to transform the structured data to unstructured ones, combine the
different data sources efficiently and doing it automatically. This will lead to effi-
cient analysis of such data, by the way generating useful information. Also, there is
problem in combining data collected and stored at different point of time due to
different formats being used. This should be handled carefully such that their utility
increases. The combination process can be done at the individual or population
level as per the requirement. The various features of large data can be properly
addressed once such transformation is done efficiently and seamlessly. We cannot
avoid the complexities of big data generated in healthcare systems, but only have to
find technologies to handle them efficiently including their storage and
manipulation.

The constant flow of data accumulating at unprecedented rates presents new
challenges. The velocities at which it is generated and the speed needed to retrieve,
analyze, compare and make decisions using the output. According to speed, the
healthcare data can be categorized into three categories. The static data covers paper
files, X-ray films etc. The medium velocity data include diabetic glucose mea-
surements, blood pressure readings and EKGs. The on-line data comprises of
trauma monitoring for blood pressure, operating room monitors for anesthesia and
heart monitors etc. Data quality for healthcare data is precious as it leads to
life-death decisions and the unstructured data like the handwritten prescriptions are
too often incorrect. It is very much required that the diagnoses, treatments, pre-
scriptions, procedures should be correctly captured. Although it requires data
cleaning, high velocity and high veracity becomes the hurdles for it. Moreover use

Big Data Applications in Health Care and Education 205

of traditional IT issues like data management, warehousing, compliance, audit,
fraud prevention, error reporting and regulatory compliance prevents the organi-
sations to be more vigilant on veracity of data.

So, big data plays a vital role in the two important components of our society,
higher education and healthcare. It is the purpose of this chapter to analyse and
present the origin, chronological development of research on these two topics and
propose some directions of research as well. In the present section, we introduced
big data, its role in higher education and healthcare. In the following sections we
shall make a deeper journey into the fields on hand and critically present the beads
which have so far been responsible for the preparation of the necklace termed as big
data in higher education and healthcare.

Traditional methods are too complicated for processing big data; these methods
consume a lot of time and also not economic. So, several approaches have been
proposed to handle the situation. One popular method is to apply parallel com-
puting; using which large problems are divided into smaller components, individ-
ually solved and then the solutions are combined to get the final solution. The most
frequently used frameworks in big data are MapReduce, Hadoop, Hadoop Dis-
tributed File System (HDFS), Apache Hive and NoSQL. In MapReduce a large
number of computers are used to process large data with parallelizable problems.
The three steps used under this architecture are Map, Reduce and Combine. Hadoop
is an open source software project which enables processing of data across clusters
of computers. HDFS stores a large number of files using a large amount of servers.
Apache Hive is a data warehouse infrastructure built on the top of Hadoop. A
NoSQL database is non-relational one which provides a mechanism for storage and
retrieval of data that is modelled by using representations other than the tabular
relations used in relational databases.

2 Big Data in Higher Education

Big Data as an emerging field, research in it has been broadly focused on fields like
business, government and health care as the amount of data collected in these fields
is very high. The research efforts for application of big data in education or for that
matter on higher education are low, although the amount of data collected has
started to increase heavily [6].

All the organisations handling higher education have their student forums for
present and past students. Analysing their behaviour will definitely lead to generate
useful information for the future. Identification of the views of the alumni and their
suggestions for betterment needs to be critically analysed. They are the torch
bearers for any organisation and are also the ambassadors. Their views bear a lot of
importance for the incoming students. The suitability of different programs offered
by an institution, their future prospects in the form of placements for both on and off
campus jobs, the comparative analysis of similar kind of programs offered by other
competitive institutions also have stronger effects on the intake in the coming years

206 B. K. Tripathy

than any other source. Also, the administrators of an institute can get advices from
the alumni to rectify their existing liabilities. A lot of factors are responsible for
students to transfer and the reasons and trends need to be analysed. The suggestions
from industry experts, who are directly, involved with the students’ future of the
bears a distinct edge over the other sources of information. Enrolment management
and time-to-degree continue to motivate higher education institutions to search for
better solutions [7].

A major step for application of big data techniques in higher education is the
corporate-academic partnership. Its strength depends upon the assurance given by
the educational institutes for utilization and development of advanced technologies
that are likely to support applied research outputs and potentials for knowledge
transfer and commercialization [8].

Several technological changes have occurred in higher education, like ubiquitous
computing devices, flexible class room design and massive open online courses
[9–11]. Education and research have become dependent upon these new found
technologies. Even though such technological changes have occurred, the role of
data is highly important and enough care has not been taken to realize this. In fact
these data if fully utilized is likely to provide higher education institutes with
important solutions to handle changes occurring inside and outside their
environment.

One such area which can be used to handle large data sets available is
Knowledge Discovery in Databases (KDD), which has the primary goal to generate
meaningful and useful patterns from large datasets. The techniques from KDD,
which can be used, are clustering, classification and association algorithms,
regression models, predictive methods and factor analysis.

Data mining techniques can be used to find and solve the challenges posed by
the students or alumni through analysis and presentation of data. As is its charac-
teristics Data mining helps organisations to use their current reporting capabilities
to generate hidden patterns and understand them. Data mining models are used to
capture these patterns to study and predict behaviour of individuals with high
accuracy. This helps the institutions to optimize the allocation of their resources in
the form of teaching and non-teaching faculty and infrastructure. It is highly
desirable for the institutes to have such a facility so that they can make a budget
accordingly and implement it.

The data mining approaches used in educational institutions are different in their
characteristics as instead of using the traditional tools these techniques obtained in
the form of innovative methods to discover patterns and analyse large data sets
instead of simply automating the process as is done in most application areas [4, 12].

Decision making tools are used by some organizations to generate better deci-
sions from data available with them about their strategic and operational directions.
Using data to make decisions is not new; business organizations have been storing
and analyzing large volumes of data since the advent of data warehouses systems in
the early 1990s. However, the nature of data available to most organizations is
changing and the changes bring with them complexity in managing the volumes
and analysis of these data. It was observed in [12] that most businesses today run on

Big Data Applications in Health Care and Education 207

structured data (numerical and categorical). However, this does not reflect the
complexity on the nature of available corporate data and their untapped hidden
business value. But most of the recent data are unstructured and are in the form of
text, audio, diagrams, images and combinations of more than one of these.

Recent developments in database technologies made it possible to collect and
maintain complex and large amounts of data in many forms and from multiple
sources. In addition, there are analytical tools available that can turn this complex
data into meaningful patterns and value, a phenomenon referred to as Big Data.
Concept architecture for processing big data was proposed in [13]. The flow chart
of the algorithm is as described in Fig. 1.

Data collection, data analysis and data visualization are the three essential stages
of Big Data analysis. Data to be collected should have useful information which is
valuable after their identification. The collected data are to be filtered to remove
some unwanted components and characteristics. This will fine tune the data set and
make it ready for the next step. In the analysis phase data linking, connecting data
and finding inter relationship among data is carried out. It helps in grasping the
information the collected dataset is to reflect. This data should be made available to
the users in the form they desire to have it. This process is called data visualization.

Fig. 1 Algorithm for processing big data [13]

208 B. K. Tripathy

Also, it helps the interpretation of data and integrates them into the existing pro-
cesses. Finally, it is used as a guide for decision making.

Institutional databases comprise of volumes of data collected over the years and
are categorized as large. Online courses are of recent origin and its popularity has
become high over the past few years. A good number of data repositories are
available now along with digital libraries and other associated tools [14, 15]. These
repositories comprise of student related data in various forms and kinds like social
media usage data, learning management systems, student library usage, individual
computers and administrative systems holding information on Programme com-
pletion rates and learning pathways.

While handling data mining applications in higher education, it is mentioned in
an executive report of SPSS [16] the following equivalent activities in higher
education to that in private sector (Table 1).

There are several areas like administrative and instructional applications,
financial planning, donor tracking, recruitment, admission processing and student
performance monitoring where big data and analytics can be applied within higher
education [17–19].

3 Big Data in Healthcare

Due to digitization of medical records in an attempt to make them available for
research and development over the past ten to fifteen years, there is a huge amount
of data, which besides being voluminous are complex, diverse and temporal which
is collected by healthcare stockholders. An analysis of these data could collectively
help the healthcare industry to find out problems related to variability in healthcare
quality and escalating healthcare spend. To put it as illustrations, researchers can
find the specific medicines or treatments which are most effective for specific
conditions; identify patterns related to drug side effects and gain additional infor-
mation that can help patients and reduce costs. Stakeholders also need to focus on

Table 1 Higher education equivalents of private sector questions [16]

Private sector questions Higher education equivalents

Who are my most profitable customers? Which students are taking the most credit
hours?

Who are my repeat website visitors? Which students are most likely to return for
more classes?

Who are my loyal customers? Who are the “persistors” at my university/
college?

Who is likely to increase his/her purchases? Which alumni are likely to make larger
donations?

Which customers are likely to defect to
competitors?

What types of courses will attract more
students?

Big Data Applications in Health Care and Education 209

the non-disclosure of sensitive attributes of patients by may be anonymizing these
databases before their release. There are a lot of anonymisation techniques available
for the so called small databases. The two basic approaches followed in literature
are generalisation and suppression. However, there are problems in suppression as
much of the information will be lost in it. Even in generalisation, it should be done
judiciously as otherwise it may lead to the problems of information loss or the
anonymisation being insufficient. Hence other methods are followed which are
different from these two basic techniques. However, in spite of their drawbacks, the
basic techniques can be followed for any dataset. The other approaches are needed
to be enhanced for making them applicable for large datasets.

The amount of patient data is growing exponentially during the past few years.
In addition to clinical data there are sources like claims and cost data, Pharma-
ceutical R and D data that provides therapeutic mechanism of action of drugs and
patient behaviour and sentiment data, which describe patient activities and
preferences.

Advances in technological systems like the electronic medical records (EMRs)
are now more affordable and data exchanges have become easy. Sometimes the
technological advantages like the preservation of patient privacy by deleting the
identifiers like names or otherwise has made it possible to compile, store and share
information in a secured manner. There is a strong necessity to follow this because
of Health Insurance Portability and Accountability (HIPAA) patient confidentiality
standards.

Several industrial efforts have been made for big data either through their col-
laboration or commercialization. The organization “Premier” offers membership-
based service to providers of all types, which contribute their information. Private
payers like OptumInsight, Active Health and HealthCare operate their stand-alone
analytics divisions for United Health, Aetna and WellPoint respectively. The group
TransCelerate Biopharma which is formed by ten global pharmaceutical companies
has the intention to simplify and accelerate drug development [20].

The Human development Index (HDI) which is a composite statistic of life
expectancy, education and per capita income indicators, facilitates release of
information from Hyperosmolar Hyperglycemic state (HHS) through its Health
Data.gov Website. HDI has started a conference in 2010 and it has become an
annualaffair which incorporates companies that are investigating innovative
strategies for using health data in tools and applications. It also conducts a
“code-a-thon” event in which the innovators collaborate besides working on
showcasing and demonstrating their products.

Keeping the changes in healthcare systems, a holistic framework was proposed
in [21], which considers five key pathways to value. The five new pathways are;
Right living, Right care, Right provider, Right value and Right innovation. The
right-living pathway focuses on encouraging patients to make lifestyle choices that
help them remain healthy through proper diet and exercise and also taking their own
care if they fall sick. The right care pathway involves ensuring timely and appro-
priate treatment available to the patients. It brings a coordinated approach across

210 B. K. Tripathy

settings and providers to have same information for all the caregivers towards the
same goal so that duplication of efforts is avoided and optimal strategies are
adopted. The right provider pathway requires that the patients should receive the
services by high-performing professionals. High-performing professionals whose
expertise matches with the requirement for the treatment of the patient and other
associates like the nurses with proven outcome are to be appointed. The right value
requires ensuring cost-efficient care, eliminating fraud or abuse of the system.
Invention of new therapies and taking care of all characteristics of the system is the
right way in this direction.

It has been observed that evolution of new directions in health care innovation
has taken place because of big data. A study on Rock Health and Capital IQ
databases has indicated that the insurgence of big data is responsible for the origin
of fresh innovators. For example, the usage of inhalers by asthmatic patients is
being monitored by trackers supported by GPS-system. Some mobile applications
has offered agreement between the patients and their providers that the patients can
be tracked and assisted with behavioural health therapies. Patients are supported
with chronic care medication such that through an interactive system patients can be
provided knowledge and enhanced treatment. Also some other organisations are
getting sources for collecting data and their organisation through exchange of
information [22].

In health sciences, there are many problems that can be addressed with big data
technologies, such as recommendation system in health care, Internet based epi-
demic surveillance, sensor based health condition and food safety monitoring.

3.1 Big Data Studies in Health Sciences

Health science has been enriched by big data technologies being applied success-
fully in it. The prevalence of several epidemics can be monitored by gathering
information from people of the affected areas. It usually takes a lot of time when
one tries to gather this information from the organisations like CDC and WHO and
by the time the data is obtained the effect of the epidemic may have either ceased or
it has turned out to be uncontrollable.

3.2 Recommendation System in Health Care

Many researchers have applied recommendation systems techniques to health
information systems. Duan et al. [23] proposed a nursing care plan recommendation
system to provide clinical decision support, nursing education and clinical quality
control. Hoens et al. [24] proposed a reliable privacy-preserved medical recom-
mendation system.

Big Data Applications in Health Care and Education 211

There are many problems which can be solved with big data technologies
including healthcare. To solve these problems many advanced computing tech-
nologies are used. The applications of big data in health sciences are in collection of
data from search engines and social networks can help to gather people’s reactions
and monitor the conditions of epidemic diseases. Several case studies have been
performed in this direction.

4 Case Studies

We present some case studies in applications of big data in health sciences in this
section. These are

4.1 Recommendation System in Health Care

Some of these are mentioned above. Duan et al. [23] proposed a nursing care plan
recommendation system to provide clinical decision support, nursing education and
clinical quality control. It serves as a complement to existing practice guidelines.
Hoens et al. [24] proposed a reliable privacy preserved medical recommendation
system. In this medical system, the patients can contribute their secured ratings of
the physicians on different health conditions based on their satisfactions. This
system can recommend a list of physicians who best suit to their needs. Wiesner
and Daniel [25] proposed a health recommendation system in the context of per-
sonal health record system. In their health recommendation system, the items are
non-confidential, scientifically proven or at least generally accepted medical
information. The goal of HRS is to provide information to the patients which are
highly relevant to the patient’s personal health record [25].

4.2 Internet Based Epidemic Surveillance

With the assumption that when the number of people having the symptoms of an
epidemic is high, the search for the epidemic related topics will be high. One such
instance is the study on influenza provided by http://www.google.com/flutrends of
Google.

Twitter is widely used social network and news-sharing platform. The tweets
reflect opinions of people and their judgements about public event, especially the
outbreak of epidemics. Signorini et al. [26] discuss on the use of twitter to track
levels of disease activity and public concern in the U.S. Another such paper is that
of Paul et al. [27], where they analyze twitter for public health. In fact, they
followed the tweets in connection with H1N1 by searching tweets through key

212 B. K. Tripathy

http://www.google.com/flutrends

words like flu, influenza and H1N1. The tweets involving public concern were
filtered by using key words like travel, flight and ship for disease transmission.
Keywords like wash, hygiene and mask were used to identify measures carried out
for countering the disease.

4.2.1 Classification Model to Analyze the Spread and Emerging
Trends of the Zika Virus

Starting in 2015 the Zika virus continues to boost a dreaded disease and being an
epidemical virus besides being a global health issue. A study of twitter data shared
through this social network was the inspiration behind the work in Tripathy et al.
[28] where the authors proposed a classification model which was used to divide the
Zika related tweets into similar groups which could provide useful information to
people and thus enabling them to extract helpful insights. World Health Organi-
zation (WHO) on February 1, 2016 declared Zika virus as a Public Health Emer-
gency of International Concern (PHEIC). This disease has become a global issue as
there is no vaccine or any other form of treatment has been developed for it so far.
In the study in [28], Twitter Streaming API was used to collect the most recent
tweets. The tweets collected by the API are then pre-processed initially to make the
later analysis easier. The URLs, hashtags, and user mentions are separated from the
text in the original tweet. An analysis had generated an ordering of the countries
with respect to the frequency of twits coming from them. An architecture for
classification of Zika virus was proposed [28] (Fig. 2).

Since the classification in this study was to process is to classify texts and as has
been supported by literature, Support vector machine (SVM) algorithm and Naïve
Bayes algorithm were used. Other characteristics in support of using SVM are that
the number of classes is small (3), high number of features (around 2804) and the
process being non-probabilistic. The characteristic features are the commonly
occurring words inside all the tweets in connection with Zika virus. It was observed
that SVM classification generates an accuracy of nearly 90%.

According to the analysis, it was inferred that in the tweets gathered 36.50%,
24.94%, and 38.54% of tweets belonged to ‘fight and prevention,’ ‘cure,’ and

Fig. 2 Zika virus classification model architecture

Big Data Applications in Health Care and Education 213

‘infected and death,’ respectively. These values also provide a statistical evidence
of social community support and awareness available for Zika presently.

4.3 Sensor Based Health Condition and Food Safety
Monitoring

Software and hardware combination such as sensors being used, create enough of
wonderful applications which take control of food safety and health condition. In
the market we find some such products like the Apple Watch from Apple which
measures the heart rate, Smart chopsticks which measure PH levels, temperature,
calories and freshness of cooking oil. The tread mills produced by several com-
panies which measuring the walking rate, mileage and pulse. Testo’s 270 allows
you to determine within seconds whether cooking oil needs changing. This will not
only make sure you’re cooking with clean oil, but is also proven to save you money
on cooking oil costs. HACCP (Hazard Analysis Critical Control Points) guidelines
have applied internationally for many years in terms of monitoring in the food
sector. HACCP is a method of risk management which is used to improve moni-
toring and food safety. One of the most frequent causes of food poisoning is
inadequate cooling or heating of foods. Food safety is a scientific discipline
describing handling, preparation, and storage of food in ways that prevent food-
borne illness.

4.4 Genome Wide Association Studies (GWAS)
and Expression Quantitative Trait Loci (EQTLs)

In genetics, a genome-wide association study (GWA study, or GWAS), also known
as whole genome association study (WGA study, or WGAS), is an examination of a
genome-wide set of genetic variants in different individuals to see if any variant is
associated with a trait. GWASs typically focus on associations between
single-nucleotide polymorphisms (SNPs) and traits like major human diseases, but
can equally be applied to any other organism. GWAS is gaining popularity due to
the cost of genotyping coming down over the past few years. The results are
available in the GWAS databases like GWAS catalog and GWASdb. However
because of the unclear nature of the GWAS identified SNPs, researchers have been
thinking to improve the design of GWAS. The paper of Freedman et al. [29] is an
useful source for discussion on GWAS. Expression traits differ from most other
classical complex traits in one important respect—the measured mRNA or protein
trait is almost always the product of a single gene with a specific chromosomal
location. eQTLs that map to the approximate location of their gene-of-origin are
referred to as local eQTLs. In contrast, those that map far from the location of their

214 B. K. Tripathy

gene of origin, often on different chromosomes, are referred to as distant eQTLs.
Often, these two types of eQTLs are referred to as cis and trans, respectively, but
these terms are best reserved for instances when the regulatory mechanism (cis vs.
trans) of the underlying sequence has been established.

4.5 Inferring Air Quality Using Big Data

Air pollution can cause several serious diseases like lung cancer and cardiovascular
disease. Monitoring stations have been established world over to know the quality
of air and traditional air quality monitoring methods need to establish and maintain
the physical monitoring stations. Recently, several approaches are proposed to
estimate air pollution from the perspective of big data. The approach relies on other
data sources than the monitoring stations. For example, Zheng et al. [30] inferred
the air quality information in big cities in China by combining existing monitor
station data with information obtained from meteorology, traffic flow, human
mobility and road networks. Mei et al. [31] estimated air quality from social media
posts. Honicky et al. [32] suggested to attach sensors to GPS-enabled cell phones
and used them to collect air pollution information. Chen et al. [33] introduced an
indoor air quality monitoring system.

4.6 Metabolomics and Ionomics for Nutritionists

Metabolomics is the scientific study of chemical processes involving metabo-
lites. Specifically, metabolomics is the “systematic study of the unique chemical
fingerprints that specific cellular processes leave behind”, the study of their
small-molecule metabolite profiles [34]. The metabolome represents the collection
of all metabolites in a biological cell, tissue, organ or organism, which are the end
products of cellular processes [35]. mRNA gene expression data and proteomic
analyses reveal the set of gene products being produced in the cell, data that rep-
resents one aspect of cellular function. Conversely, metabolic profiling can give an
instantaneous snapshot of the physiology of that cell. One of the challenges of
systems biology and functional genomics is to integrate proteomic, transcriptomic,
and metabolomic information to provide a better understanding of cellular biology.
To identify and quantify all metabolites with in a system using Nuclear Magnetic
resonance (NMR) andMass Spectroscopy (MS) is the primary goal of Metabolomics
[36]. This has been changed from identification and quantification to associating it to
diseases. It has been used to study diabetes [37] and Toxicology [38].

Big Data Applications in Health Care and Education 215

5 Some Research Directions

In this section we present some possible directions of research.

5:1 Many of the open problems in the field of big data management and analysis
are associated with healthcare fields. Researchers who require big data solu-
tions in order to manage large medical datasets are now being assisted by
hospitals in getting them. That with in clinical environments big data will be
able to revolutionize pharmaceutical research and development was proposed
by McKinsey & Company. According to it, the target will be the diverse roles
played by users, physicians, consumers, insurers and regulators [39]. Big data
can be helpful in reducing the cost of research and development for phar-
maceutical industry to a large extent [40]. Drug makers, healthcare providers
and health analyst companies are collaborating on this topic. Also, they are
working on private cloud for pharmaceutical industry sharing securely anon-
ymized data [41]. So, big data research is required to be made more focused
and more efficient to handle these issues and come up with solutions.

5:2 It is required to identify and establish policies that specify who is accountable
for various portions or aspects of institutional data and information including
its accuracy, accessibility, consistency, completeness and maintenance [4].
Also, it is desirable to defining processes concerning how data and information
are stored, achieved, backed up and protected. Also, it is required to determine
developing standards and procedures that define how the data and information
are used by authorized personnel and implement a set of audit and control
procedures to ensure ongoing compliance with governmental regulations and
industrial standards.

5:3 Educational topics like performance in scientific research, correlations
between the knowledge of students and the competencies required, academic
failure, to realizing the learning gaps, improve teaching methods and educa-
tional management processes require to be researched for better solutions
using big data techniques.

5:4 An analysis of the research articles published between 2010 and 2015 was
carried out in [14]. The major trends could be put in the three categories of
“development of academic analytics and introduction of learning analytics, its
concepts, implication and impact to higher education and e-learning”, “Use of
datasets to improve learning analytics [42–44], especially through communi-
cation and collaboration between educational data mining and learning ana-
lytics communities” and “the use of learning analytics in social learning and
MOOCs”. It was observed in [14] that less study has been conducted on
evaluating learning outcomes by analyzing natural language text. So, more
focus can be on finding out the techniques for prediction of student perfor-
mance in learning environments where students interact through forums [45].

216 B. K. Tripathy

6 Conclusions

Now day enormous amounts of data are generated in several fields. Two very
important fields in this direction are education and health care. Techniques to
analyse the data sets related to these two fields will help these sectors in rectifying
their traditional approaches, which are inadequate for such analysis. In this chapter
we have presented the different issues involved in dealing these data sets and some
solutions obtained by different sources and organisations so far. Finally we have
proposed some problems for further studies in this direction.

References

1. Daniel, B. K., & Butson, R. (2013). Technology enhanced analytics (TEA) in higher
education. In Proceedings of the International Conference on Educational Technologies, 29
November–1 December, 2013, Kuala Lumpur, Malaysia (pp. 89–96).

2. Mauro, A. D., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition
and a review of key research topics. In AIP Proceedings of the International Conference on
Integrated Information (IC-ININFO 2014) (Vol. 1644, pp. 97–104).

3. Jin, X., Wah, B. W., Cheng, X., & Wang, Y. (2015). Significance and challenges of big data
research. Big Data Research, 2, 59–64.

4. Daniel, B. (2014). Big data and analytics in higher education: Opportunities and challenges.
British Journal of Education Technology, 1–17.

5. Huang, T., Lan, L., Fang, X., An, P., Min, J., & Wang, F. (2015). Promises and challenges of
big data computing in health sciences. Big Data Research, 2, 2–11.

6. Tulasi, B. (2013). Significance of big data and analytics in higher education. International
Journal of Computer Applications, 68(14), 21–23.

7. Sin, K., & Muthu, L. (2015). Application of big data in education data mining and learning
analytics—A literature review. ICTACT Journal on Soft Computing (Special Issue on Soft
Computing Models for Big Data), 1035–1049.

8. Hilbert, M. (2014). Big data for development: From information to knowledge societies
(January 15, 2013). Retrieved October 30, 2014 from http://ssrn.com/abstract=2205145 or
https://doi.org/10.2139/ssrn.2205145.

9. Kumar, V., & Chadha, A. (2011). An empirical study of data mining techniques in higher
education. International Journal of Advanced Computer Science and Applications, 2(3), 80–
84.

10. Pandey, U.K., & Pal, S. (2011). A data mining view on class room teaching language.
International Journal of Computer Science and Information Technologies, 2(2), 686–690.

11. Pal, S. (2012). Mining educational data to reduce dropout rates of engineering students.
International Journal of Information Engineering and Electronic Business, 4(2), 1.

12. Luan, J. (2012). Data mining and its application in higher education. In A. Serban, & J. Luan
(Eds.), Knowledge management: Building a competitive advantage in higher education
(pp. 17–36).

13. Michalik, P., Stofa, J., & Zolotova, I. (2014). Concept definition for big data architecture in
the education system. In IEEE 12th International Symposium on Applied Machine
Intelligence and Informatics (pp. 3321–334).

14. Kalota, F. (2015). Applications of big data in education, world academy of science,
engineering and technology. International Journal of Social, Behavioral, Educational,
Economic, Business and Industrial Engineering, 9(5), 1607–1611.

Big Data Applications in Health Care and Education 217

http://ssrn.com/abstract=2205145
http://dx.doi.org/10.2139/ssrn.2205145

15. Romero, C. R., & Ventura, S. (2010). Educational data mining: A review of the state of the
art. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews,
40(6), 601–618.

16. Bresfelean, V. P. (2008). Data mining applications in higher education and academic
intelligence management. In J. E. Meng, & Z. Yi (Eds.), Theory and novel applications of
machine learning (pp. 209–228).

17. Bhardwaj, B. K., & Pal, S. (2011). Mining educational data to analyze students’ performance.
International Journal of Advanced Computer Science and Applications, 2(6), 63–69.

18. Bhardwaj, B. K., & Pal, S. (2012). Data mining: A prediction for performance improvement
using classification. International Journal of Computer Science and Information Security,
9(4).

19. Minaei-Bidgoli, B., Kashy, D., Kortmeyer, G., & Punch, W. (2003). Predicting student
performance: An application of data mining methods with an educational web-based system.
In Proceedings of 33rd Annual Frontiers in Education Conference FIE 2003 (pp. T2A13–
T2A18).

20. Downs, E. N. (2014). UF hires bioinformatics expert. https://m.ufhealth.org/news/2014/uf-
hires-bioinformatics-report.

21. Merelli, I., Perez-Sanchez, H., Gesing, S. & D’Agostino, D. (2014).Managing, analyzing and
integrating big data in medical bioinformatics: Open problems and future perspectives
(pp. 1–13). Hindawi Publishing Corporation, Biomed Research International.

22. Feldman, B., Martin, E. M., & Skotnes, T. (2012). Big data in healthcare, hype and hope. In
Dr. Bonnie, Business development for digital health (Vol. 360, pp. 1–56).

23. Duan, L., Street, W. N., & Xu, E. (2011). Healthcare information systems: Data mining
methods in the creation of a clinical recommender system. Entrepreneurs Information
Systems, 5, 169–181.

24. Hoens, T. R., Blanton, M., Steele, A., & Chawla, N. V. (2013). Reliable medical
recommendation systems with patient privacy. ACM Transactions on Intelligent Systems and
Technology, 4, 1–31.

25. Wiesner, M., & Daniel, P. (2014). Health recommender systems: Concepts requirements,
technical basics and challenges. International Journal of Environmental Research and Public
Health, 11(3), 2580–2607.

26. Signorini, A., Segre, A. M., & Polgreen, P. M. (2011). The use of Twitter to track levels of
disease activity and public concern in the U.S. during the influenza A H1N1 pandemic.
PLoSONE, 6(5), e19467, 1–10. www.plosone.org.

27. Paul, M. J., Dredze, M., & Broniatowski, D. (2014). Twitter improves influenza forecasting.
PLoS Currents. www.ncbi.nlm.nih.gov.

28. Tripathy, B.K., Chowdhury, R., & Thakur, S. (2016). A classification model to analyze the
spread and emerging trends of the Zika virus in Twitter, In The proceedings of International
Conference on Computational Intelligence in Data Mining (ICCIDM 2016). Advances in
Intelligent Systems and Computing (AISC, Vol. 556, pp. 643–650).

29. Freedman, M. L., Monteiro, A. N., Gayther, S. A., et al. (2011). Principles for the
post-GWAS functional characterization of cancer risk loci. Nature Genetics, 43, 513–518.

30. Zheng, Y., Liu, F., & Hsieh, H.-P. (2013). U-Air: When urban air quality inference meets big
data. In KDD’13, 11–14 August 2013, Chicago, Illinois, USA.

31. Mei, S., Li, H., Fan, J., Zhu, X., & Dyer C. R. (2013). Inferring air pollution by sniffing social
media.

32. Honicky, R.J., Brewer, E. A., Paulos, E., & White, R. M. (2008). N-SMARTS: Networked
suite of mobile atmospheric real-time sensors. In NSDR’08, 18 August 2008, Seattle,
Washington, USA (pp. 25–29).

33. Chen, B. H., Hong, C. J., Pandey, M. R., & Smithd, K. R. (1990). Indoor air pollution in
developing countries. World Health Statistics Quarterly, 43, 127–138.

34. Davis, B. (2005). Growing pains for metabolomics. The Scientist, 19(8), 25–28.

218 B. K. Tripathy

https://m.ufhealth.org/news/2014/uf-hires-bioinformatics-report
https://m.ufhealth.org/news/2014/uf-hires-bioinformatics-report

35. Jordan, K. W., Nordenstam, J., Lauwers, G. Y., Rothenberger, D. A., Alavi, K., Garwood, M.,
et al. (2009). Metabolomic characterization of human rectal adenocarcinoma with intact tissue
magnetic resonance spectroscopy. Diseases of the Colon and Rectum, 52(3), 520–525.

36. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based
metabolomics. Mass Spectrometry Reviews, 26(1), 51–78.

37. Zhang, A. H., Qiu, S., Xu, H. Y., Sun, H., & Wang, X. J. (2014). Metabolomics in diabetes.
Clinica Chimica Acta, 429, 106–110.

38. Donald G., Paul, R., Watkins, B., & Michael, D. (2011). Reily: Metabolomics in toxicology:
Preclinical and clinical applications. Toxicological Sciences, 120(suppl_1), S146–S170.

39. McKinsey and Company: How big data can revolutionize pharmaceutical R&D. http://www.
mckinsey.com/insights/health_systems_and_services/how_big_data_can_revolutionize_
pharmaceutical_r_and_d.

40. Medill Reports. (2014). http://news.medill.northwestern.edu/Chicago/news.aspx?id=228875.
41. Xian Sheng, K. (2014). Big data x-learning resources integration and processing in cloud

environment. International Journal of Emerging Technologies and Learning, 9(5), 22–26.
42. Picciano, A. G. (2012). The evolution of big data and learning analytics in American higher

education. Journal of Asynchronous Learning Networks, 16(3), 9–20.
43. Romero, C. R., & Ventura, S. (2010). Educational data mining: A review of the state of the

art. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews,
40(6), 601–618.

44. Wagner, E., & Ice, P. (2012). Data changes everything: Delivering on the promise of learning
analytics in higher education. Educause Review, 33–42.

45. Niemi, D., & Gitin, E. (2012). Using big data to predict student dropouts technology
affordances for research. In Proceedings from the International Association for Development
of the Information Society (IADIS) International Conference on Cognition and Exploratory
Learning in Digital Age.

Big Data Applications in Health Care and Education 219

http://www.mckinsey.com/insights/health_systems_and_services/how_big_data_can_revolutionize_pharmaceutical_r_and_d
http://www.mckinsey.com/insights/health_systems_and_services/how_big_data_can_revolutionize_pharmaceutical_r_and_d
http://www.mckinsey.com/insights/health_systems_and_services/how_big_data_can_revolutionize_pharmaceutical_r_and_d
http://news.medill.northwestern.edu/Chicago/news.aspx?id=228875

BWT: An Index Structure to Speed-Up
Both Exact and Inexact String Matching

Yangjun Chen and Yujia Wu

Abstract The BWT transformation of a string is originally proposed for string
compression, but can also be used to speed up string matchings. In this chapter, we
address two issues around this mechanism: (1) how to use BWT to improve the
running time of a multiple pattern string matching process; and (2) how to integrate
mismatching information into a search of BWT arrays to expedite string matching
with k mismatches. For the first problem, we will first construct the BWT array of a
target string s, denoted as BWT(s); and then establish a trie structure over a set of
pattern strings R = r1, . . . , rlf g, denoted as T(R). By scanning BWT(s) against T
(R), the time spent for finding occurrences of ri’s can be significantly reduced. For
the second problem, for a given pattern string r, we will precompute its mis-
matching information (over some different substrings of it, denoted as M(r)) and
construct a tree structure, called a mismatching tree, to record the mismatches
between r and s during a search of BWT(s) against r. In this process, the mis-
matching tree can be effectively utilized to do some kind of useful mismatching
information derivation based on M(r) to avoid any possible redundancy. Extensive
experiments have been done to compare our methods with the existing ones, which
show that for both the problems described above our methods are promising.

1 Introduction

The recent development of next-generation sequencing has changed the way we
carry out the molecular biology and genomic studies [1]. It has allowed us to
sequence a DNA (Deoxyribonucleic acid) sequence at a significantly increased base
coverage, as well as at a much faster rate. This requires us considering all the string

Y. Chen (✉) ⋅ Y. Wu
Department of Applied Computer Science, University of Winnipeg, Winnipeg, Canada
e-mail: y.chen@uwinnipeg.ca

Y. Wu
e-mail: wyj1128@yahoo.com

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_12

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_12&domain=pdf

patterns as a whole, rather than separately check them one by one. Two kinds of
string matching need to be handled: exact matching and inexact matching. By the
exact matching, we will find all the occurrences of a pattern string r in a target
string s, but by the inexact matching we allow each occurrence having up to
k positions different between r and s. The inexact matching is important due to the
polymorphisms or mutations among individuals or even sequencing errors, the
pattern may disagree in some positions at an occurrence of r in the target s.

The string matching is always an interesting and important research topic in
computer science and computer engineering. In the past several decades, a bunch of
efficient strategies have been proposed to find all the occurrences of a pattern in a
target very fast, such as those discussed in [2–8]. Roughly speaking, all these
methods can be classified as illustrated in Fig. 1.

From Fig. 1, we can see that for the exact matching problem we distinguish
between two kinds of strategies: the single-pattern oriented and the multi-pattern
oriented methods. By the former, each time only one pattern string will be mapped
to a target string, and for this we have both on-line methods such as Knuth-Morris-
Pratt [7], Boyer-Moore [6], and Apostolico-Giancarlo [9], and off-line
(index-based) methods like suffix trees [10, 11], suffix arrays [12], and BWT-
transformation (Burrows-Wheeler Transformation) [13–15]. However, by the latter,
we have only on-line strategies, such as the Aho-Corasick’s algorithm proposed in
1975 [16], and its improved versions [17–20], by which an automaton is established
over all the patterns and will be searched against a target in one scan.

For the inexact matching problem, we have string matching with k mismatches,
k errors, as well as don’t-care symbols. By the string matching with k mismatches,
we will find all the occurrences of a pattern string r in a target string s with each
occurrence having up to k positions different between r and s. Different methods for
this problem have been proposed, such as the on-line strategies discussed in [2, 4,
21, 22], and the index-based method proposed in [23]. The methods of [4, 21, 22]
have the worst-case time complexities bounded by O(kn + mlogm), where n = |s|
and m = |r|. By these three methods, the mismatch information among substrings
of r is used to speed up the working process. The method discussed in [2] is with a
slightly better time complexity O n

ffiffiffi
k

p
log k

� �
. By this method, the periodicity

exact matching

inexact matching

single-pattern
oriented

multi-pattern
oriented

on-line

index-based

suffix tree
suffix array
hash-based
BWT-array

on-line

on-line

BWT-array
k mismatches

k differences

don’t care

on-line

index-based

Suffix tree

on-line

index-based

Fig. 1 Classification of methods for string matching

222 Y. Chen and Y. Wu

within r is utilized. In [23], a target string s is transformed to a BWT-array (denoted
as BWT(s)) as an index [13]. In comparison with suffix trees [10], BWT(s) uses
much less space [13]. However, its time complexity is bounded by O(mn′+ n),
where n′ is the number of leaf nodes of a tree produced during the search of BWT
(s). This time requirement can be much worse than the best on-line algorithm for
large patterns. The reason for this is that by this method neither mismatch infor-
mation nor periodicity within r is employed.

The string matching with k errors is quite different from the string matching with
k mismatches, by which we will find all the occurrences of a pattern string r in a
target string s such that the edit distance [24, 25] between each occurrence and
s is ≤ k. To do such a task, the dynamic programming paradigm has to be
employed [26], possibly with suffix trees being used as indexes [27, 28]. By the
string matching with don’t-care symbols, we allow don’t-care to appear in r, in s,
or in both of them [29, 30].

In this chapter, we address two issues. One is to construct indexes for the
multiple pattern string matching [31], and another one is to construct indexes for the
string matching with k mismatches [32]. As discussed above, up to now no effective
indexes have been established for these two problems. Specifically, for the first
problem, we will

• Construct a trie T over all the pattern sequences, and check T against the
BWT-array of s’s reverse, denoted as BWT s ̄ð Þ created as an index for s. This
enables us to avoid repeated search of the same part of different pattern strings.

• Change a single-character checking to a multiple-character checking. (That is,
each time a set of characters respectively from more than one pattern strings will
be checked against a BWT-array in one scan, instead of checking them sepa-
rately one by one in multiple scans.)

Our experiment shows that it can be more than 40% faster than single-pattern
oriented methods when multi-million pattern strings are checked.

For the second problem, two techniques are introduced, which will be combined
with a BWT-array scanning as described below:

• An efficient method to calculate the mismatches between r[i … m] and r[j …
m] (i, j ∈ {1, …, m}, i ≠ j), where r[i … m] represents a substring of r starting
from position i and ending at position m. The mismatches between them is
stored in an array R such that if R[p] = q then we have r[i + q − 1] ≠ r[j + q −
1] and it is their pth mismatch.

• A new tree (forest) structure D to store the mismatches between r and different
segments of s. In D, each node v stores an integer i, indicating that there are
some positions i1, i2, …, il in s such that s[iq + i − 1] ≠ r[i] (q = 1, …, l). If
v is at the pth level of D, it also shows that it is the pth mismatch between each s
[iq … iq + i − 1] and r.

BWT: An Index Structure to Speed-Up Both Exact … 223

By using these two techniques, the time complexity for solving the string
matching with k mismatches can be reduced to O(kn′+ n). Our experiment shows
that n′ ≪ n.

2 Related Work

The string matching problem has always been one of the main focuses in computer
science. A huge number of algorithms have been proposed, which can be generally
divided into two categories: exact matching and inexact matching. By the former,
all the occurrences of a pattern string r in a target string s will be searched. By the
latter, a best alignment between r and s (i.e., a correspondence with the highest
score) is searched in terms of a given distance function or a score matrix, which is
established to indicate the relevance between different symbols.

• Exact matching

The first interesting algorithm for this problem is the famous Knuth-Morris-Pratt’s
algorithm [7], which scans both r and s from left to right and uses an auxiliary next-
table (for r) containing the so-called shift information (or say, failure function
values) to indicate how far to shift the pattern from right to left when the current
character in r fails to match the current character in s. Its time complexity is
bounded by O(m + n), where m = |r| and n = |s|. (By the shift information, we
mean a largest integer j associated with a position i in r such that r[1 … j] = r[i –
j + 1 … i]. Thus, if the current character from the target does not match r[i + 1],
we will compare r[j +1] with the character next to the current one at a next step).
The Boyer-Moore’s approach [6, 33] works a little bit better than the Knuth-Morris-
Pratt’s. In addition to the next-table, a skip-table skip (also for r) is kept, in which
each entry skip[w] is a smallest integer j such that r[m – j] = w. (Here, we notice
that the entries in skip are indexed by characters w in the alphabet Σ.) For a large
alphabet and small pattern, the expected number of character comparisons is about
n/m, and is O(m + n) in the worst case. These two methods have sparked a series of
subsequent research on this problem [16, 28, 34, 35]. Especially, the idea of the
‘shift information’ has also been adopted by Aho and Corasick [16] for the multiple
pattern matching, by which s is searched for an occurrence of any one of a set of

l patterns: {r1, r2, …, rl}. Their algorithm needs only O ∑l
i=1 rij j + n

� �
time. This

method has been slightly improved in different ways [17, 18, 36, 37, 38]. In [17],
Commentz-Walter combines the Boyer-Moore’s technique into the Aho-Corasick’s
algorithm. In [18], Wu and Mamber extend the Boyer-Moore’s algorithm to con-
currently search multiple pattern strings. Instead of using bad character heuristics to
compute shift values, they utilize a character block containing 2 or 3 characters. In
addition, hash tables are created to link the blocks and the related patterns. In [36], a
concept of superalphabets is introduced, in which each (super) character corre-
sponds to a set of q-grams (each being a substring from a certain pattern and

224 Y. Chen and Y. Wu

represented as a bit string, called a signature, generated by using a hash function).
In this way, a super automaton can be created, in which each transition is labeled
with a super character. s will also be handled as a sequence of q-grams and searched
in the same way as the Aho and Corasick’s algorithm. The main problem of this
method is the false positive and a very time-consuming verification process is
needed. In [19], Crochemore et al. combine the directed acyclic word graphs into
the Aho-Corasick’s algorithm. If the total length of all patterns is polynomial with
respect to the shortest length m′ of a pattern, the average number of comparisons is
O((n/m′)logm′).

However, all the improved algorithms have the same worst-case time complexity
as the Aho-Corasick’s.

In situations where a fixed string s is to be searched repeatedly, it is worthwhile
constructing an index over s, such as suffix trees [10, 11], suffix arrays [12], and
more recently the BWT-transformation [13, 15, 23, 39]. A suffix tree is in fact a trie
structure [40] over all the suffixes of s; and by using the Weiner’s algorithm [11] it
can be built in O(n) time. However, in comparison with the BWT-transformation, a
suffix tree needs much more space. Especially, for DNA sequences the
BWT-transformation works highly efficiently due to the small alphabet Σ of DNA
strings. By the BWT, the smaller Σ is, the less space will be occupied by the
corresponding indexes. According to a survey done by Li and Homer [41] on
sequence alignment algorithms for next-generation sequencing, the average space
required for each character is 12–17 bytes for suffix trees while only 0.5–2 bytes for
the BWT. The experiments reported in [21] also confirm this distinction. For
example, the file size of chromosome 1 of human is 270 Mb. But its suffix tree is of
26 Gb in size while its BWT needs only 390 Mb–1 Gb for different compression
rates of auxiliary arrays, completely handleable on PC or laptop machines.

By the hash-table-based algorithms [42], short substrings called ‘seeds’ will be
first extracted from a pattern r and a signature (a bit string) for each of them will be
created. The search of a target string s is similar to that of the Brute Force searching,
but rather than directly comparing the pattern at successive positions in s, their
respective signatures are compared. Then, stick each matching seed together to
form a complete alignment. Its expected time is O(m + n), but in the worst case,
which is extremely unlikely, it takes O(mn) time. The hash technique has also been
extensively used in the DNA sequence research [43–47]. However, almost all
experiments show that they are generally inferior to the suffix tree and the BWT
index in both running time and space requirements.

• Inexact matching

By the inexact matching, we will find, for a certain pattern r and an integer k, all the
substrings s′ of s such that d(s′, r) ≤ k, where d is a distance function. In terms of
different distance functions, we distinguish between two kinds of inexact matches:
string matching with k mismatches and string matching with k errors. A third kind
of inexact matching is that involving Don’t Care, or wild-card symbols which
match any single symbol, including another Don’t Care.

BWT: An Index Structure to Speed-Up Both Exact … 225

k mismatches When the distance function is the Hamming distance, the problem
is known as the string matching with k mismatches [2, 22]. By the Hamming
distance, the number of differences between r and the corresponding substring s′ is
counted. There are a lot of algorithms proposed for this problem, such as [2, 22, 24,
48–51]. They are all on-line algorithms. Except those discussed in [2, 22], all the
other methods have the worst-case time complexity O(mn). The method discussed
in [22], however, requires only O(kn + mlogm) time, by which the mismatch arrays
for r is precomputed and exploited to speed up the search of s. The method dis-
cussed in [2] works slightly better, by which the periodicity within r is utilized. Its
time complexity is bounded by O n

ffiffiffi
k

p
log k

� �
. The algorithm discussed in [23] is

index-based, by which s is transformed to a BWT-array, used as an index; but its
time complexity is bounded by O(mn′+ n), where n′ is the number of leaf nodes of
a tree produced during the search of BWT(s ̄). If m is large, it can be worse than all
those on-line methods discussed in [2, 22, 49, 50]. Another index-based method is
based on a brute-force searching of suffix trees [52]. Its time complexity is bounded
by O m+ n+ c log nk ̸k!

� �� �
, where c is a very large constant. It can also be worse

than an on-line algorithm when n is large and k is larger than a certain constant.
k errors When the distance function is the Levenshtein distance, the problem is

known as the string matching with k errors [24]. By the Levenshtein distance, we
have

dij =min di− 1, j +w ri,ϕð Þ, di, j− 1 +w ϕ, s′j
� �

, di− 1, j− 1 +w ri, s′j
� �n o

,

where di,j represents the distance between r[1 … i] and s′[1 … j], ri (sj′) the ith
character in r (jth character in s′), ϕ an empty character, and w(ri, sj′) the cost to
transform ri into sj′.

Also, many algorithms have been proposed for this problem [4, 26–28]. They are
all some kinds of variants of the dynamic programming paradigm [26] with the
worst-case time complexity bounded by O(mn). However, by the algorithm dis-
cussed in [27], the expected time can reach O(kn).

don’t care As a different kind of inexact matching, the string matching with
Don’t-Cares (or wild-cards) has been a third active research topic for decades, by
which we may have wild-cards in r, in s, or in both of them. Due to the wild
character’s property that it can matches any character, the ′match′ relation is no
longer transitive, which precludes straightforward adaption of the shift information
used by Knuth-Morris-Pratt and Boyer-Moore. Therefore, all the methods proposed
to solve this problem seem not so skillful and need a quadratic time [30]. Using a
suffix array as the index, however, the searching time can be reduced to O(logn) for
some patterns, which contain only a sequence of consecutive Don’t Cares [29].

