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Abstract In the present paper, a new analytical technique based on the rational
harmonic balance method (RHBM) has been introduced to determine approximate
periodic solutions for the nonlinear non-smooth oscillator. A frequency–amplitude
relationship has also been obtained by a novel analytical way. The standard rational
harmonic balance method (SRHBM) cannot be used directly; it is possible if we
rewrite the nonlinear differential equations (NDEs). To overcome this previously
stated issue, we offered a modified rational harmonic balance method (MRHBM). It
is noticed that a MRHBM works very well for the whole range of initial amplitudes
and the excellent agreement of the approximate frequencies as well as the corre-
sponding periodic solutions with its exact ones. The method is basically illustrated
by the nonlinear non-smooth oscillators, but it is additionally useful for other
nonlinear oscillatory problems with mixed parity arising in recent development of
nonlinear sciences and engineering.
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1 Introduction

Along with the rapid progress of nonlinear sciences, an intensifying interest among
scientists and researchers has been emerged in the field of nonlinear oscillating
systems with the nonlinear non-smooth oscillators because this issue is very
applicable in dynamics of structures which is stated in Chopra 1995. Nowadays,
obtaining exact solutions of the nonlinear oscillatory problems is one of the biggest
challenges. In general, it is often more difficult to obtain an analytic approximation
than a numerical one. A few nonlinear systems can be solved explicitly, and
numerical methods, especially the most popular Runge-Kutta fourth-order method,
are frequently used to calculate approximate solutions. However, numerical
schemes do not always give accurate results, especially the class of stiff differential
equations, chaotic differential equation, which present a more serious challenge to
numerical analysis. And also, the frequency-amplitude relationship cannot be
obtained. The popular method for solving nonlinear differential equations (NDEs)
associated with oscillatory systems is perturbation method (Nayfeh 1973; Azad
et al. 2012) which is the most versatile tools available in nonlinear analysis of
engineering problems, and they are constantly being developed and applied to even
more complex problems. However, for the strongly nonlinear regime perturbation
method cannot yield desired results.

As a result, due to conquering these weak points, in recent past, numerous
researchers have devoted their time and effort to find potent approaches for
investigating the nonlinear phenomena. As the earliest effort, they developed a large
variety of approximate methods commonly used for strongly nonlinear oscillators
including homotopy perturbation method (Belendez 2009; Ozis and Akci 2011),
modified He’s homotopy perturbation method (Belendez et al. 2007), He’s modified
Lindsted-Poincare method (Ozis and Yildirim 2007), max–min approach method
(Ganji and Azimi 2012), global residue harmonic balance method (Peijun 2015),
energy balance method (Hosen 2016, 2017), He’s energy balance method (Askari
et al. 2014), rational energy balance method (Daeichin et al. 2013), iteration method
(Ikramul et al. 2013; Mickens 2006), harmonic balance method (Mickens 2010;
Hosen et al. 2012; Cveticanin 2009; Lim et al. 2005; Gottlieb 2003), and so on.
However, the results obtained by most of the mentioned methods only first-order
approximation has been considered which leads insufficient accuracy. Furthermore,
the solution procedures are tremendously difficult task and cumbersome, especially
for obtaining higher-order approximation. In this situation, we will see that the
rational harmonic balance method (RHBM) considered in this paper can be applied
to nonlinear non-smooth oscillator. The RHBM discussed by Mickens and
Semwogerere (1996), for instance, has rarely been applied to the determination of
periodic solutions of the nonlinear problems. In fact, to the best of our knowledge,
recently Belendez et al. (2008) and Yamgoue et al. (2010) used it to solve a
simple-term oscillator equation of plasma physics in a completely analytic fashion.
Generally, a set of complicated nonlinear algebraic equations are found when
RHBM is applied. Sometimes analytical solutions of these algebraic equations fail,
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especially for large amplitude. In the present study, this limitation is removed. The
nonlinear algebraic equations have been approximated using power series solution
(a new small parameter). Consider the interesting issue that the proposed technique
provides accurate results and it is more convenient and efficient for solving more
complex nonlinear problems.