226 Y. Chen and Y. Wu

3 BWT Transformation

In this section, we give a brief description of the BWT transformation to provide a
discussion background.

3.1 BWT and String Searching

We use s to denote a string that we would like to transform. Assume that s termi-
nates with a special character $, which does not appear elsewhere in s and is
alphabetically prior to all other characters. In the case of DNA sequences, we have
$ < a < c < g < t. As an example, consider s = acagaca$. We can rotate s con-
secutively to create eight different strings, and put them in a matrix as illustrated in
Fig. 2a.

In Fig. 2a, for ease of explanation, the position of a character in s is represented
by its subscript. (That is, we rewrite s as a1c1a2g1a3c2a4$.) For example, a2 rep-
resenting the second appearance of a in s; and c1 the first appearance of c in s. In the
same way, we can check all the other appearances of different characters.

Now we sort the rows of the matrix alphabetically, and get another matrix, as
demonstrated in Fig. 2b, which is called the Burrow-Wheeler Matrix [13, 14, 39]
and denoted as BWM(s). Especially, the last column L of BWM(s), read from top to
bottom, is called the BWT-transformation (or the BWT-array) and denoted as
BWT(s). So for s = acagaca$, we have BWT(s) = acg$caaa. The first column is
referred to as F.

When ranking the elements x in both F and L in such a way that if x is the ith
appearance of a certain character it will be assigned i, the same element will get the
same number in the two columns. For example, in F the rank of a4, denoted as
rkF(a4), is 1 (showing that a4 is the first appearance of a in F). Its rank in L, rkL(a4)
is also 1. We can check all the other elements and find that this property, called the

(a) (c)(b)

Fig. 2 Rotation of a string

BWT: An Index Structure to Speed-Up Both Exact … 227

rank correspondence, holds for all the elements. That is, for any element a in s, we
always have

rkF að Þ= rkL að Þ ð1Þ

According to this property, a string searching can be very efficiently conducted.
To see this, let us consider a pattern string r = aca and try to find all its occur-
rences in s = acagaca$.

First, we notice that we can store F as |Σ| + 1 intervals, such as F$ = F[1 … 1],
FA = F[2 … 5], FC = F[6 … 7], FG = F[8 … 8], and FT = Φ for the above
example (see Fig. 1c) We can also represent a segment within an Fx with x ∈ Σ as
a pair of the form <x, [α, β]>, where α ≤ β are two ranks of x. Thus, we have
FA = F[2 … 5] = <a, [1, 4]>, FC = F[6 … 7] = <c, [1, 2]> , and FG = F[8 …

8] = <g, [1, 1]>. In addition, we can use Lv to represent a range in L corresponding
to a pair v. For example, in Fig. 1c, L<a, [1, 4]> = L[2 … 5], L<c, [1, 2]> = L[6 … 7].
L<a, [2, 3]> = L[3 … 4], and so on.

We will also use a procedure search(z, v) to search Lv to find the first and the last
rank of z (denoted as α′ and β′, respectively) within Lv, and return <z, [α′, β′]> as
the result:

search z, vð Þ= < z, α′, β′
� �

>, if z appears in Lv;
ϕ, otherwise.

	
ð2Þ

Then, we work on the characters in r in the reverse order (referred to as a
backward search). That is, we will search r ̄ (reverse of r) against BWT(s), as shown
below.

Step 1: Check r[3] = a in the pattern string r, and then figure out FA = F[2… 5]
= <a, [1, 4]>.

Step 2: Check r[2] = c. Call search(c, L<a, [1, 4]>). It will search L<a, [1, 4]> = L
[2 … 5] to find a range bounded by the first and last rank of c. Concretely, we will
find rkL(c2) = 1 and rkL(c1) = 2. So, search(c, L<a, [1, 4]>) returns <c, [1, 2]>. It is
F[6 … 7].

Step 3: Check r[3] = a. Call search(a, L<c, [1, 2]>). Notice that L<c, [1, 2]> = L[6
… 7]. So, search(a, L<c, [1, 2]>) returns <a, [2, 3]>. It is F[3 … 4]. Since now we
have exhausted all the characters in r and F[3… 4] contains only two elements, two
occurrences of r in s are found. They are a1 and a3 in s, respectively.

The above working process can be represented as a sequence of three pairs: <a,
[1, 4]>, <c, [1, 2]>, <a, [2, 3]>. In general, for r ̄=C1 . . . Cm, its search against
BWT(s) can always be represented as a sequence:

< x1, α1, β1½ �> , . . . , < xm, αm, βm½ �>

228 Y. Chen and Y. Wu

where < x1, α1, β1½ �> = Fx1, and < xi, αi, βi½ �> = search xi, L< xi− 1, αi− 1, βi− 1½ �>
� �

for
1 < i ≤ m. We call such a sequence as a search sequence. Thus, the time used for
this process is bounded by O ∑m

i=1 τi
� �

, where τi is the time for an execution of
search xi,L< xi− 1, αi− 1, βi− 1½ �>

� �
. However, this time complexity can be reduced to

O(m) by using the so-called rankAll method [13], by which |Σ| arrays each for a
character x ∈ Σ are arranged such that Ax[k] (the kth entry in the array for x) is the
number of appearances of x within L[1 … k] (i.e., the number of x-characters
appearing before L[k + 1].) (See Fig. 3a for illustration.)

Now, instead of scanning a certain segment L[i … j] (i ≤ j) to find a subrange
for a certain x ∈ Σ, we can simply look up the array for x to see whether Ax[i −
1] = Ax[j]. If it is the case, then x does not occur in L[i … j]. Otherwise, [Ax[i −
1] + 1, Ax[j]] should be the range to be found.

For instance, to find the subrange for g within L[6 … 7], we will first check
whether Ag[6 − 1] = Ag[7]. Since Ag[6 − 1] = Ag[5] = Ag[7] = 1, we know that
g does not appear in L[6 … 7]. However, since Ac[2 − 1] ≠ Ac[5], we immediately
get the subrange for c within L[2 … 5]: [Ac[2 − 1] + 1, Ac[5]] = [1, 2].

The problem of this method is its high space requirement, which can be miti-
gated by replacing x[] with a compact array Ax for each x ∈ Σ, in which, rather than
for each L[i] (i ∈ {1, …, n}), only for some entries in L the number of their
appearances will be stored. For example, we can divide L into a set of buckets of the
same size and only for each bucket a value will be stored in Ax. Obviously, doing
so, more search will be required. In practice, the size π of a bucket (referred to as a
compact factor) can be set to different values. For example, we can set π = 4,
indicating that for each four contiguous elements in L a group of |Σ| integers (each
in an Ax) will be stored. That is, we will not store all the values in Fig. 3a, but only
store $[4], a[4], c[4], g[4], t[4], and $[8], a[8], c[8], g[8], t[8] in the corresponding
compact arrays, as shown in Fig. 4b. However, each x[j] for x ∈ Σ can be easily
derived from Aα by using the following formulas:

(a) (b)

Fig. 3 Illustration for rankAlls

BWT: An Index Structure to Speed-Up Both Exact … 229

x j½ � = Ax i½ � + ρ, ð3Þ

where i= ⌊j ̸π⌋ and ρ is the number of x’s appearances within L[i ⋅ π + 1 … j], and

x j½ �=Ax i′
� �

+ ρ′, ð4Þ

where i′ = ⌈j ̸π⌉ and ρ′ is the number of α’s appearances within L[j + 1 … i′ ⋅ π].
Thus, we need two procedures: sDown(L, j, π, x) and sUp(L, j, π, x) to find ρ and

ρ′, respectively. In terms of whether j − i ⋅ π ≤ i′ ⋅ π − j, we will call sDown(L, j, π,
x) or sUp(L, j, π, x) so that fewer entries in L will be scanned to find x[j].

We notice that the column for $ needn’t be stored since it will never be searched.
We can also create rankAlls only for part of the elements to reduce the space
overhead, but at cost of some more searches. See Fig. 3b for illustration.

3.2 Construction of BWT Arrays

A BWT-array can be constructed in terms of a relationship to the suffix arrays [13,
14, 39].

As mentioned above, a string s = a1 …. an is always ended with $ (i.e., ai ∈ Σ
for i = 1, …, n – 1, and an = $). Let s[i] = ai (i = 1, 2, …, n) be the ith character
of s, s[i… j] = ai … aj a substring and s[i … n] a suffix of s. Suffix array H of s is a
permutation of the integers 1, …, n such that H[i] is the start position of the ith
smallest suffix. The relationship between H and the BWT-array L can be determined
by the following formulas:

(a) (b)

Fig. 4 A trie and its compact version

230 Y. Chen and Y. Wu

L i½ �= $, if H i½ �=0;
L i½ � = s H i½ � − 1½ �, otherwise.

	
ð5Þ

Since a suffix array can be generated in O(n) time [53], L can then be created in a
linear time. However, most algorithms for constructing suffix arrays require at least
O(nlogn) bits of working space, which is prohibitively high and amounts to 12 GB
for the human genome. Recently, Hon et al. [53] proposed a space-economical
algorithm that uses n bits of working space and requires only <1 GB memory at
peak time for constructing L of the human genome. We use this for our purpose.

4 Multiple Pattern Matching

In this section, we present our algorithm to search a bunch of pattern strings against
a target s. Its main idea is to organize all the reads into a trie T and search T against
L to avoid any possible redundancy. First, we present the concept of tries in
Sect. 4.1. Then, in Sect. 4.2, we discuss our basic algorithm for the task. We
improve this algorithm in Sect. 4.3.

4.1 Tries over Pattern Strings

Let D = {s1, …, sn} be a DNA database, where each si (i =1, …, n) is a genome, a
very long string ∈ Σ* (Σ = {A, T, C, G}). Let R = {r1, …, rm} be a set of reads
with each rj being a short string ∈ Σ*. The problem is to find, for every rj’s (j =1,
…, m), all their occurrences in an si (i =1, …, n) in D.

A simple way to do this is to check each rj against si one by one, for which
different string searching methods can be used, such as suffix trees [10, 11],
BW-transformation [13], and so on. Each of them needs only a linear time (in the
size of si) to find all occurrences of rj in si. However, in the case of very large m,
which is typical in the new genomic research, one-by-one search of reads against an
si is no more acceptable in practice and some efforts should be spent on reducing the
running time caused by huge m.

Our general idea is to organize all rj’s into a trie structure T and search T against
si with the BW-transformation being used to check the string matching. For this
purpose, we will first attach $ to the end of each si (i = 1, …, n) and construct
BWT(si). Then, attach $ to the end of each rj (j = 1, …, m) to construct T = trie
(R) over R as below.

If |R| = 0, trie(R) is, of course, empty. For |R| = 1, trie(R) is a single node. If |
R| > 1, R is split into |Σ| = 5 (possibly empty) subsets R1, R2, …, R5 so that each
Ri (i ∈ {1, …, 5}) contains all those sequences with the same first character αi ∈
{A, T, C, G} ∪ {$}. The tries: trie(R1), trie(R2), …, trie(R5) are constructed in the

BWT: An Index Structure to Speed-Up Both Exact … 231

same way except that at the kth step, the splitting of sets is based on the kth
characters in the sequences. They are then connected from their respective roots to a
single node to create trie(R).

Example 4.1 As an example, consider a set of four reads:

r1: ACAGA
r2: AG
r3: ACAGC
r4: CA

For these reads, a trie can be constructed as shown in Fig. 4a. In this trie, v0 is a
virtual root, labeled with an empty character ε while any other node v is labeled with
a real character, denoted as l(v). Therefore, all the characters on a path from the root
to a leaf spell a read. For instance, the path from v0 to v8 corresponds to the third
read r3 = ACAGC$. Note that each leaf node v is labelled with $ and associated
with a read identifier, denoted as γ(v).

The size of a trie can be significantly reduced by replacing each branchless path
segment with a single edge. By a branchless path we mean a path P such that each
node on P, except the starting and ending nodes, has only one incoming and one
outgoing edge. For example, the trie shown in Fig. 4a can be compacted to a
reduced one as shown in Fig. 4b.

4.2 Integrating BWT Search with Trie Search

It is easy to see that exploring a path in a trie T over a set of reads R corresponds to
scanning a read r ∈ R. If we explore, at the same time, the L array established over
a reversed genome sequence s ̄, we will find all the occurrences of r (without $

(a) (b) (c)

Fig. 5 Illustration for Step 1

232 Y. Chen and Y. Wu

involved) in s. This idea leads to the following algorithm, which is in essence a
depth-first search of T by using a stack S to control the process. However, each
entry in S is a triplet <v, a, b> with v being a node in T and a ≤ b, used to indicate
a subsegment in Fl(v)[a … b]. For example, when searching the trie shown in
Fig. 5a against the L array shown in Fig. 2a, we may have an entry like <v1, 1,
4> in S to represent a subsegment FA[1 … 4] (the first to the fourth entry in FA)
since l(v1) = ′A′. In addition, for technical convenience, we use Fε to represent the
whole F. Then, Fε[a … b] represents the segment from the ath to the bth entry in F.

In the algorithm, we first push <root(T), 1, |s|> into stack S (lines 1–2). Then,
we go into the main while-loop (lines 3–16), in which we will first pop out the top
element from S, stored as a triplet <v, a, b> (line 4). Then, for each child vi of v, we
will check whether it is a leaf node. If it is the case, a quadruple <γ(vi), l(v), a,
b> will be added to the result ℜ (see line 7), which records all the occurrences of a
read represented by γ(vi) in s. (In practice, we store compressed suffix arrays [12,
13] and use formulas (1) and (5) to calculate positions of reads in s.) Otherwise, we
will determine a segment in L by calculating α′ and β′ (see lines 8–9). Then, we will
use sDown(L, α′ − 1, π, x) or sUp(L, α′ − 1, π, x) to find x[α′ − 1] as discussed in
the previous section. (See line 10.) Next, we will find x[β′] in a similar way. (See
line 11.) If x[β′] > x[α′ − 1], there are some occurrences of x in L[α′ … β′] and we
will push <vi, x[α′ − 1] + 1, x[β′]>) into S, where x[α′ − 1] + 1 and x[β′] are the
first and last rank of x’s appearances within L[x′ … y′], respectively. (See lines 12–
13.) If x[β′] = x[α′ − 1], x does not occur in L[α′ … β′] at all and nothing will be
done in this case. The following example helps for illustration.

BWT: An Index Structure to Speed-Up Both Exact … 233

Example 4.2 Consider all the reads given in Example 4.1 again. The trie T over
these reads are shown in Fig. 4a. In order to find all the occurrences of these reads
in s = ACAGACA$, we will run readSearch() on T and the LF of s ̄ shown in
Fig. 5b. (Note that s = s ̄ for this special string, but the ordering of the subscripts of
characters is reversed. In Fig. 5a, we also show the corresponding BWM matrix for
ease of understanding.)

In the execution of readSearch(), the following steps will be carried out.
Step 1: push <v0, 1, 8> into S, as illustrated in Fig. 5c.
Step 2: pop out the top element <v0, 1, 8> from S. Figure out the two children of

v0: v1 and v11. First, for v11, we will use Ac to find the first and last appearances of l
(v11) = ‘C’ in L[1… 8] and their respective ranks: 1 and 2. Assume that π = 4 (i.e.,
for each 4 consecutive entries in L a rankAll value is stored.) Further assume that for
each Ax (x ∈ {a, c, g, t}) Ax[0] = 0. The ranks are calculated as follows.

• To find the rank of the first appearance of ‘C’ in L[1… 8], we will first calculate
C[0] by using formula (3) or (4) (i.e., by calling sDown(L, 0, 4, C) or sUp(L, 0,
4, C)). Recall that whether (4) or (5) is used depends on whether j − i′ ⋅ π ≤ i′ ⋅ π
− j, where i= ⌊j ̸π⌋ and i′ = ⌈j ̸π⌉. For C[0], j = 0. Then, i = i′ = 0 and (4)
will be used:

C 0½ �=Ac ⌊0 ̸4⌋½ � + ρ

Since Ac ⌊0 ̸4⌋½ �=Ac 0½ �=0 and the search of L[i ⋅ π … j] = L[0 … 0] finds ρ
= 0, C[0] is equal to 0.

• To find the rank of the last appearance of ‘C’ in L[1… 8], we will calculate C[8]
by using (4) for the same reason as above. For C[8], we have j = 8 and i = 2.
So we have

<v1, 1, 4>
<v11, 1, 2>

S:

<v5, 4, 4>
<v9, 1, 1>

<v11, 1, 2>

<v3, 2, 3>
<v9, 1, 1>

<v11, 1, 2>

<v4, 1, 1>
<v9, 1, 1>

<v11, 1, 2>

<v2, 1, 2>
<v9, 1, 1>

<v11, 1, 2>

(a) (b)

(c) (d) (e)

Fig. 6 Illustration for stack
changes

234 Y. Chen and Y. Wu

C 8½ �=Ac ⌊8 ̸4⌋½ �+ ρ

Since Ac ⌊8 ̸4⌋½ �=Ac 2½ �=2, and the search of L[i ⋅ π … j] = L[8 … 8] finds ρ
= 0, we have C[8] = 2.

So the ranks of the first and the last appearances of ‘C’ are C[0] + 1 = 1, and C
[8] = 2, respectively. Push <v11, 1, 2> into S.

Next, for v1, we will do the same work to find the first and last appearances of l
(v1) = ‘A’ and their respective ranks: 1 and 4; and push <v1, 1, 4> into S. Now
S contains two entries as shown in Fig. 6a after step 2.

Step 3: pop out the top element <v1, 1, 4> from S. v1 has two children v2 and v9.
Again, for v9 with l(v9) = ‘G’, we will use Ag to find the first and last appearances
of G in L[2 … 5] (corresponding to FA[1 … 4]) and their respective ranks: 1 and 1.
In the following, we show the whole working process.

• To find the rank of the first appearance of ‘G’ in L[2… 5], we will first calculate
G[1]. We have j=1, i= ⌊j ̸π⌋= ⌊1 ̸4⌋=0 and i′ = ⌈1 ̸4⌉=1. Since j − i ⋅ π =
0 < i′ ⋅ π − j = 3, formula (4) will be used:

G 1½ �=Ag ⌊1 ̸4⌋½ �+ ρ

Since Ag ⌊0 ̸4⌋½ �=Ag 0½ �=0 and search of L[i ⋅ π… j] = L[0 … 0] finds ρ = 0, G
[1] is equal to 0.

• To find the rank of the last appearance of ‘G’ in L[2 … 5], we will calculate G
[5] by using (4) based on an analysis similar to above. For G[5], we have j = 5
and i= ⌊j ̸π⌋=1. So we have

G 5½ �=Ag 5 ̸4½ �+ ρ

Since Ag ⌊5 ̸4⌋½ �=Ag 1½ �=1, and search of L[i ⋅ π … j] = L[4 … 5] finds ρ = 0,
we have G[5] = 1.

We will push <v9, G[1] + 1, G[5]> = <v9, 1, 1> into S.
For v2 with l(v2) = ‘C’, we will find the first and last appearances of C in L[2 …

5] and their ranks: 1 and 2. Then, push <v2, 1, 2> into S. After this step, S will be
changed as shown in Fig. 6b.

In the subsequent steps 4, 5, and 6, S will be consecutively changed as shown in
Fig. 6c, d, and e, respectively.

In step 7, when we pop the top element <v5, 4, 4>, we meet a node with a single
child v6 labeled with $. In this case, we will store <γ(v6), l(v5), 4, 4> = <r1, A, 4,
4> in ℜ as part of the result (see line 7 in searchRead()). From this we can find that
rkL(A3) = 4 (note that the same element in both F and L has the same rank), which
shows that in s ̄ the substring of length |r1| staring from A3 is an occurrence of r1. □

BWT: An Index Structure to Speed-Up Both Exact … 235

4.3 Time Complexity and Correctness Proof

In this subsection, we analyze the time complexity of readSearch(T, LF, π) and
prove its correctness.

4.3.1 Time Complexity

In the main while-loop, each node v in T is accessed only once. If the rankAll arrays
are fully stored, only a constant time is needed to determine the range for l(v). So
the time complexity of the algorithm is bounded by O(|T|). If only the compact
arrays (for the rankAll information) are stored, the running time is increased to
O(|T| ⋅ π), where π is the corresponding compact factor. It is because in this case, for
each encountered node in T, O 1

2 π
� �

entries in L may be checked in the worst case.

4.3.2 Correctness

Proposition 4.1 Let T be a trie constructed over a collections of reads: r1, …, rm,
and LF a BWT-mapping established for a reversed genome s ̄. Let π be the compact
factor for the allRank arrays, and ℜ the result of readSearch(T, LF, π). Then, for
each rj, if it occurs in s, there is a quadruple {<γ(vi), l(v), a, b>} ∈ ℜ such that
γ(vi) = rj, l(v) is equal to the last character of rj, and Fl(v)[a], Fl(v)[a + 1], …, Fl

(v)[b] show all the occurrences of rj in s.

Proof We prove the proposition by induction on the height h of T.
Basic step. When h = 1. The proposition trivially holds.
Induction hypothesis. Suppose that when the height of T is h, the proposition

holds. We consider the case that the height of T is h + 1. Let v0 be the root with l
(v0) = ε. Let v1, …, vk be the children of v0. Then, height(T[vi]) ≤ h (i = 1, …, k),
where T[vi] stands for the subtree rooted at vi and height(T[vi]) for the height of T
[vi]. Let l(vi) = x and Fx = <x; a, b>. Let vi1, …, vil be the children of vi. Assume
that α and β be the ranks of the first and last appearances of x in L. According to the
induction hypothesis, searching T[vij] against L[a′ … b′], where a′ = a + α − 1
and b′ = a + β − 1, the algorithm will find all the locations of all those reads with l
(vi) as the first character. This completes the proof. □

236 Y. Chen and Y. Wu

5 String Matching with k Mismatches

5.1 Basic Working Process

By the string matching with k mismatches, we allow up to k characters in a pattern
r to match different characters in a target s. By using the BWT as an index, for
finding all such string matches, a tree structure will be generated, in which each
path corresponds to a search sequence discussed in the previous section. It is due to
the possibility that a position in r may be matched to different characters in s and we
need to call search() multiple times to do this task, leading to a tree representation.

Definition 5.1 (search tree) Let r be a pattern string and s be a target string.
A search tree T (S-tree for short) is a tree structure to represent the search of
r against BWT s ̄ð Þ (which is equivalent to the search of r ̄ against BWT(s)). In T, each
node is a pair of the form <x, [α, β]>), and there is an edge from v (=<x, [α, β]>) to
u (=<x′, [α′, β′]>) if search(x, Lv) = u.

As an example, consider the case where r = tcaca, s = acagaca and k = 2. To
find all occurrences of r in s with up to two mismatches, a search tree T shown in
Fig. 7 will be created.

In Fig. 7, v0 is a virtual root, representing the whole L, and ‘virtually’ corre-
sponds to the virtual starting character r[0] = ‘-’. By exploring paths P1 = v1 → v4
→ v8 → v12 → v16 and P2 = v1 → v5 → v9 → v13 → v16, we will find two
occurrences of r with 2 mismatches: s[1 … 5] (=a1c1a2g1a3) and s[3 … 7]
(=a2g1a3c2a4) while by either P3 = v2 → v6 → v10 → v14 → v18 or P4 = v3 →
v7 → v11 → v15 → v19 no string matching with at most 2 mismatches can be
found.

A node <x, [α, β]>in such a tree is called a matching node if it corresponds to a
same character in r. Otherwise, it is called a mismatching node. For example, node
v4 = <c, [1, 2]> is a matching node since it corresponds to r[2] = c while v1 = <a,
[1, 4]> is a mismatching node since it corresponds to r[1] = t.

<-, [1, 8]>

<a, [1, 4]>

<c, [1, 2]>

<a, [2, 3]>

<g, [1, 1]>

<g, [1, 1]>

<a, [4, 4]>

<c, [2, 2]>

<c, [1, 2]>

<a, [2, 3]>

<g, [1, 1]>

<g, [1, 1]>

<a, [4, 4]>

v0

v1 v2 v3

v4 v5
v6 v7

v8 v9
v10

v12 v13

P1 P2 P3 P4

<a, [4, 4]> <a, [3, 3]>v16
v17

r[2] = c

r[3] = a

r[4] = c

r[5] = a

r[1] = t

r:

<a, [4, 4>]v14

<c, [2, 2]>v18

<a, [3, 3]>

<$, [-, -]>

<c, [2, 2]>

v15

v19

v11

T:

Fig. 7 Search for string matching with 2 mismatches

BWT: An Index Structure to Speed-Up Both Exact … 237

For a path Pl, we can store all its mismatching positions in an array Bl of length
k + 1 such that Bl[i] = j if Pl[j] ≠ r[j] and this is the ith mismatch between Pl and
r, where Pl[j] is the jth character appearing on Pl. If the number of mismatches, k′,
say, between Pl and r is less than k + 1, then the default value ∞ onwards, i.e.,

Bl k′ +1
� �

=Bl K ′ +2
� �

=⋯=Bl k+1½ �=∞.

We call Bl a mismatch array. For instance, in Fig. 3, for P1, we have B1 = [1, 4,
∞], indicating that at position 1, we have the first mismatch P1[1] = a ≠ r
[1] = t and at position 4 we have the second mismatch P1[4] = g ≠ r[4] = a. For
the same reason, we have B2 = [1, 2, ∞], B3 = [1, 2, 3], and B4 = [1, 2, 3].

These data structures can be easily created by maintaining and manipulating a
temporary array B of length k + 1 to record the mismatches between the current
path P and r. Initially, each entry of B is set to be∞ and an index variable i pointing
to the first entry of B. Each time a mismatch is met, its position is stored in B[i] and
then i is increased by 1. Each time r is exhausted or B becomes full (i.e., each entry
is set a value not equal to ∞), we will store B as an Bl (and associate it with the leaf
node of the corresponding Pl.) Then, ‘backtrack’ to the lowest ancestor of the
current node, which has at least a branch not yet explored, to search a new path. For
instance, when we check v16, r is exhausted and the current value of B is [1, 4, ∞].
We will store B in B1 (the array associated with the leaf node v16 of P1) and
‘backtrack’ to v1 to explore a new path. At the same time, all those values in B,
which are set after v1, will be reset to ∞, i.e., B will be changed to [1, ∞, ∞].

Now we consider another path P3. The search along P3 will stop at v10 since
when reaching it B becomes full (B = [1, 2, 3]). Therefore, the search will not be
continued, and v14, v18 will not be created.

It is essentially a brute-force search to check all the possible occurrences of r in
s. Denote by n′ the number of leaf nodes in T. The time used by this process is
bounded by O(mn′).

In fact, it is the main process discussed in [23]. The only difference is that in [23]
a simple heuristics is used, which precomputes, for each position i in r, the number
σ(i) of consecutive, disjoint substrings in r[i … m], which do not appear in s. For
example, in Fig. 3, σ(1) = 2 since in r[1 … 5] = tcaca both r[1 … 1] = t and
r[2 … 4] = cac do not occur in s = acagaca. But σ(3) = 0 since any substring in
r[1 … 3] = aca does appear in s. Assume that the number of mismatches between
r[1 … i – 1] and P[1 … i – 1] (the current path) is l. Then, if k – l < σ(i), we can
immediately stop exploring the subtree rooted at P[i – 1] as no satisfactory answers
can be found by exploring it.

The time required to establish such a heuristics is O(n) by using BWT(s) [23].
However, the theoretic time complexity of this method is still O(mn′). Even in
practice, this heuristics is not quite helpful since σ(i) delivers only the information
related to r[i … m] and the whole s, rather than the information related to r[i …
m] and the relevant substrings of s, to which it will be compared. To see this, pay
attention to part of the tree marked grey in Fig. 7. Since σ(3) = 0, the search along
P4 will be continued. But no answer can be found. The heuristics here is in fact

238 Y. Chen and Y. Wu

useless since it is not about r[3 … 5] and s[5 … 7], which is to be checked in a next
step.

5.2 Mismatch Information

Searching S-trees in an improvement over scanning strings, but it often happens that
there are repetitive traversals of similar subtrees due to the multiple appearances of
a same pair. However, such repeated appearance of pairs cannot be simply removed
since they may be aligned to different positions in r. For example, the first
appearance of <c, [1, 2]> (v4 in Fig. 3) is compared to r[2] while its second
appearance (v2) is to r[1]. Hence, we cannot use the result computed for v4
(when <c, [1, 2]> is first met) as the result for v2.

However, if we have stored the mismatch information R between substrings of r,
like r[2 … 4] and r[1 … 3], in some way, the mismatches along P3 can be derived
from R and B1 (the mismatches recorded for P1), instead of simply exploring P3

again in a way done for P1. To do so, for each pair i, j ∈ {1, …, m}, we need to
maintain a data structure Rij containing the positions of the first k + 1 mismatches
between r[i … m – q + i] and r[j … m – q + j], where q = max{i, j}, such that if
Rij[l] = x (≠ ∞) then r[i + x − 1] ≠ r[j + x − 1] or one of them does not exist,
and it is the lth mismatch between them.

Clearly, this task requires O(km2) time and space.
For this reason, we will precompute only part of R, instead of Rij for all i, j ∈ {1,

…, m}. Specifically, R12,…, R1m for r will be pre-constructed in a way as described
in [22], giving the positions of the mismatches between the pattern and itself at
various relative shifts. That is, each R1i (2 ≤ i ≤ m) contains the positions within
r of the first 2k + 1 mismatches between the substring r[1 … m – i] and r[i + 1 …

m], i.e., the overlapping portions of the two copies of pattern r for a relative shift of
i. Thus, if R1i[j] = x, then r[x] ≠ r[i + x − 1] or one of them does not exist, which
is the jth mismatch between r[1 … m – i] and r[i + 1 … m]. (See Fig. 8a for
illustration.)

In Fig. 8b, we show a pattern r1 = tcacg and all the possible right-to-left shifts:
r2 = r[2 … 5] = cacg, r3 = r[3 … 5] = acg, and so on. In Fig. 8c, we give R12,

(a) (b) (c)

Fig. 8 Illustration for table R

BWT: An Index Structure to Speed-Up Both Exact … 239

…, R15 for r1. In an R1i, if the number of mismatches, k′, say, between r[1 … m –

i] and r[i + 1 … m] is less than 2k + 1, then the default value ∞ onwards, i.e.,

R1i K ′ +1
� �

=R1i k′ +2
� �

=⋯=R1i 2k+1½ �=∞.

We will also use δ(R1i) to represent the number of all those entries in R1i, which
are not ∞. Trivially, R11 = [∞, …, ∞].

Using the algorithm of [22], R12, …, R1m can be constructed in O(mlogm) time,
just before the process for the string matching gets started. In addition, we need to
keep 2k + 1, rather than k + 1 mismatches in each R1i (i = 2, …, m), since for
generating an R1j, up to 2k + 1 mismatches in some R1i with i < j are needed to get
an efficient algorithm (see [22] for detailed discussion.)

Each time we meet a node u (compared to a certain r[j]), which is the same as an
already encountered one v (compared to an r[i]), we need to derive dynamically the
relevant mismatches, Rij, between r[i … m – q + i] and r[j … m – q + j] from R1i

and R1j, as well as r, to compute mismatch information for some new paths (to
avoid exploring them by using search()). (A node <x, [α, β]> is said to be the same
as another node <x′, [α′, β′]> if x = x′, α = α′ and β = β′.) For this purpose, we
design a general algorithm to create Rij efficiently.

• Let ω, ω1 and ω2 be three strings. Let A1 and A2 be two arrays containing all the
positions of mismatches between ω and ω1, and ω and ω2, respectively.

• Create a new array A such that if A[i] = j (≠ ∞), then ω1[j] ≠ ω1[j], or one of
them does not exists. It is the ith mismatch between them.

The algorithm works in a way similar to the sort-merge-join, but with a sub-
stantial difference in handling a case when an entry in A1 is checked against an
equal entry in A2. In the algorithm, two index variables p and q are used to scan A1

and A2, respectively. The result is stored in A.

Fig. 9 Illustration for merge()

240 Y. Chen and Y. Wu

1. p := 1; q := 1; l := 1;
2. If A2[q] < A1[p], then {A[l] := A2[q]; q := q + 1; l := l + 1;}
3. If A1[p] < A2[q], then {A[l] := A1[p]; p := p + 1; l := l + 1;}
4. If A1[p] = A2[q], then {if ω1[p] ≠ ω2[q], then {A[l] := q; l := l + 1;} p := p + 1;

q := q + 1;}
5. If p > |A1|, q > |A2|, or both A1[p] and A2[q] are ∞, stop (if A1 (or A2) has some

remaining elements, which are not ∞, first append them to the rear of A, and
then stop.)

6. Otherwise, go to (2).

We denote this process as merge(A1, A2, ω1, ω2). As an example, let us consider
the case where A1 = R12 = [1, 2, 3, 4, ∞], A1 = R13 = [1, 3, ∞, ∞, ∞], ω1 = r[2
… 4] = cacg and ω1 = r[3 … 5] = acg, and demonstrate the first three steps of the
execution of merge(A1, A2, ω1, ω2) in Fig. 9. The result is A = [1, 2, 3, 4], showing
the mismatches between these two substrings.

In step 1: p = 1, q = 1, l = 1. We compare A1[p] = A1[1] and A2[q] = A2[1].
Since A1[1] = A2[1] = 1, we will compare ω1[1] and ω2[1], and find that
ω1[1] = c ≠ ω2 [1] = a. Thus, A[1] is set to be 1. p := p + 1 = 2, q := q + 1 = 2,
l := l + 1 = 2.

In step 2: p = 2, q = 2, l = 2. we compare A1[2] and A2[2]. Since
A1[2] = 2 < A2[2] = 3, A[2] is set to be 2. p := p + 1 = 3, q := 2, l := l + 1 = 3.

In step 3: p = 3, q = 2, l = 3. We compare A1[3] and A2[2], and find that
A1[3] = A2[2] = 3. So, we need to compare ω1[3] and ω2[3]. Since ω1[3] = c ≠ ω2

[3] = g, A[3] is set to be 3. p := p + 1 = 4, q := 3, l := l + 1 = 4.
In a next step, we have p = 4, q = 3, l = 4. We will compare A1[4] and A2[3].

Since A1[4] = 4 < A2[3] = ∞, we set A[4] to 4.
Obviously, the running time of this process is bounded by O(k).

Proposition 5.1 Let A be the result of merge(A1, A2, ω1, ω2) with A1, A2, ω1, ω2

defined as above. Let k′ be the number of mismatches between ω1 and ω2. Then, A
[i] must be the position of the ith mismatch between ω1 and ω2, or ∞, depending on
whether i is ≤ k′.

Proof Consider ω2[j]. Position j may satisfy either, neither, or both of the following
conditions:

(i) j corresponds to the lth mismatch between ω and ω2 for some l, i.e.,
ω[j] ≠ω2[j] and A2[l] = j.

(ii) j corresponds to the fth mismatch between ω and ω1 for some f, i.e.,
ω[j] ≠ ω1[j] and A1[f] = j.

If (i) holds, but (ii) not, (2) in merge(A1, A2, ω1, ω2) will be executed. Since in
this case, we have ω[j] ≠ ω2[j] and ω[j] = ω1[j], (2) is correct.

If (ii) holds, but (i) not, (3) will be executed. Since in this case, we have
ω[j] ≠ ω1[j] and ω[j] = ω2[j], (3) is also correct.

If both (i) and (ii) hold, no conclusion concerning ω1[j] and ω2[j] can be drawn
and we need to compare them. In this case, (4) is executed. If neither (i) nor (ii) is

BWT: An Index Structure to Speed-Up Both Exact … 241

satisfied, we must have ω[j] = ω2[j] and ω[j] = ω1[j]. So ω2[j] = ω1[j], i.e., we
have a matching at j. □

5.3 Main Idea: Mismatch Information Derivation

Now we are ready to present the main idea of our algorithm, which is similar to the
generation of an S-tree described in Subsection A. However, each time we meet a
node u (compared to a position in r, say, r[j]), which is the same as a previous one
v (compared to a different position in r, say, r[i]), we will not explore T[u] (the
subtree rooted at u), but do the following operations to derive the relevant mis-
matching information:

First, we will create Rij by executing merge(R1i, R1j, r[i … m – q + i], r[j … m –

q + j]), where q = max{i, j}. Then, we will created a set of mismatch arrays for all
the sub-paths in T[u], which start at u and end at a leaf node, by doing two steps
shown below.

• For each path Pi going through v, figure out a sub-array of Bl, denoted as Bi
l,

containing only those values in Bl, which are larger than or equal to i. Moreover,
each value in it will be decreased by i – 1. (For example, for B1 = [1, 4, ∞], we
have Bi

l = [1, 4, ∞], B2
l = [3, ∞], B3

l = [2, ∞], B4
l = [1, ∞], and B5

l = [∞].)
• Create the mismatch arrays for all the paths going through u by executing merge

(Bi
l, Rij, Pl[i … ml], r[j … m]) for each Pl, where ml = |Pi|.

We denote this process as mi-creation(u, v, j, i).
As an example, consider v2 (in Fig. 7, labeled <c, [1, 2]> and compared to r

[1] = t), which is the same as v4 (compared to r[2] = c). By executing mi-creation
(v2, v4, 1, 2), the following operations will be performed, to avoid repeated access of
the corresponding subtree (i.e., part of P3 shown in Fig. 10a):

1. Create R21:
R12 = [1, 2, 3, 4, ∞], R11 = [∞, ∞, ∞, ∞, ∞],

(a) (b) (c)

Fig. 10 Illustration for derivation of mismatch information

242 Y. Chen and Y. Wu

R21 = merge(R12, R11, r[2 … 5], r[1 … 4]) = [1, 2, 3, 4].
2. Create part of mismatch information for P3:

B1 = [1, 4, ∞], B2
l = [3, ∞]. P1[2 … 5] = caga, r[1 … 4]) = caca.

merge(B2
l , R21, P1[2 … 5], r[1 … 4]) = [1, 2, 3, 4].

In general, we will distinguish between two cases:

(i) i < j. This case can be illustrated in Fig. 10b. In this case, the mismatch
information for the new paths can be completely derived.

(ii) i > j. This case can be illustrated in Fig. 10c. In this case, only part of mis-
match information for the new paths can be derived. Thus, after the execution
of merge(), we have to continue to extend the corresponding paths.

Therefore, among different appearances of a certain node v, we should always
use the one compared to r[i] with i being the least to derive as much mismatch
information as possible for to be created paths.

Finally, we notice that it is not necessary for us to consider the case i = j since
the same node will never appear at the same level more than once. The following
lemma is easy to prove.

Lemma 5.1 In an S-tree T, if two nodes are with the same pair, then they must
appear at two different levels. □

5.4 Algorithm Description

The main idea presented in the previous subsection can be dramatically improved.
Instead of keeping a Bl for each Pl, we can maintain a general tree structure, called a
mismatch tree, to store the mismatch information for all the created paths. First, we
define two simple concepts related to S-trees.

Definition 5.2 (match path) A sub-path in an S-tree T is called a match path if each
node on it is a matching node in T.

Definition 5.3 (maximal match sub-path) A maximal match sub-path (MM-path for
short) in an S-tree T is a match sub-path such that the parent of its first node in T is a
mismatching node and its last node is a leaf node or has only mismatching nodes as
its children.

For example, edge v4 → v8 in T shown in Fig. 7 is a MM-path. Path v9 → v13
→ v17 is another one. The node v16 alone is also a MM-path in T.

Based on the above concepts, we define another important concept, the so-called
mismatch trees.

Definition 5.4 (mismatch trees) A mismatch tree D (M-tree for short) for a given
S-tree T, is a tree, in which for each mismatching node <x, [α, β]> (compared to r
[i] for some i) in T we have a node of the form <x, i>, and for eachMM-path a node

BWT: An Index Structure to Speed-Up Both Exact … 243

of the form <−, 0>. There is an edge from u to u′ if one of the following two
conditions is satisfied:

• u is of the form <x, i> corresponding to a pair <x, [α, β]> (compared to r[i]),
which is the parent of the first node of an MM-path (in T) represented by u′; or

• u is of the form <−, 0> and u′ corresponds to a mismatching node which is a
child of a node on the MM-path represented by u.
Without causing confusion, we will also call <−, 0> in D a matching node,
and <x, i> a mismatching node.

For example, for T shown in Fig. 7, we have its M-tree shown in Fig. 11, in
which u0 is a virtual root corresponding to the virtual root of the S-tree shown in
Fig. 7. Its value is also set to be <−, 0> since it will be handled as a matching
node. Then, each path in the M-tree corresponds to a Bl. For instance, path u0 → u1
→ u4 → u8 → u12 corresponds to B1 = [1, 4, ∞] if all the matching nodes on the
path are ignored. For the same reason, u0 → u1 → u5 → u19 corresponds to
B2 = [1, 2, ∞].

In addition, we can store all the different nodes v (=<x, [α, β]>) in T in a hash
table with each entry associated with a pointer to a node in the corresponding
M-tree D, described as follows.

• If v is a mismatching node compared to r[i] for some i ∈ {1, …, m}, a node
u = <x, i> will be created in D and a pointer (associated with v, denoted as p
(v)) to u will be generated.

• If v is a matching node, a node u = <−, 0> will be created in D and p(v) to
u will be generated. If the parent u′ of u itself is <−, 0>, u will be merged into
its parent. That is, v will be linked to u′ while u itself will not be generated.

For instance, when <a, [1, 4]> (v1 in T shown in Fig. 7) is created, it is com-
pared to r[1] = t. Since a ≠ t, we have a mismatch and then u1 = <a, 1> in the
M-tree D will be generated. At the same time, we will insert <a, [1, 4]> into the
hash table and produce a pointer associated with it to u1 (see Fig. 11 for

Fig. 11 A mismatch tree

244 Y. Chen and Y. Wu

illustration). However, when <c, [1, 2]> (v4 in T shown in Fig. 7) is created, it is
compared to r[2] = c and we have a matching. For this, a node <−, 0> (u4 in Fig. 7)
will be generated, and a link from <c, [1, 2]> to it will be established. But when <a,
[2, 3]> (v8 in T shown in Fig. 7, compared to r [5] = a) is met, no node in D will be
generated since it is a matching node (in T) and the parent (u4 in Fig. 11) of the node
to be created for it is also <−, 0>. We will simply link it to its parent u4.

In order to generate D, we will use a stack S to control the process, in which each
entry is a quadruple (v, j, κ, u), where

v—a node inserted into the hash table.
j—j is an integer to indicate that v is the jth node on a path in T (counted from the

root with the root as the 0th node).
κ—the number of mismatches between the path and r[0 … j] (recall that r

[0] = ‘−’).
u—the parent of a node in D to be created for v.
In this way, the parent/child link between u and the node to be created for v can

be easily established, as described below.
Each time an entry e = (v, j, κ, u) with v = <x, [α, β]> is popped out from S, we

will check whether x = r[j].

(i) If x = r[j], we will generate a node u′= <x, j> and link it to u as a child.
(ii) If x ≠ r[j], we will check whether u is a node of the form <−, 0>. If it is not

the case, generate a node u′ = <−, 0>.
Otherwise, set u′ to be u.

(iii) Using search() to find all the children of v: v1, …, vl. Then, push each
(vi, j + 1, κ′, u′) into S with κ′ being κ or κ + 1, depending on whether yi= r
[j + 1], where vi = <yi, [αi, βi]> .

Note that in this process it is not necessary to keep T, but insert all the nodes (of
T) in the hash table as discussed above.

(a) (b)

(d) (e)

(c)

Fig. 12 Illustration for stack changes

BWT: An Index Structure to Speed-Up Both Exact … 245

Example 5.1 In this example, we run the above process on r = tcaca and L =
BWT s ̄ð Þ shown in Fig. 3c with k = 2, and show its first 5 steps. The tree created is
shown in Fig. 12.

Step 1: Create the root, v0 = <−, [1, 8]>. Push (v0, 0, 0, ϕ) into S, where ϕ is
used to represent the parent of the root D. See Fig. 12a.

Step 2: Pop out the top element (v0, 0, 0, ϕ) from S. Create the root u0 of D,
which is set to be a child of ϕ. Push <v3, 1, 1, u0>, <v2, 1, 1, u0>, <v1, 1, 1,
u0> into S, where v3, v2, and v1 are three children of v0. See Fig. 12b.

Step 3: Pop out (v1, 1, 1, u0) from S. v1 = <a, [1. 4]>. Since r[1] = t ≠ a, a
mismatching node u1 = <a, 1> will be created and set to be a child of u0. Then,
push (v4, 2, 1, u1) into S, where v4 is the child of v1. See Fig. 12c.

Step 4: Pop out (v4, 2, 1, u1) from S. v4 = <c, [1, 2]>. Since r[2] = c, we will
check whether u1 is a matching node. It is the case. So, a matching node u4 = <−,
0> will be created and set to be a child of u1. Then, push (v8, 3, 1, u4) into S, where
v8 is the child of v4. See Fig. 12d.

Step 5: Pop out (v8, 3, 1, u4) from S. v8 = <a, [2, 3]>. r[3] = a. However, no
new node is created since u4 is a matching node. Push (v12, 4, 1, u4) into S, where
v12 is the child of v8. See Fig. 12e. □

From the above sample trace, we can see that D can be easily generated. In the
following, we will discuss how to extend this process to a general algorithm for our
task.

As with the basic process, each time a node v = <x, [α, β]> (compared to r[j]) is
encountered, which is the same as a previous one v′ = <x′, [α′, β′]> (compared to r
[i]), we will not create a subtree in T in a way as for v′, but create a new node u for
v in D and then go along p(v′) (the link associated with v′) to find the corresponding
nodes u′ in D and search D[u′] in the breadth-first manner to generate a subtree
rooted at u in D by simulating the merge operation discussed in Subsection B. In
other words, D[u] (to be created) corresponds to the mismatch arrays for all the
paths going though v in T, which will not be actually produced. See Fig. 13 for
illustration.

For this purpose, we introduce a third kind of nodes of the form <−, ∞> into
D to represent symbol ∞ in mismatching arrays. Such a node is always the last
node of a path in D.

To search D[u′] breadth-first, a queue data structure Q is used to control the
search of D[u′] and at the same time generate D[u]. In Q, each entry e is a triplet
(w, γ, h) with w being a node in D[u′], γ an entry in Rij, and h is the number of

Fig. 13 Illustration for
generation of subtrees in T′

246 Y. Chen and Y. Wu

mismatching nodes on the path from the root to the node to be created in D[u].
Initially, put (u′, Rij[1], h′) into Q, where h′ is the number of mismatching nodes on
the path from the root to u. In the process, when e is dequeued from Q (taken out
from the front), we will make the following operations (simulating the steps in
merge()):

1. Let e = (w, Rij[l], h). Assume that w = <z, f> and Rij[l] = val.

• If <z, f>is equal to <−, 0>, then create a copy of <−, 0>added to D[u]. Let
u1, …, ug be the children of w. We will enqueue (append at the end)
(u1, Rij[l], h), …, (ug, Rij[l], h) into Q in turn.

• If is a mismatching node, do (2), (3), or (4).
• If <z, f>is equal to <−, ∞ >, do (5).

2. If f <i + val − 1, add <z, j + f − i + 1> to D[u]. If h < k + 1, enqueue (u1,
Rij[l], h + 1), …, (ug, Rij[l], h +1) into Q.

3. If f > i + val – 1 (and f ≠ ∞), we will scan Rij starting from Rij[l] until we meet
the largest l′ ≤ k – h + l such that f > i + Rij[l′] – 1. For each
Rij[q] (l ≤ q ≤ l′), we create a new node <r[i + Rij[q] – 1], j + Rij[q] –

1> added to D[u]. If l′ < k – h + l, add <−, ∞> to D[u], and enqueue <w,
Rij[l′ + 1], h + l′ − l +1> into Q.

4. If f = i + val − 1, we will distinguish between two subcases: z ≠ r[j + val −
1] and z = r[j + val - 1]. If z ≠ r[j + val − 1], we have a mismatch and a copy
of w will be generated and added to D[u]. If h < k + 1, enqueue (u1, Rij[l + 1],
h + 1), …, (ug, Rij[l + 1], h + 1) into Q. If z = r[j + val − 1], create a node <
−, 0> added to D[u]. (If its parent is also <−, 0> , it will be merged into its
parent.) Also enqueue <u1, Rij[l + 1], h), …, <ug, Rij[l + 1], h) into Q.

5. If w = <−, ∞>, scan Rij starting from Rij[l] until we find the largest l′ ≤ k –

h + l such that Rij[l] ≠ ∞. For each Rij[q] (l ≤ q ≤ l′), we create a new
node <r[i + Rij[q] − 1], j + Rij[q] − 1> added to D[u]. If l′ < k – h + l,
add <−, ∞> to D[u], and enqueue <w, Rij[l′ + 1], h + l′ − l +1> into Q.

In the above process, (2) corresponds to step 3 inmerge(), (3) to step 4 inmerge(),
and (4) to step 5 in merge().

In (2), we handle the case when f < i + val – 1. In this case, we must have r
[f] = r[j + f − i]. Then, by the following simple inference:

P[f] ≠ r[f], r[f] = r[j + f − i] ⇒ P[f] ≠ r[j + f − i],
we know that a mismatching node should be added to D[u]. Here, P stands for a
path starting from v′ in T corresponding to a path starting from u′ in D, and P[f] for
the fth node on P. See Fig. 11a for illustration.

In (3), we handle the case that f > i + val – 1. In this case, we have, for each i′
∈ { i + val – 1, …, f} with Rij[q] = i′ (l ≤ q ≤ l′),

p i′½ �= r i′
� �

, r i′
� �

≠ r j+ i′ − i
� �

⇒P i′
� �

≠ r j+ i′ − i
� �

.

Thus, for each Rij[q] (l ≤ q ≤ l′), a mismatching node will be created and
added to D[u].

BWT: An Index Structure to Speed-Up Both Exact … 247

In the above description, we ignored the technical details on how D[u] is con-
structed for simplicity. However, in the presence of D[u′], it is easy to do such a
task by manipulating links between nodes and their respetive parents.

Denote the above process by node-creation(w, γ, i, j, Rij). We have the following
proposition.

Proposition 5.2 node-creation(w, γ, i, j, Rij) create nodes in D[u] correctly.

Proof The correctness of node-creation(w, γ, i, j, Rij) can be derived from
Proposition 1.□

Again, if i > j, D[u] needs to be extended, which can be done in a way similar to
the extension of mismatch arrays as discussed in Subsection C.

As an example, consider Figs. 7 and 11 once again. When we meet <g, [1, 1]>
(v5 in T, compared to r[2]) for a second time, we will not generate T[v5] in Fig. 3, but
D[u5] in Fig. 11. Comparing T and D, we can clearly see the efficiency of this
improvement. In D, an MM-path in T is collapsed into a single node of the
form <−, 0>.

The following is the formal description of the working process.

248 Y. Chen and Y. Wu

If we ignore lines 3–9 in the above algorithm, it is almost a depth-first search of a
tree. Each time an entry (v, j, κ, u) is popped out from S (see line 4), it will be
checked whether v is the same as a previous one v′ (compared to r[i]). (See line 4.)
If it is not the case, a node u′ for v will be created in D (see lines 11–14). Then, all
the children of v will be found by using the procedure search() (see line 17) and
pushed into S (see lines 18, and 19.) Otherwise, we will first create Rij by executing
merge(R1i, R1j, r[i … m – q + i], r[j … m – q + j]), where q = max{i, j}. (see lines
5–6.) Then, we create a subtree in D by executing a series of node-creation oper-
ations (see lines 8–9.)

Concerning the correctness of the algorithm, we have the following proposition.

Proposition 5.3
Let L be a BWT-array for the reverse s ̄ of a target string s, and r a pattern. Algorithm
A(L, r, k) will generate a mismatching tree D, in which each root-to-leaf path
represents an occurrence of r in s having up to k positions different between r and s.

Proof In the execution of A(L, r, k), two data structures will be generated: a hash
table and a mismatching tree D, in which some subtrees in D are derived by using
the mismatching information over r. Replacing each matching node in D with the
corresponding maximum matching path and each mismatching node <x, i> with
the corresponding pair <x, [α, β]> (compared to r[i]), we will get an S-tree, in
which each path corresponds to a search sequence discussed in Section III. Thus, in
D each root-to-leaf path represents an occurrence of r in s having up to k positions
different between r and s. □

The time complexity of the algorithm mainly consists of three parts: the cost for
generating the mismatching information over r which is bounded by O(mlogm); the
cost for generating the M-tree and maintaining the hash table, which is bounded by
O(kn′), where n′ is the number of the M-tree’s leaf nodes; and the cost for checking
the characters in s against the characters in r, which is bounded by O(n). So, the
total running time is bounded by O(kn′ + n + mlogm).

6 Experiments

In this section, we report the test results. For all the experiments on both the
multiple pattern string matching and the string matching with k matches, we use the
same data sets summarized in Table 1.

Table 1 Characteristics of
genomes

Genomes Genome sizes (bp)

Rat (Rnor_6.0) 2,909,701,677
Zebra fish (GRCz10) 1,464,443,456
Rat chr1 (Rnor_6.0) 290,094,217
C. elegans (WBcel235) 103,022,290
C. merlae (ASM9120v1) 16,728,967

BWT: An Index Structure to Speed-Up Both Exact … 249

To store BWT, s ̄ð Þ we use 2 bits to represent a character ∈ {a, c, g, t} and store 4
rankAll values (respectively in Aa, Ac, Ag, and At) for every 4 elements (in L) with
each taking 32 bits.

All the tested methods are implemented in C++, compiled by GNU make utility
with optimization of level 2. In addition, all of our experiments are performed on a
64-bit Ubuntu operating system, run on a single core of a 2.40 GHz Intel Xeon
E5-2630 processor with 32 GB RAM.

6.1 Experiment on Multiple Pattern String Matching

In this experiment, we have tested altogether five different methods:

• Burrows Wheeler Transformation (BWT for short),
• Suffix tree based (Suffix for short),
• Hash table based (Hash for short),
• Trie-BWT (tBWT for short, discussed in this paper),
• Improved Trie-BWT (itBWT for short, discussed in this paper).

Among them, the codes for the suffix tree based and hash based methods are
taken from the gsuffix package [54] while all the other three algorithms are
implemented by ourselves.

6.1.1 Tests on Synthetic Data Sets

All the synthetic data are created by simulating reads from the five genomes shown
in Table 1, with varying lengths and amounts. It is done by using the wgsim
program included in the SAMtools package [45] with default model for single reads
simulation.

Over such data, the impact of five factors on the searching time are tested:
number n of reads, length l of reads (pattern strings), size s of genomes, compact
factors f1 of rankAlls (see Sect. 3.1) and compression factors f2 of suffix arrays [12],
which are used to find locations of reads (in a reference genome) in terms of
formula (5) (see Sect. 3.2).

• Tests with varying amount of reads

In this experiment, we vary the amount n of reads with n = 5, 10, 15, …, 50
millions while the reads are 50 bps or 100 bps in length extracted randomly from
Rat chr1 and C. merlae genomes. For this test, the compact factors f1 of rankAlls
are set to be 32, 64, 128, 256, and the compression factors f2 of suffix arrays are set
to 8, 16, 32, 64, respectively. These two factors are increasingly set up as the
amount of reads gets increased.

250 Y. Chen and Y. Wu

In Fig. 14a, b, we report the test results of searching the Rat chr1 for matching
reads of 50 and 100 bps, respectively. From these two figures, it can be clearly seen
that the hash based method has the worst performance while ours works best. For
short reads (of length 50 bps) the suffix-based is better than the BWT, but for long
reads (of length 100 bps) they are comparable. The poor performance of the
hash-based is due to its inefficient brute-force searching of genomes while for both
the BWT and the suffix-based it is due to the huge amount of reads and each time
only one read is checked. In the opposite, for both our methods tBWT and itBWT,
the use of tries enables us to avoid repeated checkings for similar reads.

In these two figures, the time for constructing tries over reads is not included. It
is because in the biological research a trie can be used repeatedly against different
genomes, as well as often updated genomes. However, even with the time for
constructing tries involved, our methods are still superior since the tries can be
established very fast as demonstrated in Table 2, in which we show the times for
constructing tries over different amounts of reads.

The difference between tBWT and itBWT is due to the different number of BWT
array accesses as shown in Table 3. By an access of a BWT array, we will scan a
segment in the array to find the first and last appearance of a certain character from
a read (by tBWT) or a set of characters from more than one read (by itBWT).

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

Suffix Hash BWT

tBWT itBWT

0
200

400
600

800
1000
1200

1400
1600

1800
2000

5 10 15 20 25 30 35 40 45 50

time (s) time (s)

amount of reads (million)

(b)(a)

amount of reads (million)

Fig. 14 Test results on varying amount of reads

Table 2 Time for trie construction over reads of length 100 BPS

No. of reads 30M 35M 40M 45M 50M

Time for Trie Con. (s) 51 63 82 95 110

BWT: An Index Structure to Speed-Up Both Exact … 251

Figure 15a, b show respectively the results for reads of length 50 bps and 100
bps over the C. merolae genome. Again, our methods outperform the other three
methods.

• Tests with varying length of reads

In this experiment, we test the impact of the read length on performance. For
this, we fix all the other four factors but vary length l of simulated reads with l
= 35, 50, 75, 100, 125,…, 200. The results in Fig. 16a shows the difference among
five methods, in which each tested set has 20 million reads simulated from the Rat
chr1 genome with f1 = 128 and f2 = 16. In Fig. 16b, the results show the case that
each set has 50 million reads. Figure 17a, b show the results of the same data
settings but on C. merlae genome.

Again, in this test, the hash based performs worst while the suffix tree and the
BWT method are comparable. Both our algorithms uniformly outperform the others
when searching on short reads (shorter than 100 bps). It is because shorter reads tend
to have multiple occurrences in genomes, which makes the trie used in tBWT and
itBWT more beneficial. However, for long reads, the suffix tree beats the BWT since
on one hand long reads have fewer repeats in a genome, and on the other hand higher
possibility that variations occurred in long reads may result in earlier termination of a
searching process. In practice, short reads are more often than long reads.

Table 3 No. of BWT array accesses

No. of reads 30M 35M 40M 45M 50M

tBWT 47856K 55531K 63120K 70631K 78062K
itBWT 19105K 22177K 25261K 28227K 31204K

time (s)

amount of reads (million) amount of reads (million)

0

300

600

900

1200

1500

1800

5 10 15 20 25 30 35 40 45 50

time (s)

0
200

400

600
800

1000
1200

1400

1600
1800

2000

5 10 15 20 25 30 35 40

(a) (b)

Fig. 15 Test results on varying amount of reads

252 Y. Chen and Y. Wu

• Tests with varying sizes of genome

To examine the impacts of varying sizes of genomes, we have made four tests
with each testing a certain set of reads against different genomes shown in Table 1.
To be consistent with foregoing experiments, factors except sizes of genomes
remain the same for each test with f1 = 128 and f2= 16. In Fig. 18a, b, we show the
searching time on each genome for 20 million and 50 million reads of 50 bps,
respectively. Figures 19a, b demonstrate the results of 20 million and 50 million
reads but with each read being of 100 bps.

These figures show that, in general, as the size of a genome increases the time of
read aligning for all the tested algorithms become longer. We also notice that the
larger the size of a genome, the bigger the gaps between our methods and the other
algorithms. The hash-based is always much slower than the others. For the suffix

0

300

600

900

1200

1500

1800

35 50 75 100 125 150 175 200

time (s)time (s)

read length (pb)

0

500

1000

1500

2000

2500

3000

35 50 75 100 125 150 175 200
read length (pb)

(a) (b)

Fig. 16 Test results on varying length of reads

0

200

400

600

800

1000

1200

35 50 75 100 125 150 175 200

time (s) time (s)

read length (pb) read length (pb)

0

500

1000

1500

2000

2500

3000

3500

35 50 75 100 125 150 175 200

(a) (b)

Fig. 17 Test results on varying length of reads

BWT: An Index Structure to Speed-Up Both Exact … 253

tree, we only show the matching time for the first three genomes. It is because the
testing computer cannot meet its huge memory requirement for indexing the Zebra
fish and Rat genomes (which is the main reason why people use the BWT, instead
of the suffix tree, in practice.) Details for the 50 bp reads in Figs. 17 and 18 show
that the tBWT and the itBWT are at least 30% faster than the BWT and the suffix
tree, which happened on the C. elegans genome. For the Rat genome, our algo-
rithms are even more than six times faster than the others.

Now let us have a look at Fig. 18a, b. Although our methods do not perform as
good as for the 50 bp reads due to the increment of length of reads, they still gain at
least 22% improvement on speed and nearly 50% acceleration in the best case,
compared with the BWT.

0

1000

2000

3000

4000

5000

C. merlae C. elegans Chr1 of Rat Zebrafish Rat

time (s) time (s)

0

1000

2000

3000

4000

5000

C. merlae C. elegans Chr1 of Rat Zebrafish Rat

suffix hash BWT tBWT itBWT
(a) (b)

Fig. 18 Test results on varying sizes of genomes

C. merlae C. elegans Chr1 of Rat Zebrafish Rat

suffix hash BWT tBWT itBWT

C. merlae C. elegans Chr1 of Rat Zebrafish Rat

time (s) time (s)

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

(a) (b)

Fig. 19 Test results on varying sizes of genomes

254 Y. Chen and Y. Wu

• Tests with varying compact and compression factors

In the experiments, we focus only on the BWT method, since there are no
compressions in both the suffix tree and the hash-based method. The following test
results are all for 20 million reads with 100 bps in length. We first show the impact
of f1 on performance with f2 = 16, 64 in Fig. 20a and b, respectively. Then we
show the effect when f2 is set to 64, 256 in Fig. 21a, b.

From these figures, we can see that the performance of all three methods degrade
as f1 and f2 increase. Another noticeable point is that both the itBWT and the tBWT
are not so sensitive to the high compression rate. Although doubling f1 or f2 will
slow down their speed, they become faster compared to the BWT. For example, in

0

200

400

600

800

1000

8 16 32 64

BWT tBWT itBWT

0

200

400

600

800

1000

8 16 32 64

time (s) time (s)(a) (b)

Fig. 20 Test results on varying compact and compression factors

time (s) time (s)

0

200

400

600

800

1000

32 64 128 256

BWT tBWT itBWT

0

200

400

600

800

1000

32 64 128 256

(a) (b)

Fig. 21 Test results on varying compact and compression factors

BWT: An Index Structure to Speed-Up Both Exact … 255

Fig. 19, the time used by the BWT grows 80% by increasing f1 from 8 to 64,
whereas the growth of time used by the tBWT is only 50%. In addition, the factor f1
has smaller impact on the itBWT than the BWT and the tBWT, since the extra data
structure used in the itBWT effectively reduced the processing time of the trie nodes
by half or more.

6.1.2 Tests on Real Data Sets

For the performance assessment on real data, we obtain RNA-sequence data from
the project conducted in an RNA laboratory at University of Manitoba [55]. This
project includes over 500 million single reads produced by Illumina from a rat
sample. Length of these reads are between 36 bps and 100 bps after trimming using
Trimmomatic [56]. The reads in the project are divided into 9 samples with different
amount ranging between 20 million and 75 million. Two tests have been conducted.
In the first test, we mapped the 9 samples back to rat genome of ENSEMBL release
79 [57]. We were not able to test the suffix tree due to its huge index size. The
hash-based method was ignored as well since its running time was too high in
comparison with the BWT. In order to balance between searching speed and
memory usage of the BWT index, we set f1 = 128, f2 = 16 and repeated the
experiment 20 times. Figure 22a shows the average time consumed for each
algorithm on the 9 samples.

Since the source of RNA-sequence data is the transcripts, the expressed part of
the genome, we did a second test, in which we mapped the 9 samples again directly
to the Rat transcriptome. This is the assembly of all transcripts in the Rat genome.
This time more reads, which failed to be aligned in the first test, are able to be
exactly matched. This result is showed in Fig. 22b.

0

300

600

900

1200

1500

S1 S2 S3 S4 S5 S6 S7 S8 S9

BWT itBWT tBWT

0

400

800

1200

1600

2000

2400

S1 S2 S3 S4 S5 S6 S7 S8 S9

time (s) time (s)(a) (b)

Fig. 22 Test results on real data

256 Y. Chen and Y. Wu

From Fig. 22a, b, we can see that the test results for real data set are consistent
with the simulated data. Our algorithms are faster than the BWT on all 9 samples.
Counting the whole data set together, itBWT is more than 40% faster compared
with the BWT. Although the performance would be dropped by taking tries’
construction time into consideration, we are still able to save 35% time using
itBWT.

6.2 Experiment on String Matching with k Mismatches

In this experiment, we have tested altogether four different methods:

• BWT-based [13] (BWT for short),
• Amir’s method [2] (Amir for short),
• Cole’s method [52] (Cole for short),
• Algorithm A discussed in this paper (A() for short)

By the BWT-based method, an S-tree will be created as described in Section IV,
but with σ(i) being used to cut off branches, where σ(i) is the number of consec-
utive, disjoint substrings in r[i … m] not appearing in s. By the Amir’s algorithm, a
pattern r is divided into several periodic stretches separated by 2 k aperiodic sub-
strings, called breaks, as illustrated in Fig. 23. Then, for each break bi, located at a
certain position i, find all those substrings sj (located at different positions j) in
s such that bi = sj, and then mark each of them. After that, discard any position that
is marked less than k times. In a next step, verify every surviving position in s.

By the Cole’s, a suffix tree for a target is constructed. (The code for constructing
suffix trees is taken from the gsuffix package: http:://gsuffix.Sourceforge.net/).

For the test, five reference genomes shown in Table 1 are used. Similar to the
first experiment, all the simulating reads are taken from these five genomes, with
varying lengths and amounts. Concretely, we take 5000 reads with length varying
from 100 to 300 bps.

In Fig. 24a, b, we report the average time of testing the Rat (Rnor_6.0) for
matching 100 reads of length 100 to 300 bps. From this figure, we can see that
Algorithm A() outperforms all the other three methods. But the Amir’s method is
better than the other two methods. The BWT-based and the Cole’s method are
comparable. However, for small k, the Cole’s is a little bit better than the
BWT-based method while for large k their performances are reversed.

brea

a a a a a a b b b b b b c c c c c c c c c d d d d

periodic stretches

Fig. 23 Illustration for periodic stretches and breaks

BWT: An Index Structure to Speed-Up Both Exact … 257

To show why A() has the best running time, we give the number n′ of leaf nodes
in the M-trees created by A() for some tests in Table 4, which demonstrates that n′
can be much smaller than n. Thus, the time complexity O(kn′) of A() should be a
significant improvement over O n

ffiffiffi
k

p
log k

� �
—the time complexity of Amir’s.

In this test (and also in the subsequent tests), the time for constructing BWT s ̄ð Þ is
not included as it is completely independent of r. Once it is created, it can be
repeatedly used.

In Fig. 24b, we show the impact of read lengths. For this test, k is set to 25. It
can be seen that only the BWT-based and the Cole’s are sensitive to the length of
reads. For the BWT-based, more time is required to construct S-trees for longer
reads while for the Cole’s longer paths in a suffix tree will be searched as the
lengths of reads increase. For the other two methods: A() and the Amir’s, the
lengths of reads only impact the time for the read pre-processing, but it is com-
pletely overshadowed by the time spent on searching genomes. For the Amir’s, the
time for recognizing breaks is linear in |r| [2] while for A() the time for generating
the mismatch information is bounded by O(|r|log|r|). No significant difference
between them can be measured.

In Fig. 25a, b, we report the test results of searching the Zebra fish (GRCz10).
Again, similar to Fig. 24a, the performance of Algorithm A() is best, and the

Amir’s is still better than both the BWT-based and the Cole’s.

time (s)

varying values of k varying length of reads

0

100

200

300

400

500

600

700

5 10 20 30 40

BWT Amir's
Cole's A()

0

200

400

600

800

1000

100 150 200 250 300

BWT Amir's Cole's A()

time (s)(a) (b)

Fig. 24 Test results on varying values of k and read length

Table 4 Number of leaf
nodes of S-trees

k/Length-of-read 5/50 10/100 20/150 30/200

No. of leaf nodes 2K 0.7M 16.5M 102M

258 Y. Chen and Y. Wu

0

100

200

300

400

500

600

100 150 200 250 300

BWT Amir's Cole's A()

varying values of k varying length of reads

time (s)

0

100

200

300

400

5 10 20 30 40

BWT Amir's
Cole's A()

time (s)(a) (b)

Fig. 25 Test results on varying values of k and read length

Table 5 Number of leaf nodes of S-trees

k/Length-of-read 5/50 10/100 20/150 30/200

No. of leaf nodes 0.7K 0.30M 9.2M 89M

varying values of k varying length of reads

time (s)

0

20

40

60

80

100

100 150 200 250 300

BWT Amir's Cole's A()

0

20

40

60

80

100

5 10 20 30 40

BWT Amir's
Cole's A()

time (s)

(b)(a)

Fig. 26 Test results on varying values of k and read length

BWT: An Index Structure to Speed-Up Both Exact … 259

In Table 5, we show the number n′.
Figure 25b shares the same features as Fig. 24b. It also shows that only the

BWT-based and the Cole’s are sensitive to the length of reads.
In Figs. 26, 27, and 28, we show the tests on Rat chr1 (Rnor_6.0), C. elegans

(WBcel235), and C. merlae (ASM9120v1), respectively.

varying values of k varying length of reads

time (s)

0

10

20

30

40

50

60

100 150 200 250 300

BWT Amir's Cole's A()

0

10

20

30

40

50

5 10 20 30 40

BWT Amir's
Cole's A()

time (s)
(a) (b)

Fig. 27 Test results on varying values of k and read length

varying values of k varying length of reads

0

1

2

3

4

5

5 10 20 30 40

BWT Amir's
Cole's A()

0

1

2

3

4

5

6

100 150 200 250 300

BWT Amir's Cole's A()

time (s) time (s)
(a) (b)

Fig. 28 Test results on varying values of k and read length

260 Y. Chen and Y. Wu

From these figures, the most important feature we can observe is that as the size
of genomes becomes smaller, the difference between the Amir’s and Cole’s
diminishes. But the BWT-based and A() remain the worst and the best, respec-
tively. Although A() is impacted by the number of leaf nodes of an S-tree, the
impact factor is small in comparison with the size of the whole S-tree, which
dominates the time complexity of the BWT-based method. Also, the big difference
between A() and Amir’s shows that using M-trees the cost for creating mismatch
information of r’s occurrences in s can be significantly reduced.

7 Conclusion and Future Work

In this chapter, two new methods have been discussed. One is to search a large
volume of pattern strings against a single long target string, aiming at efficient
next-generation sequencing in DNA databases. The main idea behind it is to
combine the search of tries constructed over the patterns and the search of the BWT
indexes over the target. Extensive experiments have been conducted, which show
that our method improves the running time of the traditional methods by an order of
magnitude or more.

The second one is to do the string matching with k mismatches. Its main idea is
to transform the reverse s ̄ of target string s to BWT s ̄ð Þ and use the mismatch
information over a pattern string r to speed up the computation. Its time complexity
is bounded by O(kn′ + n + mlogm), where m = |r|, n = |s|, and n′ is the number
of leaf nodes of a tree structure produced during the search of a BWT(s). Our
experiments show that it has a better running time than any existing on-line and
index-based algorithms.

As a future work, we will use the BWT to solve another important problem, the
string matching with k errors. It seems to be more challenging than the k mis-
matches since the Levenshtein distance is more difficult to handle than the Ham-
ming distance.

References

1. Li, R., et al. (2008). SOAP: short oligonucleotide alignment program. Bioinformatics, 24,
713–714.

2. Amir, A., Lewenstein, M., & Porat, E. (2004). Faster algorithms for string matching with
k mismatches. Journal of Algorithms, 50(2), 257–275.

3. Aoe, J.-I. (1989). An efficient implementation of static string pattern matching machines.
IEEE Transactions on Software Engineering, 15(8), 1010–1016.

4. Baeza-Yates, R. A., Perleberg, C. H. Fast and practical approximate string matching. In A.
Apostolico, M. Crocchemore, Z. Galil, & U. Manber (Eds.), Combinatorial pattern matching,
lecture notes in computer science (Vol. 644, pp. 185–192). Berlin: Springer.

BWT: An Index Structure to Speed-Up Both Exact … 261

5. Baeza-Yates, R. A., & Régnier, M. Fast algorithms for two-dimensional and multiple pattern
matching. In Proceedings of the SWAT ‘90 the Second Scandinavian Workshop on Algorithm
Theory (pp. 332–347). Bergen, Sweden: Springer.

6. Boyer, R. S., & Moore, J. S. (1977). A fast string searching algorithm. Communication of the
ACM, 20(10), 762–772.

7. Knuth, D. E., Morris, J. H., & Pratt, V. R. (1977). Fast pattern matching in strings. SIAM
Journal on Computing, 6(2), 323–350.

8. Landau, G. M., & Vishkin, U. (1985). Efficient string matching in the presence of errors. In
Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science
(pp. 126–136).

9. Apostolico, A., & Giancarlo, R. (1986). The Boyer-Moore-Galil string searching strategies
revisited. SIAM Journal on Computing, 15(1), 98–105.

10. McCreight, E. M. (1976). A space-economical suffix tree construction algorithm. Journal of
the ACM, 23(2), 262–272.

11. Weiner, P. (1973). Linear pattern matching algorithm. In Proceedings of the 14th IEEE
Symposium on Switching and Automata Theory (pp. 1–11).

12. Manber, U., & Myers, E. W. (1990). Suffix arrays: a new method for on-line string searches.
In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 319–
327). Philadelphia, PA: SIAM.

13. Burrows, M., & Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm.
14. Ferragina, P., & Manzini, G. (2000). Opportunistic data structures with applications. In

Proceedings of the 41st Annual Symposium on Foundations of Computer Science (pp. 390–
398). IEEE.

15. Langmead, B. (2014, September). Introduction to the Burrows-Wheeler transform. www.
youtube.com/watch?v=4n7NPk5lwbI.

16. Aho, A. V., & Corasick, M. J. (1975). Efficient string matching: An aid to bibliographic
search. Communication of the ACM, 23(1), 333–340.

17. Commentz-Walter, B. (1979). A string matching algorithm fast on the average. In
Proceedings of the 6th Colloquium on Automata, Languages and Programming, 16–20
July 1979, pp. 118–132.

18. Wu, S., & Manber, U. (1994). A fast algorithm for multi-pattern searching. Technical Report
TR-94-17, Department of Computer Science, Chung-Cheng University.

19. Crochemore, M., et al. (1999). Fast practical multi-pattern matching. Information Processing
Letters, 71, 107–113.

20. Dandass, Y. S., Burgess, S. C., Lawrence, M., & Bridges, S. M. (2008). Accelerating string
set matching in FPGA hardware for bioinformatics research. BMC Bioinformatics, 9, 197.

21. Colussi, L., Galil, Z., & Giancarlo, R. (1990). On the exact complexity of string matching. In
Proceedings of the 31st Annual IEEE Symposium of Foundation of Computer Science (Vol. 1,
pp. 135–144).

22. Landau, G. M., & Vishkin, U. (1986). Efficient string matching with k mismatches.
Theoretical Computer Science, 43, 239–249.

23. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics, 25(14), 1754–1760.

24. Baeza-Yates, R. A., & Gonnet, G. H. (1992). A new approach in text searching.
Communication of the ACM, 35(10), 74–82.

25. Ehrenfeucht, A., & Haussler, D. A new distance metric on strings computable in linear time.
Discrete Applied Mathematics, 20, 191–203.

26. Eddy, S. R. (2004). What is dynamic programming? Nature Biotechnology, 22, 909–910.
https://doi.org/10.1038/nbt0704-909.

27. Chang, W. L., & Lampe, J. Theoretical and empirical comparisons of approximate string
matching algorithms. In A. Apostolico, M. Crocchemore, Z. Galil, & U. Manber (Eds.),
Combinatorial pattern matching. Lecture notes in computer science (Vol. 644, pp. 175–184).
Berlin: Springer.

262 Y. Chen and Y. Wu

http://www.youtube.com/watch?v=4n7NPk5lwbI
http://www.youtube.com/watch?v=4n7NPk5lwbI
http://dx.doi.org/10.1038/nbt0704-909

28. Ukkonen, E. Approximate string-matching with q-grams and maximal matches. Theoretical
Computer Science, 92, 191–211.

29. Manber, U., & Baeza-Yates, R. A. (1991). An algorithm for string matching with a sequence
of don’t cares. Information Processing Letters, 37, 133–136.

30. Pinter, R. Y. (1985). Efficient string matching with don’t’ care patterns. In A. Apostolico & Z.
Galil (Eds.), Combinatorial algorithms on words. NATO ASI Series (Vol. F12, pp. 11–29).
Berlin: Springer.

31. Chen, Y., Wu, Y., & Xie, J. (2016). An efficient algorithm for read matching in DNA
databases. In Proceedings of the International Conference on DBKDA’2016, Lisbon,
Portugal, 26–30 June 2016 (pp. 23–34).

32. Chen, Y., & Wu, Y. (2017). Mismatching trees and BWT arrays: A new way for string
matching with k-mismatches. In ICDE2017, 19–22 April 2017 (pp. 339–410). San Diego,
USA: IEEE.

33. Galil, Z. (1977). On improving the worst case running time of the Boyer-Moore string
searching algorithm. Communication of the ACM, 22(9), 505–508.

34. Lecroq, T. (1992). A variation on the Boyer-Moore algorithm. Theoretical Computer Science,
92(1), 119–144.

35. Tarhio, J., & Ukkonen, E. Boyer-Moore approach to approximate string matching.
In J. R. Gilbert & R. Karlssion (Eds.), SWAT 90, Proceedings of the 2nd Scandinavian
Workshop on Algorithm Theory, Lecture Notes in Computer Science (Vol. 447, pp. 348–359).
Berlin: Springer.

36. Salmela, L., Tarhio, J., & Kytojoki, J. (2006). Multi-pattern string matching with q-grams.
ACM Journal of Experimental Algorithmics, 11.

37. Jiang, H., & Wong, W. H. (2008). SeqMap: Mapping massive amount of oligonucleotides to
the genome. Bioinformatics, 24, 2395–2396.

38. Kim, J. Y., & Yaylor, J. S. (1992). Fast multiple keyword searching. In Proceedings of the
Third Annual Symposium on Combinatorial Pattern Matching, 29 April–01 May 1992
(pp. 41–51). Springer.

39. Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics, 26(5), 589–595.

40. Knuth, D. E. (1975). The art of computer programming (Vol. 3). Massachusetts:
Addison-Wesley Publish Com.

41. Li, H., & Homer. (2010). A survey of sequence alignment algorithms for next-generation
sequencing. Briefings in Bioinformatics, 11(5), 473–483. https://doi.org/10.1093/bib/bbq015.

42. Karp, R. L., & Rabin, M. O. (1987). Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development, 31(2), 249–260.

43. Harrison, M. C. (1971). Implementation of the substring test by hashing. Communication of
the ACM, 14(12), 777–779.

44. Li, H., et al. (2008). Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Research, 18, 1851–1858.

45. Li, H. (2014). wgsim: a small tool for simulating sequence reads from a reference genome.
https://github.com/lh3/wgsim/.

46. Schatz, M. (2009). Cloudburst: Highly sensitive read mapping with mapreduce. Bioinfor-
matics, 25, 1363–1369.

47. Lin, H., et al. (2008). ZOOM! Zillions of oligos mapped. Bioinformatics, 24, 2431–2437.
48. Baeza-Yates, R. A., & Gonnet, G. H. (1989). A new approach to text searching. In N.

J. Belkin & C. J. van Rijsbergen (Eds.), SIGIR 89, Proceedings of the 12th Annual
International ACM Conference on Research and Development in Information Retrieval
(pp. 168–175).

49. Smith, A. D., et al. (2008). Using quality scores and longer reads improves accuracy of Solexa
read mapping. BMC Bioinformatics, 9, 128.

50. Tarhio, J., & Ukkonen, E. Approximate Boyer-Moore string matching. SIAM Journal on
Computing, 22(2), 243–260.

BWT: An Index Structure to Speed-Up Both Exact … 263

http://dx.doi.org/10.1093/bib/bbq015
https://github.com/lh3/wgsim/

51. Nicolas, M., & Rajasekarian, S. (2013). On string matching with k mismatches. https://arxiv.
org/pdf/1307.1406.

52. Cole, R., Gottlieb, L., & Lewenstein, M. (2004). Dictionary matching and indexing with
errors and don’t cares. In STOC’04 (pp. 91–100).

53. Hon, W., et al. (2007). A space and time efficient algorithm for constructing compressed suffix
arrays. Alrothmica, 48, 23–36.

54. Bauer, S., Schulz, M. H., & Robinson, P. N. (2014). gsuffix:http:://gsuffixSourceforge.net/.
55. Lab website. (2014). http://home.cc.umanitoba.ca/∼xiej/.
56. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: bolger: A flexible trimmer for

Illumina Sequence Data. Bioinformatics, btu170.
57. Cunningham, F., et al. (2015). Nucleic Acids Research 2015, 43, Database issue: D662-D669.

264 Y. Chen and Y. Wu

https://arxiv.org/pdf/1307.1406
https://arxiv.org/pdf/1307.1406
http://home.cc.umanitoba.ca/%7exiej/

Traffic Condition Monitoring Using
Social Media Analytics

Taiwo Adetiloye and Anjali Awasthi

Abstract Scientist and practitioner seek innovations that analyze traffic big data for
reducing congestion. In this chapter, we propose a framework for traffic condition
monitoring using social media data analytics. This involves sentiment analysis and
cluster classification utilizing the big data volume readily available through Twitter
microblogging service. Firstly, we examine some key aspects of big data tech-
nology for traffic, transportation and information engineering systems. Secondly,
we consider Parts of Speech tagging utilizing the simplified Phrase-Search and
Forward-Position-Intersect algorithms. Then, we use the k-nearest neighbor clas-
sifier to obtain the unigram and bigram; followed by application of Naїve Bayes
Algorithm to perform the sentiment analysis. Finally, we use the Jaccard Similarity
and the Term Frequency-Inverse Document Frequency for cluster classification of
traffic tweets data. The preliminary results show that the proposed methodology,
comparatively tested for accuracy and precision with another approach employing
Latent Dirichlet Allocation is sufficient for predicting traffic flow in order to
effectively improve the road traffic condition.

1 Social Media Analytics for Traffic Condition Monitoring

Perhaps the emergence of big data technology could not have been more disruptive
anywhere else than in transportation and traffic engineering systems. This is con-
sidering that daily traffic flow of human transportation holds vast big data yet to be
fully harnessed for real time estimation and prediction. Lu et al. [1] observed that
such rapid development of urban “informatization”, in the era of big data, offers
several details entrenched in some spatio-temporal characteristics, historical cor-
relations and multistate patterns. Undoubtedly, big data have increasingly been used

T. Adetiloye (✉) ⋅ A. Awasthi
Concordia Institute for Information and Systems Engineering (CIISE), Montreal, Canada
e-mail: t_adeti@encs.concordia.ca

A. Awasthi
e-mail: anjali.awasthi@concordia.ca

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_13

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_13&domain=pdf

for discovering subtle population patterns and heterogeneities that are not possible
with small-scale data [2]. For these reasons amongst others academia, governments,
federal and state agencies, industries, and other organizations continue to seek
innovations to manage and analyze big data; providing them the prospect of
increasing the accuracy of predictions, improving the management and security of
transportation infrastructures while enabling informed decision-making to gain
better insight into their transportation and traffic engineering phenomena [3].

The practical significance of real-time traffic flow state identification and pre-
diction using big data lies in the ability to identify and predict traffic flow state
efficiently, timely and precisely [1]. Various articles [3–5] have employed big data
resources to examine traffic demand estimation, traffic flow prediction and perfor-
mance as well as integration, and validation with existing models. A noteworthy
aspect is that the rapidly increasing (big data) volume of leading social media
microblogging services such as Twitter (twitter.com) can be pragmatically chal-
lenging, and nearly impossible to manually analyze [6]. Nevertheless, the huge
volume of data derived from Twitter makes it ideal for machine learning.

Few years ago, researchers developed sentiment and cluster analysis to monitor
twitter messages, identify followers and followings, find word resemblances and
examine the nature of the comments i.e. positive, negative or neural. Such
promising twitter analytic tools appear to be sufficient in solving the aforemen-
tioned traffic flow problems. Our objective in this study is tweet mining of the
twitter UK traffic delays and to perform sentiment analysis and cluster classification
for traffic congestion prediction. The proposed methodology is based on tweet
crawling, preprocessing steps, feature extraction and social network generation and
cluster.

1.1 Traffic Twitter Sentiment Analysis

Following the launch of twitter in 2006, sentiment analysis has been applied to
various areas of interests e.g. extracting adverse drug reactions from tweets [7],
news coverage of the nuclear power issues [8], and in the tourism sector for cap-
turing sentiment from integrated resort tweets [6]. Terabytes of twitter data could be
from traffic road users expressing their opinions on traffic jam, road accidents and
other information which constitute general traffic news update. The question, of
course, is how to determine traffic flow state based on the weight as measured by
the opinion contained in a twitter message (called “tweet”)—a short message that a
sender post on twitter that cannot be longer that maximum 140 characters?
According to Abidin et al. [9], certain special characters including @, RT, and #
symbols used in a tweet creates a collective snapshot of what people are saying
about a given topic. An in-depth process of computationally identifying and
automatically extracting opinions from a writer’s piece of text to determine whether
the attitude or emotions towards a topic is positive, negative or neutral is known as
sentiment analysis [10, 11]. The technique of sentiment analysis is generally

266 T. Adetiloye and A. Awasthi

expected to yield a high accuracy rate of roughly 70–80% in training-test data
matching tasks [12], while objectively seeking useful insights from a large quantity
of aggregated data instead of achieving perfect classification of all data points [6].
Sentiment mining using corpus based and dictionary based methods for semantic
orientation of the opinion words in tweets has been presented by Kumar and
Sebastian [13].

In drawing the relevance of twitter sentiment analysis to traffic flow state pre-
diction, He et al. [14] consider improving long-term traffic prediction with tweet
semantics; and, then, analyze the correlation between traffic volume and tweet
counts with various granularities. Finally, an optimization framework to extract
traffic indicators based on tweet semantics using a transformation matrix, while
integrating them into the traffic prediction using linear regression is proposed.
Real-time traffic improvement by semantic mining of social networks has been
captured by Grosenick [15]. Abidin et al. [9] introduce the use of Twitter API to
retrieve traffic data serving as input to Kalman Filter models for route calculations
and updates while fine-tuning the output for new, accurate arrival estimation.

1.2 Traffic Twitter Cluster Classification

Tweets could have a hashtag which consist of any word that starts with “#” symbol.
Hashtags help to search messages containing a particular tag. Also of interest is the
Part of Speech (POS) tagging in tweets, which has been applied by Elsafoury [16]
to monitor urban traffic status. The main idea of POS tagging, also known as
word-category disambiguation, is to mark up a word in a corpus and to assign it to a
corresponding POS based on its definition and its context. The former is an example
of exact term search while the latter, POS, can be considered a typical example of
full-text search, which is usually thorough in its search process but can be more
challenging to perform when compared to the exact text search. One instance of
such text search is classification of tweets into positive and negative sentiments
using multinomial Naïve Bayes’ unigram with mutual information based on
n-grams and POS that has been presented by Go et al. [11]. It outperforms other
classifier approaches under consideration. In between the exact and full-text search
is the phrase text search for searching a particular word phrase. For instance, an
exact term search might be required to search the term “delay” in a tweet stream.
This would bring out only tweets containing the term “delay”. On the other hand, a
phrase term search could be a phrase like “Traffic delay” in which there are more
details of the search term. Phrase text search is often more useful when performing
cluster classification than the other text search methods. It is noteworthy that using a
particular search operation is based on measuring the relevance of the query to

Traffic Condition Monitoring Using Social Media Analytics 267

efficiently match the terms appropriately. Azam et al. [17] present the functional
clustering details of their tweets mining approach which has the following steps:

(1) Tweet crawling: It is the process of retrieving tweets from twitter server using
Twitter Application Program Interface (API). The crawled tweets are stored on
local machine for further processing.

(2) Tweets pre-processing and tokenization: It involves the filtering of the crawled
tweets of non-entirely textual items like emoticons, URL, special character,
stop words etc. A common tokenization method known as the n-gram technique
can then be applied to tokenize the tweets into bag-of-works (n = 1, known as
a unigram is recommended for such tweets tokenization by Broder et al. [18]).

(3) Feature extraction and social network generation: It is the process of extracting
important features from the preprocessed and tokenized tweets while trans-
forming the feature sets into a social network generation comprising a term
tweet matrix A of order m × n, where m is the number of candidate terms and
n is the number of tweets. The resulting matrix A is used to compute the weight
w ti, j
� �

using the following two equations:

w ti, j
� �

= tf ti, j
� �

× idf ðtiÞ ð1Þ

idf ðtiÞ = log
jDj

fdj: ti ∈ djg +1 ð2Þ

where tf ti, j
� �

is the number of times ti occurs in jth tweet.
jDj is the total number of tweets and fdj: ti ∈ djg represents the number of
tweets with term, ti. The objective is to normalize matrix A such that the tweet
vectors’ length equals to 1.

(4) Social network clustering: After generating the social network for the complete
set of tweets, Markov clustering is used to achieve the social network clustering
by crystallizing the network into various cluster each representing individual
events. The Markov clustering algorithm (introduced by van Dongen [19]) is a
fast and scalable unsupervised cluster algorithm for graphs (also known as
networks). It serves as an iterative method for interleaving of the matrix
expansion and inflation steps based on simulation of (stochastic) flow in graphs.

More details on the abovementioned steps can be found in Azam et al. [17]. For
traffic flow prediction using big data analysis and visualization, McHugh [20]
considered among other approaches the use of traffic tweets to test the effectiveness
of geographical location of vehicles to determine the location of an incident.
A useful method that analyzes traffic tweets in order to generate real-time city traffic
insights and predictions for traffic management and city planning has been intro-
duced by Tejaswin et al. [21].

268 T. Adetiloye and A. Awasthi

2 Using Tweet Traffic Data for Traffic Condition
Monitoring

The logs of twitter traffic data for the sentiment analysis and cluster classification
were obtained using twitterR package. The tweets were connected to the
Twitter API and OAuth authentication was performed using the ROAuth package
all in RStudio. The plyr and stringr packages are used to crawl a number of tweets
into RStudio while ensuring they are clean of unwanted symbols. More details of
this twitter text mining technique can be found in Rais [22]. Detail documentation
of the widely used twitter data mining statistical program can be found in cran.r-
project.org [23]. We perform a phrase search based on the phrase using a POS tag:
Uk traffic delay. This is made possible with a simplified phrase search algorithm
derived from Eckert [24], with the original simplified version by Manning et al.
[25], given by the following:

In order to apply the above algorithm for our problem, a positional index con-
taining a list of a data mined tweets with a list of positions is used to indicate the
search phrase. The Terms is taking to be a split-normalization tokenizer that splits
the phrase into list of tokens, normalizing them and assigning its outputs to k as a
bag of words. We consider the weighted k-nearest neighbor classifier [26] which
assigns a weight 1 ̸k to the outputs. This is done by finding the vector of non-
negative weights that is asymptotically optimal while minimizing the

Traffic Condition Monitoring Using Social Media Analytics 269

http://www.cran.r-project.org
http://www.cran.r-project.org

misclassification error rate, RR [26]. Essentially, the asymptotic expansion is needed
to ensure strong consistency in the search. This is subject to a regularity class
distribution condition:

RR Cwnn
n

� �
−RR CBayes� �

= ðB1s2n +B2t2nÞf1+ oð1Þg, ð3Þ

Let Cwnn
n be the weighted nearest classifier with weights fwnigni=1 where B1 and

B2 are constants determined by:

B1 =
Z
S

f ð̄xoÞ
4 η̇ðxoÞk k dVol

d− 1ðxoÞ

B2 =
Z
S

f ð̄xoÞ
η̇ðxoÞk k dVol

d− 1ðxoÞ,
ð4Þ

Vold− 1 denotes the natural ðd− 1Þ dimensional volume with measure inherent in
S∈ℝd while f ̄ xoð Þ denotes the first derivative of the initial point xo; s2n = ∑n

i=1 w
2
ni

and tn = n− 2 ̸d ∑n
i=1 wnifi1+ 2

d − ð1− iÞ1+ 2
dÞg represent variance and squared bias

contributions. CBayes denotes the Bayes classifiers, minimizing the risk over R. Both
are given by:

Cwnn
n ðxÞ= 1, if wn

ni i=1 ≥ 1 ̸2
2, otherwise

�

CBayesðxÞ= 1, if η xð Þ≥ 1 ̸2
2, otherwise

� ð5Þ

Therefore, there is the interpretation that for the point x∈ℝd, η xð Þ belongs to
class CðxÞ with value of 1 in the sense of the weighted nearest neighbor classifier if
wn
ni i=1 ≥ 1

2; and in the sense of the bayesian classifier, if the regression function
η xð Þ=P Y =1jX =xð Þ≥ 1

2 and; otherwise, both have a value of 2. Further inter-
pretation of the asymptotic behavior towards optimal classification can be found in
Samworth [26]. Subsequently, provided that a single term t from the index is not
empty based on the resulting answer form the positional index, we can iterate over
the number of incoming tweets while adapting the document list
Forward-Position-Intersect algorithm [24, 25] as follows:

270 T. Adetiloye and A. Awasthi

Re-defining the variables in Eckert [24] let p1, p2, pp1 and pp2 be the pointers to
tweet lists and let p1 and p2 reference the tweet lists of the two terms to be
intersected while pp1 and pp2 reference the inner position lists for each tweet with
tweetId and pos dereferencing the pointers to their actual value in the list. Let
positions extract the inner position list from an entry in the tweet list. Add adds a list
identifier and a position to the resulting tweet list. The tweet lists represents the
tweets logs of traffic information saved into file.