2 Solution Procedure by the Standard Rational
Harmonic Balance Method

Consider a general second-order nonlinear differential equation with mixed parity
which is of the following form as

€x ¼ �ex
1

2nþ 1 and the initial condition xð0Þ ¼ a0; _xð0Þ ¼ 0; ð1Þ

where x
1

2nþ 1, n ¼ 1; 2; 3; � � � is a fractional-order nonlinear function and e is a
constant.

The nth-order periodic solution of Eq. 1 can be considered as

xðtÞ ¼ A1 cosuþA3 cos 3uþA5 cos 5uþ � � �
1þ u cos 2uþ v cos 4uþw cos 6uþ � � � : ð2Þ

where u ¼ x t and A1, A3, A5, u, v, w are unknown constants. The solution of Eq. 2
does not satisfied of Eq. 1 directly; it is possible if we rewrite the Eq. 1. Then
applying Eq. 2 into the rewritten Eq. 1, it can be transformed into

A2nþ 1
1 x4nþ 2½ð1þ u2 þ � � �Þ cosðxtÞþ ð1� uþ � � �Þ cos 3uþ � � ��
¼ �e ½F1ðA1; u; � � �Þ cosuþF3ðA3; u; � � �Þ cos 3uþ � � �� ð3Þ

By comparing the coefficients of equal harmonic terms of Eq. 3, one could
obtain as

A2nþ 1
1 x4nþ 2ð1þ u2 þ � � �Þ ¼ �eF1ðA1; u; � � �Þ

A2nþ 1
1 x4nþ 2ð1� uþ � � �Þ ¼ �eF3ðA3; u; � � �Þ;

A2nþ 1
1 x4nþ 2ð1� vþ � � �Þ ¼ �e ½F5ðA5; u; � � �Þ

ð4Þ

With help of the first equation, x4nþ 2 is eliminated from all the remaining
equations of Eq. 4. Thus, second and third equations of Eq. 4 can be expressed as

u ¼ G1ðe; a0; u; v; � � � ; Þ; v ¼ G2ðe; a0; u; v; � � � ; Þ; � � � ; ð5Þ

where G1; G2; � � � exclude, respectively, the linear terms of u; v; � � �.
Whatever the values of e and a0, there exists a parameter k0ðe; a0Þ � 1, such that

u; v; � � � are expandable in following series
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u ¼ U1k0 þU2k
2
0 þ � � � ; v ¼ V1k0 þV2k

2
0 þ � � � ; � � � ð6Þ

where U1; U2; � � � ;V1; V2; � � � are constants.
Finally, substituting the values of u; v; � � � from Eq. 6 into the first equation of

Eq. 4, the unknown angular frequency x is determined. This completes the
determination of all related functions for the proposed periodic solution as given in
Eq. 2.

3 Solution Procedure by the Modified Rational
Harmonic Balance Method

Here, solution Eq. 2 is applied into Eq. 1 directly, if we expand the fractional
nonlinear terms x

1
2nþ 1 in a Fourier series as

x
1

2nþ 1 ¼
X1
n¼0

b2nþ 1f ðxÞ ¼ b1 cosðx tÞþ b3 cosð3xtÞþ � � � : ð7Þ

where b1 ; b3 ; � � � will be calculated by using the following integration

b2nþ 1 ¼ 4
p

Zp=2
0

x
1

2nþ 1 cos½ð2nþ 1Þu�du; n ¼ 0; 1; 2; 3; � � � ð8Þ

where u ¼ x t.
Substituting Eqs. 2, 7–8 into Eq. 1 and then Eq. 1 can be transformed into an

algebraic identity as

A2nþ 1
1 x4nþ 2½ð1þ u2 þ � � �Þ cosðxtÞþ ð1� u � � �Þ cos 3uþ � � ��
¼ �e ½F1ðA1; u; � � �Þ cosuþF3ðA3; u; � � �Þ cos 3uþ � � �� ð9Þ

By comparing the coefficients of equal harmonics of Eq. 9, the following non-
linear algebraic equations can be found as

A2nþ 1
1 x4nþ 2ð1þ u2 þ � � �Þ ¼ �eF1

A2nþ 1
1 x4nþ 2ð1� uþ � � �Þ ¼ �eF3ðA3; u; � � �Þ;