For our sentiment analysis, we consider the approach of Hu and Liu [27] lexicon
of opinion words (LOWs). With our earlier derivations, we posit that the index of
sentiments word would require correct interpretation of the word context in rele-
vance to the topic of traffic delay and congestion by scoring the opinion contained
in the traffic tweets based on the contextual polarity: positive, negative and neutral.
The first method of the improved Naїve Bayes Algorithm (INB-1) by Kang et al.
[28] was helpful in computing the score for the crawled filtered traffic tweets based
on the following conditional probability:

Traffic Condition Monitoring Using Social Media Analytics 271

Class tið Þ= argmaxR1 pij
� �

P cj
� �

∏
d

i=1
P pijcj
� � ð6Þ

R1 pij
� �

=
∑jLj

pij ∈ Lj CðpijÞ
∑jLj

pij ∈ L CðpijÞ
ð7Þ

where Class tið Þ denotes the function that determines whether a traffic tweet (tiÞ is
positive, negative or neural. The probability of class cj is calculated by P cj

� �
while

P pijcj
� �

computes the probability that pi belongs to cj. R1 pij
� �

denotes the ratio of
number of patterns. CðpijÞ present in the class j of LOWs when the number of
patterns |L| is counted over number of patterns CðpijÞ present in the class j of LOWs
when the number of patterns |L| is uncounted. The pattern essentially an n-gram,
dwells on the form of n− 1 Markov model, representing contiguous sequence of
n items from a corpus widely known as shingles. We used the Jaccard index to
know the extent of similarity between sample sets of shingles irrespective of the
ordering. This is given by:

J C1,C2ð Þ= jC1 ∩C2j
jC1UC2j ð8Þ

J C1,C2ð Þ denotes the similarity between set C1 and C2. It follows that when item
C1 and C2 are unrelated then J C1,C2ð Þ=1; otherwise 0≤ J C1,C2ð Þ≤ 1. The cluster
formation provide enough evidence to support the interrelations between traffic
incidents with regards to the trending causatives of traffic congestions. Furthermore,
we employ the term-frequency-inverse-document-frequency, tdidf [29] to classify
each term in the traffic congestion clusters based on the frequency of occurrence.
This is performed by invoking the TF log-normalization with the smooth tdidf
weight-schemes as follows:

tf t, dð Þ=1+ log ðft, dÞ ð9Þ

idf ðt,DÞ= log
N
nt

ð10Þ

Such that tweet document term weight is given by:

tdidf ðt, d,DÞ= tf t, dð Þ ⋅ idf ðt,DÞ ð11Þ

With N = |D| denoting the total number of document in the corpus;
nt =1+ jfd∈D: t∈ dgj representing number of times term t appears in document
d which belongs to D in the corpus. Notice that the addition of 1 to jfd∈D: t∈ dgj
ensure that infinity value idf t,Dð Þ is avoided.

272 T. Adetiloye and A. Awasthi

3 Experimental Evaluation

3.1 Discussion of Results

A sample of 121 tweets were retrieved based on the phrase search UK traffic delay.
The data was cleaned of irrelevant symbols. After tweets crawling, preprocessing,
tokenization and feature extraction, we obtained the sentiment analysis results as
presented in Table 1.

In the time period of obtaining the traffic delay tweets, it was observed that
possible severity of 22 were negative sentiments; most likely attributed to serious
accidents on the road way (12 negative sentiments). Other relevant phrases are
generated in the sentiment analysis such as “serious accidents”, “long delays”,
“looking good”, “serious delays” etc. The Jaccard index or similarity and tdidf is

Table 1 Traffic twitter
sentiment analysis

Phrase Negative Neural Positive Total

Possible
severity

22 22

Serious accident 12 12
Latest 9 3 12
Long delay 1 6 7
Looking good 6 6
Serious delays 6 6
Huge 5 5
Broken down 5 5
Heavy 5 5
Updates 4 4
Emergency 4 4
Blocked 4 4
Main work 4 4
Delays 3 3
Uninjured 3 3
Travel heavy 3 3
Accident 3 3
Update 3 3
Nightmare 2 2
Shocking 2 2
Severe accident 2 2

Bridge
congestion
delay

2 2

Severe 2 2
Total 69 43 9 121

Traffic Condition Monitoring Using Social Media Analytics 273

used to generate the relevant traffic trending events contributing to the cluster
classification index as shown in Fig. 1a, b.

3.2 Classification Accuracy

The sentiment classification accuracy of our model is measured in order to deter-
mine the performance following the split of the traffic tweet dataset into the training
sets (70%) for which the true values are known; validation set (15%) for tuning the
classifier during training; and testing set (15%) with unknown values associated
with the traffic congestion situation. This is based on the following measures:

Accuracy, a=
∑ TP+ ∑ TN

TPo
ð12Þ

Precision,Pr =
TN

TP+FN
ð13Þ

Let TP be the true positive rate denoting the number of the traffic tweets that
were correctly identified. TN is the true negative rate denoting the number of traffic
tweets correctly rejected; FN be the false negative rate denoting the number of
traffic tweets incorrectly rejected; FP be the false positive rate denoting the number
of traffic tweets incorrectly accepted; TPo be the total count of traffic tweets which
belongs to a set; Pr be the precision which represents the fraction of the tweets

(a) (b)

Fig. 1 a Traffic delay trending events. b Cluster classification index

274 T. Adetiloye and A. Awasthi

relevant to the search query; a be the (overall) accuracy which determines the
number of correct queries as per the total number of queries. The results show an
average accuracy and average precision of 0.95 and 0.91, respectively. Table 2
summarizes the performance of the classifiers for each class under consideration
with regards to some clusters associated with the traffic congestion delay.

In the training set, the TP rate yields highest value of 0.990 for the positive
sentiment traffic tweet classification with a least value of 0.908 in the testing set for
the positive sentiment. The classifier of neural opinion has the least FP of 0.006 in
the validation set while its highest value of 0.055 emerges in the testing set for the
negative sentiments. The precision yields highest value of 0.977 in the neural
sentiment found in the validation and testing set while its least value is in the
positive sentiment classification contained in the testing set. We envisage that
correctly classifying the traffic congestion based on the twitter sentiments would
depend on the location of the user, internet accessibility and tweets time-proximity
to the real time the traffic congestion persists with respect to the incident time
leading to it.

3.3 Model Validation

To validate the model, the performance of Latent Dirichlet Allocation (LDA) is
compared with the model employing the Naïve Bayes and Jaccard similarity with
n-gram (JCn-g). The LDA is a typical example of a topic model that can be used for
clustering data points; for instance, Azam et al. [17] applied it for clustering of
tweets. It is also considered a generative probabilistic model that allows documents
to be represented as random mixtures over latent topics characterized by a distri-
bution over words [30]. Table 3 presents the comparative evaluation of JCn-g using
unigram and bigram with LDA.

Table 2 Sentiment classification accuracy

Traffic tweet data sets Sentiment classification TP rate FP rate Precision

Training Positive 0.990 0.031 0.882
Neural 0.987 0.008 0.964
Negative 0.912 0.049 0.920

Validation Positive 0.976 0.028 0.905
Neural 0.989 0.006 0.977
Negative 0.966 0.045 0.933

Testing Positive 0.908 0.034 0.855
Neural 0.955 0.042 0.977
Negative 0.963 0.055 0.961

Traffic Condition Monitoring Using Social Media Analytics 275

As observed JCn-g with bigram yields the best accuracy while LDA yields the
most precise result. This can be attributed to the fact that LDA not only serves as a
generative probabilistic model but also combines it topics interpretability with prior
Dirichlet distribution form. Figure 2 presents the cluster generative probabilistic
models for the JCn-g and LDA respectively. It shows the data compression of JCn-g
(n = 2) and LDA as well as the better similarity between them to buttress our
earlier statement. In fact, it can be seen that the green and black tweet clusters are
approximately within the same dimensional vector space in the JCn-g (n = 2) and
LDA. The best precision observe in LDA becomes obvious from the yellow tweets
cluster data points which share same vector space with the JCn-g (n = 1).

Table 3 Comparative evaluation of JCn-g with LDA

Performance metrics JCn-g (n = 1) JCn-g (n = 2) LDA

Accuracy 0.871 0.882 0.880
Precision 0.742 0.753 0.762

Fig. 2 Tweet cluster generative probabilistic model: JCn-g (n = 1, n = 2), LDA

276 T. Adetiloye and A. Awasthi

4 Conclusions and Future Work

Exploring traffic condition using social media data, which can be readily obtained
from Twitter, continues to influence traffic information and transportation engi-
neering management decision makers. Applying the proposed data mining tech-
niques on different strata of the UK traffic delay tweets yielded interesting results on
traffic congestion, incidents and control.

The validation of JCn-g using LDA shows that the JCn-g with bigram has better
accuracy than LDA; however, LDA maintained its high precision over the JCn-g
with unigram and bigram. Precious works have suggested that LDA combines its
topics interpretability with prior Dirichlet distribution form.

Future work should seek to improve the precision of our cluster classification
algorithm. It should seek to improve our preliminary results with a view to seeing if
a hybrid approach of the JCn-g with LDA can be more feasible. Also, investigating
the reliability for seamless integration with well-known traffic management soft-
ware system tools should be explored.

References

1. Lu, H-P., Sun, Z., & Qu, W. (2015). Big data-driven based real-time traffic flow state
identification and prediction. Discrete Dynamics in Nature and Society, 2015, Article ID
284906, 1–11.

2. Villars, R. L., Olofson, C. W., & Eastwood, M. (2011). Big data: What it is and why you
should care. IDC.

3. Vlahogianni, E. I, Park, B. B., & van Lint, J. W. C. (2015). Big data in transportation and
traffic engineering. Transportation Research Part C: Emerging Technologies, 58(Part B), 1–
161.

4. Stopher, P. R., & Greaves, S. P. (2007). Household travel surveys: Where are we going?
Transportation Research Part A: Policy and Practice, 41(5), 367–381.

5. Wang, X., & Li, Z. (2016). Traffic and transportation smart with cloud computing on big data.
International Journal of Computer Science and Applications, 13(1), 1–16.

6. Philander, K., & Zhong, Y. (2016). Twitter sentiment analysis: Capturing sentiment from
integrated resort tweets. International Journal of Hospitality Management, 55, 16–24.

7. Korkontzelos, I., Nikfarjam, A., Shardlow, M., Sarker, A., Ananiadou, S., & Gonzalez, G. H.
(2016). Analysis of the effect of sentiment analysis on extracting adverse drug reactions from
tweets and forum posts. Journal of Biomedical Informatics, 62, 148–158.

8. Burscher, B., Vliegenthart, R., & de Vreese, C. H. (2016). Frames beyond words: Applying
cluster and sentiment analysis to news coverage of the nuclear power issue. Social Science
Computer Review, 34(5), 530–545.

9. Abidin, A. F., Kolberg, M., & Hussain, A. (2015). Integrating Twitter traffic information with
Kalman filter models for public transportation vehicle arrival time prediction. In M. Trovati,
R. Hill, A. Anjum, S. Y. Zhu & L. Liu (Eds.), Big-data analytics and cloud computing
(pp. 67–82).

10. Pak, A., & Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and opinion
mining. In Proceedings of the Seventh conference of International language Resources and
Evaluation (LREC’ 10).

Traffic Condition Monitoring Using Social Media Analytics 277

11. Go, A., Huang, L., & Bhayani, R. (2009). Twitter sentiment analysis. Stanford University,
Stanford California, USA, CS224N - Final Year Project.

12. Wang, J., Gu, Q., & Wang, G. (2013). Potentila power and problems in sentiment mining of
social media. International Journal of Strategic Decision Science, 4(2), 16–26.

13. Kumar, A., & Sebastian, T. M. (2012). Sentiment analysis on Twitter. International Journal
of Computer Science Issues, 9(4:3), 372–378.

14. He, J., Shen, W., Divakaruni, P., Wynter, L., & Lawrence, R. (2013). Improving traffic
prediction with tweet semantics. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, Beijing, China.

15. Grosenick, S. (2012). Real-time traffic prediction improvement through semantic mining of
social networks. Unpublished master thesis. University of Washington, Washington.

16. Elsafoury, F. A. (2013). Monitoring urban traffic status using twitter messages (pp. 1–46).
17. Azam, N., Abulaish, M., & Haldar, N. A.-H. (2015). Twitter data mining for events

classification and analysis. In Second International Conference on Soft Computing and
Machine Intelligence.

18. Broder, A. Z., Glassman, S. C., Manasse, M. S., & Zweig, G. (1997). Syntactic clustering of
the web. Computer Networks and ISDN Systems, 29(8), 1157–1166.

19. van Dongen, S. (2000). Graph clustering by flow simulation. Utrecht, Netherlands: University
of Utrecht.

20. McHugh, D. (2014). Traffic prediction and analysis using a big data and visualisation
approach. Ireland: Blanchardstown.

21. Tejaswin, P., Kumar, R., & Gupta, S. (2015). Tweeting traffic: Analyzing Twitter for
generating real-time city traffic insights and predictions. In CODS-IKDD ’15, Bangalore,
India.

22. Rais, K. (2014). Twitter analysis.
23. cran.r-project.org. https://cran.r-project.org/web/packages/.
24. Eckert, K. (2008). Simplified phrase search algorithm.
25. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval.

Cambridge University Press.
26. Samworth, R. J. (2012). Optimal weighted nearest neighbour classifiers. Annals of Statistics,

40(5), 2733–2763.
27. Hu, M., & Liu, B. (2004). Mining opinion features in customer review. In Proceedings of the

19th National Conference on Artificial Intelligence, AAAAI’04.
28. Kang, H., Yoo, S. J., & Han, D. (2012). Senti-lexicon and improved Naïve Bayes algorithms

for sentiment analysis. Expert Systems with Applications, 39, 6000–6010.
29. Spärck Jones, K. (1972). A statistical interpretation of term specificity and its application in

retrieval. Journal of Documentation, 28(1), 11–21.
30. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine

Learning Research, 3(4–5), 993–1022.

278 T. Adetiloye and A. Awasthi

https://cran.r-project.org/web/packages/

Modelling of Pile Drivability Using Soft
Computing Methods

Wengang Zhang and Anthony T. C. Goh

Abstract Driven piles are commonly used to transfer the loads from the super-
structure through weak strata onto stiffer soils or rocks. For driven piles, the impact
of the piling hammer induces compression and tension stresses in the piles. Hence,
an important design consideration is to check that the strength of the pile is suffi-
cient to resist the stresses caused by the impact of the pile hammer. Due to its
complexity, pile drivability lacks a precise analytical theory or understanding of the
phenomena involved. In situations where measured or numerical data are available,
various soft computing methods have shown to offer great promise for mapping the
nonlinear interactions between the system’s inputs and outputs. In this study, two
soft computing methods, the Back propagation neural network (BPNN) and Mul-
tivariate adaptive regression splines (MARS) algorithms were used to assess pile
drivability in terms of the Maximum compressive stresses, Maximum tensile
stresses, and Blow per foot. A database of more than four thousand piles is utilized
for model development and comparative performance of the predictions between
BPNN and MARS.

Keywords Back propagation neural network ⋅ Multivariate adaptive regression
splines ⋅ Pile drivability ⋅ Computational efficiency ⋅ Nonlinearity

W. Zhang
Key Laboratory of New Technology for Construction of Cities in Mountain Area,
Chongqing University, Chongqing 400045, China

W. Zhang
School of Civil Engineering, Chongqing University, Chongqing 400045, China

A. T. C. Goh (✉)
School of Civil and Environmental Engineering, Nanyang Technological University,
Singapore 639798, Singapore
e-mail: ctcgoh@ntu.edu.sg

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_14

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_14&domain=pdf

1 Introduction

Driven piles are commonly used to transfer the loads from the superstructure
through weak strata onto stiffer soils or rocks. For these piles, the impact of the
piling hammer induces compression and tension stresses in the piles. Hence, an
important design consideration is to ensure that the strength of the pile is sufficient
to resist the stresses introduced by the impact of the pile hammer. One common
method of calculating the driving stresses is based on the stress-wave theory [18]
which involves the discrete idealization of the hammer-pile-soil system. Consid-
ering that the conditions at each site are different, generally a wave equation based
computer program is required to generate the pile driving criteria for each indi-
vidual project. The pile driving criteria include:

• Hammer stroke versus Blow per foot BPF (1/set) for required bearing capacity,
• Maximum compressive stresses versus BPF,
• Maximum tension stress versus BPF.

However, this process can be rather time consuming and requires very spe-
cialized knowledge of the wave equation program.

The essence of modeling/numerical mapping is prediction, which is obtained by
relating a set of variables in input space to a set of response variables in output
space through a model. The analysis of pile drivability involves a large number of
design variables and nonlinear responses, particularly with statistically dependent
inputs. Thus, the commonly used regression models become computationally
impractical. Another limitation is the strong model assumptions made by these
regression methods.

An alternative soft computing technique is the artificial neural network (ANN).
The ANN structure consists of one or more layers of interconnected neurons or
nodes. Each link connecting each neuron has an associated weight. The “learning”
paradigm in the commonly used Back-propagation (BP) algorithm [14] involves
presenting examples of input and output patterns and subsequently adjusting the
connecting weights so as to reduce the errors between the actual and the target
output values. The iterative modification of the weights is carried out using the
gradient descent approach and training is stopped once the errors have been reduced
to some acceptable level. The ability of the trained ANN model to generalize the
correct input-output response is performed in the testing phase and involves pre-
senting the trained neural network with a separate set of data that has never been
used during the training process.

This paper explores the use of ANN and another soft computing technique
known as multivariate adaptive regression splines (MARS) [3] to capture the
intrinsic nonlinear and multidimensional relationship associated with pile driv-
ability. Similar with neural networks, no prior information on the form of the
numerical function is required for MARS. The main advantages of MARS lie in its
capacity to capture the intrinsic complicated data mapping in high-dimensional data
patterns and produce simpler, easier-to-interpret models, and its ability to perform

280 W. Zhang and A. T. C. Goh

analysis on parameter relative importance. Previous applications of the MARS
algorithm in civil engineering include predicting the doweled pavement perfor-
mance, estimating shaft resistance of piles in sand and deformation of asphalt
mixtures, analyzing shaking table tests of reinforced soil wall, determining the
undrained shear strength of clay, predicting liquefaction-induced lateral spread,
assessing the ultimate and serviceability performances of underground caverns,
estimating the EPB tunnel induced ground surface settlement, and inverse analysis
for braced excavation [1, 7, 8, 12, 13, 15–17, 19–23]. In this paper, the Back
propagation neural network (BPNN) and MARS models are developed for pile
drivability predictions in relation to the Maximum compressive stresses (MCS),
Maximum tensile stresses (MTS), and Blow per foot (BPF). A database of more
than four thousand piles is utilized for model development and comparative per-
formance between BPNN and MARS predictions.

2 Methodologies

2.1 Back-Propagation Algorithm

A three-layer, feed-forward neural network topology shown in Fig. 1 is adopted in
this study. As shown in Fig. 1, the back-propagation algorithm involves two phases
of data flow. In the first phase, the input data are presented forward from the input
to output layer and produces an actual output. In the second phase, the error
between the target values and actual values are propagated backwards from the
output layer to the previous layers and the connection weights are updated to reduce

Fig. 1 Back-propagation
neural network architecture
used in this study

Modelling of Pile Drivability Using Soft Computing Methods 281

the errors between the actual output values and the target output values. No effort is
made to keep track of the characteristics of the input and output variables. The
network is first trained using the training data set. The objective of the network
training is to map the inputs to the output by determining the optimal connection
weights and biases through the back-propagation procedure. The number of hidden
neurons is typically determined through a trial-and-error process; normally the
smallest number of neurons that yields satisfactory results (judged by the network
performance in terms of the coefficient of determination R2 of the testing data set) is
selected. In the present study, a Matlab-based back-propagation algorithm BPNN
with the Levenberg-Marquardt (LM) algorithm [2] was adopted for neural network
modeling.

2.2 Multivariate Adaptive Regression Splines Algorithm

MARS was first proposed by [3] as a flexible procedure to organize relationships
between a set of input variables and the target dependent that are nearly additive or
involve interactions with fewer variables. It is a nonparametric statistical method
based on a divide and conquer strategy in which the training data sets are parti-
tioned into separate piecewise linear segments (splines) of differing gradients
(slope). MARS makes no assumptions about the underlying functional relationships
between dependent and independent variables. In general, the splines are connected
smoothly together, and these piecewise curves (polynomials), also known as basis
functions (BFs), result in a flexible model that can handle both linear and nonlinear
behavior. The connection/interface points between the pieces are called knots.
Marking the end of one region of data and the beginning of another, the candidate
knots are placed at random positions within the range of each input variable.

MARS generates BFs by stepwise searching over all possible univariate can-
didate knots and across interactions among all variables. An adaptive regression
algorithm is adopted for automatically selecting the knot locations. The MARS
algorithm involves a forward phase and a backward phase. The forward phase
places candidate knots at random positions within the range of each predictor
variable to define a pair of BFs. At each step, the model adapts the knot and its
corresponding pair of BFs to give the maximum reduction in sum-of-squares
residual error. This process of adding BFs continues until the maximum number is
reached, which usually results in a very complicated and overfitted model. The
backward phase involves deleting the redundant BFs that made the least contri-
butions. An open MARS source code from [10] is adopted in performing the
analyses presented in this paper.

Let y be the target dependent responses and X = (X1, …, XP) be a matrix of
P input variables. Then it is assumed the data are generated based on an unknown
“true” model. For a continuous response, this would be

282 W. Zhang and A. T. C. Goh

y= f ðX1, . . . ,XPÞ+ e= f ðXÞ+ e ð1Þ

in which e is the fitting error. f is the built MARS model, comprising of BFs which
are splines piecewise polynomial functions. For simplicity, only the piecewise
linear function is expressed and considered in this paper. Piecewise linear functions
follow the form maxð0, x− tÞ with a knot defined at value t. Expression maxð ⋅ Þ
means that only the positive part of ð.Þ is used otherwise it is assigned a zero value.
Formally,

maxð0, x− tÞ = x− t, if x ≥ t
0, otherwise

�
ð2Þ

The MARS model f(X), which is a linear combination of BFs and their inter-
actions, is expressed as

f ðXÞ= β0 + ∑
M

m=1
βmλmðXÞ ð3Þ

where each λm is a BF. It can be a spline function, or interaction BFs produced by
multiplying an existing term with a truncated linear function involving a new/
different variable (higher orders can be used only when the data warrants it; for
simplicity, at most second-order is adopted). The terms β are constant coefficients,
estimated using the least-squares method.

Figure 2 shows an example illustration of how the MARS algorithm would
make use of piecewise linear spline functions to fit provided data patterns.
The MARS mathematical equation is as follows

y = − 5.0875 − 2.7678 × BF1 + 0.5540 × BF2 + 1.1900 × BF3 ð4Þ

Fig. 2 Knots and linear
splines for a simple MARS
example

Modelling of Pile Drivability Using Soft Computing Methods 283

in which BF1 = max(0, x – 17), BF2 = max(0, 17 – x) and BF3 = max(0, x – 5)
and max is defined as: max(a, b) is equal to a if a > b, else b. The knots are located
at x = 5 and 17. These two knots delimit/cut the x range into three intervals where
different linear relationships are identified.

The MARS modeling is a data-driven process. To construct the model in Eq. (3),
first the forward phase is performed on the training data starting initially with only
the intercept β0. At each subsequent step, the basis pair that produces the maximum
reduction in the training error is added. Considering a current model with M basis
functions, the next pair to be added to the model is in the form of

βM +1 λlðXÞmaxð0,Xj − tÞ+ βM +2 λlðXÞmaxð0, t−XjÞ ð5Þ

with each β being estimated by the least-squares method. This process of adding
BFs continues until the model reaches some predetermined maximum number,
generally leading to a purposely overfitted model.

The backward phase improves the model by removing the less significant terms
until it finds the best sub-model. Model subsets are compared using the less
computationally expensive method of Generalized Cross-Validation (GCV).
The GCV is the mean-squared residual error divided by a penalty that is dependent
on model complexity. For the training data with N observations, GCV is calculated
as [9]

GCV =
1
N∑

N
i=1 ½yi − f ðxiÞ�2

½1− M + d × ðM − 1Þ ̸2
N �2

ð6Þ

in which M is the number of BFs, d is a penalty for each basis function included in
the developed sub-model, N is the number of data sets, and f ðxiÞ denotes the MARS
predicted values. Thus the numerator is the mean square error of the evaluated
model in the training data, penalized by the denominator which accounts for the
increasing variance in the case of increasing model complexity. Note that
ðM − 1Þ ̸2 is the number of hinge function knots. The GCV penalizes not only the
number of BFs but also the number of knots. A default value of 3 is assigned to
penalizing parameter d and further suggestions on choosing the value of d can be
referred to [3]. At each deletion step, a basis function is pruned to minimize Eq. (3),
until an adequately fitting model is found.

After the optimal MARS model is determined, by grouping together all the BFs
involving one variable and another grouping of BFs involving pairwise interactions,
the analysis of variance (ANOVA) decomposition procedure [3] can be used to
assess the parameter relative importance based on the contributions from the input
variables and the BFs.

284 W. Zhang and A. T. C. Goh

3 Performance Measures

Table 1 shows the performance measures and the corresponding definitions utilized
for prediction comparison of the two surrogate methods.

4 Pile Drivability Data Sets

In this paper, a database containing 4072 piles with a total of seventeen variables is
developed from the information on piles already installed for bridges in the State of
North Carolina [11]. Seventeen variables including hammer characteristics, hammer
cushion material, pile and soil parameters, ultimate pile capacities, and stroke were
regarded as inputs to estimate the three dependent responses comprising of the
Maximum compressive stresses (MCS), Maximum tensile stresses (MTS), and
Blow per foot (BPF). A summary of the input variables and outputs is listed in
Table 2.

For purpose of simplifying the analyses considering the extensive number of
parameters and large data set, Joen and Rahman [11] divided the data into five
categories (Q1–Q5) based on the ultimate pile capacity, as detailed in Table 3. In
this paper, for each category 70% of the data patterns were randomly selected as the
training dataset and the remaining data were used for testing. For details of the
entire data set as well as each design variable and responses, the report by Joen and
Rahman [11] can be referred to.

Table 1 Summary of performance measures

Performance measure Definition

Coefficient of determination (R2) R2 = 1−
1
n∑n

i=1 ðYi −YÞ2
1
n∑n

i=1 ðyi − yÞ2

Coefficient of correlation (r) r= ∑N
i=1 ðYi −YÞðyi − yÞffi

∑N
i=1 ðYi −YÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i=1
ðyi − yÞ2

r

Relative root mean squared error (RRMSE)
RRMSE=

ffi
1
N∑

N
i=1 ðYi − yiÞ2

p
1
N∑

N
i=1 yi

×100

Performance index (ρ) ρ= RRMSE
1+ r

y is the mean of the target values of yi; Y is the mean of the predicted Yi; N denotes the number of
data points in the used set, training set, testing set or the overall set; Definitions of RRMSE, r and ρ
are based on [4].

Modelling of Pile Drivability Using Soft Computing Methods 285

Table 2 Summary of input variables and outputs

Inputs and
outputs

Parameters and parameter descriptions

Input variables Hammer Hammer weight (kN) Variable 1 (x1)
Energy (kN ⋅m) Variable 2 (x2)

Hammer cushion material Area (m2) Variable 3 (x3)
Elastic modulus (GPa) Variable 4 (x4)
Thickness (m) Variable 5 (x5)
Helmet weight (kN) Variable 6 (x6)

Pile information Length (m) Variable 7 (x7)
Penetration (m) Variable 8 (x8)
Diameter (m) Variable 9 (x9)
Section area (m2) Variable 10

(x10)
Slenderness L/D Variable 11

(x11)
Soil information Quake at toe (m) Variable 12

(x12)
Damping at shaft
(s/m)

Variable 13
(x13)

Damping at toe (s/m) Variable 14
(x14)

Shaft resistance (%) Variable 15
(x15)

Ultimate pile capacity Qu

(kN)
Variable 16
(x16)

Stroke (m) Variable 17
(x17)

Outputs Maximum compressive stress MCS (MPa)
Maximum tensile stress MTS (MPa)
BPF

Table 3 Division of data with respect to ultimate pile capacities

Pile type Qu range (kN) Data
No. of training data No. of testing data Total

Q1 133.4−355.9 270 90 360
Q2 360.0−707.3 428 144 572
Q3 707.4−1112.1 808 249 1057
Q4 1112.2−1774.8 1296 421 1717
Q5 1774.9−3113.7 276 90 366

Total 3078 994 4072

286 W. Zhang and A. T. C. Goh

5 BPNN Models

For simplicity, only BPNN models with one single hidden layer structure are
considered. The optimal BPNN model is selected from models with different hidden
neurons since the other main parameters for BPNN algorithms have been fixed as:

logsig transfer function from the input layer to the hidden layer;
tansig transfer function from the hidden layer to the output layer;
maxepoch = 500;
learning rate = 0.01;
min_grad = 1 × 10−15;
decrease factor mu_dec = 0.7;
increase factor mu_inc = 1.03.

5.1 The Optimal BPNN Model

The BPNN with the highest coefficient of determination R2 value for the testing
data sets is considered to be the optimal model. Figure 3 plots the R2 values of the
testing data sets for BPNN models with different neurons (from 5 to 15) in the
hidden layer for MCS, MTS and BPF predictions. It can be observed that for
the optimal MCS, MTS, and BPF models, the number of the neurons in the hidden
layer is 9, 7 and 11, respectively.

5.2 Modeling Results

Figures 4, 5 and 6 show the BPNN predictions for the training and testing data
patterns for MCS, MTS, and BPF, respectively. For the MCS predictions, con-
siderably high R2 (>0.97) are obtained for both the training and testing patterns.
Compared with the MCS predictions, the developed BPNN model is slightly less

Fig. 3 R2 for different
neuron numbers for MCS,
MTS and BPF models

Modelling of Pile Drivability Using Soft Computing Methods 287

Fig. 4 Prediction of MCS
using BPNN

Fig. 5 Prediction of MTS
using BPNN

Fig. 6 Prediction of BPF
using BPNN

288 W. Zhang and A. T. C. Goh

accurate in predicting the MTS mainly as a result of the bias (errors) due to the
significantly smaller tensile stress values in comparison to the compressive stresses.
For the BPF estimation, high R2 are also obtained for both the training and testing
patterns, with the latter slightly greater than the training sets. In addition, the three
optimal BPNN models can serve as reliable tools for prediction of MCS, MTS and
BPF.

5.3 Parameter Relative Importance

The parameter relative importance determined by BPNN is based on the method by
[5] and discussed by Goh [6]. Figure 7 gives the plot of the relative importance of
the input variables for the three BPNN models. It can be observed that MCS is
mostly influenced by the input variable x11 (Slenderness) and MTS is mostly
influenced by the input variable x8 (Penetration). Interestingly, BPF is primarily
influenced by the input variable x16 (Ultimate pile capacity).

5.4 Model Interpretability

For brevity, only the developed BPNN MCS model is expressed in mathematical
form through the trained connections weights, the bias, and the transfer functions.
The Mathematical expression for MCS obtained by the optimal MCS analysis is
shown in the Appendix 1.

Fig. 7 Prediction of BPF
using BPNN

Modelling of Pile Drivability Using Soft Computing Methods 289

6 MARS Models

It is assumed that at most the 2nd order interaction is considered for the prediction
of MCS, MTS and BPF using MARS. The number of basis functions changes from
2n to n2 (n = 17 in this study, numerical trials indicate that overfitting occurs when
the number of BFs exceeds 80).

6.1 The Optimal MARS Model

The MARS model with the highest R2 value and less BFs for the testing data set is
considered to be the optimal. Figure 8 plots the R2 values of the testing data sets for
the MARS models with different BFs (from 34 to 78) in the hidden layer for the
MCS, MTS and BPF predictions. It can be observed that for the optimal MCS,
MTS, and BPF models, the number of BFs is 52, 36 and 38, respectively.

6.2 Modeling Results

Figures 9, 10 and 11 show the MARS predictions for the training and testing data
patterns for MCS, MTS, and BPF, respectively. For the MCS prediction, consid-
erably high R2 (>0.95) are obtained for both the training and testing patterns. As in
the BPNN analysis, the developed MARS model is less accurate in predicting MTS
compared with the MCS predictions, mainly due to the bias brought about by the
smaller tensile stress values. For the BPF estimation, high R2 (>0.90) are also
obtained for both the training and testing patterns, with the latter slightly greater
than the training sets. Consequently, the three optimal MARS models can serve as
reliable tools for prediction of MCS, MTS and BPF.

Fig. 8 R2 for different
number of BFs for MCS,
MTS and BPF models

290 W. Zhang and A. T. C. Goh

Fig. 9 Prediction of MCS
using MARS

Fig. 10 Prediction of MTS
using MARS

Fig. 11 Prediction of BPF
using MARS

Modelling of Pile Drivability Using Soft Computing Methods 291

6.3 Parameter Relative Importance

Table 4 displays the ANOVA decomposition of the built MARS models for MCS,
MTS and BPF respectively. For each model, the ANOVA functions are listed.
The GCV column provides an indication on the significance of the corresponding
ANOVA function, by listing the GCV value for a model with all BFs corresponding
to that particular ANOVA function removed. It is this GCV score that is used to
assess whether the ANOVA function is making a significant contribution to the
model, or whether it just marginally improves the global GCV score. The #basis
column gives the number of BFs comprising the ANOVA function and the variable
(s) column lists the input variables associated with this ANOVA function.

Table 4 ANOVA decomposition of MARS model for MCS, MTS and BPF

Function MCS MTS BPF

GCV #
Basis

Variable
(s)

GCV #
Basis

Variable
(s)

GCV #
Basis

Variable
(s)

1 28.82 1 1 1.047 2 5 39.657 2 1

2 8.346 2 6 575.191 1 6 9.750 2 2

3 7.073 1 8 109.688 2 7 1.760 2 13

4 10.226 1 12 305.352 1 8 3.005 2 15

5 5.629 3 17 251.585 2 11 8.034 2 16

6 11.184 1 1 3 25.373 1 17 2.976 2 17

7 48.344 2 1 17 0.441 1 1 6 66.894 3 1 3

8 8.048 5 2 4 337.341 2 3 7 0.370 2 1 6

9 11.846 2 3 4 0.893 2 3 17 0.235 2 1 13

10 21.733 2 3 17 5.626 2 5 7 0.231 1 1 16

11 63.062 1 4 15 2.229 1 5 11 43.396 2 2 3

12 8.017 1 6 8 795.122 4 6 7 0.357 1 2 4

13 4.976 3 8 17 92.069 3 6 8 0.403 2 2 16

14 6.797 1 6 9 0.557 4 2 17

15 48.170 4 6 11 0.280 2 3 13

16 1.472 1 6 16 0.705 2 4 15

17 2.593 2 6 17 0.227 1 4 17

18 0.626 1 7 8 0.170 1 5 13

19 11.173 1 7 17 0.191 1 6 15

20 0.447 1 8 16 0.221 2 7 15

21 50.089 2 8 17 0.375 1 13 15

22 0.828 1 11 15 0.984 1 16 17

23 148.475 2 11 17

24 1.472 2 14 17

25 0.466 1 15 17

292 W. Zhang and A. T. C. Goh

Figure 12 gives the plot of the relative importance of the input variables for the
three HP drivability models developed by MARS. It can be observed that both
MCS and BPF are mostly influenced by the input variable x1 (hammer weight).
Interestingly, MTS is primarily influenced by the input variable x6 (the weight of
helmet). It should be noted that since the BPNN and MARS algorithms adopt
different methods in assessing the parametric relative importance, it is under-
standable that the two algorithms give different results.

6.4 Model Interpretability

Table 5 lists the BFs of the MCS model. The MARS model is in the form of

MCS MPað Þ=169.4 + 0.0095 ×BF1+ 35.6 ×BF2− 47.5 ×BF3− 0.46 ×BF4− 2×BF5+
8847 ×BF6+ 9.2 ×BF7− 8.2 ×BF8− 0.0025 ×BF9+ 0.0062×BF10− 3.2 ×BF11+
470×BF12− 0.0036 ×BF13− 0.8 ×BF14− 0.0012×BF15+ 0.006×BF16+ 9.43 ×BF17
− 6.1 ×BF18+ 0.136 ×BF19− 0.098×BF20− 0.83 ×BF21− 0.17 ×BF22− 540×BF23
+ 1.34 × 105 ×BF24+ 1.672 ×BF25− 0.42 ×BF26+ 0.144 ×BF27− 4.57 ×BF28
− 0.0054×BF29+ 0.052 ×BF30+ 87×BF31+ 250×BF32− 763×BF33− 16×BF34
− 28.1 ×BF35+ 0.217×BF36− 0.2 ×BF37+ 34.5 ×BF38+ 31.3 ×BF39− 50.2 ×BF40
− 425×BF41+ 0.0018 ×BF42− 0.003×BF43− 7.4 ×BF44+ 341×BF45+ 51.4 ×BF46
+ 5.67 ×BF47+ 12×BF48+ 0.96×BF49+ 100.2 ×BF50− 0.2 ×BF51+ 0.23×BF52

ð7Þ

Fig. 12 Relative importance
of the input variables in
MARS pile drivability models

Modelling of Pile Drivability Using Soft Computing Methods 293

7 Discussions

Comparisons of R2, r, RRMSE and ρ, as well as the built model interpretability
between MARS and BPNN are shown in Table 6. It can be observed that generally
BPNN models are slightly more accurate than MARS. However, in terms of the
model interpretability, MARS outperforms BPNN through easy-to-interpret model.
Thus, both these two methods can actually be used for cross-validation.

Table 5 BFs and corresponding equations of MARS MCS model

BF Equation BF Equation

BF1 max(0, x16–1550) BF27 max(0, x15 − 15)
BF2 max(0, x17−2.29) BF28 max(0, 15−x15)
BF3 max(0, 2.29−x17) BF29 BF28 × max(0, x16−289)
BF4 max(0, x6−7.38) BF30 BF28 × max(0, 289−x16)
BF5 max(0, 7.38−x6) BF31 BF2×max(0, x1−29.4)
BF6 max(0, 0.014−x10) BF32 BF6 × max(0, x6−6.67)
BF7 max(0, x2−30.7) BF33 BF6 × max(0, 6.67−x6)
BF8 max(0, 30.7−x2) BF34 BF5 × max(0, 1.81−x17)
BF9 BF1 × max(0, x7−8.00) BF35 BF3 × max(0, x1−29.4)
BF10 BF1 × max(0, 8.00−x7) BF36 BF7 × max(0, x11−50)
BF11 max(0, x11−9) BF37 BF7 × max(0, 50−x11)
BF12 max(0, 9−x11) BF38 BF28 × max(0, x13−0.59)
BF13 max(0, 1550−x16) ×

max(0, x8−3.05)
BF39 BF28 × max(0, 0.59−x13)

BF14 max(0, 1550−x16) ×
max(0, 3.05−x8)

BF40 BF4 × max(0, x5−0.05)

BF15 max(0, 1550−x16) ×
max(0, x6−9.34)

BF41 BF4 × max(0, 0.05−x5)

BF16 max(0, 1550−x16) ×
max(0, 9.34−x6)

BF42 max(0, 1550−x16) ×
max(0, x11−24)

BF17 BF6×max(0, x16−1067.5) BF43 max(0, 1550−x16) ×
max(0, 24−x11)

BF18 BF6 × max(0, 1068−x16) BF44 BF7 × max(0, 0.18−x3)
BF19 BF11 × max(0, x4−3.24) BF45 max(0, x3−0.26)
BF20 BF11 × max(0, 3.24−x4) BF46 max(0, 0.26−x3)
BF21 BF11 × max(0, x1−29.4) BF47 BF5 × max(0, x4−1.97)
BF22 BF11 × max(0, 29.4−x1) BF48 BF5 × max(0, 1.97−x4)
BF23 BF6 × max(0, x7−3.05) BF49 BF5 × max(0, 44.7−x2)
BF24 BF6 × max(0, 3.05−x7) BF50 BF45 × max(0, 30−x11)
BF25 BF7 × max(0, x17−2.90) BF51 BF11 × max(0, x2−54.2)
BF26 BF7 × max(0, 2.90−x17) BF52 BF11 × max(0, 54.2−x2)

294 W. Zhang and A. T. C. Goh

8 Summary and Conclusions

A database containing 4072 pile data sets with a total of 17 variables is adopted to
develop the BPNN and MARS models for drivability predictions. Performance
measures indicate that both the BPNN and MARS models for the analyses of pile
drivability provide similar predictions and can thus be used for predicting pile
drivability as cross-validation. In addition, the MARS algorithm builds flexible
models using simpler linear regression and data-driven stepwise searching, adding
and pruning. The developed MARS models are much easier to be interpreted.

Acknowledgements The authors are grateful to the support by the National Natural Science
Foundation of China (No. 51608071) and the Advanced Interdisciplinary Special Cultivation
program (No. 106112017CDJQJ208850).

Appendix 1

Calculation of BPNN Output MCS Model
The transfer functions used MCS are ‘logsig’ transfer function for hidden layer

to output layer and ‘tansig’ transfer function for output layer to target. The cal-
culation process of BPNN output for MCS is elaborated in detail as follows:

From connection weights for a trained NN, it is possible to develop a mathe-
matical equation relating input parameters and the single output parameter Y using

Y = fsig b0 + ∑
h

k=1
wkfsig bhk + ∑

m

i=1
wikXi

� �� �� �
ð8Þ

Table 6 Comparison of performance measures for BPNN and MARS

Performance measures MCS BPNN BPF MCS MARS BPF
MTS MTS

R2 Training 0.9704 0.8419 0.9494 0.9572 0.7840 0.9080
Testing 0.9755 0.9302 0.9730 0.9557 0.7820 0.9220

r Training 0.9852 0.8931 0.9742 0.9782 0.8855 0.9534
Testing 0.9874 0.9414 0.9762 0.9784 0.8945 0.9604

RRMSE
(%)

Training 4.2382 80.828 18.487 5.0764 83.604 24.731
Testing 3.7621 62.364 18.543 4.8102 73.222 23.464

ρ (%) Training 2.1357 42.688 9.3624 2.5663 44.342 12.672
Testing 1.8945 32.468 9.3884 2.4321 38.651 11.975

Model interpretability Poor, as shown in Appendix 1 Good, Eq. (7) and Table 5

Modelling of Pile Drivability Using Soft Computing Methods 295

in which b0 is the bias at the output layer, ωk is the weight connection between
neuron k of the hidden layer and the single output neuron, bhk is the bias at neuron
k of the hidden layer (k = 1, h), ωik is the weight connection between input variable
i (i = 1, m) and neuron k of the hidden layer, xxx is the input parameter i, and fsig is
the sigmoid (logsig & tansig) transfer function.

Using the connection weights of the trained neural network, the following steps
can be followed to mathematically express the BPNN model:

Step 1: Normalize the input values for x1, x2,… and x17 linearly using
Xnorm =2ðxactual − xminÞ ̸ðxmax − xminÞ− 1

Let the actual x1 =X1a and the normalized x1 =X1

X1 = − 1+ 2× ðX1a − 7.8Þ ̸ð31.1− 7.8Þ ð9Þ

Let the actual x2 =X2a and the normalized x2 =X2

X2 = − 1+ 2× ðX2a − 23.9Þ ̸ð102.3− 23.9Þ ð10Þ

Let the actual x3 =X3a and the normalized x3 =X3

X3 = − 1+ 2× ðX3a − 0.15Þ ̸ð0.27− 0.15Þ ð11Þ

Let the actual x4 =X4a and the normalized x4 =X4

X4 = − 1+ 2× ðX4a − 1.21Þ ̸ð3.72− 1.21Þ ð12Þ

Let the actual x5 =X5a and the normalized x5 =X5

X5 = − 1+ 2× ðX5a − 0.0Þ ̸ð0.18− 0.0Þ ð13Þ

Let the actual x6 =X6a and the normalized x6 =X6

X6 = − 1+ 2× ðX6a − 4.0Þ ̸ð34.5− 4.0Þ ð14Þ

Let the actual x7 =X7a and the normalized x7 =X7

X7 = − 1+ 2× ðX7a − 3.0Þ ̸ð30.5− 3.0Þ ð15Þ

Let the actual x8 =X8a and the normalized x8 =X8

X8 = − 1+ 2× ðX8a − 3.0Þ ̸ð30.5− 3.0Þ ð16Þ

Let the actual x9 =X9a and the normalized x9 =X9

X9 = − 1+ 2× ðX9a − 0.30Þ ̸ð0.36− 0.30Þ ð17Þ

Let the actual x10 =X10a and the normalized x10 =X10

296 W. Zhang and A. T. C. Goh

X10 = − 1+ 2× ðX10a − 0.010Þ ̸ð0.014− 0.010Þ ð18Þ

Let the actual x11 =X11a and the normalized x11 =X11

X11 = − 1+ 2× ðX11a − 8.4Þ ̸ð100.1− 8.4Þ ð19Þ

Let the actual x12 =X12a and the normalized x12 =X12

X12 = − 1+ 2× ðX12a − 0.0025Þ ̸ð0.0084− 0.0025Þ ð20Þ

Let the actual x13 =X13a and the normalized x13 =X13

X13 = − 1+ 2× ðX13a − 0.16Þ ̸ð0.83− 0.16Þ ð21Þ

Let the actual x14 =X14a and the normalized x14 =X14

X14 = − 1+ 2× ðX14a − 0.20Þ ̸ð0.66− 0.20Þ ð22Þ

Let the actual x15 =X15a and the normalized x15 =X15

X15 = − 1+ 2× ðX15a − 10Þ ̸ð95− 10Þ ð23Þ

Let the actual x16 =X16a and the normalized x16 =X16

X16 = − 1+ 2× ðX16a − 137.9Þ ̸ð2891.2− 137.9Þ ð24Þ

Let the actual x17 =X17a and the normalized x17 =X17a

X17 = − 1+ 2× ðX17a − 1.02Þ ̸ð3.46− 1.02Þ ð25Þ

Step 2: Calculate the normalized value (Y1) using the following expressions:

A1 = − 21.3261+ 6.2318logsig X1ð Þ− 3.1654logsig X2ð Þ+17.1602logsig X3ð Þ
− 1.459logsig X4ð Þ− 4.3521logsig X5ð Þ+13.216logsig X6ð Þ− 9.768logsig X7ð Þ
+3.5715logsig X8ð Þ − 0.1209logsig X9ð Þ+0.2208logsig X10ð Þ+15.9897logsig X11ð Þ
− 9.4443logsig X12ð Þ− 1.9824 logsig X13ð Þ− 5.5972logsig X14ð Þ− 6.3521logsig X15ð Þ
+5.4767logsig X16ð Þ− 0.7102logsig X17ð Þ

ð26Þ

A2 = − 8.4258− 15.0031logsig X1ð Þ+11.7647logsig X2ð Þ+1.1075logsig X3ð Þ
− 5.1013logsig X4ð Þ+6.9054logsig X5ð Þ− 10.1146logsig X6ð Þ− 5.4258logsig X7ð Þ
− 23.0086logsig X8ð Þ+0.5226logsig X9ð Þ+0.4659logsig X10ð Þ+4.8115logsig X11ð Þ
+8.377logsig X12ð Þ+18.6713logsig X13ð Þ− 13.0335logsig X14ð Þ+15.2353logsig X15ð Þ
− 12.7608logsig X16ð Þ+2.239logsig X17ð Þ

ð27Þ

Modelling of Pile Drivability Using Soft Computing Methods 297

A3 = − 7.9671− 21.6681logsig X1ð Þ+6.0201logsig X2ð Þ+6.4033logsig X3ð Þ
− 0.5677logsig X4ð Þ+21.532logsig X5ð Þ+11.305logsig X6ð Þ− 21.4426logsig X7ð Þ
+24.4447logsig X8ð Þ − 1.7981logsig X9ð Þ− 1.526logsig X10ð Þ− 6.618logsig X11ð Þ
− 32.874logsig X12ð Þ+3.4611logsig X13ð Þ− 5.9862logsig X14ð Þ +9.1232logsig X15ð Þ
− 15.876logsig X16ð Þ− 1.1918logsig X17ð Þ

ð28Þ

A4 = − 0.8699+ 3.7546logsig X1ð Þ− 2.2402logsig X2ð Þ − 1.2905logsig X3ð Þ
+0.2448logsig X4ð Þ− 0.1977logsig X5ð Þ+0.0614logsig X6ð Þ+1.206logsig X7ð Þ
− 0.6279logsig X8ð Þ − 2.19logsig X9ð Þ+2.1303logsig X10ð Þ− 0.3518logsig X11ð Þ
− 0.4643logsig X12ð Þ+1.0234logsig X13ð Þ− 0.1317logsig X14ð Þ +0.1105logsig X15ð Þ
− 0.2714logsig X16ð Þ− 0.3666logsig X17ð Þ

ð29Þ

A5 = − 1.8394+ 0.5777logsig X1ð Þ+0.0039logsig X2ð Þ − 0.1447logsig X3ð Þ
− 0.0038logsig X4ð Þ+0.1173logsig X5ð Þ− 0.2946logsig X6ð Þ− 1.2601logsig X7ð Þ
+3.2074logsig X8ð Þ− 0.496logsig X9ð Þ+0.4693logsig X10ð Þ− 2.415logsig X11ð Þ
+0.2184logsig X12ð Þ+0.5232logsig X13ð Þ+0.1453logsig X14ð Þ+0.1121logsig X15ð Þ
− 0.1928logsig X16ð Þ+0.2347logsig X17ð Þ

ð30Þ

A6 = − 10.0517− 1.6316logsig X1ð Þ− 9.722logsig X2ð Þ− 0.7598logsig X3ð Þ
− 0.6052logsig X4ð Þ+6.2292logsig X5ð Þ− 15.005logsig X6ð Þ+13.487logsig X7ð Þ
− 14.773logsig X8ð Þ +0.2152logsig X9ð Þ+0.1029logsig X10ð Þ− 7.4019logsig X11ð Þ
− 9.094logsig X12ð Þ+0.7162logsig X13ð Þ+3.5733logsig X14ð Þ+5.7949logsig X15ð Þ
− 9.2971logsig X16ð Þ+0.3107logsig X17ð Þ

ð31Þ

A7 = − 19.748+ 17.4566logsig X1ð Þ− 6.3092logsig X2ð Þ− 11.431logsig X3ð Þ
+2.612logsig X4ð Þ− 10.9304logsig X5ð Þ+3.7079logsig X6ð Þ− 6.078logsig X7ð Þ
− 11.0792logsig X8ð Þ− 0.0797logsig X9ð Þ+2.5652logsig X10ð Þ− 13.752logsig X11ð Þ
+21.45logsig X12ð Þ+5.628logsig X13ð Þ+4.9272logsig X14ð Þ+0.3388logsig X15ð Þ
− 10.0783logsig X16ð Þ+11.6775logsig X17ð Þ

ð32Þ

A8 = − 0.8092+ 0.8928logsig X1ð Þ+0.2205logsig X2ð Þ− 0.1265logsig X3ð Þ
− 0.0339logsig X4ð Þ+0.2392logsig X5ð Þ− 0.5454logsig X6ð Þ− 2.6061logsig X7ð Þ
+7.1711logsig X8ð Þ− 1.018logsig X9ð Þ+0.8755logsig X10ð Þ− 5.613logsig X11ð Þ
+0.8703logsig X12ð Þ+0.9022logsig X13ð Þ+0.3572logsig X14ð Þ+0.202logsig X15ð Þ
− 0.3748logsig X16ð Þ+0.2867logsig X17ð Þ

ð33Þ

298 W. Zhang and A. T. C. Goh

A9 = − 1.3878− 1.4052logsig X1ð Þ+0.6705logsig X2ð Þ− 0.5285logsig X3ð Þ
− 0.0814logsig X4ð Þ+0.668logsig X5ð Þ+1.052logsig X6ð Þ− 4.0946logsig X7ð Þ
+3.5151logsig X8ð Þ− 0.4901logsig X9ð Þ+1.104logsig X10ð Þ+0.3529logsig X11ð Þ
0.9261logsig X12ð Þ+1.442logsig X13ð Þ− 0.0338logsig X14ð Þ +0.2956logsig X15ð Þ
− 0.365logsig X16ð Þ− 1.0274logsig X17ð Þ

ð34Þ

B1 = − 1.9078 × tanh A1ð Þ ð35Þ

B2 = − 0.2020 × tanh A2ð Þ ð36Þ

B3 = 0.5773× tanh A3ð Þ ð37Þ

B4 = − 1.8211 × tanh A4ð Þ ð38Þ

B5 = 59.5399× tanh A5ð Þ ð39Þ

B6 = − 1.8844 × tanh A6ð Þ ð40Þ

B7 = − 17.4645 × tanh A7ð Þ ð41Þ

B8 = − 17.3515 × tanh A8ð Þ ð42Þ

B9 = − 2.1634 × tanh A9ð Þ ð43Þ

C1 = − 1.2957+ B1 + B2 + B3 +B4 +B5 + B6 + B7 + B8 +B9 +B10 +B11 ð44Þ

Y1 =C1 ð45Þ

Step 3: De-normalize the output to obtain MCS

MCS = 21.93+ 422.18− 21.93ð Þ× Y1 + 1ð Þ ̸2 ð46Þ

Note: logsig xð Þ=1 ̸ 1+ exp − xð Þð Þwhile tanh xð Þ= 2 ̸ð1+ expð− 2xÞÞ− 1

References

1. Attoh-Okine, N. O., Cooger, K., & Mensah, S. (2009). Multivariate adaptive regression
(MARS) and hinged hyperplanes (HHP) for doweled pavement performance modeling.
Journal of Construction and Building Materials, 23, 3020–3023.

2. Demuth, H., & Beale, M. (2003). Neural network toolbox for MATLAB-user guide version
4.1. The Math Works Inc.

3. Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19,
1–141.

Modelling of Pile Drivability Using Soft Computing Methods 299

4. Gandomi, A.H., Roke, D.A. (2013). Intelligent formulation of structural engineering systems.
In Seventh MIT Conference on Computational Fluid and Solid Mechanics- Focus:
Multiphysics & Multiscale, 12–14 June, Cambridge, USA.

5. Garson, G. D. (1991). Interpreting neural-network connection weights. AI Expert, 6(7), 47–
51.

6. Goh, A. T. C. (1994). Seismic liquefaction potential assessed by neural networks. Journal of
Geotechnical Engineering, ASCE, 120(9), 1467–1480.

7. Goh, A. T. C., & Zhang, W. G. (2014). An improvement to MLR model for predicting
liquefaction-induced lateral spread using multivariate adaptive regression splines. Engineer-
ing Geology, 170, 1–10.

8. Goh, A. T. C., Zhang, W. G., Zhang, Y. M., Xiao, Y., & Xiang, Y. Z. (2016). Determination
of EPB tunnel-related maximum surface settlement: A Multivariate adaptive regression
splines approach. Bulletin of Engineering Geology and the Environment. https://doi.org/10.
1007/s10064-016-0937-8.

9. Hastie, T., Tibshirani, R., Friedman, J. (2009). The elements of statistical learning: Data
mining, inference and prediction, 2nd ed., Springer.

10. Jekabsons, G. (2010). VariReg: A software tool for regression modelling using various
modeling methods. Riga Technical University. http://www.cs.rtu.lv/jekabsons/.

11. Jeon, J. K., Rahman, M. S. (2008). Fuzzy neural network models for geotechnical problems.
Research Project FHWA/ NC/ 2006–52. North Carolina State University, Raleigh, N.C.

12. Lashkari, A. (2012). Prediction of the shaft resistance of non-displacement piles in sand.
International Journal for Numerical and Analytical Methods in Geomechanics, 37, 904–931.

13. Mirzahosseini, M., Aghaeifar, A., Alavi, A., Gandomi, A., & Seyednour, R. (2011).
Permanent deformation analysis of asphalt mixtures using soft computing techniques. Expert
Systems with Applications, 38(5), 6081–6100.

14. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986. Learning internal representation by
error propagation. In Parallel distributed processing, Rumelhart DE, McClelland JL (eds).
MIT Press, (pp. 318–362) Cambridge, vol. 1.

15. Samui, P. (2011). Determination of ultimate capacity of driven piles in cohesionless soil: A
multivariate adaptive regression spline approach. International Journal for Numerical and
Analytical Methods in Geomechanics, 36, 1434–1439.

16. Samui, P., Das, S., & Kim, D. (2011). Uplift capacity of suction caisson in clay using
multivariate adaptive regression splines. Ocean Engineering, 38(17–18), 2123–2127.

17. Samui, P., & Karup, P. (2011). Multivariate adaptive regression splines and least square
support vector machine for prediction of undrained shear strength of clay. Applied
Metaheuristic Computing, 3(2), 33–42.

18. Smith, E. A. L. (1960). Pile driving analysis by the wave equation. Journal of the Engineering
Mechanics Division ASCE, 86, 35–61.

19. Zarnani, S., El-Emam, M., & Bathurst, R. J. (2011). Comparison of numerical and analytical
solutions for reinforced soil wall shaking table tests. Geomechanics & Engineering, 3(4),
291–321.

20. Zhang, W. G., & Goh, A. T. C. (2013). Multivariate adaptive regression splines for analysis of
geotechnical engineering systems. Computers and Geotechnics, 48, 82–95.

21. Zhang, W. G., & Goh, A. T. C. (2014). Multivariate adaptive regression splines model for
reliability assessment of serviceability limit state of twin caverns. Geomechanics and
Engineering, 7(4), 431–458.

22. Zhang, W. G., & Goh, A. T. C. (2017). Reliability assessment of ultimate limit state of twin
cavern. Geomechanics and Geoengineering, 12(1), 48–59.

23. Zhang, W. G., Zhang, Y. M., & Goh, A. T. C. (2017). Multivariate adaptive regression splines
for inverse analysis of soil and wall properties in braced excavation. Tunneling and
Underground Space Technology, 64, 24–33.

300 W. Zhang and A. T. C. Goh

http://dx.doi.org/10.1007/s10064-016-0937-8
http://dx.doi.org/10.1007/s10064-016-0937-8
http://www.cs.rtu.lv/jekabsons/

Author Biographies

Zhang Wengang is Professor of Geotechnical Research Institute
in the School of Civil Engineering, Chongqing University
(CQU), China. He received his Ph.D. degree from the School of
Civil and Environmental Engineering at Nanyang Technological
University (NTU) Singapore and his B.Eng and M.Eng degrees
from Hohai University (HHU) China. Before his career in CQU,
he worked as a postdoctoral Research Fellow in NTU for more
than two years. He received the Hulme Best Paper Award from
Tunneling and Underground Construction Society Singapore
(TUCSS) in 2013. Dr Zhang was invited in 2017 to act as the
Lead Guest Editor for the Journal Geoscience Frontiers in view
of his previously well-received paper in that journal. He joined
CQU in 2016 as the Hundredth Young Professor and later in the
same year was given the prestigious China Thousand Youth
Talents plan award. His current research interests include: Big

data geotechnical analysis, Braced excavation and deformation analysis and Rainfall induced slope
deformation and instability.

Goh Anthony Teck Chee is Associate Professor in the School of
Civil and Environmental Engineering (CEE) at Nanyang Tech-
nological University (NTU) Singapore. Prof Goh received both
his Ph.D. and B.Eng. in Monash University Australia. Dr Goh is
a registered Professional Engineer in Singapore. His teaching,
research and professional practice have covered many aspects of
geotechnical engineering including soft computing, finite ele-
ment analysis, earth retaining structures, pile foundations, and
slope stability. He is currently a Technical Committee member
on Urban Geoengineering for the ISSMGE. Since 1993, Dr Goh
has been at the forefront of research into the application of
artificial intelligence (AI) methodologies in geotechnical
engineering.

Modelling of Pile Drivability Using Soft Computing Methods 301

Three Different Adaptive Neuro Fuzzy
Computing Techniques for Forecasting
Long-Period Daily Streamflows

Ozgur Kisi, Jalal Shiri, Sepideh Karimi and Rana Muhammad Adnan

Abstract A modeling study was presented here using three different adaptive
neuro-fuzzy (ANFIS) approach algorithms comprising grid partitioning
(ANFIS-GP), subtractive clustering (ANFIS-SC) and fuzzy C-Means clustering
(ANFIS-FCM) for forecasting long period daily streamflow magnitudes.
Long-period data (between 1936 and 2016) from two hydrometric stations in USA
were used for training, evaluating and testing the approaches. Five different input
combinations were applied based on the autoregressive analysis of the recorded
streamflow data. A sensitivity analysis was also carried out to investigate the effect
of different model architectures on the obtained outcomes. When using ANFIS-GP,
the double-input model gives the best results for different model architectures, while
the triple-input models produce the most accurate results using both ANFIS-SC and
ANFIS-FCM models, which is due to increasing the model complexity for
ANFIS-GP by using more input parameters. Comparing the all three algorithms it
was observed that the ANFIS-FCM generally gave the most accurate results among
others.

O. Kisi (✉)
Faculty of Natural Sciences and Engineering, Ilia State University, Tbilisi, Georgia
e-mail: ozgur.kisi@iliauni.edu.ge

J. Shiri ⋅ S. Karimi
Faculty of Agriculture, Water Engineering Department, University of Tabriz, Tabriz, Iran
e-mail: j_shiri2005@yahoo.com

S. Karimi
e-mail: karimi_sepide@yahoo.com

R. M. Adnan
Faculty of Agricultural and Biosystems Engineering and Technology,
Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
e-mail: adnan.ikram@mnsuam.edu.pk

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_15

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_15&domain=pdf

1 Introduction

Accurate streamflow forecast is very important in water resources system planning,
design, operation and management as well as identifying hydrologic drought spells
[6], controlling flood events [28], optimizing hydrologic system [17], determining
environmental flow portions [33], modeling surface water-groundwater interactions
[10], and modeling suspended sediment load in rivers [18]. Traditionally, con-
ceptual simple models have been developed by numerous researchers to describe
the rainfall-runoff process for computing the total amount of surface water flows.
Although such models do not require more detailed information on the physical
parameters, they can produce acceptable results in some cases [34]. In the contrary,
physically-based models of river flow forecast are generally time consuming and
complex which need lots of input variables for simulating river flow magnitudes
[2]. So, using autoregressive moving average (ARMA) approaches for forecasting
the streamflow magnitudes using the previously recorded flow magnitudes have
been proposed as alternatives for physically-based models [23].

As a substitute, application of heuristic models e.g. adaptive neuro-fuzzy
inference system (ANFIS) in streamflow forecasting has become viable. For
instance, Wang et al. [35], Kagoda et al. [16] and Humphrey et al. [14] applied
artificial neural networks (ANNs) models for streamflow forecasting. Shiri and Kisi
[30] introduced a wavelet-neuro-fuzzy model of streamflow forecasting. Sharma
et al. [29] compared neuro-fuzzy model with a physically based watershed model
for streamflow forecasting and concluded that the neuro-fuzzy model was equally
comparable to physical model especially when rain gauge stations were not ade-
quate. Ballini et al. [3] applied ANFIS for seasonal river flow forecast. Nayak et al.
[25] ANFIS modeling approach to model the long-term daily river flow magnitudes
in India and reported that ANFIS gave promising results in this case. Vernieuwe
et al. [34] compared data-driven Takagi–Sugeno models for rainfall–discharge
dynamics modeling. Zounemat Kermani and Teshnelab [39] introduced ANFIS
approach as a strong method of daily streamflow prediction when compared to
ANN and traditional regression models. El-Shafie et al. [9] proposed ANFIS
technique to forecast the inflow for the Nile River at Aswan High Dam on monthly
basis. Wang et al. [36] examined different heuristic models for forecasting monthly
discharge time series and introduced the ANFIS models as the most accurate
technique in this field. Rath et al. [26] applied hierarchical neuro-fuzzy model for
real-time flood forecasting. He et al. [11] compared ANN, ANFIS and SVM for
forecasting riverflow in a semiarid mountain region and found that the performance
of the applied models in river flow forecasting was satisfactory. Yarar [37] intro-
duced a hybrid wavelet-ANFIS model for forecasting monthly streamflow time
series. Yilmaz and Muttil [38] utilized different machine learning techniques
including ANFIS for runoff estimation. Talei et al. [32] applied Takagi–Sugeno
neuro-fuzzy model with online learning for runoff forecasting. Anusree and
Varghese [1] compared ANFIS, ANN and MNLR models for daily streamflow
forecasting and found the ANFIS as the superior model.

304 O. Kisi et al.

The main aim of this study is to forecast long period daily streamflows using
three different adaptive neuro fuzzy techniques, i.e. ANFIS with Grid Partition
(ANFIS-GP), ANFIS with subtractive clustering (ANFIS-SC) and ANFIS with
fuzzy C-Means clustering (ANFIS-FCM). Two different ANFIS-GP methods were
considered in the present study: ANFIS-GP with constant output and ANFIS-GP
with linear output. The models were also compared according to their complexity
and training durations.

2 Methods

2.1 Adaptive Neuro-fuzzy Inference System (ANFIS)

ANFIS is a merger of an adaptive neural network (ANN) and a fuzzy inference
system (FIS), where the parameters of FIS are identified by the ANN learning
algorithms. ANFIS is able to estimate real continuous functions on a compact set of
parameters with any degree of accuracy [15]. There are two approaches for FIS,
namely, Mamdani and Assilian [24] and Takagi and Sugeno [31]. The differences
between the two approaches corresponds to the consequent part where Mamdani’s
method uses fuzzy membership functions, while linear or constant functions are
utilized in Sugeno’s method.

2.1.1 ANFIS Architecture

Let’s assume a FIS having two input variables of x and y and one output variable
f. The first-order Sugeno fuzzy model, a typical rule set with two fuzzy If-Then
rules would read:

Rule 1: If x is A1and y is B1, then f1 = p1x+ q1y+ r1 ð1Þ

Rule 2: If x is A2 and y is B2, then f2 = p2x+ q2y+ r2 ð2Þ

where A1, A2 and B1, B2 are the membership functions (MFs) of the inputs x and y,
respectively and p1, q1, r1 and p2, q2, r2 are the parameters of the output function.
Here, the output f is the weighted mean of the single rule outputs.

The output of the ith node in layer l is shown as Ol,i. Every node i in Layer 1 is
an adaptive node with node Ol, i = φAi xð Þ , for i = 1, 2, or Ol, i = φBi− 2 yð Þ, for
i = 3, 4, where x (or y) is the input to the ith node and Ai (or Bi-2) is a linguistic label
(such as ‘low’ or ‘high’) associated with this node. The MFs for A and B are
generally described by generalized bell functions as:

Three Different Adaptive Neuro Fuzzy Computing … 305

φAi xð Þ= 1

1+ x− cið Þ ̸ai½ �2bi ð3Þ

where {ai, bi, ci} is the parameter set. Parameters in this layer are called as premise
parameters. The outputs of this layer are the membership values of the premise
part. Layer 2 includes the nodes labeled Π which multiply incoming signals and
sending the product out. For instance,

O2, i =wi =φAiðxÞφBiðyÞ, i=1, 2. ð4Þ

Each node output shows the firing strength of a rule. The nodes labeled N
computes the ratio of the ith rule’s firing strength to the sum of all rules’ firing
strengths in Layer 3,

O3, i =wi =
wi

w1 +w2
, i=1, 2. ð5Þ

The outputs of this layer are referred to as normalized firing strengths. The nodes
of the Layer 4 are adaptive with node functions

O4, i =wifi =wi pix+ qiy+ rið Þ ð6Þ

where wi is the output of Layer 3, and pi, qi, rif g are the parameter set. Parameters
of this layer are called as consequent parameters. The single fixed node of the Layer
5 labeled Σ computes the final output as the summation of all incoming signals

O5, i = ∑
i=1

wifi =
∑i wifi
∑i wi

ð7Þ

So, an adaptive network which is functionally equivalent to a Sugeno first-order
fuzzy inference system is built.

2.1.2 Grid Partition Method

Grid partition (GP) is one of the commonly used methods for producing initial FIS
rules for ANFIS building, where the space including input- output parameters is
divided into certain partitions called as grids. Each grid expresses a fuzzy surface,
and interference areas between grids make a continuous output surface [13, 22].
There is no fixed rule for defining the number of MFs for each variable, so they are
identified through a trial and error process. The learning process is begun from zero
output and during the learning process, functions and fuzzy rules are trained
gradually [7]. Although they are different membership function types which can be
applied in modeling various procedures, the literature review shows that triangular
MFs are commonly used and the most optimal MF types for practical applications

306 O. Kisi et al.

[27]. Nevertheless, other studies (e.g. [34]) have confirmed that the type of MFs
cannot affect the results of simulation majorly, though other studies have demon-
strated the major effect of MFs in modeling accuracy (e.g. [19]).

2.1.3 Subtractive Clustering Method

The subtractive clustering method assumes that each data point is a potential cluster
center and calculates a measure of the likelihood that each data point would define
the cluster center on the basis of the density of surrounding data points. Considering
a set of n data points x1, x2, . . . , xif g in m-dimensional space, it is assumed that all
data points within a cubic space have been normalized. In subtractive clustering,
each of the data points is considered as a potential cluster center. As a result, the
density index Di corresponding to the data xi can be expressed as follows:

Di = ∑
n

j=1
exp −

xi − xj
�� ��
ðra ̸2Þ2

 !
ð8Þ

Here, ra is a positive quantity called cluster radius. If many data points are
adjacent to a data point, hence, that data point has the maximum density. After
measuring the density of each data point, data point with the highest density is
selected as the first data center clustering [12]. If the effect limited area of the center
of the first cluster center is removed, following formula is used to measure the other
points density.

Di =Di −Dc1 ∑
n

j=1
exp −

xi − xclk k2
rb ̸2ð Þ2

 !
ð9Þ

Here, xc1 and Dc1 are the selected points and density potential, respectively. rb is
a positive constant. To avoid approaching the cluster centers, the rb constant value
is normally larger than ra (rb is considered 1.5ra). After measuring the density for
each data point, the next cluster center xc2 is selected and all the measured density
for data points will be recalculated. This process continues until a sufficient number
of cluster center produce [2, 20].

2.1.4 Fuzzy C-Means Method

In fuzzy clustering, each pattern might belong to several clusters or segment. One of
the most functional clustering algorithms is K-mean algorithm. This unsupervised
algorithm in large datasets, exposures with some limitations in the process, may not
work properly. To deal with the disadvantages, different clustering algorithms have
been proposed. Among them, fuzzy c-means as a proper alternative method is used

Three Different Adaptive Neuro Fuzzy Computing … 307

[21]. Fuzzy C-means (FCM) was developed by Dunn [8] and Bezdek [4] improved
it.

The FCM method blocks a set of N vector xi, i = 1,…, n, into c fuzzy clusters,
where each pattern is corresponded to a cluster with a degree specified by a
membership grade uij between 0 and 1. The final object by the FCM algorithm is to
find c cluster centers so that the cost function of the dissimilarity measure can be
minimized. The aim is minimizing the objective function that is defined as below:

MinJFCM = ∑
C

c=1
∑
N

i=1
wp
ic wik − vck2 s.t. ∑

C

c=1
wic =1, i=1, 2, . . . ,N ð10Þ

which p (1< p) is known as fuzzifier portion and N, is the number of data points; C,
the number of clusters; wic, the number of belongings of the ith data point to the cth
cluster; v, is the clusters center and x is the number of the input. for calculating the
amount of wic the following formula is used [5]:

wic =
1

∑C
L=1 d2ic ̸d2ij
� �1 ̸ðp− 1Þ for i=1, 2, . . . ,N and c=1, 2, . . . ,C ð11Þ

For beginning of the center vectors, centers are calculated by:

vc =
∑N

j=1 w
p
jcxj

∑N
j=1 w

p
jc

ð12Þ

FCM procession continues until a convergence condition is obtained.

3 Case Study

Daily streamflow data from two stations, Murder Creek near Evergreen (Hydrologic
Unit Code 03140304, Latitude 31°25′06″, Longitude 86°59′12″, Drainage area
176.00 square miles, Gage datum 178.29 feet a.s.l.) and Choctawhatchee River
Near Newton (Hydrologic Unit Code 03140201, Latitude 31°20′34″, Longitude
85°36′38″, Drainage area 686.00 square miles, Gage datum 138.56 feet a.s.l.),
Alabama, USA were used in this research. The location of the study area and
stations are illustrated in Fig. 1. The reason of selection of these stations is due to
having long data period. Data covering the period of 1936–2016 for the both
stations were divided into three parts, training (01/01/1938–12/31/1976, 14245
values), validation (01/01/1977–12/31/1996, 7305 values) and testing (01/01/1997–
12/31/2016, 7305).

308 O. Kisi et al.

The summary of statistical properties is reported in Table 1 for the used
streamflow data. From the table, it is clear that data have highly skewed distribu-
tions, skewness coefficient ranging between 8.19 and 20.7. Data of the Chocta-
whatchee River has more autocorrelations than those of the Murder Creek. This
may be due to the high discharge volume of the Choctawhatchee.

USA

Alabama

Murder Creek near
Evergreen AL Choctawhatchee River

Near Newton, AL

Fig. 1 The location of the studied area

Three Different Adaptive Neuro Fuzzy Computing … 309

4 Application and Results

In this study, the ability of cluster based neuro fuzzy methods, ANFIS-SC and
ANFIS-FCM, was investigated in forecasting daily streamflows which have long
data period (1936–2016). The results of these methods were compared with the
ANFIS-GP which uses all possible rule combinations and generally has higher
complexity and computational time when compared to cluster based neuro fuzzy
methods. For the ANFIS-GP, two different outputs, constant and linear, were
applied to detect the difference with each other. The models were compared
according to the four different statistics, root mean square error (RMSE), mean
absolute relative error (MARE), determination coefficient (R2) and Nash-Sutcliffe
efficiency (NE) which can be expressed as

RMSE=

ffi
1
n
∑
n

i=1
Qm, i −Qo, ið Þ2

s
ð13Þ

MARE=
1
n
∑
n

i=1

Qm, i −Qo, ijj
Qo, i

100 ð14Þ

NSE=1−
∑n

i=1 Qm, i −Qo, ið Þ
∑n

i=1 Qo, i −Qo

� � ð15Þ

where Qo,i and Qm,i are the observed and estimated streamflows, N is the number of
time steps,Qo is the mean of the observed streamflows. First, auto and partial auto
correlation analysis were employed and they suggested three previous lags. In the
applications, however, five input scenarios comprising five previous lags were used
from input(i) to input(iv) comprising Qt-1 to Qt-1, Qt-2, Qt-3, Qt-4 and Qt-5.

The results of the ANFIS-GP models with constant and linear outputs are pre-
sented for the Choctawhatchee River in Tables 2 and 3. For the ANFIS-GP models,
different number of triangular membership functions were tried and the best one
that gave the minimum RMSE in the validation period was selected. It is clear from

Table 1 The statistical properties of the streamflow data sets

Station Data set Min Max Mean Sd Csx r1 r2 r3
Choctawhatchee
River

Training 1.73 584 27.9 34.4 4.52 0.887 0.702 0.564
Validation 1.23 205 25.8 47.9 20.7 0.789 0.505 0.339
Testing 0.99 975 22.7 36.7 8.19 0.867 0.650 0.498

Murder Creek Training 1.11 346 7.93 10.1 10.1 0.668 0.427 0.341
Validation 1.62 264 8.49 9.68 8.94 0.719 0.399 0.287
Testing 0.94 241 6.89 9.19 8.45 0.743 0.484 0.357

Min, Max, Mean, Sd, Csx, r1, r2 and r3 show the mean, minimum, maximum, standard deviation,
skewness coefficients, lag-1, lag-2 and lag-3 autocorrelations, respectively

310 O. Kisi et al.

the tables that the ANFIS-GP with constant output has the best accuracy in test
period for the 3rd input combination while the 1st input provides the best results for
the ANFIS-GP with linear output. First model comprising constant output seems to
be superior to the second model. This can also be seen from the mean of the all
input combinations. From the mean statistics, it is clear that the training accuracy of
ANFIS-GP models with linear output is better compared to the other one. The 2nd
model with linear output can approximate better than the 1st model with constant
output because it has higher number of parameters and more flexible than the latter
one. Assume that we used 2 Gaussian membership functions (each has 2 param-
eters) and 5 inputs for each model. In this case, the premise parameters of the both

Table 2 Results of ANFIS-GP models with constant output—Choctawhatchee River

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 51.78 46.67 16.99 10.99 11.52 25.79
MARE (%) 48.52 16.36 7.700 6.180 5.950 15.13
R2 49.36 15.99 9.200 6.950 7.200 16.11
NE 45.06 9.160 7.180 4.930 5.610 12.93
Duration (s) 48.68 22.05 10.27 7.260 7.570 17.49

Validation RMSE (m3/s) 31.37 29.44 29.04 29.21 30.18 29.85
MARE (%) 29.66 16.54 16.96 17.29 18.60 19.81
R2 0.594 0.657 0.664 0.655 0.618 0.638
NE 0.570 0.622 0.632 0.628 0.602 0.611

Testing RMSE (m3/s) 18.08 16.15 15.70 15.96 16.33 16.44
MARE (%) 42.28 21.08 21.91 22.48 24.38 26.42
R2 0.759 0.811 0.821 0.814 0.804 0.802
NE 0.758 0.807 0.817 0.811 0.802 0.799

Table 3 Results of ANFIS-GP models with linear output—Choctawhatchee River

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 15.81 13.53 13.31 13.14 12.88 13.73

MARE (%) 24.60 15.46 16.44 15.60 15.54 17.53

R2 0.789 0.845 0.850 0.854 0.860 0.839

NE 0.789 0.845 0.850 0.854 0.860 0.839

Duration (s) 3.680 8.710 26.42 116.6 619.0 154.9

Validation RMSE (m3/s) 31.37 10,687 22,450 1711 1648 7306

MARE (%) 29.66 76.32 233.5 23.33 20.14 76.59

R2 0.594 0.016 0.054 0.241 0.257 0.233

NE 0.570 −49,861 −220,032 −1278 −1185 −54,471
Testing RMSE (m3/s) 18.08 6744 13,108 2042 1930 4768

MARE (%) 42.28 64.13 203.4 28.39 27.48 73.14

R2 0.759 0.010 0.000 0.041 0.034 0.169

NE 0.758 −33,719 −127,390 −3093 −2762 −33,392

Three Different Adaptive Neuro Fuzzy Computing … 311

models will be 2 * 25 = 64. The 1st model will have 32 rules, each has 1 constant
output parameter and totally it will have 32 output parameters while the 2nd model
will have 32 rules, each has 6 output parameters and totally 32 * 6 = 192 output
parameters. For this reason, the training duration of the ANFIS-GP models with
linear output is also much higher than those of the ANFIS-GP models with constant
output especially when the number of inputs is higher than 2.

Tables 4 and 5 report the results of ANFIS-FCM and ANFIS-SC models with
respect to RMSE, MARE, R2 and NE for the Choctawhatchee River. For the
ANFIS-FCM models, different number of cluster numbers (vary between 1 and 8)

Table 4 Results of ANFIS-FCM models—Choctawhatchee River

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 15.58 13.77 13.63 13.70 13.71 14.08
MARE (%) 16.91 15.17 15.66 15.63 15.84 15.84
R2 0.795 0.839 0.843 0.841 0.841 0.832
NE 0.795 0.839 0.843 0.841 0.841 0.832
Duration (s) 13.20 20.80 28.23 20.98 25.43 21.73

Validation RMSE (m3/s) 28.92 24.32 24.75 24.60 24.75 25.47
MARE (%) 17.05 15.09 15.79 15.83 16.18 15.99
R2 0.635 0.759 0.756 0.756 0.750 0.731
NE 0.635 0.742 0.733 0.736 0.733 0.716

Testing RMSE (m3/s) 18.00 15.99 15.69 15.70 15.71 16.22
MARE (%) 19.39 16.89 18.54 17.99 18.51 18.26
R2 0.760 0.811 0.817 0.817 0.817 0.804
NE 0.760 0.811 0.817 0.817 0.817 0.804

Table 5 Results of ANFIS-SC models—Choctawhatchee River

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 15.64 14.04 13.76 13.77 13.78 14.20
MARE (%) 19.55 17.74 16.83 16.90 17.04 17.61
R2 0.793 0.833 0.840 0.839 0.839 0.829
NE 0.793 0.833 0.840 0.839 0.839 0.829
Duration (s) 12.89 16.68 20.64 30.70 36.03 23.39

Validation RMSE (m3/s) 34.17 33.35 33.44 33.66 33.94 33.71
MARE (%) 22.71 20.74 18.68 18.54 18.74 19.88
R2 0.503 0.534 0.528 0.518 0.506 0.518
NE 0.490 0.515 0.512 0.505 0.497 0.504

Testing RMSE (m3/s) 18.71 17.17 16.40 16.62 16.92 17.16
MARE (%) 29.84 27.41 23.58 23.08 23.44 25.47
R2 0.741 0.783 0.802 0.796 0.788 0.782
NE 0.740 0.781 0.801 0.795 0.788 0.781

312 O. Kisi et al.

which decides the number of rules were tried and the best one that gave the
minimum RMSE in the validation period was selected. For the ANFIS-SC models,
different number of radii values (vary between 0.1 and 1) which decides the number
of membership functions and rules were tried. It is apparent from the tables, the 3rd
input combination has the best accuracy for the both methods and after 3 lags input,
the accuracy of the models does not considerably increase. Comparison with the
ANFIS-GP models indicates that the ANFIS-FCM model slightly performs superior
to the ANFIS-GP with constant output and ANFIS-SC models. The training
duration of the ANFIS-GP with constant output is less than those of the cluster

Table 6 Results of ANFIS-GP models with constant output—Murder Creek

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 7.520 7.370 7.350 15.63 13.60 10.30
MARE (%) 35.33 28.05 25.91 20.75 16.11 25.23
R2 0.450 0.471 0.474 0.793 0.843 0.606
NE 0.450 0.471 0.474 0.793 0.843 0.606
Duration (s) 3.720 6.950 12.71 26.61 64.08 22.81

Validation RMSE (m3/s) 6.730 6.540 6.450 32.71 30.42 16.57
MARE (%) 29.03 25.24 24.51 24.98 18.37 24.43
R2 0.519 0.548 0.561 0.546 0.623 0.559
NE 0.516 0.543 0.556 0.533 0.596 0.549

Testing RMSE (m3/s) 6.180 5.990 5.980 18.11 18.17 10.89
MARE (%) 48.31 35.83 31.66 28.80 20.91 33.10
R2 0.554 0.583 0.582 0.757 0.757 0.647
NE 0.548 0.576 0.577 0.757 0.755 0.642

Table 7 Results of ANFIS-GP models with linear output—Murder Creek

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 7.140 6.880 6.720 15.31 13.15 9.840

MARE (%) 19.15 18.55 19.19 16.97 16.09 17.99

R2 0.503 0.539 0.560 0.802 0.854 0.651

NE 0.503 0.539 0.560 0.802 0.854 0.651

Duration (s) 4.100 8.760 26.62 116.2 941.1 219.4

Validation RMSE (m3/s) 6.640 6.280 13.93 7442 7013 2896

MARE (%) 20.26 18.89 18.82 29.37 48.98 27.26

R2 0.529 0.578 0.133 0.214 0.018 0.295

NE 0.529 0.578 −1.075 −24,179 −21,472 −9130
Testing RMSE (m3/s) 5.830 5.480 7.320 4193.5 3420 4768

MARE (%) 19.83 19.83 22.05 35.92 38.87 73.14

R2 0.598 0.646 0.471 0.044 0.027 0.169

NE 0.598 0.644 0.365 −13,036 −8674 −33,392

Three Different Adaptive Neuro Fuzzy Computing … 313

based ANFIS-FCM and ANFIS-SC models. The reason of this might be fact that
the ANFIS-FCM and ANFIS-SC have linear output comprising more consequent
parameters. However, the main advantage of the cluster based neuro fuzzy methods
is that their rules are automatically determined based on the selected cluster number
or radii value. For example, in case of 8 clusters, we will have only 8 rules for the
whole fuzzy model while the ANFIS-GP has 32 rules when the input number is 5.

The statistics of the ANFIS-GP models with constant and linear outputs are
compared in Tables 6 and 7 for the Murder Creek. As seen from the tables, the both
methods have the best accuracy in the test period for the 2nd input combination.
After 2nd input, the accuracy of ANFI-GP model comprising linear output is

Table 9 Results of ANFIS-SC models—Murder Creek

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 92.24 126.8 8.690 15.59 14.01 51.46
MARE (%) 33.02 40.23 8.460 18.70 17.41 23.56
R2 0.030 0.453 0.327 0.794 0.834 0.488
NE 0.030 0.453 0.327 0.794 0.834 0.488
Duration (s) 0.266 0.543 0.790 30.71 36.03 13.67

Validation RMSE (m3/s) 122.5 272.2 10.96 33.98 33.37 94.60
MARE (%) 40.22 73.53 11.81 21.83 20.41 33.56
R2 0.000 0.034 0.157 0.510 0.531 0.247
NE −0.047 −1.347 0.093 0.496 0.514 −0.058

Testing RMSE (m3/s) 114.2 165.1 9.620 18.36 16.67 64.80
MARE (%) 41.93 57.57 9.910 26.28 25.62 32.26
R2 0.002 0.178 0.244 0.751 0.796 0.394
NE −0.067 0.061 0.215 0.750 0.794 0.351

Table 8 Results of ANFIS-FCM models—Murder Creek

Data set Statistics Input (i) Input (ii) Input (iii) Input (iv) Input (v) Mean

Training RMSE (m3/s) 7.100 6.870 7.000 15.58 14.10 10.13
MARE (%) 18.73 16.94 18.15 22.58 25.42 20.36
R2 0.509 0.540 0.523 0.795 0.832 0.640
NE 0.509 0.540 0.523 0.795 0.832 0.640
Duration (s) 13.31 19.90 15.26 13.90 16.03 15.68

Validation RMSE (m3/s) 6.670 6.290 6.250 27.21 25.41 14.37
MARE (%) 19.78 17.71 18.84 27.60 32.46 23.28
R2 0.525 0.577 0.583 0.683 0.749 0.623
NE 0.525 0.577 0.582 0.677 0.718 0.616

Testing RMSE (m3/s) 5.860 5.570 5.620 18.09 16.18 10.26
MARE (%) 19.63 18.12 19.59 35.66 43.00 27.20
R2 0.594 0.634 0.628 0.757 0.806 0.684
NE 0.594 0.634 0.627 0.757 0.806 0.683

314 O. Kisi et al.

worsening. It can be said that increasing input number increases the complexity of
the model and this results in worse streamflow forecasts. Similar to the Chocta-
whatchee River, the training durations of the ANFIS-GP with linear output is higher

0

200

400

600

800

1000

1200

01
-0

1-
19

97

01
-0

1-
19

98

01
-0

1-
19

99

01
-0

1-
20

00

01
-0

1-
20

01

01
-0

1-
20

02

01
-0

1-
20

03

01
-0

1-
20

04

01
-0

1-
20

05

01
-0

1-
20

06

01
-0

1-
20

07

01
-0

1-
20

08

01
-0

1-
20

09

01
-0

1-
20

10

01
-0

1-
20

11

01
-0

1-
20

12

01
-0

1-
20

13

01
-0

1-
20

14

01
-0

1-
20

15

01
-0

1-
20

16

01
-0

1-
19

97

01
-0

1-
19

98

01
-0

1-
19

99

01
-0

1-
20

00

01
-0

1-
20

01

01
-0

1-
20

02

01
-0

1-
20

03

01
-0

1-
20

04

01
-0

1-
20

05

01
-0

1-
20

06

01
-0

1-
20

07

01
-0

1-
20

08

01
-0

1-
20

09

01
-0

1-
20

10

01
-0

1-
20

11

01
-0

1-
20

12

01
-0

1-
20

13

01
-0

1-
20

14

01
-0

1-
20

15

01
-0

1-
20

16

St
re

am
flo

w
 (m

3/
s)

Time (days)

original streamflow

ANFIS-GP forecasted streamflow

0

200

400

600

800

1000

1200

St
re

am
flo

w
 (m

3/
s)

Time (days)

original streamflow

ANFIS-FCM forecasted streamflow

0
200
400
600
800

1000
1200

01
-0

1-
19

97

01
-0

1-
19

98

01
-0

1-
19

99

01
-0

1-
20

00

01
-0

1-
20

01

01
-0

1-
20

02

01
-0

1-
20

03

01
-0

1-
20

04

01
-0

1-
20

05

01
-0

1-
20

06

01
-0

1-
20

07

01
-0

1-
20

08

01
-0

1-
20

09

01
-0

1-
20

10

01
-0

1-
20

11

01
-0

1-
20

12

01
-0

1-
20

13

01
-0

1-
20

14

01
-0

1-
20

15

01
-0

1-
20

16

St
re

am
flo

w
 (m

3/
s)

Time (days)

original streamflow
ANFIS-SC forecasted streamflow

Fig. 2 The time variation of the observed and forecasted streamflows by using the optimal
ANFIS-GP-constant, ANFIS-FCM and ANFIS-SC models—Choctawhatchee River

Three Different Adaptive Neuro Fuzzy Computing … 315

than those of the models with constant output especially for the inputs higher than
2. Tables 8 and 9 present the training, validation and testing results of ANFIS-FCM
and ANFIS-SC models for the Murder Creek. ANFIS-FCM model has the best
accuracy in 2nd input combination while the 3rd input combination provides the
best accuracy for ANFIS-SC model. Comparison of the Tables 6, 7 and 8 clearly
shows that the ANFIS-GP model with linear output slightly performs superior to the
ANFIS-GP with constant output and ANFIS-FCM models. ANFIS-SC model has
the worst accuracy even though it has the least training duration. Comparison of
two stations obviously indicates that the accuracy of the applied models is better for
the Choctawhatchee River compared to Murder Creek. The main reason of this
might be the fact that the data of first station has lower autocorrelations than the
latter one.

The time variation of observed and forecasted streamflows by using the optimal
ANFIS-GP-constant, ANFIS-FCM and ANFIS-SC models can be seen from Fig. 2
for the Choctawhatchee River. From the figures, it is clear that the ANFIS-FCM
model catches the high streamflow values better than the other models. The

y = 0.7657x + 5.2965
R² = 0.821

0

300

600

900

1200

0 300 600 900 1200

A
N

FI
S

-G
P,

 m
3/

s

Observed, m3/s

y = 0.8187x + 4.0085
R² = 0.8175

0

300

600

900

1200

0 300 600 900 1200

A
N

FI
S

-F
C

M
, m

3/
s

Observed, m3/s

y = 0.7656x + 5.3596
R² = 0.8023

0

300

600

900

1200

0 300 600 900 1200

A
N

FI
S

-
SC

, m
3/

s

Observed, m3/s

Fig. 3 The scatterplots of the observed and forecasted streamflows by using the optimal
ANFIS-GP-constant, ANFIS-FCM and ANFIS-SC models—Choctawhatchee River

316 O. Kisi et al.

0

50

100

150

200

250

300

01
-0

1-
19

97

01
-0

1-
19

98

01
-0

1-
19

99

01
-0

1-
20

00

01
-0

1-
20

01

01
-0

1-
20

02

01
-0

1-
20

03

01
-0

1-
20

04

01
-0

1-
20

05

01
-0

1-
20

06

01
-0

1-
20

07

01
-0

1-
20

08

01
-0

1-
20

09

01
-0

1-
20

10

01
-0

1-
20

11

01
-0

1-
20

12

01
-0

1-
20

13

01
-0

1-
20

14

01
-0

1-
20

15

01
-0

1-
20

16

St
re

am
flo

w
 (m

3/
s)

Time (days)

original streamflow
ANFIS-GP forecasted streamflow

0

50

100

150

200

250

300

01
-0

1-
19

97

01
-0

1-
19

98

01
-0

1-
19

99

01
-0

1-
20

00

01
-0

1-
20

01

01
-0

1-
20

02

01
-0

1-
20

03

01
-0

1-
20

04

01
-0

1-
20

05

01
-0

1-
20

06

01
-0

1-
20

07

01
-0

1-
20

08

01
-0

1-
20

09

01
-0

1-
20

10

01
-0

1-
20

11

01
-0

1-
20

12

01
-0

1-
20

13

01
-0

1-
20

14

01
-0

1-
20

15

01
-0

1-
20

16

St
re

am
flo

w
 (m

3/
s)

Time (days)

original streamflow
ANFIS-FCM forecasted streamflow

0
100
200
300
400
500
600
700
800

01
-0

1-
19

97

01
-0

1-
19

98

01
-0

1-
19

99

01
-0

1-
20

00

01
-0

1-
20

01

01
-0

1-
20

02

01
-0

1-
20

03

01
-0

1-
20

04

01
-0

1-
20

05

01
-0

1-
20

06

01
-0

1-
20

07

01
-0

1-
20

08

01
-0

1-
20

09

01
-0

1-
20

10

01
-0

1-
20

11

01
-0

1-
20

12

01
-0

1-
20

13

01
-0

1-
20

14

01
-0

1-
20

15

01
-0

1-
20

16

St
re

am
flo

w
 (m

3/
s)

Time (days)

original streamflow
ANFIS-SC forecasted streamflow

Fig. 4 The time variation of the observed and forecasted streamflows by using the optimal
ANFIS-GP-linear, ANFIS-FCM and ANFIS-SC models—Murder Creek

Three Different Adaptive Neuro Fuzzy Computing … 317

ANFIS-SC also seems to be better than ANFIS-GP model. Figure 3 makes the
scatterplot comparison of the applied models. ANFIS-GP model has slightly higher
R2 than the ANFIS-FCM. However, the a and b coefficients of the fit line equation
(assume that the fit line is y = ax + b) are respectively closer to the 1 and 0 (exact
line is y = x) for the ANFIS-FCM compared to the ANFIS-GP model. Figure 4
illustrates the time variation graphs of the observed and forecasted streamflows by
using the optimal ANFIS-GP-linear, ANFIS-FCM and ANFIS-SC models for the
Murder Creek. The ANFIS-GP-linear and ANFIS-FCM models considerably
underestimate peak discharges while the ANFIS-SC overestimates. The scatter
diagrams of the three methods are given in Fig. 5. As seen from the figure, the
ANFIS-GP model has slightly higher R2 than the ANFIS-FCM while the slope
coefficient of the latter model closer to the 1 compared to the first model. The
ANFIS-SC seems to be insufficient in forecasting daily streamflows of Murder
Creek.

y = 0.6148x + 2.697
R² = 0.646

0

50

100

150

200

250

0 50 100 150 200 250

A
N

FI
S-

G
P,

 m
3/

s

Observed, m3/s

y = 0.6257x + 2.6739
R² = 0.6343

0

50

100

150

200

250

0 50 100 150 200 250

A
N

FI
S-

FC
M

, m
3/

s

Observed, m3/s

y = 1.9745x + 11.748
R² = 0.2442

0

50

100

150

200

250

0 50 100 150 200 250

A
N

FI
S-

SC
, m

3/
s

Observed, m3/s

Fig. 5 The scatterplots of the observed and forecasted streamflows by using the optimal
ANFIS-GP-linear, ANFIS-FCM and ANFIS-SC models—Murder Creek

318 O. Kisi et al.

5 Conclusion

Long period streamflow data from two hydrometric stations in USA were used in
the present research to forecast streamflow magnitudes in daily forecast horizon.
Adaptive neuro-fuzzy inference system (ANFIS) with three different running
algorithms, namely, ANFIS grid partitioning (ANFIS-GP), ANFIS sub clustering
(ANFIS-SC) and ANFIS fuzzy C means (ANFIS-FCM) were then trained, vali-
dated and tested using these data. Five input combinations were tried by also
considering the auto- and partial-auto-correlation functions of the streamflow
records during the study period to see the effect of 5 time lags on the predictions.
Using different models and input combinations it was revealed that the best input
combination (which can be used to feed the predictive models) is somewhat
model-specific, where introducing more input parameters (beyond the double-input
combination) has deteriorated the ANFIS-GP accuracy. This might be linked to the
model complexity by using more inputs and might dictate a risk of redundancy
when using inputs roughly based on linear measures (e.g. auto correlation). Nev-
ertheless, the models architectures had monotonous influence on the predictive
models performance that showed the necessity of performing sensitivity analysis on
the models architectures. This might be crucially important when using short period
data, where the time domain is limited and general trend of data which can affect the
predictions are not involved in model training. It was seen that the ANFIS-GP
model with linear output produce complex model structure especially in case of
high number of inputs compared to ANFIS-GP with constant output.