A2nþ 1
1 x4nþ 2ð1� vþ � � �Þ ¼ �eF5ðA5; u; � � �Þ

ð10Þ

With help of the first equation, x4nþ 2 is eliminated from all the remaining
equations of Eq. 10. Thus, second and third equations of Eq. 10 can be expressed
into the following form as
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u ¼ G1ðe; a0; u; v; � � � ; Þ; v ¼ G2ðe; a0; u; v; � � � ; Þ; � � � ð11Þ

where G1; G2; � � � exclude, respectively, the linear terms of u; v; � � �.
Whatever the values of e and a0, there exists a parameter k0ðe; a0Þ � 1, such that

u; v; � � � are expandable in following series as

u ¼ U1k0 þU2k
2
0 þ � � � ; v ¼ V1k0 þV2k

2
0 þ � � � ; � � � ð12Þ

where U1; U2; � � � ;V1; V2; � � � are constants.
Finally, substituting the values of u; v; � � � from Eq. 12 into the first equation of

Eq. 10, the unknown angular frequency x is determined. This completes the
determination of all related functions for the proposed periodic solution as given in
Eq. 2.

4 Application of the Standard Rational Harmonic
Balance Method (SRHBM)

Consider n ¼ e ¼ 1 into Eq. 1, the nonlinear non-smooth oscillator (Belendez
2009; Ozis and Yildirim 2007; Mickens 2006, 2010) can be written as

€xþ x1=3 ¼ 0; xð0Þ ¼ a0; _xð0Þ ¼ 0: ð13Þ

This is a conservative system, and the solution to Eq. 13 is periodic. We observe
that in Eq. 13 direct application of SRHBM does not work. To apply the SRHBM,
we rewrite the Eq. 13 as

€x3 þ x ¼ 0: ð14Þ

Now, the solution Eq. 2 can be expressed by Eq. 13. From Eq. 2, the
second-order approximation solution of Eq. 14 can be supposed as

xðtÞ ¼ A1 cosu
1þ u cos 2u

¼ A1 cosðx tÞ
1þ u cosð2x tÞ : ð15Þ

Now using Eq. 15 in the Eq. 14 and then setting the coefficients of cosðxtÞ and
cosð3xtÞ equal to zero, the following nonlinear algebraic equations can be obtained
as

A2
1½x6ð3=4þ 9u2=16� 6u3 � 699u4=32þ � � �Þ� ¼ 1þ 4uþ 14u2 þ 21u3 þ � � � ;

ð16Þ
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A2
1½x6ð1=4� 15u=4� 141u2=16þ 91u3=4þ � � �Þ� ¼ 4uþ 7u2 þ 21u3 þ � � � :

ð17Þ
After simplification, Eq. 16 can be written as

x6 ¼ ð1þ 4uþ 14u2 þ 21u3 þ 105u4=4þ 35u5=2þ 35u6=4þ � � �Þ
A2
1ð3=4þ 9u2=16� 6u3 � 699u4=32þ 105u5 � 30645u6=256Þ ð18Þ

By elimination of x6 from Eq. 17 with the help of Eq. 18, the equation of u can
be written as

u ¼ k0 1� 409u2

4
� 311u3 � 637u4

8
þ 17577u5

16
þ 119113u6

64
þ 3179u7

8
þ � � �

� �
;

ð19Þ
where k0 ¼ 1

23.
The power series solution of Eq. 19 can be derived in terms of k0 as

u ¼ k0 � 409
4

k30 � 311k40 þ
41661

2
k50 þ

2561557
16

k60 �
40034213

8
k70 þ � � � ð20Þ

Substituting the value of u from Eq. 20 into Eq. 18 and using A1 ¼ a0ð1þ uÞ,
the approximate angular frequency can be determined as

xða0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4uþ 14u2 þ 21u3 þ 105u4=4þ 35u5=2þ 35u6=4þ � � �Þ
A2
1ð3=4þ 9u2=16� 6u3 � 699u4=32þ 105u5 � 30645u6=256Þ

6

s

¼ 1:063575

a1=30

ð21Þ

Thus, the approximation solution of Eq. 13 is xðtÞ ¼ A1 cosðx tÞ
1þ u cosð2x tÞ where u and x

are, respectively, given by Eqs. 20-21.