In this study, high number of membership functions were not tried for that
ANFIS-GP model because its parameters exponentially increase when the number
of MFs was increased. In future studies, the effect of MFs numbers may be
investigated by using high speed computers.

References

1. Anusree, K., & Varghese, K. O. (2016). Streamflow prediction of Karuvannur River Basin
using ANFIS, ANN and MNLR models. Procedia Technology, 24, 101–108.

2. Aqil, M., Kita, I., Yano, A., et al. (2007). A comparative study of artificial neural networks
and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff. Journal of
Hydrology, 337, 22–34.

3. Ballini, R., Soares, S., & Andrade, M. G. (1999). Seasonal streamflow forecasting via a neural
fuzzy system. In: 14th Triennial World Congress, Beijing, P.R. China (pp. 5249–5254).

4. Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. New York:
Plenum.

5. Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy C-means clustering algorithm.
Computers & Geosciences, 10(2–3), 191–203.

6. Chemeda Edossa, D., & Singh Babel, M. (2011). Application of ANN-based streamflow
forecasting model for agricultural water management in the Awash River Basin, Ethiopia.
Water Resources Management, 25, 1759–1773.

Three Different Adaptive Neuro Fuzzy Computing … 319

7. Cobaner, M. (2011). Evapotranspiration estimation by two different neuro-fuzzy inference
systems. Journal of Hydrology, 398(3–4), 299–302.

8. Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57.

9. El-Shafie, A., Taha, M. R., & Noureldin, A. (2007). A neuro-fuzzy model for inflow
forecasting of the Nile River at Aswan high dam. Water Resources Management, 21, 533–
556.

10. Gunduz, O., & Aral, M. M. (2005). River networks and groundwater flow: A simultaneous
solution of a coupled system. Journal of Hydrology, 301(1–4), 216–234.

11. He, Z., wen, X., Liu, H., & Du, J. (2013). A comparative study of artificial neural network,
adaptive neuro fuzzy inference system and support vector machine for forecasting river flow
in the semiarid mountain region. Journal of Hydrology, 509, 379–386.

12. Hiremath, S. M., Patra, S. K., & Mishra, A. K. (2012). ANFIS with subtractive
clustering-based extended data rate prediction for cognitive radio. In Proceeding of the 5th
International Conference on Computers and Devices for Communication (CODEC). https://
doi.org/10.1109/codec.2012.6509239.

13. Hu, Y. C. (2007). Sugeno fuzzy integral for finding fuzzy if–Then classification rules. Applied
Mathematics and Computation, 185, 72–83.

14. Humphrey, G. B., Gibbs, M. S., Dandy, G. C., & Maier, H. R. (2016). A hybrid approach to
monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian
artificial neural network. Journal of Hydrology, 540, 623–640.

15. Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neurofuzzy and soft computing: A
computational approach to learning and machine intelligence. New Jersey: Prentice-Hall.

16. Kagoda, P. A., Ndiritu, J., Ntuli, C., & Mwaka, B. (2010). Application of radial basis function
neural networks to short-term streamflow forecasting. Physics and Chemistry of the Earth, 35
(13–14), 571–581.

17. Kisi, O. (2008). River flow forecasting and estimation using different artificial neural network
techniques. Hydrology Research, 39(1), 27–40.

18. Kisi, O., Hossein zadeh Dalir, A., Cimen, M., & Shiri, J. (2012). Suspended sediment
modeling using genetic programming and soft computing techniques. Journal of Hydrology,
450–451, 48–58.

19. Kisi, O., Shiri, J., & Tombul, M. (2013). Modeling rainfall-runoff process using soft
computing techniques. Computers & Geosciences, 51, 108–117.

20. Kisi, O., Karimi, S., Shiri, J., Makarynskyy, O., & Yoon, H. (2014). Forecasting sea water
levels at Mukho Station, South Korea using soft computing techniques. The International
Journal of Ocean and Climate Systems, 5(4), 175–188.

21. Kisi, O., & Zounemat-Kermani, M. (2016). Suspended sediment modeling using neuro-fuzzy
embedded fuzzy c-means clustering technique. Water Resources Management, 30(11), 3979–
3994.

22. Lin, C. T., Lin, C. J., & Lee, C. S. G. (1995). Fuzzy adaptive learning control network with
on-line neural learning. Fuzzy Sets Systems, 71, 25–45.

23. Maier, H. R., & Dandy, G. C. (1996). Use of artificial neural networks for prediction of water
quality parameters. Water Resources Research, 32(4), 1013–1022.

24. Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy
logic controller. International Journal of Man-Machine Studies, 7(1), 1–13.

25. Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2004). A neuro-fuzzy
computing technique for modeling hydrological time series. Journal of Hydrology, 291, 52–
66.

26. Rath, S., Nayak, P. C., & Chatterjee, C. (2013). Hierarchical neuro-fuzzy model for real-time
flood forecasting. International Journal of River Basin Management, 11(3), 253–268.

27. Russel, S. O., & Campbell, P. F. (1996). Reservoir operating rules with fuzzy programming.
Journal of Water Resources Planning and Management, 122(3), 165–170.

28. Sarlak, N. (2008). Annual streamflow modelling with asymmetric distribution function.
Hydrological Processes, 22, 3403–3409.

320 O. Kisi et al.

http://dx.doi.org/10.1109/codec.2012.6509239
http://dx.doi.org/10.1109/codec.2012.6509239

29. Sharma, S., Srivastava, P., Fang, X., & Kalin, L. (2015). Performance comparison of
Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C++
(LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected
watershed. Expert Systems with Applications, 42(4), 2213–2223.

30. Shiri, J., & Kisi, O. (2010). Short-term and long-term streamflow forecasting using a wavelet
and neuro-fuzzy conjunction model. Journal of Hydrology, 394, 486–493.

31. Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its application to
modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116–132.

32. Talei, A., Chua, L. H., Queck, C., & Jansson, P. E. (2013). Runoff forecasting using a
Takagi-Sugeno neuro-fuzzy model with online learning. Journal of Hydrology, 488, 17–32.

33. Tennant, D. L. (1976). Instream flow regimes for fish, wildlife, recreation and related
environmental resources. Fisheries, 1, 6–10.

34. Vernieuwe, H., Georgieva, O., De Baets, B., Pauwels, V. R. N., Verhoest, N. E. C., & De
Troch, F. P. (2005). Comparison of data-driven Takagi-Sugeno models of rainfall-discharge
dynamics. Journal of Hydrology, 302(1–4), 173–186.

35. Wang, W., Van Gelder, P., Vrijling, J. K., & Ma, J. (2006). Forecasting daily streamflow
using hybrid ANN models. Journal of Hydrology, 324, 383–399.

36. Wang, W., Chau, K. W., Cheng, C. T., & Qiu, L. (2009). A comparison of performance of
several artificial intelligence methods for forecasting monthly discharge time series. Journal
of Hydrology, 374, 294–306.

37. Yarar, A. (2014). A hybrid wavelet and neuro-fuzzy model for forecasting the monthly
streamflow data. Water Resources Management, 28, 553–565.

38. Yilmaz, A. G., & Muttil, N. (2014). Runoff estimation by machine learning methods and
application to the Euphrates Basin in Turkey. Journal of Hydrologic Engineering, 19(5),
1015–1025.

39. Zounemat Kermani, M., & Teshnelab, M. (2008). Using adaptive neuro-fuzzy inference
system for hydrological time series prediction. Applied Soft Computing, 8, 928–936.

Three Different Adaptive Neuro Fuzzy Computing … 321

Prediction of Compressive Strength
of Geopolymers Using Multi-objective
Feature Selection

Lasyamayee Garanayak, Sarat Kumar Das and Ranajeet Mohanty

Abstract To reduce the carbon dioxide emission to the environment, production of
geopolymer is one of the effective binding materials to act as a substitute of cement.
The strength of the geopolymer depends upon different factors such as chemical
constituents, curing temperature, curing time, super plasticizer etc. In this paper,
prediction models for compressive strength of geopolymer is presented using
recently developed artificial intelligence techniques; multi-objective feature selec-
tion (MOFS), functional network (FN), multivariate adaptive regression spline
(MARS) and multi gene genetic programming (MGGP). The MOFS is also used to
find the subset of influential parameters responsible for the compressive strength of
geopolymers. MOFS has been applied with artificial neural network (ANN) and
non-dominated sorting genetic algorithm (NSGA II). The parameters considered for
development of prediction models are curing time, NaOH concentration, Ca(OH)2
content, superplasticizer content, types of mold, types of geopolymer and H2O/
Na2O molar ratio. The developed AI models were compared in terms of different
statistical parameters such as average absolute error, root mean square error cor-
relation coefficient, Nash-Sutcliff coefficient of efficiency.

Keywords Geopolymer ⋅ Compressive strength ⋅ Multi-objective feature
selection ⋅ Artificial neural network ⋅ NSGA II ⋅ Multivariate adaptive
regression spline ⋅ Genetic programming ⋅ Functional network

L. Garanayak (✉) ⋅ R. Mohanty
Civil Engineering Department, National Institute of Technology, Rourkela, India
e-mail: lizaoec@gmail.com

R. Mohanty
e-mail: ranajeetmohanty@gmail.com

S. K. Das
Civil Engineering Department, Indian Institute of Technology (ISM), Dhanbad, India
e-mail: saratdas@rediffmail.com; sarat@nitrkl.ac.in

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_16

323

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_16&domain=pdf

1 Introduction

Climatic change, one of the biggest global issues, primarily caused by elevated
concentrations of carbon dioxide that increased from 280 to 370 ppm mainly due to
industry resources [17]. Every ton of cement consumes 1.5 tons of raw materials i.e.
limestone and sand [26] and 0.94 tons of carbon dioxide [22]. The world is attaining
an uphill task in terms of sustainable development by using the waste industrial
byproducts as an alternate resource of binder material infrastructure development
and producing green environment without consumption of natural resources with
low-energy, low-CO2 binders [15]. After lime, ordinary Portland cement and its
variants, geopolymer or Alkali-activated material (AAM) in general is considered
as third generation cement. In stable geopolymer, source material should be highly
amorphous consisting with sufficient reactive glass content and should consist of
low water demand, which able to release the aluminum easily [28].

Strength of the geopolymer depends on different factors such as—solid solution
ratio, curing temperature, curing time, chemical concentration, molar ratio of alkali
solution, type of alkali solution, type of primary materials composed of silica and
aluminium, type of admixtures and additives [23, 26]. There is a complex rela-
tionship between the compressive strength of the geopolymer with the
above-discussed factors, particularly for different types of geopolymer. Hence, in
order to achieve a desired compressive strength, it needs a trial and error approach
to fix the above parameters, which is cumbersome and time-consuming.

Now a day, artificial intelligence (AI) techniques are found to be more efficient
in the development of prediction models compared to traditional statistical methods
[16, 30, 31]. Nazari and Torgal [19] used artificial neural network (ANN) for
predicting the compressive strength of different types of geopolymers. They used
the database of Pacheco-Torgal et al. [23–25] which contained different types of
geopolymers obtained from waste materials based on different compositions con-
taining aluminosilicate as an elementary source. First, set of dataset contained 180
data samples where the basic material used was tungsten mine waste [23], thermally
treated at a temperature of 950 °C for 24 h. For mortar test authors used crushed
sand as fine aggregates having a specific gravity of 2.7, fineness modules of 2.8 and
0.9% water adsorption for 24 h. Sodium hydroxide (NaOH) solution was used as an
activator by dissolving NaOH flakes in distilled water. The solution and extra water
were added to the dry mix of sand, tungsten mine waste and calcium hydroxide (Ca
(OH)2) maintaining 4% as water to dry solid ratio. The compressive strength of
50 mm cube cured under ambient condition was per ASTM C109 [1], were
determined. Output data collected was the compressive strength of the cube, which
was the average of three specimens. The second set of dataset belongs to
Pacheco-Torgal et al. [25], which contains total 144 data samples. Its geopolymer is
also based on metakaoline, which was subjected to thermal treatment at 650 °C
temperature. Fine aggregate of specific gravity 3, 1% water absorption, fineness
modulus of 2.8 were used for mortar preparation. Different concentration of NaOH
like 10M, 12M, 14M and 16M were developed by mixing of NaOH flakes with

324 L. Garanayak et al.

distilled water and then mixed with sodium silicate solution of 1:2.5 as mass ratio.
Mortar was added with admixtures like superplasticizer content of 1, 2, and 3%. The
Ca(OH)2 was used as a replacement of metakaoline in the proportion of 5%, 10%
while the mass ratio of sand to metakaoline to activator was kept as 2.2:1:1. The
samples of 40 × 40 × 160 mm3 prism specimens were obtained according to EN
1015-11, which was cast and cured at room temperature. And finally the rest
amount of data was collected from Pacheco-Torgal et al. [24]. It had tungsten mine
waste as base material activated by mixing of two alkali solutions like 24M NaOH
and sodium silicate keeping 1:2.5 as mass ratio. 10% of Ca(OH)2 was used as
percentage substitution of tungsten mine waste of 50 × 50 × 50 mm3 cube
sample was prepared by mixing the solution with a dry mix of sand, mine waste
mud, and Ca(OH)2 with the ratio of mine waste mud to activator as 1:1. Extra water
(7, 10%) was added to improve the workability of the mix. In it, water to dry solid
binder was 3.6%. Compressive strength was obtained from those three papers which
followed the ASTM C109 [1]. Nazari et al. [18] developed ANN models and found
to better compare to other prediction models [19]. It may be mentioned here that the
developed ANN model had two hidden layers with 12 and 10 number of neurons in
hidden layer 1 and 2, respectively, hence number of parameters (weights and
biases) were more and the model was not comprehensive. The ANN model also
suffers from a lack of a comprehensive procedure for testing the robustness and
generalization ability and attains local minima. In the recent decade, AI techniques
such as genetic programming (GP), multivariate adaptive regression spline
(MARS), functional network (FN) have shown very promising results in over-
coming the above-discussed drawbacks.

Usually, in machine learning major portion of the data is used for training and a
smaller portion for testing through random sampling of the data to ensure that the
testing and training sets are similar forminimising the effects of data discrepancies and
to better understand the characteristics of the model and also to limit problems like
overfitting and to have an insight on how the model will generalize to an independent
dataset [6]. Therefore, the model is trained for a number of times to reduce this effect.

Also in prediction type modelling identification of the controlling parameters is
important, as the inclusion of all the features/parameters increases the complexity of
the model with a small increase in predictive capability of the developed model.
Thus, researchers are constantly looking for reliable predictive models which are
not only low in complexity but also high in its predictive capability. One such
algorithm, feature selection (FS) algorithm not only minimises the number of fea-
tures but also maximises the predictive accuracy (minimisation of error) of the
model. The above-described objectives are mutually conflicting in nature, a
decrease in one result in an increase in the other. Therefore, multi-objective evo-
lutionary algorithms (MOEA) can be implemented, which simultaneously min-
imises all the objective functions involved. Feature selection (FS) algorithm is of
three types: wrapper, filter and embedded. In wrapper technique, a predictive model
is used to evaluate each feature subsets. Each new subset is used to train a model
and tested and then ranked based on their accuracy rate or error rate. In filter
technique, a proxy measure is used which is fast to compute. Some of the measures

Prediction of Compressive Strength of Geopolymers … 325

used in filter technique are mutual information [12], pointwise mutual information
[34], Pearson product-moment correlation coefficient, inter/intra class distance or
the scores of significance tests for each class/feature combinations [9, 34]. Filter
selects a feature set, which is not tuned to a particular type of model thus resulting
into be more general as compared to wrapper technique. Embedded technique uses
a catch-all group method performing feature selection as a part of the modelling
process. LASSO algorithm [2, 35] is one such technique where during linear
modelling the regression coefficients are penalized with an L1 penalty, shrinking
many of them to zero. In terms of computational complexity embedded technique is
in between filters and wrappers. Implementation of evolutionary algorithms for FS
has been made using differential evolution (DE) [13], genetic algorithms (GA) [36],
genetic programming (GP) [21], and particle swarm optimisation (PSO) [5, 32, 33].

In this paper prediction models have been developed using multi-gene genetic
programming (MGGP), MARS and FN to predict the compressive strength of
geopolymers (alkali activated tungsten waste and metakaoline) based on the data-
base available in the literature. A novel type of algorithm known as multi-objective
feature selection (MOFS) is also implemented in this paper. In this proposed MOFS
(wrapper type approach), artificial neural network (ANN) is combined with
non-dominated sorting genetic algorithm (NSAG II) [8], where ANN acts as the
learning algorithm and NSGA II performs the feature subset selection and min-
imises the errors for the developed AI model at the same time. By using three
objectives for minimisation (a subset of features, training error, and testing error), a
variant of MOEA (modified non-dominated sorting genetic algorithm or NSGA II)
is applied to investigate if a subset of features exists with cent percent correct
predictions for both training and testing datasets. The features fed to the MOFS are
represented in binary form where 1 indicates selection of the feature and 0 indicates
its non-selection. The performance of the AI model is evaluated in terms of mean
square error; which NSGA II minimises during the multi-objective optimisation
process.

2 Methodologies

In the present study artificial intelligence techniques, FN, MARS, and MGGP have
been used for development of prediction models. As these techniques are not very
common to professional engineering a brief introduction to the above techniques is
presented as follows. The feature selection algorithm MOFS is also presented in this
section.

326 L. Garanayak et al.

2.1 Functional Network (FN)

Functional network (FN) proposed by Castillo et al. [3, 4] is a recent technique,
which is being used as an alternate tool to ANN. In FN, network’s preliminary
topology is derived, centred, around the modelling properties of the real domain, or
in other words, it is related to the problems of the domain knowledge, whereas in
ANN, by the use of trial and error approach, the required number of hidden layers
and neurons are determined, so that a good fitting model to the dataset can be
obtained. After the availability of initial topology, functional equations are utilized
to reach a much simpler topology. Therefore, functional networks eliminate the
problems of artificial neural networks by utilizing together the data knowledge and
the domain knowledge from, which the topology of the problem is derived. By the
help of domain knowledge FN determines the network structure and from the data,
it estimates the unknown neuron function. Initially, arbitrary neural functions are
allocated with an assumption that the functions are of multi-argument type and
vector valued in nature.

Functional networks can be classified into two types based on their learning
methods. They are:

1. Structural learning: In this stage, the preliminary topology of the network is built
on the assets obtainable to the designer and further simplifying is done by the
help of functional equations.

2. Parametric learning: In this stage estimation of the neuron function is based on
the combination of functional families, which is provided initially and then from
the available data the associated parameters are estimated. It is similar to the
estimation of the weights of the connections in artificial neural networks.

2.1.1 Working with Functional Networks

The main elements around which a functional network is built can be itemized as:

1. Storing Units

• The inputs—x1, x2, and x3 … require 1 input layer of storing unit.
• The outputs—f4, f5… require 1 output layer of storing unit.
• Processing units containing 1 or several layers, which evaluates the input

from the preceding layers to deliver it to the succeeding layer, f6.

2. Computing unit’s layer, f 1, f 2, f 3: In this computing unit, the neuron evaluates
the inputs coming from the preceding layer to deliver the outputs to the suc-
ceeding layer.

Prediction of Compressive Strength of Geopolymers … 327

3. Directed links set: Intermediary functions are not random in nature but it
depends on the framework of the networks, such as x7 = f4(x4, x5, x6).

All the elements described above together form the functional network archi-
tecture. The network architecture defines the topology of the functional network and
determines the functional capabilities of the network.

The steps for working with the functional network are as follows:

Step1: Physical relationship of inputs with outputs.
Step2: Preliminary topology of the functional network depends on the dataset of

the problem. Artificial neural network selects the topology by trial and
error approach, whereas functional networks select the topology on the
properties of the data, which ultimately leads to a solo network structure.

Step3: Functional equation simplifies the initial network structure of FN. It is
done by constantly searching for a simpler network in comparison to the
existing one, which will predict the same output from the same set of
inputs. Once a simpler network is found the complicated network is
replaced with the simpler one.

Step4: A sole neuron function is selected for the specific topology, which yields
a set of outputs.

Step5: In this step data is collected for the training of the network.
Step6: On the basis of the data, which is acquired from Step5, and a blend of the

functional families, the neuron function is estimated. Learning stage of
the network can be linear or non-linear in nature, which directly depends
on the linearity of the neuron function.

Step7: Once a model has been developed it is checked for error rate and also is
validated with a different set of data.

Step8: If the model is found to be satisfactory in the cross-validation process, it
is prepared to be used.

In FN the learning method is selected on the basis of the neural function, which
depends on the type of data U = {Ii, Oi}, {i = 1, 2, 3, 4,…, n}. Learning procedure
involves minimisation of the Euclidean norm of the error function and it is repre-
sented as:

E=
1
2
∑
m

i=1
Oi −F ið Þð Þ2 ð1Þ

Estimated neural functions fi(x) can be arranged in the following order:

fi xð Þ= ∑
m

j=1
aijϕij Xð Þ ð2Þ

328 L. Garanayak et al.

where ϕ is the shape function, having algebraic expressions, exponential functions,
and/or trigonometry functions. A set of linear or non-linear algebraic equations is
obtained by the help of associative optimisation functions.

Previous information about the functional equation is vital for working with the
functional network. The functional equation can be defined as a set of functions,
unknown in nature, which excludes the integral and differential equations. Cauchy’s
functional equation is the most common instance for the functional equations and it
is as follows:

f x+ yð Þ= f xð Þ+ f yð Þ; x, y ∈ R ð3Þ

For more details, readers can refer Das and Suman [7].

2.2 Multivariate Adaptive Regression Splines (MARS)

MARS correlates between a set of input variables to an output variable through
adaptive regression method. In MARS, a non-linear, non-parametric approach is
used to develop a prediction model without any prior assumption of any relation-
ship between the input (independent variables) and the output (dependent variable).
MARS algorithm creates these relationships by using sets of coefficient and basis
functions from the dataset as discussed above. Due to this, MARS is favourable
over other learning algorithms where the numbers of inputs (independent variables)
are more in number i.e. high.

The backbone of MARS algorithm is founded on divide and conquer strategy in,
which the dataset is split into a number of groups of piecewise linear segments
known as splines, which varies in gradient. MARS is comprised of knots, which are
basically the end points of splines and the functions (piece-wise linear function/
piece-wise cubic function) between these knots are called as basis function (BF). In
this paper for the case of simplicity of the model, only piece-wise linear basis
functions are used.

MARS algorithm proposed by Friedman [10] is a 2-step process to fit data’s and
is explained below:

i. Forward stepwise algorithm: Basis functions are added in this step. First, the
model is developed only by the help of an initial intercept known as βo. Then in
each successive step, a basis function, which shows the greatest decrease in the
training error, is annexed. Like this, the whole operation is continued until the
number of basis functions reaches its maximum value which has been prede-
termined beforehand. As a result, an over-fitted model is obtained. Searching of
knots among all the variables are done by the adaptive regression algorithm

ii. Backward pruning algorithm: Elimination of the over-fitting of data is done in
this phase. The terms in the model are snipped (one by one removal of the
terms) in this operation. The best viable sub model is obtained by removing the

Prediction of Compressive Strength of Geopolymers … 329

least effective term. Then the subset of models is equated among themselves by
means of the generalized cross-validation (GCV) process.

For a better understanding of MARS algorithm (refer [7]), examine a dataset,
which contains an output y for a set of inputs X = {X1, X2, X3, …, Xp}, which
consists of p input variables. MARS generates a model of the form:

y= f X1,X2,X3, . . . ,Xp
� �

+ e= f Xð Þ+ e ð4Þ

where, e = distribution of error; f(x) = a function which is approximated by BFs
(piece-wise linear function/piece-wise cubic function).

For the case of simplicity, only piece-wise linear functions have been discussed
in this paper for its easy interpretability. The piece-wise linear function is repre-
sented as max 0, x− tð Þ where t is the location of the knot. Its mathematical form is,

max 0, x− tð Þ= x− t, if x> t or 0, otherwisef g ð5Þ

And finally, f(x) = linear combination of BFs, and interactions between them is
defined as,

f Xð Þ= β0 + ∑
M

i=1
βmλm Xð Þ ð6Þ

where, λm = basis function, which is a single spline or product of 2 or more than 2
splines; β = coefficients of constant values calculated by least square method.

An illustration containing 22 data samples as inputs with an output is taken.
Random numbers between one and twelve comprised the input matrix {X} with a
single output {Y}, which is obtained as per the equation, given below:

Yi =
1

sin Xið Þ −
1

cos Xið Þ ð7Þ

Also, the data samples are normalized in the range of zero to one and MARS
analysis is conducted. The MARS model developed for this dataset is represented
as:

Y ̂= − 0.143+ 4.066BF1− 5.336BF2+ 1.852BF3 ð8Þ

where Y ̂ = predicted values;

BF1=max 0,Xi − 0.40ð Þ ð9Þ

BF2=max 0,Xi − 0.65ð Þ ð10Þ

330 L. Garanayak et al.

BF3=max 0, 0.65−Xið Þ ð11Þ

In this MARS model the knots are situated at, x = 0.65 and x = 0.40. The R
value for this model is 0.805. Proper care should be taken to use normalized values
of Xi (Eqs. 9–11) and the denormalized values of the predicted Yi can be obtained as
per Eq. 12.

Y ̂denorm =Y ̂norm Xi maxð Þ −Xi minð Þ
� �

+Xi minð Þ ð12Þ

Therefore, models developed using MARS algorithm has not only better effi-
ciency but also simplifies the complex equations just like Eq. 7 to a simple linear
equation.

2.3 Multi-gene Genetic Programming (MGGP)

Multi-gene genetic programming (MGGP) is a variation of GP where a model is
built from the combination of several GP trees. Each tree is composed of genes,
which represents a lower non-linear transformation of input variables. The output is
created from a weighted linear combination of these genes and is termed as
‘multi-gene’. For an MGGP model, the model complexity and accuracy can be
controlled by controlling the maximum depth of GP tree (dmax) and the maximum
allowable number of genes (Gmax). With the decrease in Gmax and dmax values, the
complexity of the MGGP model decreases, whereas its accuracy is hampered. Thus,
there exist optimum values of Gmax and dmax which gives fairly accurate results with
the relatively compact model [27] for a given problem. The linear coefficients (c1
and c2) termed as weights of the gene and bias (c0) of the model are got by ordinary
least square method on the training data.

First, population initialization is done by creating a number of randomly evolved
genes with lengths varying from 1 to Gmax. Then, for each generation, a new
population is chosen from the initial population as per their merit and then
implementation of reproduction, followed by crossover, followed by mutation
operations are performed on the function and terminal sets of the selected GP trees.
In subsequent runs, the population is generated by addition and deletion of genes
using traditional crossover mechanisms from GP and special MGGP crossover
mechanisms. Few distinctive MGGP crossover mechanisms [27] are briefly
described below.

2-Point High Level Crossover

The process of mating between two individual parents to swap genes between them
is called as a 2-point high level crossover. Suppose there are 2 trees having four
genes and three genes respectively marked by Gi to Gn. Assume that the Gmax value

Prediction of Compressive Strength of Geopolymers … 331

for the model is five. A crossover point, represented by {…} is selected for each
individual.

[G1, {G2, G3, G4}], [G5, G6, {G7}]

Genes enclosing the crossover points are interchanged and thus, 2 new offspring are
formed as shown below.

[G1, {G7}], [G5, G6, {G2, G3, G4}]

The number of genes in any individual is not allowed to be more than Gmax. But if it
exceeds then, randomly genes are selected and eliminated till each individual has
Gmax genes. This process leads to the creation of fresh genes for both the indi-
viduals, as well as the deletion of some genes.

2-Point Low Level Crossover

Standard crossover of GP sub-trees in MGGP algorithm is known as 2-point low
level crossover. First, a gene is arbitrarily chosen from each of the individuals and
then exchanging of the sub-trees under the selected nodes is done. The newly
created trees swap the parent trees in an otherwise unchanged individual in the
subsequent generation. There are 6 types of mutations, which can be performed on
this stage [11]. For achievement of best MGGP model probability of reproduction,
crossover and mutation have to be given, such that the sum of the probability of
these operations should not exceed 1.

2.4 Multi-objective Feature Selection (MOFS)

2.4.1 Non-dominated Sorting Genetic Algorithms (NSGA II)

NSGA II [8] is an elitist non-dominated sorting genetic algorithm and is very
popular in the application of multi-objective optimisation. Not only does it adopts
an elite preservation strategy but also uses the explicit diversity preservation
technique. In this first the parent population is initialized, from which the offspring
population is created and then both the population are combined and finally clas-
sified based on non-dominated sorting. After the completion of non-dominated
sorting, filling of the new population starts with the best non-dominated front with
the assignment of rank as 1 and this continues for successive fronts and assignment
of ranks simultaneously. Along with the non-dominated sorting, another niching
strategy adopted is the crowding distance sorting in which the distance reflects the
closeness of a solution to its neighbours, greater the distance better is the diversity
of the Pareto front. Offspring population is created from parent population by using
crowded tournament selection, crossover and mutation operators and this whole
operation continue until a termination criterion is met. More details of the algorithm
can be found in Deb et al. [8].

332 L. Garanayak et al.

2.4.2 NSGA II with ANN for Feature Selection

In this study to solve the feature selection problem wrapper type approach is
implemented where binary chromosomes are used to represent the features with a
value of 0 and 1, 0 indicating that the required feature is not selected and 1

Fig. 1 Flowchart of MOFS algorithm

Prediction of Compressive Strength of Geopolymers … 333

indicating that the required feature is selected. Three objectives are defined in the
NSGA II algorithm, first being the minimisation of the number of selected features,
second being the minimisation of training error rate and third being the minimi-
sation of testing error rate in the learning algorithm. The training error and testing
error are calculated based on mean square error. Learning algorithm used is
feed-forward artificial neural networks (ANNs). Basic flowchart of the MOFS
algorithm is presented in Fig. 1.

3 Database and Pre-processing

In this study, 384 data samples were taken with eight parameters from the literature
Pacheco-Torgal et al. [23–25]. In those papers tungsten mine waste and metakao-
line were used to develop geopolymer activating by alkali solution and extra
admixture like superplasticizers as well as calcium hydroxide contents were added
with different percentages. Seven variables i.e. curing time in days (T), percentage
content of calcium hydroxide by weight (C), superplasticizer percentage by weight
(S), NaOH concentration (N), mould type (M), type of geopolymer (G) and H2O/
Na2O ratio (H) are taken as input parameters and compressive strength (Qm) is the
output. Table 1 presents the statistical values of the dataset used and Fig. 2 shows
the variation of input and output parameters of the dataset.

It can be observed (Fig. 2) that when the curing time of the geopolymer is
maximum, its compressive strength is minimum and vice versa. Also, with the
addition of superplasticizers compressive strength increases but up to a certain
extent. Also, when the molar ratio (H) and Ca(OH)2 content is high, compressive
strength is less.

The training (288 data samples) and testing (96 data samples) dataset were
normalized between 0 and 1 for its implementation in FN and MGGP. For MGGP
500 was taken as the population size and 200 as maximum number of generation
keeping 15 as tournament size. Crossover and mutation probability were considered
as 0.84 and 0.14 respectively. For MARS modelling 70% data were used for

Table 1 Statistical values of the dataset

Variables Range Mean Std. dev (σ)
Curing time (days) (T) 1.0–90.0 32.67 31.26
Ca(OH)2 content (wt%) (C) 0.0–22.5 12.86 7.61
Superplasticizer (wt%) (S) 0.0–3.0 1.50 1.12
NaOH concentration (N) 6.0–24.0 12.86 5.54
Mold type (M) 1.0–2.0 1.50 0.50
Geopolymer type (G) 1.0–3.0 2.00 0.82
H2O/Na2O molar ratio (H) 8.9–19.1 14.63 2.86
Compressive strength (MPa) (Qm) 1.5–79.0 30.81 16.85

334 L. Garanayak et al.

training and rest 30% data were used for testing for the normalized values of the
dataset in the range of 0–1.

And for the MOFS algorithm ANN training function used was
Levenberg-Marquardt type consisting of 3 hidden neurons and performance of the
neural network was based on MSE. 70% of the data samples were used for training
and the remaining 30% for testing. Data were normalized in the range [0, 1].
In NSGA II uniform crossover technique was applied where replacement of the
genetic material of the two selected parents takes place uniformly at several points.
Conventional mutation operator was used on each bit separately and changing
randomly its value. Parameters used in NSGA II were population size = 50,
crossover probability = 0.95, mutation probability = 0.1 and mutation rate = 0.1.

4 Results and Discussion

Statistical comparisons of all the AI models developed in this study was done in
terms of average absolute error (AAE), root mean square error (RMSE), correlation
coefficient (R) and Nash-Sutcliff coefficient of efficiency (E) and are presented in
Table 5. Also, the overfitting ratio, which is the ratio between the RMSE of testing
and training was found out and presented in Table 6. Overfitting ratio indicates the
generalization of the prediction models. Cumulative probability of the developed
models can be expressed as the ratio between the predicted compressive strength

0 50 100 150 200 250 300 350 4000
20
40
60
80

100
0.0
6.3

12.6
18.9

0
1
2
3
0
5

10
15
20
25
30
5

10
15
20

0 50 100 150 200 250 300 350 400

20
40
60
80

T

Data samples

C

S

N

H

Qp

Fig. 2 Variation of input and output parameters of the dataset

Prediction of Compressive Strength of Geopolymers … 335

(Qp) to the measured compressive strength (Qm) of the geopolymer. The ratio Qp/
Qm are sorted in ascending order and its respective cumulative probability is found
out from Eq. 13.

P=
i

n+1
ð13Þ

where; i = order number for the respective Qp/Qm and n = total number of data
samples. From the cumulative probability distribution (Fig. 8) P50, the ratio of Qp/
Qm corresponding to 50% probability and P90 corresponding to 90% probability are
found out. For P50 less than one, under prediction is inferred and for greater than
one over prediction is implied, with the best model being exactly equal to one. P50
and P90 values for all the four AI models are given in Table 6. Also, residual plots
(residual error between the measured and the predicted values) of all the 4 AI
models developed in this research has been presented in Figs. 4, 5, 6 and 7 for the
testing dataset (performance on the testing dataset indicates the robustness and
generalization capability of the prediction model). If the residuals appear to behave
randomly (equally distributed on both sides of the zero line), it suggests that the
model fits the data well otherwise it is a poorly fitted model.

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

50

55

 Training error
 Testing error

Er
ro

r r
at

e
(M

SE
)

Number of features

Fig. 3 Pareto optimal solutions

336 L. Garanayak et al.

0 20 40 60 80 97

0 20 40 60 80 97

-25

-20

-15

-10

-5

0

5

10

15

20

25

-25

-20

-15

-10

-5

0

5

10

15

20

25

re
si

du
al

 e
rro

r

data samples

Fig. 4 Residual error of FN model (testing)

0 20 40 60 80 100 117

0 20 40 60 80 100 117

-15

-10

-5

0

5

10

15

-15

-10

-5

0

5

10

15

re
si

du
al

 e
rro

r

data samples

Fig. 5 Residual error of MARS model (testing)

Prediction of Compressive Strength of Geopolymers … 337

0 20 40 60 80 97

0 20 40 60 80 97

-15

-10

-5

0

5

10

15

-18

18

-15

-10

-5

0

5

10

15

-18

18

re
si

du
al

 e
rro

r

data samples

Fig. 6 Residual error of MGGP model (testing)

0 20 40 60 80 100 116

0 20 40 60 80 100 116

-10

-5

0

5

10

-12

12

-10

-5

0

5

10

-12

12

re
si

du
al

 e
rro

r

data samples

Fig. 7 Residual error of MOFS (ANN) model (testing)

338 L. Garanayak et al.

4.1 FN Model

FN models were developed from randomly selected 288 data samples, which were
normalized in between 0 and 1. Its prediction value was obtained from the fol-
lowing equation.

y= a0 + ∑
m

i=1
∑
m

j=1
fi xj
� � ð14Þ

where, n = no. of variables and m = degree of variables. The best model was found
to be of associative type with 25 numbers of degree and tanh BF. As the degree of
the model was very high, therefore, it was found to be unsuitable for developing a
comprehensive model equation. Figure 4 shows the residual error plot between the
measured and the predicted compressive strength of geopolymer for the testing
data. It can be seen from Fig. 4 that the model fits well along with a maximum
deviation of 20 MPa on both sides of the zero line. It can be seen from Table 5 that
the values of R in training and testing are same i.e. 0.941, which indicates a strong
correlation between predicted and observed values according to Smith [29]. Gen-
erally, R is a biased estimate for the prediction models [6]. So another indicator for
the goodness of the model can be presented by the help of E. The values of E
(Table 5) for training and testing are 0.885 and 0.885 respectively. RMSE and AAE
for the FN model as shown in Table 5 are 5.669 MPa, 5.841 MPa and 3.867 MPa
and 3.726 MPa for training and testing respectively. The overfitting ratio (Table 6)

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 FN
 MARS
 MGGP
 MOFS (ANN)

Q
p/Q

m

Cummulative probability (%)

Fig. 8 Cumulative probability distribution of training and testing data

Prediction of Compressive Strength of Geopolymers … 339

for the FN model is 1.030, which indicates that the FN model developed is well
generalized. Also, P50 and P90 (Fig. 8) as indicated in Table 6 are 0.992 and 1.411,
implying that the model is slightly under predictive.

4.2 MARS Model

In MARS modelling, the best model was obtained corresponding to 11 basis
functions and the equivalent model equation is given below.

Qp nð Þ =0.49+ 0.5 ×BF1− 0.61 ×BF2− 3.09 ×BF3− 0.33 ×BF4

− 10.1 ×BF5− 0.05 ×BF6− 4.06 ×BF7+ 0.36 ×BF8

− 2.45 ×BF9+ 0.74 ×BF10+ 2.22 ×BF11

ð15Þ

Details of the respective BF are presented in Table 2. De-normalized value ofQp(n)

can be obtained from the following equation:

Qp =Qp nð Þ 78.38− 1.55ð Þ+1.55 ð16Þ

The residual error plot of the MARS model for testing is shown in Fig. 5. It can
be seen that the scatter of the error around the zero line is random with a maximum
error of approx. −13 MPa from the measured value. The values of R and E in
training and testing for the MARS model are 0.963; 0.926 and 0.988 and 0.975
respectively as indicated in Table 5. RMSE and AAE for training and testing
(Table 5) are 4.602 MPa; 3.155 MPa and 2.639 MPa; 1.794 MPa respectively.
From Table 6 it can be inferred that the MARS model is under-fitted (overfitting
ratio = 0.573) and the developed MARS model is good for prediction as its P50
value is 1.009 which is nearly same as one.

4.3 MGGP Model

In MGGP model the modelling equation can be developed as follows:

Table 2 Details of the BFs for the MARS model

BF1 max(0, G − 0.5) BF7 max(0, 0.02 − T)
BF2 max(0, 0.5 − G) BF8 BF1 × max(0, 0.7 − H)
BF3 BF1 × max(0.15 − T) BF9 max(0, N − 0.22) × max(0, C − 0.89)
BF4 max(0, 0.22 − N) BF10 max(0, N − 0.22) × max(0, H − 0.08)
BF5 BF1 × max(0.14 − H) BF11 max(0, N − 0.22) × max(0, 0.08 − H)
BF6 max(0, T − 0.02)

340 L. Garanayak et al.

Qp nð Þ=18.8 ×N − 0.142 * T +0.826 ×H − 19.4 * exp N ×Hð Þ
+2.16 × exp Mð Þ+30.5 × exp Hð Þ− 7.42 ×N

+ 0.215× Tð Þ1 ̸4 − 41.7 ×H +0.826× Hð Þ1 ̸2

− 0.142 × Hð Þ4 + 0.533 × Tð Þ1 ̸2 × Gð Þ4 − 25.9

ð17Þ

where the predicted value of Qp can be obtained using Eq. 16. Figure 6 shows that
the maximum error in prediction for the MGGP model is around 15 MPa on either
side of the zero error line for the testing dataset. R between measured and predicted
values of compressive strength for the MGGP model as per Table 5 is 0.979 and
0.976 respectively for training and testing. Also from Table 5, E, RMSE and AAE
are given as 0.958, 3.405 MPa, 2.449 MPa and 0.950, 3.934 MPa, 2.868 MPa
respectively for training and testing. The values of overfitting ratio, P50 and P90 for
the MGGP model as indicated in Table 6 are 1.155, 1.004 and 1.281 respectively.
MGGP model is also a good model for prediction as its P50 value is close to unity.

4.4 MOFS (ANN) Model

Pareto optimal solutions given by MOFS algorithm are presented below with the
number of input parameters used for modelling and the error rate of training and
testing in terms of MSE. Results of the multi-objective optimisation are presented in
Fig. 3 and the details of the Pareto front are given in Table 3. From Table 3 it can
be inferred that the most influential features responsible for the compressive
strength of the geopolymer are curing time (T) and molar ratio (H), as these two
parameters are selected for a maximum number of times.

Table 3 Details of the Pareto
front obtained from the
MOFS (ANN) model

Selected features MSE

H Training 54.563
Testing 45.658

T H Training 35.341
Testing 30.439

T G H Training 15.350
Testing 15.431

T S N H Training 12.697
Testing 12.260

T S N G H Training 11.704
Testing 11.441

T S N M G H Training 11.469
Testing 11.303

T C S N M G H Training 11.472
Testing 10.205

Prediction of Compressive Strength of Geopolymers … 341

Figure 3 clearly shows that MSE for training and testing decreases with increase
in the number of input variables/features. Also, the difference between the training
error and testing error which indicates the generalization of a model (small dif-
ference means more generalized is the model) is almost negligible when number of
input features is 3 followed closely by when number of features selected is 6; ANN
model developed in this paper is for 7 input features (details given in Table 3).

It is evident from Table 5 that model is well generalized as the R values for both
training and testing are nearly same (0.981 and 0.979). Thus, the model developed
has a good generalized fit between the independent (input parameters) and
dependent variables (output). E, RMSE, and AAE of the MOFS (ANN) model are
0.962, 3.387 MPa, 2.395 MPa and 0.958, 3.195 MPa, 2.221 MPa for training and
testing dataset respectively (Table 5). From Fig. 7 it can be observed that the
MOFS (ANN) model is a good fit model with a maximum residual error of 10 MPa.
The input weights, layer weights, and biases of the selected MOFS (ANN) model
are given in Table 4. Based on the connection weights and biases (Table 4) of the
MOFS (ANN) model, equation is formulated as follows:

A1 = 5.164− 0.318T − 0.031C− 19.694S

− 5.261N +22.643M +1.404G− 9.094H
ð18Þ

A2 = 5.173− 0.32T − 0.037C+0.005S

− 5.273N +1.447M +1.41G− 9.101H
ð19Þ

Table 4 Connection weights and biases of the MOFS (ANN) model

Neuron
(hidden)

Weights (wik) Biases

Input Output

T C S N M G H Qp bhk b0
k1 −0.318 −0.031 −19.694 −5.261 22.643 1.404 −9.094 736.668 5.164 −169.285
k2 −0.320 −0.037 0.005 −5.273 1.447 1.410 −9.101 −736.554 5.173 –

k3 14.642 −0.781 17.010 −0.775 0.966 0.164 0.557 169.499 4.507 –

Table 5 Statistical values of AI models used in this study

FN MARS MGGP MOFS (ANN)

R Training 0.941 0.963 0.979 0.981
Testing 0.941 0.988 0.976 0.979

RMSE (MPa) Training 5.669 4.602 3.405 3.387
Testing 5.841 2.639 3.934 3.195

E Training 0.885 0.926 0.958 0.962
Testing 0.885 0.975 0.950 0.958

AAE (MPa) Training 3.867 3.155 2.449 2.395
Testing 3.726 1.794 2.868 2.221

342 L. Garanayak et al.

A3 = 4.507+ 14.642T − 0.781C+17.01S

− 0.775N +0.966M +0.164G+0.557H
ð20Þ

Qp =76.83
− 169.285 + 736.668 tanh A1ð Þ−

736.554 tanh A2ð Þ+169.499 tanh A3ð Þ
� �

+1.55 ð21Þ

The input values of the variables used in Eqs. 18–20 are normalized values in
the range [0, 1]. Table 6 shows that the MOFS (ANN) model is slightly under fitted
(overfitting ratio = 0.943) and the model is good in prediction as the P50 value is
1.003 (close to one).

Hence, it can be easily concluded that out of the 4 AI models developed, MOFS
(ANN) model is best followed closely by MGGP model as indicated in the sta-
tistical comparison (Table 5). However, the model equation developed by MOFS
(ANN) model is quite complex (not comprehensive), so for practical on field use
MGGP model equation can be utilized, but again in the MGGP model not all the
parameters of the geopolymer are used (Ca(OH)2 and superplasticizer content are
absent). Thus, it really depends on the user on the choice of AI model to be used.
Also from Table 6 all the AI models are good in prediction except the FN model
(graphical representation is given in Fig. 8).

5 Conclusion

The present study deals with the compressive strength of geopolymers based on the
experimental database available in the literature using different AI methods. Iden-
tification of the subset of features responsible for the predictive capacity of the
model is addressed here by considering it as a multi-objective optimization prob-
lem. Based on different statistical parameters like R, E, RMSE and AAE values,
MOFS (ANN) algorithm is found to be more efficient as compared to other AI
techniques. The R, E, RMSE and AAE values of the present ANN model, are
0.981, 0.962, 3.387 MPa and 2.395 MPa, respectively, for training and 0.979,
0.958, 3.195 MPa and 2.221 MPa, respectively, for testing data. The model
equations are also presented, which can be used by quality control professional
engineers to identify the proper proportion of different constituent and the condition
of different curing etc. for a desired compressive strength. It was observed that
though, the model equation as per the MGGP model is comprehensive, but out of
seven parameters of the geopolymer, two important parameters (Ca(OH)2 and

Table 6 Overfitting ratio and
cumulative probability of the
AI models

Overfitting ratio P50 P90
FN 1.030 0.992 1.411
MARS 0.573 1.009 1.264
MGGP 1.155 1.004 1.281
MOFS (ANN) 0.943 1.003 1.204

Prediction of Compressive Strength of Geopolymers … 343

superplasticizer content) are not part of the model equation. But, the MOFS
(ANN) model is best and though the model equation is not comprehensive, but the
model equation is presented in a tabular form. The model equation will help the
professional engineers particularly at the initial level to predict the compressive
strength of geopolymer, which is a very complex phenomenon.

References

1. ASTM. (2013). International Standard Test Method for Compressive Strength of Hydraulic
Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). (ASTM C109/C109M) West
Conshohocken, PA 19428-2959. United States.

2. Bach, F. R. (2008). Bolasso: Model consistent Lasso estimation through the bootstrap. In A.
McCallum & S. T. Roweis (Eds.), Proceedings of 25th International Conference on Machine
Learning, (ICML2008), Helsinki, Finland (pp. 33–400).

3. Castillo, E., Cobo, A., Gutierrez, J. M., & Pruneda, E. (1998). An introduction to functional
networks with applications. Boston: Kluwer.

4. Castillo, E., Cobo, A., Manuel, J., Gutierrez, J. M., & Pruneda, E. (2000). Functional
networks: A new network-based methodology. Computer-Aided Civil and Infrastructure
Engineering, 15, 90–106.

5. Cervante, L., Xue, B., Zhang, M., & Shang, L. (2012). Binary particle swarm optimisation for
feature selection: A filter based approach. In Proceedings of Evolutionary Computation
(CEC), 2012 IEEE Congress, Brisbane, QLD (art. no. 6256452, pp. 881–888).

6. Das, S. K. (2013). Artificial neural networks in geotechnical engineering: Modeling and
application issues, Chapter 10. In X. Yang, A. H. Gandomi, S. Talatahari & A. H. Alavi
(Eds.), Metaheuristics in water, geotechnical and transport engineering (pp. 231–270).
London: Elsevier.

7. Das, S. K., & Suman, S. (2015). Prediction of lateral load capacity of pile in clay using
multivariate adaptive regression spline and functional network. The Arabian Journal for
Science and Engineering., 40(6), 1565–1578.

8. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–
197.

9. Forman, G. (2003). An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research, 3, 1289–1305.

10. Friedman, J. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19, 1–141.
11. Gandomi, A. H., & Alavi, A. H. (2012). A new multi-gene genetic programming approach to

nonlinear system modeling. Part II: Geotechnical and Earthquake Engineering Problems.
Neural Computing and Applications, 21(1), 189–201.

12. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The
Journal of Machine Learning Research., 3, 1157–1182.

13. He, X., Zhang, Q., Sun, N., & Dong, Y. (2009). Feature selection with discrete binary
differential evolution. In Proceedings of International Conference on Artificial Intelligence
and Computational Intelligence, AICI 2009, Shanghai (Vol. 4, art. no. 5376334, pp. 327–
330).

14. http://www.geopolymer.org/faq/alkali-activated-materials-geopolymers/.
15. Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative

cementitious binders. Cement and Concrete Research Cement and Concrete Research, 41,
1232–1243.

344 L. Garanayak et al.

http://www.geopolymer.org/faq/alkali-activated-materials-geopolymers/

16. Kutyłowska, M. (2016). Comparison of two types of artificial neural networks for predicting
failure frequency of water conduits. Periodica Polytechnica Civil Engineering. https://doi.org/
10.3311/ppci.8737.

17. Mehta, P. K. (2004). High-performance, high-volume fly ash concrete for sustainable
development. In Proceedings of the International Workshop on Sustainable Development and
Concrete Technology, Beijing, China (pp. 3–14).

18. Nazari, A., Hajiallahyari, H., Rahimi, A., Khanmohammadi, H., & Amini, M. (2012).
Prediction compressive strength of Portland cement-based geopolymers by artificial neural
networks. Neural Computing and Applications, 1–9.

19. Nazari, A., & Pacheco-Torgal, F. (2013). Predicting compressive strength of different
geopolymers by artificial neural networks. Ceramics International, 39, 2247–2257.

20. Nazari, A., & Riahi, S. (2012). Prediction of the effects of nanoparticles on early-age
compressive strength of ash-based geopolymers by fuzzy logic. International Journal of
Damage Mechanics, 22(2), 247–267.

21. Neshatian, K., & Zhang, M. (2009). Pareto front feature selection: Using genetic
programming to explore feature space. In Proceedings of 11th Annual conference on Genetic
and Evolutionary Computation, GECCO’09 (pp. 1027–1034). New York, NY, USA: ACM.

22. Pacheco-Torgal, F., Abdollahnejad, Z., Camões, A. F., Jamshidi, M., & Ding, Y. (2012).
Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven
issue? Construction and Building Materials, 30, 400–405.

23. Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review.
Part 2. About materials and binders manufacture. Construction and Building Materials, 22(7),
1315–1322.

24. Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2007). Investigations about the effect of
aggregates on strength and microstructure of geopoly-meric mine waste mud binders. Cement
and Concrete Research, 37, 933–941.

25. Pacheco-Torgal, F., Moura, D., Ding, Y., & Jalali, S. (2011). Composition, strength and
workability of alkali-activated metakaolin based mortars. Construction and Building
Materials, 25, 3732–3745.

26. Rashad, A. M. (2014). A comprehensive overview about the influence of different admixtures
and additives on the properties of alkali-activated fly ash. Materials and Design, 53, 1005–
1025.

27. Searson, D. P., Leahy, D. E., & Willis, M. J. (2010). GPTIPS: An open source genetic
programming toolbox from multi-gene symbolic regression. In Proceedings of the Interna-
tional Multi Conference of Engineers and Computer Scientists, Hong Kong (Vol. 1, no. 3,
pp. 77–80).

28. Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A
review of some recent developments. Construction and Building Materials, 85, 78–90.

29. Smith, G. N. (1986). Probability and statistics in civil engineering: An introduction. London:
Collins.

30. Tarawneh, B., & Nazzal, M. D. (2014). Optimization of resilient modulus prediction from
FWD results using artificial neural network. Periodica Polytechnica Civil Engineering, 58(2),
143–154. https://doi.org/10.3311/ppci.2201.

31. Ünes, F., Demirci, M., & Kisi, Ö. (2015). Prediction of Millers Ferry Dam reservoir level in
USA using artificial neural network. Periodica Polytechnica Civil Engineering, 59(3), 309–
318. https://doi.org/10.3311/ppci.7379.

32. Xue, B., Cervante, L., Shang, L., Browne, W. N., & Zhang, M. (2012). A multi-objective
particle swarm optimisation for filter based feature selection in classification problems.
Connection Science, 24(2–3), 91–116.

33. Xue, B., Cervante, L., Shang, L., Browne, W. N., & Zhang, M. (2014). Binary PSO and rough
set theory for feature selection: A multi-objective filter based approach. International Journal
of Computational Intelligence and Applications, 13(2), art. no. 1450009.

Prediction of Compressive Strength of Geopolymers … 345

http://dx.doi.org/10.3311/ppci.8737
http://dx.doi.org/10.3311/ppci.8737
http://dx.doi.org/10.3311/ppci.2201
http://dx.doi.org/10.3311/ppci.7379

34. Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text
categorization. Proceedings of Fourteenth International Conference on Machine Learning
(ICML’97) (Vol. 97, pp. 412–420), Nashville, Tennessee, USA.

35. Zare, H., Haffari, G., Gupta, A., & Brinkman, R. R. (2013). Scoring relevancy of features
based on combinatorial analysis of Lasso with application to lymphoma diagnosis. BMC
Genomics, 14, art. no. S14.

36. Zhu, Z., Ong, Y. S., & Dash, M. (2007). Wrapper-filter feature selection algorithm using a
memetic framework. IEEE Transactions on Systems, Man, and Cybernetics. Part B,
Cybernetics, 37(1), 70–76.

346 L. Garanayak et al.

Application of Big Data Analysis
to Operation of Smart Power Systems

Sajad Madadi, Morteza Nazari-Heris, Behnam Mohammadi-Ivatloo
and Sajjad Tohidi

Abstract The volume of data production is increased in smart power system by
growing smart meters. Such data is applied for control, operation and protection
objectives of power networks. Power companies can attain high indexes of effi-
ciency, reliability and sustainability of the smart grid by appropriate management of
such data. Therefore, the smart grids can be assumed as a big data challenge, which
needs advanced information techniques to meet massive amounts of data and their
analytics. This chapter investigates the utilization of huge data sets in power system
operation, control, and protection, which are difficult to process with traditional
database tools and often are known as big data. In addition, this paper covers two
aspects of applying smart grid data sets, which include feature extraction, and
system integration for power system applications. The application of big data
methodology, which is analyzed in this study, can be classified to corrective,
predictive, distributed, and adaptive approaches.

Keywords Power systems ⋅ Big data ⋅ C-means algorithm ⋅ Operation

1 Introduction

Due to installing smart grid infrastructure, the power companies are confronted with
new challenges. Such challenges generally refer to manage smart grid data and use
them for improving decision-making. The smart meters generally send information
every 15 min, and the processing smart centers face with the massive amount of
data. The volume of sent data to data processing centers is approximated about 220
million TB per a day [1]. Big data in the electric power industry can include data
with large volume, high velocity, variant, or all three characteristics. The volume of
data has been growing significantly according to introduction of new metering
devices. Velocity refers to the temporal constraints on collecting, processing and

S. Madadi ⋅ M. Nazari-Heris ⋅ B. Mohammadi-Ivatloo (✉) ⋅ S. Tohidi
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
e-mail: mohammadi@ieee.org

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_17

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_17&domain=pdf

analyzing data, which is the case with synchrophasor data. Real-time operation is
necessary for efficient condition-based asset management and outage prevention,
which requires fast processing of large volumes of data. Variety refers to data
coming from many different sources that are not necessarily part of the traditional
electric utility data.

On the other hand, the power system operators meet with various problems such
as challenges in operational efficiency and cost control [2], challenges in stability
and reliability [3] and renewable energy management [4]. Big data systems are
defined as an effective tool containing a set of means and process for reaching,
storing and processing data [5]. Some of the researchers focus on data measurement
tools and transfer ways to data centers. In [6], a cloud based power system oper-
ational technique is proposed. An approach to keep the security of anonymizing
frequent (for example, every few minutes) electrical metering data sent by a smart
meter is presented in [7]. A smart meter data security technique for consumer is
studied in [8]. However, the researchers are more studying on the application of big
data in power system problems. Application of a big data system to specific aims in
smart grids requires a significant efforts since the mentioned data are form
numerous and independent sources such as phasor measurement units (PMUs) and
smart homes controllers [9]. The main application of the decision-making frame-
work can be abbreviated on the exploration of innovative computational concepts to
allow novel applications [10]:

(a) Corrective: Such technique is capable to facilitate actions, which aim to
remove fault conditions with high rate of expansion in power networks. Risk-based
asset management can be defined as an instance of corrective applications [11].

(b) Predictive: Providing exact data estimation of the power network condition
such as wind generation and load demand. Short-term renewable energy source
forecasting can be introduced as examples of Predictive. Another example of
predictive applications are participation rate of load demand response (DR) con-
sumers in DR programs options, and dynamic line rating forecasting, which require
a significant amount of data and measurement instruments. In [12], the utilization of
load classification, including big data identification and correction, load forecasting
and tariff setting, are investigated.

(c) Distributed: the aim of distributed big data approaches is estimation state
based on distributed processing. This concept takes advantages of fast control
decisions, which can be executed locally. An example for application of this
technique is online assessment of voltage stability.

(d) Adaptive: operators monitor occurring faults very closely allowing adjust-
ments in operating strategy. An example of such application is enhanced distur-
bance detection, and on-line outage management.

The remainder of this chapter is organized as: Sect. 2 discusses asset manage-
ment. Operations-planning convergence is studied in Sect. 3, and fault detection/
protection is analyzed in Sect. 4. In addition, stability margin prediction using PMU
measurements is proposed in Sect. 1. Finally, the chapter is concluded in Sect. 5.

348 S. Madadi et al.

2 Asset Management

Smart grids integrate large data sets, which are received from on-line measurement
tools such as PMU units. Such data should be processed to obtain suitable response
to each request or network condition. Therefore, application of big data needs an
asset management. Figure 1 illustrates a framework for handling smart grid big
data. The framework includes five stages to model the flow of the smart grid data
from data generation to data analytics. The summary of each stage is studied in
following sections.

2.1 Data Generation Stage

Smart meters generate data, which are installed in the smart grid. The generated
data may be sent from a supplier site such as power plants, wind farms and solar
panels or a demand site such as residential homes and factories. As well as, some
data can be sent from operation center to consumers such as electrical price, which
is generally used to optimize electrical cost by big consumers and demand response

Data generation

Data Storing/
Processing

Data Querying

Data Analytics

Data Acquisition

Fig. 1 Framework for
handling smart grid big data

Application of Big Data Analysis to Operation … 349

signals. Weather condition is other data which is revived at weather station units.
Such data is applied to predict electrical demand and output power of renewable
energy sources (wind farms units and solar panels).

2.2 Data Acquisition

In the smart grid application, data acquisition stage can be classified into three steps.
This stage includes data collection, data transmission, and data pre-processing. At
first, centralized/distributed agents collect the data generated from different data
supplies. After data collection, the collected data should be sent to a master node.
Once the primary data are integrated, they are transferred to a data storage structure
for subsequent processing. The last step in data acquisition stage is pre-processing.
The collected data generally have different types and formats since such data are
generated by various sources. In the pre-processing step, combining data from
diverse sources provides a unified view of the data. In addition, the characteristic of
the data such as the timestamp, smart meter’s ID, generated/consumed power and
location may be inaccurate or incomplete. Therefore, in the preprocessing of data,
inaccurate and incomplete data are modified to improve the quality of data.

Flume is known as a suitable function of data acquisition. The collection,
integration and transmission steps are covered by utilization of flume. Whereas, a
Flume unit stores received data into one or more channels. Each channel memorizes
the received data at the first time. Then it removes the channel data and sends it into
the external storages. In the external storage units, the format of Flume data is
changed into an appropriate format. Consequently, the data preprocessing step is
completed and a unified view of the data is obtained.

2.3 Data Storing and Processing

After the acquisition stage, the data is classified and stored for future processing.
Such stage includes a single name node for managing file system big data, and sets
of data nodes, which is used to save the actual data. On the other hand, transmitted
data is decomposed into one or more sections, and these sections are stored in
collections of data nodes.

2.4 Data Querying

In this stage, smart grid data is reed from a smart grid data repository. Then especial
data is selected. Such data can belong to load demand of an area or the power
generated by renewable supplies. In the data querying stage, cluster sets are gen-
erally used to obtain prompt results.

350 S. Madadi et al.

2.5 Data Analytics

The smart grid data must be used for optimal operation of smart grids. For instance,
this data can be applied to schedule maintenance plans, or exactly future demand/
renewable generation prediction. In addition, such data can be used to online
protection of smart grids such as detection of high impedance faults. Moreover,
utilization of such data can reduce controlling tools and improved traditional
response approaches such as wide area small signal stability.

3 Operations-Planning Convergence

In the operation and planning convergence application, the certain models are
applied to estimate actual physical state of power systems. Operators generally use
the results of big data processing models for getting long-term and short-term
decisions. Such decisions include expansion of transmission line, which is classified
to long-term process, and balance clearing market, which is short-term decision
making process. On the other hand, the operators are capable to find out the future
power system conditions with high accuracy according to processing big data
received by smart meters.

In the power system network, the stochastic variables such as wind speed, air
radiation and demand of load are forecasted. After prediction stochastic variables,
the power generated by thermal units is scheduled in day-ahead market. Renewable
power generation forecasting and load demand prediction are used in power market
operator before big data processing. However, such forecasting based on big data
processing has high accuracy because methods account more data and feature to
reach future conditions of power system.

The major role of big data in power system is better operation of power system
components. An instance for this role is dynamic line rating. The capacity of power
line transmission is determined by worth scenario of weather condition. Therefore,
such values are generally less than real line capacity. Data measured by smart
meters can be used to estimate of real time capacity of lines. The framework of
operation is illustrated in Fig. 2.

3.1 Big Data and Dynamic Line Rating (DLR)

In traditional concepts, the capacity of overhead line is calculated by worst scenario
of weather conditions since such scenario is not capable to measure online. This
method for determining the capacity of line is known as static line rating (SLR). Big
data process takes advantages of providing required data to accomplish overhead
line projects. Dynamic line rating is introduced in the following.

Application of Big Data Analysis to Operation … 351

A model for calculating dynamic capacity of overhead lines is presented in this
chapter. This model is based on the IEEE standard 738-bus system [13]. IEEE
model is used steady-state heat balance equation for calculating the current of
overhead conductors.

R TCð ÞI2 +Qs =Qr +Qc

Qs = γDSi
Qr = SBπDKr T4

c −T4
1

� �
Qc = λNu T2 −T1ð Þπ

Nu =0.65Re0.2 + 0.23Re0.61

Re= 1.644 × 109VD T1 + 0.5 Tc −T1ð Þ½ �− 1.78

8>>>>>><
>>>>>>:

ð1Þ

where, Qs, Qr, Qc are the solar heating, radiative cooling, and convective cooling,
respectively. In addition, Nu is the Nusselt number, and Re is the Reynolds number
that shows the impact of wind speed on the capacity of overhead lines. The wind
speed is demonstrated by indicator V. Considering the above equations, the max-
imum current can be obtained using the following equation.

Imax =maxð

ffi
1.01+ 0.0371×

Dρf V

μf

� �0.52
� �

× Kf ×Kangle ×ΔT½ �
R Tcð Þ

vuut
ffi
0.0119×

Dρf V

μf

� �0.52
� �

× Kf ×Kangle ×ΔT½ �
R Tcð Þ

vuut

8>>>>>><
>>>>>>:

ð2Þ

where, ΔT is Tc −T2, in which Tc and T2 are conductor temperature and ambient air
temperature, respectively. Moreover, D is the conductor diameter, and ρf is the

Real time
Operation

Day ahead
schedule

Realized systemForecast the system
Parameters

Weather Conditions

Fig. 2 The framework of
operation

352 S. Madadi et al.

density of air at temperature of Tc +T2
2 . In addition, v is the speed of air stream at

conductor, and μf is the dynamic viscosity of air at temperature of Tc + T2
2 . Beside, Kf

is the thermal conductivity of air at temperature of Tc + T2
2 , and Kangle is a parameter

representing the angle between wind speed and the conductor axis. Capacity of each
sag points of overhead line is calculated and minimum capacity of these points is
selected for capacity of overhead line. This model for calculating dynamically
capacity of overhead lines is difficult, and it often is used for determining static
capacity of overhead lines. In determining static capacity of overhead lines, the
worst case scenario such as minimum wind speed and highest ambient temperature
are used. The value obtained using the worst case scenario is called static line
rating. SLR can be computed by using the following equation.

ISLRmax ≈
1.01 + 0.0371× Dρf V

SLR

μf

� �0.52
� �

× Kf ×Kangle ×ΔTSLR
	

R Tcð Þ ð3Þ

where, VSLR is wind speed at static line rating condition, and ΔTSLR is temperature
difference. High ambient temperature and high conductor temperature is selected
for calculating temperature difference. These values may change at seasonal con-
dition; however, it is assumed constant for all seasons in this work. Other param-
eters can be found at design standards of overhead lines. In this chapter, wind speed
is set to 0.5 m/s and ambient temperature is set to 50 for SLR calculation.

DLR can be estimated with real time weather condition. This method is based on
impact of weather condition on capacity of overhead lines. Real time weather
conditions consist of wind speed and air temperature at each sag points of overhead
line. In [14], a simplified method for DLR calculation using SLR is presented. This
method neglected the correlation between air temperature and wind speed and
investigated their effect on capacity of overhead lines. The ratio of η is defined to
model the impact of wind speed and air temperature on capacity of overhead lines.

IDLRmax =maxð

ISLRmax

ð v
vSLR

Þ0.26
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc − T

Tc − TSLR

q
ISLRmax

0.566
v0.26SLR

ðρfμf Þ
0.04D0.04v0.3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc − T

Tc − TSLR

q
ISLRmax

8>>><
>>>:

ð4Þ

Capacity of each sag point of overhead lines is estimated by (4) and minimum
capacity is considered as dynamic line rating for studies period. This method used
separate equation for calculating DLR at low wind speed scenario and high wind
speed scenario. DLR should not be lower than SLR. The measured data is applied to
compute line capacity by (4). However, power system is generally scheduled in day
ahead. Therefore, the system operators need an exact forecasted DLR to use this
option. Data Analytics step in big data process can obtain the value of DLR. Dif-
ferent techniques are presented in recent studies for forecasting data required for
power system planning. In this chapter, the authors utilized radial basis function

Application of Big Data Analysis to Operation … 353

(RBF) neural networks in order to predict DLR. Figure 3 illustrates a RBF neural
network that inputs of RBF network is designated by x1, x2, . . . , xnf g and y is the
output [15, 16]. This RBF network has a hidden layer of basis function or neurons.
The output of each neurons calculation is based on distance between the neuron
center and the input vector. The RBF network is formed by a weighted sum of the
neurons outputs that are shown by Eqs. 7 and 8. ϕij is radial basis function. Gaussian
function, multi-quadric function and linear function can be used for radial basis
function but the most commonly used basis function is Gaussian function that is
shown by (7). Where, xi is training data, σ is width of Gaussian functions, x is the
central point of function, and x− xik k is distance of sample from the central function.
In this chapter, Gaussian function is used as basic function and gradient descent
algorithm is used for training of the RBF network. In this algorithm, the weights are
updated in a direction of the negative of the gradient, which is shown by (8).

y= ∑
N

j=1
wjϕjð xi − xj

�� ��Þ ð5Þ

y= ∑
N

j=1
wjϕij ð6Þ

ϕið x− xik kÞ= expð− x− xik k2
2σ2

Þ ð7Þ

wj t+1ð Þ=wj tð Þ− η∇E wj tð Þ
� � ð8Þ

3.2 The Performance of Big Data Processing (DLR
Calculation) in System Operation

In this subsection, a simple instance is investigated to show the impact of big data
processing (DLR calculation) in system operation. The system includes three
thermal generation units, two wind farms, a hydro unit, and a pumped storage plant.
The schematic of the studied test system is demonstrated in Fig. 4.

+

Input Layer hidden Layer

Output Layer

1x

2x

xn

y
1w

2w

nw

Fig. 3 A graphical
representation of RBF

354 S. Madadi et al.

LOAD 1

UNIT1 UNIT2

WIND FARM
1

PUMPED STORAGE

LOAD 1
UNIT3

WIND FARM
2

Hydro unit

BUS 1

BUS 2

LINE

Fig. 4 The schematic of the studied test system

Table 1 Data for thermal
generation units

Generation unit/characteristics Unit 1 Unit 2 Unit 3

PmaxðMWÞ 50 100 110
PminðMWÞ 5 10 10
Cð$ ̸MWhÞ 10 30 35

CRUð$ ̸MWhÞ 16 13 10

CRDð$ ̸MWhÞ 15 12 9

0 10 20 30 40 50 60 70 80 90 100
140

160

180

200

220

240

260

280

300

320

340
Outputs
Targets

Fig. 5 The forecasted DLR

Application of Big Data Analysis to Operation … 355

The data for thermal generation units is provided in Table 1. The lower and
upper bounds of generation units, and cost functions and reserve cost of the units
are reported in this table.

The mathematical models for this optimization problem is presented in [17].
Here, we study the impact of DLR calculated by big data processing in the oper-
ation cost. The forecasted value of DLR is shown in Fig. 5. The RBF neural
network is employed to predict the parameters of DLR. Then, the value of DLR is
calculated by (4). The operation cost for a system with static line capacity, which is
180 MW and a system with DLR is reported in Table 2.

4 Fault Detection/Protection

The big data process approach can be used for fault detection by the system
operator. High impedance fault generally happens when the power network com-
ponents such as distribution line or high impedance surface touches a high impe-
dance object for instance trees. Detection of this type of fault is very hard because
such types of fault has high impedance in the fault point [18]. Hence, the common
protection devices can not properly operate. The electric arcing (harmonic and
non-harmonic components) is generally deployed to detect such fault types.
However, some of the power system operation conditions such as air switching
operation, nonlinear load, capacitor bank operation, power factor correction, volt-
age profile management and losses minimization, have a same behavior to high
impedance faults. Therefore, high impedance fault detection approach should be

Table 2 The operation cost System with SLR System with DLR

Schedule 18235 16850
Reserve 4750 3833
Total 13485 13017

System Conditions

Classified the
harmonics

PMU unitsDecomposed current
into the harmonics

High impedance
detection

Fig. 6 Framework of high
impedance fault detection

356 S. Madadi et al.

able to classify such operation and fault conditions [19, 20]. In this section, the
impact of big data is studied, which receives from the smart meter tools of fault
detection. The framework of this problem is shown by Fig. 6. The current har-
monics are used to detect high impedance fault and distinguish fault with other
similar operations. In addition, the researchers propose different machine learning
approaches to solve such problem. In this study, the Group Method of Data handing
(GMDH) is deployed to recognize high impedance faults occurring in power sys-
tems. The following subsection introduces the GMDH approach.

4.1 GMDH

GMDH can be classified into the learning machine based on the rule of heuristic
self-organized map. A schematic of this network is shown in Fig. 7. Such type of
machine learning is presented by Ivankenko [21]. Such method includes several
steps similar to gardening steps [22]. The abbreviated method contains seeding,
rearing, crossbreeding and the sifting of seed. In GMDH networks, a model is built
by a set of neurons which are connected together in each layer and producing a
neuron in the next layer. A mathematical model of GMDH is illustrated by (9). In
such formulation, parameter f ̂ is an approximation function to determine input class
and output of the model for input vector of X = x1, x2, . . . , xnf g is represented by y ̂.

y ̂= f ̂ x1, x2, . . . , xmð Þ ð9Þ

In the GMDH, general correlation between the class number and input variables
is found. Such correlation is based on mathematical equations. The parameters of
such equations are determined for minimizing objective function, which is illus-
trated as:

OBJ
min

= ∑
M

i=1
f ̂ xi1, xi2, . . . , ximð Þ− yi
	
2 ð10Þ

+

+

+

+

+

+

+

Input
Layer

Output Layer

Fig. 7 Schematic of GMDH network

Application of Big Data Analysis to Operation … 357

where objective function is shown by OBJ. The number of training data is deter-
mined by M. f ̂ xi1, xi2, . . . , ximð Þ shows estimation class which is obtained by
GMDH. Actual class of such input variables is represented by yi.

A complicated discrete form of the Volterra function is generally used to rep-
resent impact of input and output variables. Such function is shown in (11) ω is the
GMDH parameter and x, y are the input and output variables respectively.

y=ω0 + ∑
n

i=1
ωixi + ∑

n

i=1
∑
n

j=1
ωijxixj + ∑

n

i=1
∑
n

j=1
∑
n

k=1
ωijkxixjxk + . . . ð11Þ

This chapter uses Levenberg Marquardt (LM) algorithm to train GMDH. Such
algorithm is similar to iterative and the goal of method is minimizing a function
illustrated in (12). The mathematical model for this learning method is:

E=
y− y ̂ð Þ2
2

ð12Þ

z1 =WT
11.X11 ð13Þ

z2 =WT
12.X12 ð14Þ

W21 = ω0
21,ω

1
21,ω

2
21,ω

3
21,ω

4
21,ω

5
21

� T ð15Þ

W11 = ω0
11,ω

1
11,ω

2
11,ω

3
11,ω

4
11,ω

5
11

� T ð16Þ

W12 = ω0
12,ω

1
12,ω

2
12,ω

3
12,ω

4
12,ω

5
12

� T ð17Þ

X21 = 1, z1, z2, z1z2, z21, z
2
2

� T ð18Þ

X11 = 1, x1, x2, x1x2, x21, x
2
2

� T ð19Þ

X12 = 1, x1, x3, x1x3, x21, x
2
3

� T ð20Þ

where input variable is determined by xk and zk is intermediate variables. Vector of
neurons is denoted by Xts. In such symbol, the number of layers and number of
neurons in each layer are specified by t and s, respectively, andWts is weight vector.

The Jacobian matrix as the partial differentiation taken for the error function,
based on the chain rule is defined as:

½J2s�= ∂E
∂W2s

� �T

=
∂E
∂y ̂

∂zs
∂ω0

2s
,
∂zs
∂ω1

2s
,
∂zs
∂ω2

2s
,
∂zs
∂ω3

2s
,
∂zs
∂ω4

2s
,
∂zs
∂ω5

2s

� �
ð21Þ

358 S. Madadi et al.

½J1s�= ∂E
∂W1s

� �T

=
∂E
∂y ̂

∂ŷ
∂X2s

. ∂X2s
∂zs

. ∂zs
∂ω0

1s

∂y ̂
∂X2s

. ∂X2s
∂zs

. ∂zs
∂ω1

1s
∂ŷ
∂X2s

. ∂X2s
∂zs

. ∂zs
∂ω2

1s

∂y ̂
∂X2s

. ∂X2s
∂zs

. ∂zs
∂ω3

1s
∂ŷ
∂X2s

. ∂X2s
∂zs

. ∂zs
∂ω4

1s

∂y ̂
∂X2s

. ∂X2s
∂zs

. ∂zs
∂ω5

1s

8>><
>>:

9>>=
>>;

T

ð22Þ

According to such equations updated weight matrixes are obtained as:

Wnew
2s =Wold

2s + JT2sJ2s + μ.I
	

JT2sE ð23Þ

Wnew
1s =Wold

1s + JT1sJ1s + μ.I
	

JT1sE ð24Þ

where μ is the learning rate between 0 and 1. Furthermore, by adjusting the
weighting coefficients by Levenberg–Marquardt, the corresponding quadratic
polynomial neurons are presented as by:

S ̸Dð Þ12 = − 0.1734− 0.0266Ns +0.0488θ

+ 0.0129 Nsð Þ θð Þ+0.0182 Nsð Þ2 + 0.0488 θð Þ2
ð25Þ

S ̸Dð Þ18 = − 0.0785+ 0.0213KC

+ 1.1734 × 10− 5Re+ 3.3563× 10− 7 KCð Þ Reð Þ
− 1.1385 × 10− 4 KCð Þ2

+ 4.0551 × 10− 7 Reð Þ2
ð26Þ

S ̸Dð Þ19 = − 0.0306− 0.0419KC+6.3156Red

+ 1.8427 KCð Þ Reð Þ+7.7577× 10− 4 KCð Þ2

− 226.2307 Redð Þ2
ð27Þ

S ̸Dð Þ21 = − 0.012+ 0.1195 S ̸Dð Þ12 + 0.09 S ̸Dð Þ15
+ 0.0142 S ̸Dð Þ12 S ̸Dð Þ15 + 0.0074 S ̸Dð Þ12

� �2

+ 0.0067 S ̸Dð Þ15
� �2

ð28Þ

The number of layers and number of neurons in the layer is shown by (S/D).

4.2 Simulation Results

4 sets of prescribed events are deployed for constructing the big data based on
GMDH model with the target of high impedance faults detection. They are defined
as follows:

Application of Big Data Analysis to Operation … 359

• Set 1: tripping of the nonlinear load
• Set 2: operating an air switching
• Set 3: operating a capacitor bank
• Set 4: occurring a high impedance fault

Each set of such events is simulated under different smart grid operating states.
Such operating states are normal system loading, minimum system loading and
maximum system loading. A part of training data is illustrated in Table 3. In such
table class 1 demonstrates the fault occurring condition and other condition is
shown by class 0. Figure 8 shows the result of accuracy of the proposed technique.

Table 3 A part of training data

The first
harmonic

3th
harmonic

5th
harmonic

7th
harmonic

9th
harmonic

Class

55.875 0.06 19.7521 6.7813 0.0519 0
62.897 0.0575 56.8906 12.7226 0.0715 0
81.2775 0.2668 88.2769 16.236 0.0837 0
56.3028 0.0693 24.7787 7.9388 0.0928 0
66.5219 0.2616 73.3183 17.1846 0.0393 0
100.4955 0.1788 90.987 17.2103 0.3523 0
62.8311 0.0574 56.6858 12.6978 0.0702 0
58.0326 0.0781 37.6233 10.2805 0.1079 0
376.6222 0.3133 74.5632 16.4449 0.468 0
160.1868 0.6673 62.1958 13.185 0.4715 0

434.8189 0.7889 70.6437 16.0099 1.0728 0
308.784 1.4628 0.7841 0.4299 308.784 1
327.2618 1.4614 0.7938 0.44 327.2618 1
438.2918 1.4036 0.8013 0.4645 438.2918 1
455.3458 1.3903 0.7973 0.4645 455.3458 1
168.8984 1.2423 0.5377 0.248 168.8984 1
85.295 0.6179 0.1831 0.0556 85.295 1
95.9708 0.728 0.2344 0.0798 95.9708 1
164.6647 2.8955 10.2766 7.8294 164.6647 1
192.1416 2.6278 7.5285 6.927 192.1416 1
123.5071 2.35E-04 2.37E-04 2.40E-04 2.42E-04 0
152.6619 2.85E-04 2.85E-04 2.85E-04 2.84E-04 0
194.9956 3.04E-04 3.09E-04 3.17E-04 3.30E-04 0
248.9097 1.33E-04 1.46E-04 1.64E-04 1.90E-04 0
266.7952 2.24E-04 2.33E-04 2.47E-04 2.68E-04 0
375.0032 1.28E-04 1.46E-04 1.73E-04 2.09E-04 0

360 S. Madadi et al.

5 Conclusion

In this chapter, the application of big data analysis to smart grids is studied. The first
step in big data processing is the asset management, which provides data for the
certain analysis related to applications of power systems. Two various utilization
cases of big data are investigated in the chapter. The first case is operation of a test
system considering dynamic line rating (DLR), which is forecasted by implemen-
tation of the big data received from the smart meters. The obtained results proves
that the big data can be effective in reducing total cost for a small case study.
Accordingly, it can be proved that a significant reduction of total cost for big cases
can be obtained. The second case study is a decision making based on big data for
detecting high impedance fault occurrence in the power system, which is defined as
worthy and difficult subjects in the power systems protection.

References

1. Zhou, K., Chao, F., & Yang, S. (2016). Big data driven smart energy management: From big
data to big insights. Renewable and Sustainable Energy Reviews, 56, 215–225.

2. Momoh, J. A. (2009). Smart grid design for efficient and flexible power networks operation
and control. In 2009 Power Systems Conference and Exposition,. PSCE’09. IEEE/PES. IEEE.

3. Amin, M. (2008). Challenges in reliability, security, efficiency, and resilience of energy
infrastructure: Toward smart self-healing electric power grid. In 2008 IEEE Power and
Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st
Century. IEEE.

4. Hossain, M. S., et al. (2016). Role of smart grid in renewable energy: An overview.
Renewable and Sustainable Energy Reviews, 60, 1168–1184.

5. Wu, X., Zhu, X., Wu, G.-Q., & Ding, W. (2014). Data mining with big data,” IEEE
Transactions on Knowledge and Data Engineering, 26, 97–107.

0 1

0

1

27
60.0%

1
2.2%

96.4%
3.6%

0
0.0%

17
37.8%

100%
0.0%

100%
0.0%

94.4%
5.6%

97.8%
2.2%

Target Class

O
u

tp
u

t C
la

ss

Train Data Confusion Matrix

0 1

0

1

21
51.2%

1
2.4%

95.5%
4.5%

0
0.0%

19
46.3%

100%
0.0%

100%
0.0%

95.0%
5.0%

97.6%
2.4%

Target Class

O
u

tp
u

t C
la

ss

Test Data Confusion Matrix

Fig. 8 The accuracy of high impedance detection method

Application of Big Data Analysis to Operation … 361

6. Zhou, K., & Yang, S. (2015). A framework of service-oriented operation model of China׳ s
power system. Renewable and Sustainable Energy Reviews, 50, 719–725.

7. Efthymiou, C., & Kalogridis, G. (2010). Smart grid privacy via anonymization of smart
metering data. In 2010 First IEEE International Conference on Smart Grid Communications
(SmartGridComm). IEEE.

8. McKenna, E., Richardson, I., & Thomson, M. (2012). Smart meter data: Balancing consumer
privacy concerns with legitimate applications. Energy Policy, 41, 807–814.

9. Hu, H., Wen, Y., Chua, T.-S., & Li, X. (2014). Toward scalable systems for big data
analytics: A technology tutorial. IEEE Access, 2, 652–687.

10. Kezunovic, M., Xie, L., & Grijalva, S. (2013). The role of big data in improving power
system operation and protection. In 2013 IREP Symposium on Bulk Power System Dynamics
and Control-IX Optimization, Security and Control of the Emerging Power Grid (IREP)
(pp. 1–9).

11. Dalal, G., Gilboa, E., & Mannor, S. (2016). Distributed scenario-based optimization for asset
management in a hierarchical decision making environment. Power Systems Computation
Conference (PSCC), 2016, 1–9.

12. Yang, S.-l., & Shen, C. (2013). A review of electric load classification in smart grid
environment. Renewable and Sustainable Energy Reviews, 24, 103–110.

13. IEEE. (2006). IEEE standard for calculating the current temperature of bare overhead
conductors.

14. Wallnerstrom, C. J., Huang, Y., & Soder, L. (2015). Impact from dynamic line rating on
winpower integration. IEEE Transactions on Smart Grid, 6(1), 343–350.

15. Chen, D. (2017). Research on traffic flow prediction in the big data environment based on the
improved RBF neural network. IEEE Transactions on Industrial Informatics.

16. Shetty, R.P., Sathyabhama, A., & Adarsh Rai, A. (2016). Optimized radial basis function
neural network model for wind power prediction. In 2016 Second International Conference
on Cognitive Computing and Information Processing (CCIP). IEEE.

17. Morales, J.M., et al. (2013). Integrating renewables in electricity markets: Operational
problems (Vol. 205). Springer Science & Business Media.

18. Sulaiman, M., Adnan, T., & Ibrahim, Z. (2013). Using probabilistic neural network for
classification high impedance faults on power distribution feeders. World Applied Sciences
Journal, 23(10), 1274–1283.

19. Mor, V., & Vaghamshi, A. (2016). Review on fault detection, identification and localization
in electrical networks using fuzzy-logic.

20. Kagan, N., et al. (2016). Computerized system for detection of high impedance faults in MV
overhead distribution lines. In 2016 17th International Conference on. Harmonics and
Quality of Power (ICHQP). IEEE.

21. Dag, O., & Yozgatligil, C. (2016). GMDH: An R package for short term forecasting via
GMDH-type neural network algorithms. The R Journal, 8(1), 379–386.

22. Xiao, J., et al. (2016). Churn prediction in customer relationship management via
GMDH-based multiple classifiers ensemble. IEEE Intelligent Systems, 31(2), 37–44.

362 S. Madadi et al.

A Structural Graph-Coupled Advanced
Machine Learning Ensemble Model
for Disease Risk Prediction
in a Telehealthcare Environment

Raid Lafta, Ji Zhang, Xiaohui Tao, Yan Li, Mohammed Diykh and Jerry
Chun-Wei Lin

Abstract The use of intelligent and sophistic technologies in evidence-based

clinical decision making support have been playing an important role in improving

the quality of patients’ life and helping to reduce cost and workload involved in their

daily healthcare. In this paper, an effective medical recommendation system that uses

a structural graph approach with advanced machine learning ensemble model is pro-

posed for short-term disease risk prediction to provide chronic heart disease patients

with appropriate recommendations about the need to take a medical test or not on

the coming day based on analysing their medical data. A time series telehealth data

recorded from patients is used for experimentations, evaluation and validation. The

Tunstall dataset were collected from May to October 2012, from industry collabo-

rator Tunstall. A time series data is segmented into slide windows and then mapped

into undirect graph. The size of slide window was empirically determined. The struc-

tural properties of graph enter as the features set to the machine learning ensem-

ble classifier to predict the patient’s condition one day in advance. A combination

of three classifiers—Least Squares-Support Vector Machine, Artificial Neural Net-

work, and Naive Bayes—are used to construct an ensemble framework to classify the

graph features. To investigate the predictive ability of the graph with the ensemble

R. Lafta ⋅ J. Zhang (✉) ⋅ X. Tao ⋅ Y. Li ⋅ M. Diykh

Faculty of Health, Engineering and Sciences, University of Southern

Queensland, Toowoomba, Australia

e-mail: ji.zhang@usq.edu.au

R. Lafta

e-mail: raidluaibi.lafta@usq.edu.au

X. Tao

e-mail: xtao@usq.edu.au

Y. Li

e-mail: yan.li@usq.edu.au

M. Diykh

e-mail: mohammed.diykh@usq.edu.au

J. C.-W. Lin

School of Computer Science and Technology, Harbin Institute of Technology

Shenzhen Graduate School China, Shenzhen, China

e-mail: jerrylin@ieee.org

© Springer Nature Singapore Pte Ltd. 2018

S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_18

363

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_18&domain=pdf

364 R. Lafta et al.

classifier, the extracted statistical features were also forwarded to the individual clas-

sifiers for comparison. The findings of this study shows that the recommendation

system yields a satisfactory recommendation accuracy, offers a effective way for

reducing the risk of incorrect recommendations as well as reducing the workload

for heart disease patients in conducting body tests every day. A 94% average predic-

tion accuracy is achieved by using the proposed recommendation system. The results

conclusively ascertain that the proposed system is a promising tool for analyzing time

series medical data and providing accurate and reliable recommendations to patients

suffering from chronic heart diseases.

1 Introduction

The chronic diseases such as heart disease have developed and become one of the

major public health problems which accounting for 50% of disease burden world-

wide [22]. According to World Health Organization (WHO), these diseases were

caused more than 60% of all death in 2005 [1]. Nowadays, many of people around

the world are suffering from different chronicle diseases because the lack of used dis-

eases prediction tools. Therefore, the survival rates have been noticeably increased

due to using sophisticated techniques to predict diseases in a right time.

Recommendation systems are computer-based information systems designed to

support and assist medical practitioners in implementation evidence-based practices

and improved decision-making [10, 31]. The recommendation systems can help

in minimizing medical errors and providing more detailed data analysis in shorter

time [38].

Telehealth systems offer a real time and quick way that is enable healthcare prac-

titioners and chronic diseases patients to exchange information easily [11, 45], and

subsequently have enjoined fast developments in many countries due to fast service

delivery and its low-cost. Most telehealth services are conveyed through Web-based

applications which utilize Internet and Web browsers, together with sensors, wear-

able devices and mobile. Given the significance of disease risk prediction in the

medical field [48] as well as the urgency of acquiring more effective analytic tech-

niques for disease risk prediction, great endeavors are expected to enhance the quality

of evidence-based decisions and recommendations in the telehealth environment. In

telehealth system, patients with chronic heart disease require taking daily medical

tests to monitor their heart health conditions. Yet, carrying out various necessary

medical tests every day for chronical disease patients in the current practice brings

lots of inconvenience and even burden to the patients and adversely affect their life

quality. Generating accurate intelligent recommendations to guide their daily medi-

cal tests can significantly decrease their workload in taking those tests while keeping

the associated health risk in a worthy low level.

A Structural Graph-Coupled Advanced Machine . . . 365

In many cases, an accurate medical recommendation is based upon the prediction

of patients’ short-term disease risk, which is one of the most important functions in

telehealth systems. A set of disease risk prediction models have become available in

the medical literature using statistical analysis tools and approaches based on data

mining tools. These models have been utilized for different healthcare and medical

issues [7, 9, 17, 21, 30, 33, 36, 39, 46, 47]. However, most of the existing work only

focus on the long-term medical prediction. Nevertheless, the short-term prediction,

which is studied in our work, has turns to be more challenging than the long-term

prediction as patients’ conditions may experience more dramatic and abrupt changes

during the short-term timeframe.

In this work, we utilize a structural graph to process the time series medical data

of heart disease patients to facilitate the subsequent data analytics to produce the

accurate prediction and recommendations. Graphs can be mathematically defined

as abstract representations of networks that consist from set of nodes linked by

edges [28, 35]. In last years, graph theory has been widely increasingly used in

analysing and classification of the complex networks relationships such as, social

networks, biological and brain networks, signal and image processing. It is used in

neuroscience research to analyse and study the brain diseases [32, 43, 44]. Some

studies [16, 26, 37] showed that graph theory can be considered as a one of robust

tools to characterize the functional topological properties of brain networks for both

normal and abnormal brain functioning [25, 41]. It is also used in image processing

as a powerful tool to analyse and classify digital images [34]. The time series of EEG

signals are converted into graphs by [12, 13] for EEG sleep stages classification.

The intelligent, accurate medical recommendations in our work rely on the use

of classification approaches to produce reliable prediction of the short-term medical

risks of the patients. By nature, this is a classification problem which involves using

classification methods (called classifiers) to predict the necessity of taking body test

of a given medical measurement.

There are several reasons that pushed us to construct the ensemble classifier. First,

it provides an efficient solution for building a single model for applications of which

the amount of data may be very large [40]. Second, it has also been proven to be an

effective tool thanks to its ability to improve the overall accuracy of the prediction

model. Empirical results showed that machine learning ensembles are often more

accurate than the individual classifiers that make them up [3, 42]. Bagging aggre-

gation is a machine learning ensemble algorithm designed to enhance the accuracy

and stability of machine learning algorithms [8], which was proposed by Breiman in

the mid-1990s [40]. It has been proven to be a very popular, efficient and effective

method for building an ensemble model.

Due to the ensemble outperforms individual classifiers, a combination of three

classifiers—Least Squares-Support Vector Machine, Artificial Neural Network, and

Naive Bayes—are used to construct an ensemble framework in this work.

366 R. Lafta et al.

The contributions of this work can be summarized as follows:

∙ First, the time series medical data of a given patient will be segmented into smaller

overlapped sliding windows based on the size of the sliding window used in the

data analysis;

∙ Then, each sliding window is mapped into undirect graph in order to extract the

structural properties of each graph;

∙ Finally, the extracted structural properties of each graph are then input into our

ensemble learning model to produce a binary recommendation concerning whether

that patient needs to take a medical test on the coming day for a certain medical

measurement such as the heart rate or blood pressure.

In this paper, a novel short-term recommendation system for chronic heart dis-

ease patients is proposed. This system is developed using a structural graph with a

machine learning ensemble model to provide patients in a telehealth environment

with appropriate recommendations for the necessity of taking a medical body test

on the coming day. Such recommendations are established based on the prediction

of their heart conditions using their time series medical data from the past few days.

To verify the performance of the proposed model, the metrics of accuracy, work-

load saving and risk are used and experimental evaluations are conducted on a real-

life time series data collected from a pilot study on a group of heart failure patients.