5 Application of the Modified Rational Harmonic
Balance Method (MRHBM)

We can apply the MRHBM directly in Eq. 13. The second term of Eq. 13 i:e: x1=3

can be expanded in a Fourier series as

x1=3 ¼
X1
n¼0

b2nþ 1x1=3 ¼b1 cosðx tÞþ b3 cosð3x tÞþ � � � : ð22Þ
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Herein b1; b3 ; � � � are calculated by the following integration as

b2nþ 1 ¼ 4
p

Zp=2
0

x1=3 cos½ð2nþ 1Þu�du; ð23Þ

setting u ¼ x t.
Now substituting Eq. 15, 22–23 into the Eq. 13 and then equating the coeffi-

cients of cosðxtÞ and cosð3xtÞ, the following nonlinear algebraic equations are
obtained as

�ð1þ u� 11u2=2ÞA1x
2 þ A1=3

1 ð17820� 2376uþ 1881u2 � 938u3ÞI0
5940

ffiffiffi
p

p ¼ 0; ð24Þ

ð3u� 9u2=4ÞA1x
2 � A1=3

1 ð3564þ 3267u� 531u2 þ 1211u3ÞI0
5940

ffiffiffi
p

p ¼ 0; ð25Þ

where b1; b3; � � � are determined as

b1 ¼ A1=3
1 ð17820� 2376uþ 1881u2 � 938u3Þ I0

5940
ffiffiffi
p

p ; ð26Þ

b3 ¼ �A1=3
1 ð3564þ 3267u� 531u2 þ 1211u3ÞI0

5940
ffiffiffi
p

p ;where I0 ¼
Gamma 7

6

� �
Gamma 2

3

� � ð27Þ

and so on.
After disentanglement, Eq. 24 can be written into another form as

x2 ¼ A1=3
1 ð17820� 2376uþ 1881u2 � 938u3Þ I0

5940ð1þ u� 11u2=2ÞA1
ffiffiffi
p

p ð28Þ

By omitting x2 from Eq. 25 with the help of Eq. 28 and then some modification,
one could obtain the following nonlinear algebraic equation of u as

u ¼ k0 1þ 3373 u2

396
� 56555 u3

7128
þ 44711 u4

14256
� 8771 u5

3564

� �
;where k0 ¼ 12

157
ð29Þ

The power series solution of Eq. 29 in terms of k0 is

u ¼ k0 þ 3373k30
396

� 56555k40
7128

þ 7748693k50
52272

� 960746707k60
2822688

þ � � � : ð30Þ

Now substituting the value of u from Eq. 30 into Eq. 28 and using
A1 ¼ a0ð1þ uÞ, the approximate angular frequency can be obtained as
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xða0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=3
1 ð17820� 2376uþ 1881u2 � 938u3ÞI0

5940ð1þ u� 11u2=2ÞA1
ffiffiffi
p

p
s

¼ 1:077845

a1=30

ð31Þ

Therefore, the modified approximate solution of Eq. 13 is xðtÞ ¼ A1 cosðx tÞ
1þ u cosð2x tÞ

where u and x are, respectively, given by Eqs. (30)–(31).

6 Results and Discussions

The approximate angular frequencies have been obtained by standard rational har-
monic balance method and modified harmonic balance method for the nonlinear
non-smooth oscillators. For this nonlinear problem, the exact value of the frequency is

xexða0Þ ¼ 1:070451

a1=30

;

which is stated in (Gottlieb 2003). The approximated angular frequencies have been
plotted in Figs. 1 and 2. It is highly remarkable that the approximated results show
a good agreement with the corresponding exact frequency. Moreover, the solution
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Fig. 1 Employed standard rational harmonic balance method
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procedure of the proposed method is simple, straightforward, and quite easy. The
advantages of this method include its analytical simplicity and computational
efficiency, and the ability to objectively find better results.

7 Conclusion

A new analytical technique based on the rational harmonic balance method
(RHBM) has been investigated to obtain approximate angular frequencies for the
nonlinear non-smooth oscillators. The approximated angular frequencies give
almost similar as compared to its exact ones. Moreover, in comparison with pre-
viously published methods the determination procedure of approximate solutions is
straightforward and simple. The high accuracy and validity of the approximate
frequencies assured about the results and reveal this method can be used easily for
nonlinear non-smooth oscillators. To entirety up, we can say that the technique
offered in this study for solving nonlinear non-smooth oscillators can be considered
as powerful, an efficient alternative of the previously existing methods.

Acknowledgements The authors would like to acknowledge the financial supports received from
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