The experimental results demonstrate that the proposed model yields a reasonably

good recommendation accuracy and can effectively reduce the workload required in

medical tests for the patients. It also can effectively reduce the risk of incorrect rec-

ommendations. We believe that this analytic model is promising in risk assessment

and management associated with heart failure and other similar diseases.

The remainder of this paper is organised as follows. Section 2 explains the details

of the proposed methodology including describes the machine learning classifiers

that constructing the proposed ensemble model. Section 3 discussed in details the

experimental evaluation results and the used dataset and also compared the results

of the proposed method with other results of common methods. Finally we conclude

the paper and highlight the future work in Sect. 4.

2 Methodology

Figure 1 illustrates the overall architecture of our recommendation system used for

chronic heart disease patients in the telehealth environment. In this section, we

present in details the architecture of the recommender system.

A Structural Graph-Coupled Advanced Machine . . . 367

Fig. 1 An overview of the proposed methodology

2.1 Time Series Segmentation

In our system, the input time series data, represented asX = {y1, y2, y3,… , yn}which

contains n data, is segmented into a set of overlapped sub-segments based on a prede-

fined value of parameter k that specifies the size of the sliding window, corresponding

to each sub-segment. In this work, many experiments are conducted with different

numbers of slide window sizes (k). It is important to divide the time series data into

several windows because each slide window will be mapped into a separated graph

and then extract the effective features from graphs to represent the slide windows.

2.2 Graph Construction and Structural Graph Similarity

Each slide window was mapped as an undirect graph. A graph is a pair of sets G =
(V ,E), where V is a set of nodes (vertices, or points) so that each node represents

the value of a test measurement for that day and E is a set of connections among the

nodes of graphs. Therefore, each pair of nodes in a graph are connected by a link

if there is a relationship between them [4, 5, 29]. The Euclidean distance has been

widely used as a similarity measuring method [6, 18, 19]. Let Dij = 1, 2, 3,… ,M
be the set of time series of M test measurements in each slide window. Each test

measurement in a slide window is assigned to be a node in an undirected graph. Lets

n1 and n2 be nodes in an undirected graph. They are connected if the distance (d)

between them are less or equal to a determined threshold [13]:

(n1, n2) ∈ E, if d(n1, n2) ≤ 𝜃 (1)

where 𝜃 is a determined threshold. An example of an undirect graph is shown in

Fig. 2. A graph G can be described by giving a square matrix N × N called adjacency

or connectivity matrix A to describe the connections among the nodes of graph.

368 R. Lafta et al.

Fig. 2 An example of an

undirect graph

Table 1 The adjacency matrix of a graph G
n1 n2 n3 n4 n5 n6 n7

n1 0 1 1 1 1 1 0

n2 1 0 1 0 0 0 0

n3 1 1 0 1 0 0 0

n4 1 0 1 0 1 0 1

n5 1 0 0 1 0 0 1

n6 1 0 0 0 0 0 1

n7 0 0 0 1 1 1 0

The adjacency matrix contains zeros in it’s diagonal and thus it is a symmetric matrix.

The adjacency matrix is qual to one if there is a connect between two nodes, and zero

otherwise [6].

A(ni, nj) =

{
1 if (ni, nj) ∈ E,
0 otherwise.

(2)

For example, Table 1 shows the adjacency matrix of a graph G that consists from

7 nodes. We can notice that each element aij in an adjacency matrix A is equal to

1 when the connection exists, and zero otherwise. The diagonal of matrix A is still

zero for all it’s elements.

A Structural Graph-Coupled Advanced Machine . . . 369

2.3 Graph Features

The adjacency matrix of a graph G can be used to extract the statistical features of a

graph G [13, 14, 26]. The statistical features of a graph can be used for prediction

in this study. The following sections illustrate the most common extracted features

from a graph G.

2.3.1 Degree Distributions of the Graph

The degree distribution, that denoted by P(k), refers to the proportion of nodes with

degree k divided by the total number of nodes in the graph [13]. It can be mathemat-

ically defined as follow:

P(k) = |{n ∣ d(n) = k}|
N

(3)

where d(n) refers to the degree of node n, N is the total number of nodes in the graph.

2.3.2 The Clustering Coefficient of the Graph

Clustering coefficient (CC) is one of the most important measures used to charac-

terize the local and global structures of a graph [13, 26, 28]. Let ni be a node in a

graph G. Thus the local clustering coefficient of a given node ni is computed as the

proportion of links among ni’s neighbours which are actually realised compared with

the total number of possible connections. For example, the clustering coefficient of

a node n3 in Fig. 2 is 1 because the node n3 has three neighbours, which can have

a maximum of 3 connections among them and all of them are realised. The over-

all level of clustering in a graph is measured as the average of the local clustering

coefficients of all the nodes:

C′ = 1
N

N∑
i=1

Cni (4)

where,N is the number of nodes in a graphG andCni is the local clustering coefficient

of the node ni.

2.3.3 Jaccard Coefficient of the Graph

Jaccard Coefficient (it also called Jaccard Index) is a statistical tool that used to mea-

sure the similarity and diversity between two nodes of a graph [20]. Let ni and nj are

two nodes in a graph G. Thus the Jaccard coefficient 𝛤 (ni, nj) is defined as the ratio

370 R. Lafta et al.

of the set of the neighboring intersections between those two nodes to the set of the

neighboring unions for the two nodes. It can be mathematically defined as follows:

𝛤 (ni, nj) =
|N(ni) ∩ N(nj)||N(ni) ∪ N(nj)| (5)

where N(ni) is the set of neighbors of the node ni that have an edge from ni to them,

and N(nj) is the set of neighbors of the node nj that have an edge from nj to them.

2.3.4 Average Degree

The average degree (AD) points out to the average number of links connecting in a

node ni to the other nodes in the graph [2]. The average degree of a graph can be

defined as the total number of links for each node divided by the number of nodes

in a graph [12]:

AD = 1
N

m∑
i=1

Ki (6)

where Ki is the degree of node ni and N is the total number of nodes in a graph.

For example, we can easily calculate the degree of each node for a graph G shown

in Fig. 2 and then calculate the average degree (AD) as follows:

K(n1) = 5,K(n2) = 2,K(n3) = 3,K(n4) = 4,K(n5) = 3,K(n6) = 2,K(n7) = 3,
K(n8) = 0, and AD = 2.

2.4 Bootstrap Aggregation (Bagging)

An ensemble approach is a very effective method that combines the decisions of

multiple base classifiers in order to overcome the limited generalization perfor-

mance of each base classifier and generate more accurate predictions than individual

base classifier. Bootstrap aggregation, a.k.a bagging, is a machine learning ensemble

algorithm designed to enhance the accuracy and stability of machine learning algo-

rithms [15, 27]. In the bootstrap method, the classifiers are trained independently and

then aggregated by an appropriate combination strategy. Specifically, our ensemble

model can be divided into two phases. In the first phase, the model uses bootstrap

sampling to generate a number of training sets. In the second phase, the training of the

three base classifiers, i.e., Least Square-Support Vector Machine, Neural Network

and Naive Bayes, is performed using the bootstrap training sets generated during

the first phase. Figure 3 shows an example of the bagging algorithm which involves

the three classifiers to build our ensemble model. In this study, the training set was

divided into multiple datasets using the bootstrap aggregation approach, and then the

classifiers were individually applied to these datasets to generate the final prediction.

A Structural Graph-Coupled Advanced Machine . . . 371

Fig. 3 An example of a bagging algorithm

It is noted that different individual classifier in the bagging approach may perform

differently. Therefore, we assign a weight to each classifier’s vote, based on how well

the classifier performs. The classifier’s weight is calculated based on its error rate.

The classifier that has a lower error rate is considered more accurate and is therefore

assigned a higher weight. The weight of classifier Ci’s vote is calculated as follows:

w(Ci) = log
1 − error(Ci)
error(Ci)

, 1 ≤ Ci ≤ 3 (7)

The following example is presented to facilitate the understanding of our weighted

bagging ensemble model:

1. Least Square-Support Vector Machine, Neural Network, and Naive Bayes are

used as individual base classifier in the ensemble model. Suppose that the clas-

sifier training is performed on the training data and the error rate is calculated

for each base classifier as 0.14 for LS-SVM, 0.25 for NN, and 0.30 for NB;

2. As per Eq. (7), the weight 0.78 is assigned to LS-SVM, 0.47 to NN, and 0.36 to

NB;

3. Suppose that the three base classifiers generate the following predictions for a

coming testing day: LS-SVM predicts 0, NN predicts 1, and NB predicts 1 (Here,

372 R. Lafta et al.

0 means no test is required on the testing day for a medical measurement; 1 means

a test is required otherwise);

4. The ensemble classifier will use the weighted vote to generate the following pre-

diction results:

Class 1: NN + NB ⟶ 0.47 + 0.36 ⟶ 0.83,

Class 0: LS-SVM ⟶ 0.78.

5. Finally, according to the weighted vote, the class 1 has a higher value than class 0.

Therefore, the ensemble classifier will classify this testing day as being in Class

1, suggesting that the patient in question need to take the test on that day for a

medical measurement.

3 Experiment Result

This study aims at short-term risk assessment in chronic heart diseases patients based

on analytic of a patient’s historical medical data using structural graph similarity and

machine learning-based ensemble classifier. As mentioned above, the time series

slide windows were converted into undirect graphs. Then, the suitable features from

graphs were extracted and entered as input features set for the ensemble classifier.

The detailed experimental results are discussed in the following sub sections.

3.1 Performance Assessment

In this section, we present the details concerning the design of our experimental

evaluation including datasets and performance metrics.

As the predictive performance of the proposed model is quite important, assess-

ment of potential predictions is critically dependent on the quality of the used dataset.

For this reason, telehealth data from Tunstall dataset will be conducted in this work.

We use a real-life dataset obtained from our industry collaborator Tunstall to test

the practical applicability of the proposed model. A Tunstall dataset obtained from a

pilot study has been conducted on a group of heart failure patients and the resulting

data were collected for their day-to-day medical readings of different measurements

in a tele-health care environment. The Tunstall database employed in the develop-

ment of the algorithm consists of data from six patients with a total of 7,147 differ-

ent time series records. Data were acquired between May and January 2012, using

a remote telehealth collaborator. The dataset is by nature in a time series and con-

tains a set of measurements taken from the patients on different days. Each record in

the dataset consists of a few different meta-data attributes about the patients such as

patient-id, visit-id, measurement type, measurement unit, measurement value, mea-

surement question, date and date-received. The characteristics of the features of the

dataset are shown in Table 2.

A Structural Graph-Coupled Advanced Machine . . . 373

Table 2 Characteristic features of the dataset

Feature name Feature type

Id Numeric

Id-patient Numeric

HCN Numeric

Visit-id Numeric

Measurement type Nominal

Measurement unit Nominal

Measurement value Numeric

Measurement question Nominal

Date Numeric

Date-received Numeric

In addition, each record contains a few medical attributes including Ankles,

Chest Pain, and Heart Rate, Diastolic Blood Pressure (DBP), Mean Arterial Pressure

(MAP), Systolic Blood Pressure (SBP), Oxygen Saturation (SO2), Blood Glucose,

and Weight. Ethical clearance was obtained from the University of Southern Queens-

land (USQ) Human Research Ethics Committee (HREC) prior to the onset of the

study. This dataset is used as the ground truth result to test the performance of our

proposed model. The recommendations produced by our proposed model will be

compared with the actual readings of the measurement in question recorded in the

dataset to see how accurate our recommendations are.

Since a patient’s historical medical data often have the class-imbalance problem

(i.e., the number of normal data is much larger than that of the abnormal data),

we carefully dealt with the class-imbalance problem when training the classifiers.

The over-sampling and under-sampling methods have been used as good means to

address this problem.

The selected input data were divided into two groups as the training and the test-

ing sets. The slide windows time series data have been randomly divided into about

75% for the training of ensemble’s classifier and 25% for the testing purpose. Several

of experiments were designed and conducted to evaluate the proposed model using a

real-life Tunstall database. Different sizes of slide windows were used to determine

the best selected features set and the best size for each slide window as well. All the

experimental results were conducted using MATLAB (R2015) on a desktop com-

puter with the configurations of a 3.40 GHz Intel core i7 CPU processor with 8.00

GB RAM.

The performance of proposed method was evaluated by calculating the accuracy,

workload saving, and risk. Accuracy refers to the percentage of correctly recom-

mended days against the total number of days that recommendations are provided;

workload saving refers to the percentage of the total number of days when recom-

mendations are provided against the total number of days in the dataset, while risk

refers to the percentage of incorrectly recommended days that recommendations are

374 R. Lafta et al.

no test needed. Mathematically, Accuracy, workload saving and risk are defined as

follows [24]:

Accuracy = NN
NN + NA

× 100% (8)

Saving = NN + NA|D| × 100% (9)

Risk = NR|D| × 100% (10)

where NN denotes the number of days with correct recommendations, NA denotes

the number of days with incorrect recommendations, NR denotes the number of days

with incorrect days that recommendations are no test needed, and |D| refers to the

total number of days in the dataset. Here, a correct recommendation means that the

model produces the recommendation of “no test required” for the following day and

the actual reading for that day in the dataset is normal. If this is a case, the recom-

mendation is considered accurate.

3.2 Prediction Accuracy with Different Number of Features

We first carried out experiments to evaluate the recommendation performance of our

system under different sets of statistical features extracted from the siding windows

of the dataset. Several experiments are carried out to determine the best set of the

graph features by which the original time series can be represented with the best

form. The four graph features were tested separately to evaluate the prediction accu-

racy of the proposed system. Figure 4 shows the ranking of the statistical features

based on their performance where the features were sorted in a descending order

based on their effectiveness in predicting patient’s condition.

3.2.1 Two-Features Set

To determine the best combination of the two graph features, a set of experiments was

designed. In this experiment, at each time, a two features set of graphs was picked

up from the ordered list in Fig. 4 and sent to ensemble classifier. The number of

permutation of two graph features that was tested in this paper was six cases. Figure 5

shows the performance of the proposed method based on the graphs features. Based

on the obtained results, it was observed that the combination of Jaccard coefficient

and degree distribution recorded the highest accuracy of 81% compared to other

combinations. We found that those two features were able to give the promising

prediction. However, the lowest accuracy of 56% rate was recorded by the pair of

A Structural Graph-Coupled Advanced Machine . . . 375

Fig. 4 Ranking of the graph features based on their accuracy performance

Fig. 5 Accuracy based on two-features sets (Note DDDegree Distribution; JC Jaccard Coefficient;

CC Clustering Coefficient; AD Average Degree)

clustering coefficients and average degree. For further investigation, three features

set was tested in the next experiment.

3.2.2 Three-Features Set

To assess the method ability to predict the status of patient with a high accuracy, the

proposed method was tested using three features set. The first three graph features in

Fig. 4 were selected. The three features were degree distribution, Jaccard coefficient

and clustering coefficient. Figure 6 shows the performance of the proposed method

using three and four features sets. The most noticeable results from this experiment

were that the prediction accuracies were exceeded 94% compared with the sets of

376 R. Lafta et al.

Fig. 6 Accuracy based on

three and four features sets

two features. For more accurate results, different experiments were designed with

different data size. The results showed that there is a stability in the performance of

the proposed method. Another three features set was also tested in this paper, how-

ever, the results confirmed that the three features set of degree distribution, Jaccard

coefficient and clustering coefficient was the best combination of the graphs features

to provide the recommendation accurately.

Four features was also tested and investigated in this paper. Based on the results

in Fig. 6, the prediction accuracy of the proposed method was achieved a low rate

compared with three features set. It was archived 87% using all the graph features

including degree distribution, Jaccard coefficient, clustering coefficient and average

degree. In this paper, the combination of the first three features for degree distribu-

tion, Jaccard coefficient and clustering coefficient was considered as they achieved

the best accuracy.

3.3 Prediction Accuracy with Different Size of Slide Windows

The second influence in this work is associated to the size of window. In this experi-

ment, the best window size is investigated to obtain the desired prediction accuracy.

From the obtained results, it is clear that there is a positive relationship between the

selected size of slide window and the predictive performance of the proposed sys-

tem. It was found that when the number of nodes in a graph is increased due to the

increasing the size of a slide window, the proposed method generates more accurate

recommendations. To determine the optimum size of a slide, a set of experiments

were conducted with different sizes of windows. It found that the model performance

is improved by increasing the size of slide window (the number of nodes). This is

because the characterises of time series data are clearly presented when the number

of graph nodes is increased. Therefore, we tested our proposed model with different

sizes of window and started with 7, 10, 15 and 20 days. In these experiments, the

three features set of degree distribution, Jaccard coefficient and clustering coefficient

were considered. The four Medical attributes including Heart Rate, Diastolic Blood

A Structural Graph-Coupled Advanced Machine . . . 377

Table 3 Performance evaluation based on slide windows of 7 days

Measurement Accuracy (%) Saving (%) Risk (%)

Heart rate 86.37 60.34 05.21

DBP 85.30 57.18 05.40

MAP 87.70 61.33 05.00

SO2 84.30 55.44 05.90

Pressure (DBP), Mean Arterial Pressure (MAP), and Oxygen Saturation (SO2) were

used in the following experiments.

3.3.1 Slide Window of 7 Days

A slide windows of 7 days were used to test the predictive performance of the pro-

posed method. Each day in the slide window was represented by a node in a graph.

The three structural properties of the graphs were extracted and considered the key

features to represent each window. The metrics of accuracy, workload saving and

risk for all the graphs were calculated to verify the performance of proposed method.

Table 3 presents the metrics of accuracy, workload saving and risk for each measure-

ment in the Tunstall dataset.

Based on the obtained results, it was noticed that the performance of the proposed

method was not good enough to predict the patient’s condition due to the number of

the graph nodes was not enough to reflect the behaviours of the time series data. To

tackle this issue, the number of nodes in each graph was increased by considering

a new size window. In the next experiment, the influence of using a window size of

10 days was discussed.

3.3.2 Slide Window of 10 Days

The time series data were segmented into windows by using a slide window of

10 days and then each window was transferred into a graph. As mentioned before,

10 days slide windows were considered to improve the accuracy of the proposed

method and to make more accurate recommendations. One of the interesting find-

ings in this paper, the proposed method yielded a high performance using 10 days

slide window compared with the window size of 7 days. It can be noticed that the

performance of proposed method significantly improved due to the number of graph

nodes increased. It was found that the graphs nodes reflect big differences between

the patient states which include whether he/she requires medical test or not. Table 4

shows the obtained results by the proposed method after considering the window

size of 10 days.

378 R. Lafta et al.

Table 4 Performance evaluation based on slide windows of 10 days

Measurement Accuracy (%) Saving (%) Risk (%)

Heart rate 92.75 59.80 03.95

DBP 91.40 58.77 04.50

MAP 90.55 60.65 04.80

SO2 91.60 55.50 04.20

Table 5 Performance evaluation based on slide windows of 15 days

Measurement Accuracy (%) Saving (%) Risk (%)

Heart rate 94.80 62.30 02.60

DBP 93.80 59.50 03.60

MAP 93.90 61.40 03.40

SO2 94.60 61.80 02.90

Based on the obtained results in Table 4, It is interesting to note that the accura-

cies, for all the measurements, improved by more than 5% compared to the results

in Table 3. In addition, using window size of 10 days did not considerably affect the

performance of workload saving although the accuracy and risk are increased.

3.3.3 Slide Window of 15 Days

For further investigation, a window size of 15 days were adopted to test the perfor-

mance of the proposed method. In this experiment, the size of window was increased

into 15 day. Table 5 represents the metrics of accuracy, workload saving and risk for

all the measurements using slide window size of 15 days. Based on results in Table 5,

the average of accuracy of the proposed method were exceeded 94% across different

measurements. The obtained results proved that the size of the window has a signif-

icantly potential on the accuracy of the prediction for all the measurements. One of

the most important observations, the graphs characteristics were became significant

to exhibit different behaviours when the patient state change from required test to

not required test. We found that the connectivity among the graph nodes (clustering

coefficients) are strong enough to reveal the difference between time series data.

Different sizes of window including 20, 25 and 30 days were also tested and eval-

uated in this study. It was noticed that there are no significant differences compared

with the obtained results using the 15 days slide windows. Thus, the optimal window

size was 15 days because it reflects the actual behavior of the time series data, on the

basis of observation on the obtained results.

A Structural Graph-Coupled Advanced Machine . . . 379

3.4 Comparative Study

To investigate the performance of our recommendation system, two performance

comparisons were conducted in this section. In the first experiment, the performance

of the recommendation system was evaluated based on individual classifier as well as

machine learning-based ensemble classifier. In the second experiment, the proposed

system was compared with some of our previous approaches. All the obtained results

were recorded and evaluated.

3.4.1 Performance Evaluation Based on a Single Classifier as Well
as Ensemble Model

In this experiment, we evaluate the performance of our system under 15 day slide

windows and the three graph features set based on the previous information. Table 6

shows the results of comparison among the ensemble classifier and the individual

classifiers. Based on the results, the system performance using individual classifier

was between 80 and 85% across different measurements. The maximum accuracy of

85% was obtained by LS-SVM, while the minimum accuracy of 80% was gained by

Nave Byes. We can notice that although the proposed system was conducted with

different classifiers, there is no a big fluctuation in its performance and the accu-

racies of those classifiers are quite closer. One of the gold solution to improve the

performance of the proposed method and to decrease the error rate is to combine

multi-classifiers to classify the extracted features.

However, in this paper, an ensemble machine learning was used to classify the

graphs features. Our recommendation system achieved a better prediction accuracy

compared with the individual classifiers with an increase of 12%. As mentioned

above, each classifier is trained and conducted with the dataset separately and then

they combined according to an appropriate criteria. By comparing the results in

Table 6, we can observe that the performance of the proposed sytem was escalated

when the ensemble machine learning was adopted.

For more investigation, the execution time of the proposed model was calculated

based on the ensemble classifier as well as individual classifiers. Figures 7 and 8

show the complexity time for each individual classifier and the ensemble model.

we observed that the ensemble model takes more time to complete the training and

Table 6 Performance evaluation based on a single classifier and an ensemble model

Classifier Accuracy (%) Saving (%) Risk (%)

LS-SVM 85.30 61.10 04.30

Neural network 83.50 60.80 05.10

Naive bayes 80.40 60.95 04.90

Ensemble model 94.27 61.25 03.01

380 R. Lafta et al.

Fig. 7 Comparison of the execution time between the classifiers and the ensemble model under

different slide windows

Fig. 8 Comparison of the execution time between the classifiers and the ensemble model under

different measurements

prediction than the individual base classifier. This is reasonable as the ensemble

model needs to aggregate the results from the base classifiers to generate the weights

for them and produce the final recommendation. The ensemble model sacrifices a

little on the execution time for achieving better recommendation effectiveness for

patients. Additionally, the training stage can be performed off-line so that it will not

adversely affect the efficiency in generating recommendations for patients during the

prediction stage.

A Structural Graph-Coupled Advanced Machine . . . 381

Table 7 Prediction accuracy comparison with other methods

Tunstall dataset

Method Size of window Techniques used Accuracy (%)

Raid et al. [23] 5 days Basic heuristic

algorithm

86

Raid et al. [24] 5 days Basic heuristic

algorithm,

Regression-based

algorithm and Hybrid

algorithm

91

Proposed method 15 day Structural graph

similarity and

ensemble model

94

3.4.2 Effectiveness Comparison with Previous Approaches

To evaluate the performance of the proposed method, the prediction results were

compared with some of our previously proposed methods that tackle the exactly same

problem as we do in this paper using the same Tunstall dataset for a fair compari-

son. Table 7 represents the performances comparison among the two other reported

methods and our proposed method. Based on results, the proposed model is the best

among the three methods. Raid et al. [23] used a innovative time series prediction

algorithm to provide recommendations to heart disease patients in the tele-health

environment. The best accuracy was achieved using slide windows of 5 days. The

average of the accuracy for all patients they achieved was 86% across all measure-

ments. An intelligent recommender system, supported by three innovative predic-

tive algorithms, was proposed by Raid et al. [24] for short-term risk assessment

on patients in telehealth environment. The size of slide window was empirically

detected by 5 days as the best accuracy in this study. The average of accuracy results

obtained was 91% for all measurements. It clearly seems from the above results in

Table 7 that the proposed model yielded the highest accuracy compared with the two

others methods using the same dataset.

4 Conclusions and Future Research Directions

In this work, we propose a recommendation system supported by the structural graph

properties and advanced machine learning ensemble for short-term disease risk pre-

diction and medical test recommendation in the telehealth environment for patients

suffering from chronic heart disease. This study applies the structural graph, which

effectively represents the medical time series data and input the extracted statistical

features to the ensemble model to generate the accurate, reliable recommendations

382 R. Lafta et al.

for chronic heart disease patients. Three popular and capable classifiers, i.e., Least

Square-Support Vector Machine, Neural Network, and Naive Bayes are used to con-

struct the ensemble framework.

The experimental results show that the proposed system using slide windows

of 15 day with the optimal statistical features set produced by the structural graph

properties yields a better predictive performance for all measurements. The results

also show that our system using the ensemble classifier with optimal features set

can correctly predict up to 94% of the subjects across all measurements. It is also

observed that our system is more effective than the individual base classifiers used

in the ensemble model and outperforms the previously proposed approaches to solve

the same problem. Our evaluation establishes that our recommendation system is

effective in improving the quality of clinical evidence-based decisions and help

reduce the time costs incurred by the chronic heart disease patients in taking their

daily medical test, whereby improving their overall life quality.

There are several directions for our future research work in this study. First, we

want to evaluate our proposed system using additional appropriate datasets which

preferably have a large number of data records. We are also interested in applying

other ensemble techniques, such as boosting and Adaboost, to produce recommen-

dations and conducting a comparative study on those different ensemble models.

Finally, given the generality of our proposed model in dealing with medical time

series data, we will explore the possibility to apply our system to support telehealth

care for patients suffering from other type of diseases.

References

1. Abegunde, D. O., Mathers, C. D., Adam, T., Ortegon, M., & Strong, K. (2007). The burden

and costs of chronic diseases in low-income and middle-income countries. The Lancet, 370,

1929–1938.

2. Artameeyanant, P., Sultornsanee, S., & Chamnongthai, K. (2015). Classification of elec-

tromyogram using weight visibility algorithm with multilayer perceptron neural network. In:

7th International Conference on Knowledge and Smart Technology (KST) (pp. 190–194).

Chonburi, Thailand: IEEE.

3. Bashir, S., Qamar, U., & Khan, F. H. (2015). BagMOOV: A novel ensemble for heart disease

prediction bootstrap aggregation with multi-objective optimized voting. Australasian Physical
and Engineering Sciences in Medicine, 38, 305–323.

4. Bernhardt, B. C., Bonilha, L., & Gross, D. W. (2015). Network analysis for a network disor-

der: The emerging role of graph theory in the study of epilepsy. Epilepsy and Behavior, 50,

162–170.

5. Blondel, V. D., Gajardo, A., Heymans, M., Senellart, P., & Van Dooren, P. (2004). A measure

of similarity between graph vertices: Applications to synonym extraction and web searching.

SIAM Review, 46, 647–666.

6. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks:

Structure and dynamics. Physics Reports, 424, 175–308.

7. Braamse, A. M., Jean, C. Y., Visser, O. J., Heymans, M. W., van Meijel, B., Dekker, J., et al.

(2016). Developing a risk prediction model for long-term physical and psychological function-

ing after hematopoietic cell transplantation. Biology of Blood andMarrow Transplantation, 22,

549–556.

A Structural Graph-Coupled Advanced Machine . . . 383

8. Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123–140.

9. Chang, C. D., Wang, C. C., & Jiang, B. C. (2011). Using data mining techniques for multi-

diseases prediction modeling of hypertension and hyperlipidemia by common risk factors.

Expert Systems with Applications, 38, 5507–5513.

10. Chen, D., Jin, D., Goh, T. T., Li, N., & Wei, L. (2016). Context-awareness based personalized

recommendation of anti-hypertension drugs. Journal of Medical Systems, 40, 202.

11. Dewar, A. R., Bull, T. P., Malvey, D. M., & Szalma, J. L. (2017). Developing a measure of

engagement with telehealth systems: The mHealth technology engagement index. Journal of
Telemedicine and Telecare, 23, 248–255.

12. Diykh, M., & Li, Y. (2016). Complex networks approach for EEG signal sleep stages classifi-

cation. Expert Systems with Applications, 63, 241–248.

13. Diykh, M., Li, Y., & Wen, P. (2016). EEG sleep stages classification based on time domain fea-

tures and structural graph similarity. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 24, 1159–1168.

14. Fang, Z., & Wang, J. (2014). Efficient identifications of structural similarities for graphs. Jour-
nal of Combinatorial Optimization, 27, 209–220.

15. Gao, H., Jian, S., Peng, Y., & Liu, X. (2016). A subspace ensemble framework for classification

with high dimensional missing data. Multidimensional Systems and Signal Processing, 1–16.

16. He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion
in Neurology, 23, 341–350.

17. Huang, F., Wang, S., & Chan, C.C. (2012). Predicting disease by using data mining based

on healthcare information system. In: Granular Computing (GrC), (pp. 191–194). Hangzhou,

China: IEEE.

18. Huang, X., & Lai, W. (2006). Clustering graphs for visualization via node similarities. Journal
of Visual Languages and Computing, 17, 225–253.

19. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing
Surveys (CSUR), 31, 264–323.

20. Kogge, P. M. (2016). Jaccard Coefficients as a Potential Graph Benchmark. In Parallel and
Distributed Processing Symposium Workshops (pp. 921–928) Chicago: IEEE.

21. Krishnaiah, V., Narsimha, D. G., & Chandra, D. N. S. (2013). Diagnosis of lung cancer pre-

diction system using data mining classification techniques. International Journal of Computer
Science and Information Technologies, 4, 39–45.

22. Kuh, D., & Shlomo, Y. B. (2004). A Life Course Approach to Chronic Disease Epidemiology.

Oxford University Press.

23. Lafta, R., Zhang, J., Tao, X., Li, Y., & Tseng, V. S. (2015). An intelligent recommender sys-

tem based on short-term risk prediction for heart disease patients. In Web Intelligence and
Intelligent Agent Technology (WI-IAT) (pp. 102–105). Singapore: IEEE.

24. Lafta, R., Zhang, J., Tao, X., Li, Y., Tseng, V. S., Luo, Y., et al. (2016). An intelligent recom-

mender system based on predictive analysis in telehealthcare environment. Web Intelligence,

4, 325–336.

25. Lang, S. (2017). Cognitive eloquence in neurosurgery: Insight from graph theoretical analysis

of complex brain networks. Medical Hypotheses, 98, 49–56.

26. Li, X., Hu, X., Jin, C., Han, J., Liu, T., Guo, L., et al. (2013). A comparative study of theoretical

graph models for characterizing structural networks of human brain. International journal of
biomedical imaging, 2013.

27. Li, S., Tang, B., & He, H. (2016). An imbalanced learning based MDR-TB early warning

system. Journal of Medical Systems, 40, 164.

28. Micheloyannis, S., Pachou, E., Stam, C. J., Vourkas, M., Erimaki, S., & Tsirka, V. (2006). Using

graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis.

Neuroscience Letters, 402, 273–277.

29. Miraglia, F., Vecchio, F., & Rossini, P. M. (2017). Searching for signs of aging and dementia

in EEG through network analysis. Behavioural Brain Research, 317, 292–300.

30. Mohktar, M. S., Redmond, S. J., Antoniades, N. C., Rochford, P. D., Pretto, J. J., Basilakis, J.,

et al. (2015). Predicting the risk of exacerbation in patients with chronic obstructive pulmonary

384 R. Lafta et al.

disease using home telehealth measurement data. Artificial Intelligence in Medicine, 63,

51–59.

31. Njie, G. J., Proia, K. K., Thota, A. B., Finnie, R. K., Hopkins, D. P., Banks, S. M., et al. (2015).

Clinical decision support systems and prevention: A community guide cardiovascular disease

systematic review. American Journal of Preventive Medicine, 49, 784–795.

32. Panzica, F., Varotto, G., Rotondi, F., Spreafico, R., & Franceschetti, S. (2013). Identification

of the epileptogenic zone from stereo-EEG signals: A connectivity-graph theory approach.

Frontiers in Neurology, 4.

33. Polat, K., & Gne, S. (2007). Breast cancer diagnosis using least square support vector machine.

Digital Signal Processing, 17, 694–701.

34. Sarsoh, J. T., Hashem, & K. M. (2012). Classifying of human face images based on the graph

theory concepts. Global Journal of Computer Science and Technology, 12.

35. Schaeffer, S. E. (2007). Graph clustering. Computer Science Review, 1, 27–64.

36. Snchez, A. S., Iglesias-Rodrguez, F. J., Fernndez, P. R., & de Cos, Juez F. (2016). Applying the

K-nearest neighbor technique to the classification of workers according to their risk of suffering

musculoskeletal disorders. International Journal of Industrial Ergonomics, 52, 92–99.

37. Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the

brain. Nonlinear Biomedical Physics, 1, 3.

38. Thong, N. T. (2015). HIFCF: An effective hybrid model between picture fuzzy clustering and

intuitionistic fuzzy recommender systems for medical diagnosis. Expert Systems with Appli-
cations, 42, 3682–3701.

39. Tuffry, S. (2011). Data Mining and Statistics For Decision Making, Wiley Chichester.

40. Valentini, G., Masulli, F. (2002). Ensembles of learning machines. In Italian Workshop on
Neural Nets (pp. 3–20). Heidelberg: Springer.

41. Vecchio, F., Miraglia, F., Piludu, F., Granata, G., Romanello, R., Caulo, M., et al. (2017). Small

World architecture in brain connectivity and hippocampal volume in Alzheimers disease: A

study via graph theory from EEG data. Brain Imaging and Behavior, 11, 473–485.

42. Verma, L., Srivastava, S., & Negi, P. (2016). A hybrid data mining model to predict coronary

artery disease cases using non-invasive clinical data. Journal of Medical Systems, 40, 1–7.

43. Vural, C., & Yildiz, M. (2010). Determination of sleep stage separation ability of features

extracted from EEG signals using principle component analysis. Journal of Medical Systems,
34, 83–89.

44. Wang, J., Qiu, S., Xu, Y., Liu, Z., Wen, X., Hu, X., et al. (2014). Graph theoretical analysis

reveals disrupted topological properties of whole brain functional networks in temporal lobe

epilepsy. Clinical Neurophysiology, 125, 1744–1756.

45. Wang, J., Qiu, M., & Guo, B. (2017). Enabling real-time information service on telehealth

system over cloud-based big data platform. Journal of Systems Architecture, 72, 69–79.

46. Yang, J. G., Kim, J. K., Kang, U. G., & Lee, Y. H. (2014). Coronary heart disease optimiza-

tion system on adaptive-network-based fuzzy inference system and linear discriminant analysis

(ANFISLDA). Personal and Ubiquitous Computing, 18, 1351–1362.

47. Yeh, D. Y., Cheng, C. H., & Chen, Y. W. (2011). A predictive model for cerebrovascular disease

using data mining. Expert Systems with Applications, 38, 8970–8977.

48. Zhang, J., Lafta, R., Tao, X., Li, Y., Zhu, X., Luo, Y., et al. (2017). Coupling a fast fourier

transformation with a machine learning ensemble model to support recommendations for heart

disease patients in a telehealth environment. 5, 10674–10685.

	Contents
	1 Applying Big Data Concepts to Improve Flat Steel Production Processes
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Spatial Querying
	2.2 Product Tracking

	3 How to Apply Big Data Concepts in Flat Steel Production?
	3.1 Production Data Model

	4 Implementation
	5 Application
	5.1 Visualisation
	5.1.1 Paw-Scratch Example

	5.2 Cause-and-Effect Analysis

	6 Comparison to Common Concepts
	7 Conclusion
	Acknowledgements
	References

	2 Parallel Generation of Very High Resolution Digital Elevation Models: High-Performance Computing for Big Spatial Data Analysis
	Abstract
	1 Introduction
	2 Study Area and Data
	3 Methodology
	3.1 Spatial Interpolation of LiDAR Data
	3.2 Parallel Interpolation for the Generation of DEM
	3.3 Implementation

	4 Experiment and Results
	4.1 Setting up of High Performance Computing Environments
	4.2 Result of Very High Resolution LiDAR-Derived DEM
	4.3 Computing Performance

	5 Conclusion
	Acknowledgements
	References

	3 Big-Data Analysis of Process Performance: A Case Study of Smart Cities
	Abstract
	1 Introduction
	2 Smart Cities, IoT and Big-Data Analysis
	3 Technological Solution
	4 Case Study: Smart Cities
	4.1 PHASE 1. Definition
	4.1.1 Identification of Scope and Boundaries
	4.1.2 Definition of Sub-processes, Activities and Sub-activities
	4.1.3 Determination of Level of Detail Within Business Processes
	4.1.4 Development of Model Tables

	5 PHASE 2. Configuration
	5.1 Business Nodes Provisioning and Software Boundaries Identification
	5.1.1 Selection of Event Data Format
	5.1.2 Event Correlation Data Determination
	5.1.3 Listeners Implementation
	5.1.4 Selection of Metrics and KPIs

	5.2 PHASE 3. Execution
	5.3 PHASE 4. Control
	5.4 PHASE 5. Diagnosis

	6 Discussion: Frameworks Comparison
	7 Conclusions and Future Work
	References

	4 Implementing Scalable Machine Learning Algorithms for Mining Big Data: A State-of-the-Art Survey
	Abstract
	1 Introduction
	2 Unsupervised Machine Learning Algorithms on Big Data
	3 Scaling of Supervised Machine Learning on Big Data
	4 Semi-supervised Machine Learning on Big Data
	5 Deep Machine Learning on Big Data
	6 Challenges and Future Work
	References

	5 Concepts of HBase Archetypes in Big Data Engineering
	Abstract
	1 Introduction
	1.1 Installation Requirements
	1.2 Java Installation
	1.3 Installation of HBase
	1.4 Mode
	1.4.1 Standalone Mode
	1.4.2 Distributed Mode

	1.5 Deployment

	2 HBase Architecture
	2.1 HMaster
	2.2 Hregion Server
	2.3 Zookeeper
	2.4 HBase Meta Data File System
	2.5 Write and Read in HBase
	2.5.1 Write
	2.5.2 Read

	2.6 WAL-Write Ahead Log
	2.7 HLog
	2.8 HLog Key
	2.8.1 Log Flusher
	2.8.2 Log Roller

	3 HBase Shell
	3.1 HBase versus RDBMS
	3.2 General Commands in HBse Shell
	3.3 Data Definitional Language (DDL Commands)
	3.4 Data Manipulation Language (DML Commands)

	4 Data Models in HBase
	References

	6 Scalable Framework for Cyber Threat Situational Awareness Based on Domain Name Systems Data Analysis
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Domain Name System (DNS)
	3.2 Scalable Algorithms

	4 System Architecture
	4.1 Scalable Architecture
	4.2 Supporting Services
	4.3 Data Collection

	5 A Sub System for Detecting DNS Anomalies Based on Deep Learning and GPGPU
	5.1 Introduction
	5.2 System Architecture
	5.3 Details of Implementation
	5.4 C&C Detection
	5.5 Time Based Analysis
	5.6 Case Studies

	6 Conclusion, Future Work and Limitations
	Acknowledgements
	References

	7 Big Data in HealthCare
	Abstract
	1 Introduction
	2 Big Data
	2.1 Volume
	2.2 Velocity
	2.3 Variety
	2.4 Veracity
	2.5 Volatility
	2.6 Big Data Infrastructure

	3 Big Data Applications
	3.1 Mobile Healthcare

	4 Data Management in Healthcare Organizations
	5 Big Data Model on Health. The Case of Mexico
	6 Institutional Health Programs
	6.1 Data Analysis, Support for Decision Making
	6.2 Medical History Data
	6.3 Public Health Data

	7 Research Data
	7.1 Integration and Sharing of Data
	7.2 Data Collection
	7.3 Infrastructure

	8 Conclusions
	References

	8 Facing Up to Nomophobia: A Systematic Review of Mobile Phone Apps that Reduce Smartphone Usage
	Abstract
	1 Introduction
	2 Methods
	2.1 Keyword Search Terms
	2.2 App Selection Process
	2.3 Ranking
	2.4 Statistical Analysis

	3 Results
	3.1 Content and Functionality of Selected Apps in the US and the Rest of the World
	3.2 Popularity of Apps in the US and the Rest of the World
	3.3 Review of Three Randomly Selected Smartphone Apps

	4 Discussion
	4.1 Recommendations for Developers to Use Big Data from Apps
	4.2 Limitations

	5 Conclusion
	References

	9 A Fast DBSCAN Algorithm with Spark Implementation
	Abstract
	1 Introduction
	2 Background
	2.1 DBSCAN Algorithm
	2.2 Two Powerful Frameworks Based on Big Data: MapReduce and Spark

	3 Novel DBSCAN with Spark Implementation
	3.1 DBSCAN Algorithm with Spark
	3.2 Two Important Data Structures Affecting Performance

	4 Novel Techniques in Parallel DBSCAN with Spark
	4.1 New Clustering Algorithm Without Communication Between Executors
	4.2 Time Complexity Analysis

	5 Experiments and Analysis
	5.1 Experimental Setup
	5.2 Comparison of the Time Taken by MapReduce and Spark
	5.3 Comparison of the Time Spent in Driver and in Executors
	5.4 Scalability of Parallel DBSCAN with Spark

	6 Conclusions
	Acknowledgements
	References

	10 Understanding How Big Data Leads to Social Networking Vulnerability
	Abstract
	1 Introduction
	2 Methods
	3 Results
	3.1 Potential of Big Data Techniques for the Inference of Sensitive Personal Information
	3.2 Social Networking Sites and Malware Risk
	3.3 Social Engineering on Social Networking Sites

	4 Conclusion and Discussion
	4.1 Recommendations
	4.2 Future Research

	References

	11 Big Data Applications in Health Care and Education
	Abstract
	1 Introduction
	2 Big Data in Higher Education
	3 Big Data in Healthcare
	3.1 Big Data Studies in Health Sciences
	3.2 Recommendation System in Health Care

	4 Case Studies
	4.1 Recommendation System in Health Care
	4.2 Internet Based Epidemic Surveillance
	4.2.1 Classification Model to Analyze the Spread and Emerging Trends of the Zika Virus

	4.3 Sensor Based Health Condition and Food Safety Monitoring
	4.4 Genome Wide Association Studies (GWAS) and Expression Quantitative Trait Loci (EQTLs)
	4.5 Inferring Air Quality Using Big Data
	4.6 Metabolomics and Ionomics for Nutritionists

	5 Some Research Directions
	6 Conclusions
	References

	12 BWT: An Index Structure to Speed-Up Both Exact and Inexact String Matching
	Abstract
	1 Introduction
	2 Related Work
	3 BWT Transformation
	3.1 BWT and String Searching
	3.2 Construction of BWT Arrays

	4 Multiple Pattern Matching
	4.1 Tries over Pattern Strings
	4.2 Integrating BWT Search with Trie Search
	4.3 Time Complexity and Correctness Proof
	4.3.1 Time Complexity
	4.3.2 Correctness

	5 String Matching with k Mismatches
	5.1 Basic Working Process
	5.2 Mismatch Information
	5.3 Main Idea: Mismatch Information Derivation
	5.4 Algorithm Description

	6 Experiments
	6.1 Experiment on Multiple Pattern String Matching
	6.1.1 Tests on Synthetic Data Sets
	6.1.2 Tests on Real Data Sets

	6.2 Experiment on String Matching with k Mismatches

	7 Conclusion and Future Work
	References

	13 Traffic Condition Monitoring Using Social Media Analytics
	Abstract
	1 Social Media Analytics for Traffic Condition Monitoring
	1.1 Traffic Twitter Sentiment Analysis
	1.2 Traffic Twitter Cluster Classification

	2 Using Tweet Traffic Data for Traffic Condition Monitoring
	3 Experimental Evaluation
	3.1 Discussion of Results
	3.2 Classification Accuracy
	3.3 Model Validation

	4 Conclusions and Future Work
	References

	14 Modelling of Pile Drivability Using Soft Computing Methods
	Abstract
	1 Introduction
	2 Methodologies
	2.1 Back-Propagation Algorithm
	2.2 Multivariate Adaptive Regression Splines Algorithm

	3 Performance Measures
	4 Pile Drivability Data Sets
	5 BPNN Models
	5.1 The Optimal BPNN Model
	5.2 Modeling Results
	5.3 Parameter Relative Importance
	5.4 Model Interpretability

	6 MARS Models
	6.1 The Optimal MARS Model
	6.2 Modeling Results
	6.3 Parameter Relative Importance
	6.4 Model Interpretability

	7 Discussions
	8 Summary and Conclusions
	Acknowledgements
	Appendix 1
	References

	15 Three Different Adaptive Neuro Fuzzy Computing Techniques for Forecasting Long-Period Daily Streamflows
	Abstract
	1 Introduction
	2 Methods
	2.1 Adaptive Neuro-fuzzy Inference System (ANFIS)
	2.1.1 ANFIS Architecture
	2.1.2 Grid Partition Method
	2.1.3 Subtractive Clustering Method
	2.1.4 Fuzzy C-Means Method

	3 Case Study
	4 Application and Results
	5 Conclusion
	References

	16 Prediction of Compressive Strength of Geopolymers Using Multi-objective Feature Selection
	Abstract
	1 Introduction
	2 Methodologies
	2.1 Functional Network (FN)
	2.1.1 Working with Functional Networks

	2.2 Multivariate Adaptive Regression Splines (MARS)
	2.3 Multi-gene Genetic Programming (MGGP)
	2.4 Multi-objective Feature Selection (MOFS)
	2.4.1 Non-dominated Sorting Genetic Algorithms (NSGA II)
	2.4.2 NSGA II with ANN for Feature Selection

	3 Database and Pre-processing
	4 Results and Discussion
	4.1 FN Model
	4.2 MARS Model
	4.3 MGGP Model
	4.4 MOFS (ANN) Model

	5 Conclusion
	References

	17 Application of Big Data Analysis to Operation of Smart Power Systems
	Abstract
	1 Introduction
	2 Asset Management
	2.1 Data Generation Stage
	2.2 Data Acquisition
	2.3 Data Storing and Processing
	2.4 Data Querying
	2.5 Data Analytics

	3 Operations-Planning Convergence
	3.1 Big Data and Dynamic Line Rating (DLR)
	3.2 The Performance of Big Data Processing (DLR Calculation) in System Operation

	4 Fault Detection/Protection
	4.1 GMDH
	4.2 Simulation Results

	5 Conclusion
	References

	A Structural Graph-Coupled Advanced Machine Learning Ensemble Model for Disease Risk Prediction in a Telehealthcare Environment
	1 Introduction
	2 Methodology
	2.1 Time Series Segmentation
	2.2 Graph Construction and Structural Graph Similarity
	2.3 Graph Features
	2.4 Bootstrap Aggregation (Bagging)

	3 Experiment Result
	3.1 Performance Assessment
	3.2 Prediction Accuracy with Different Number of Features
	3.3 Prediction Accuracy with Different Size of Slide Windows
	3.4 Comparative Study

	4 Conclusions and Future Research Directions
	References

