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Abstract. Relational similarity measures the correspondence of the
semantic relations that exist between the two words in word pairs. Accu-
rately measuring relational similarity is important for various natural
language processing tasks such as, relational search, noun-modifier classi-
fication, and analogy detection. Despite this need, the features that accu-
rately express the relational similarity between two word pairs remain
largely unknown. So far, methods have been proposed based on linguistic
intuitions such as the functional space proposed by Turney [1], which con-
sists purely of verbs. In contrast, we propose a data-driven approach for
discovering feature spaces for relational similarity measurement. Specif-
ically, we use a linear-SVM classifier to select features using training
instances, where two pairs of words are labeled as analogous or non-
analogous. We evaluate the discovered feature space by measuring the
relational similarity for relational classification task in which we aim
to classify a given word-pair to a specific relation from a predefined
set of relations. Linear classifier for ranking the best feature for rela-
tional space has been compared with different methods namely, Kullback
Leibler divergence (KL), Pointwise Mutual Information (PMI). Experi-
mental results show that our proposed classification method accurately
discovers a discriminative features for measuring relational similarity.
Furthermore, experiments show that the proposed method requires small
number of relational features while still maintaining reasonable relational
similarity accuracy.

Keywords: Relational similarity · Feature selection
Proportional analogy detection

1 Introduction

Identifying the semantic relations that exist between two words (or entities) is
one of the fundamental steps in many natural language processing (NLP) tasks.
For example, to detect word analogies between pairs of words [2–4] such as
(water, pipe) and (electricity, wire), we must first identify the relations that exist
between the two words in each word pair (in this case flows in). In relational
information retrieval [5], given a query x is to y as z is to? we would like to
retrieve entities that have a semantic relationship with z similar to that between
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x and y. For example, given the relational search query Bill Gates is to Microsoft
as Steve Jobs is to?, a relational search engine is expected to return the result
Apple Inc.

Despite the wide applications of relations in NLP systems, it remains a chal-
lenging task for humans to come up with representative features for identifying
the semantic relation between two given words. In our previous example, the
relationship between Bill Gates and Microsoft can be complex as Bill Gates is
both a founder, a lead developer in many products, and a former CEO of the
Microsoft. In order for a human to suggest representative features for identify-
ing a relationship given only via an entity-pair instance, he/she must not only
be familiar with the individual entities, but also know the different relations
that would exist between those entities. Therefore, more automated methods for
representing relations using descriptive features are necessary.

A popular strategy for representing the relation between two words is to
extract lexical or syntactic patterns from the co-occurrence contexts of those
words [6]. The extracted lexical patterns can then be used to measure the rela-
tional similarity between two word-pairs using a similarity measure defined over
the distributions of patterns. Although surface patterns have been used success-
fully to represent the semantic relations between two words, it suffers from the
data sparseness. The co-occurrences of two words with a specific pattern can be
sparse even in a large corpus, requiring some form of a dimensionality reduction
in practice [7]. It is also computationally expensive method because we must
consider co-occurrences between surface patterns and all pairs of words. The
number of all pairwise combinations between words grows quadratically with
the number of words, and we require a continuously increasing set of surface
patterns to cover the relations that exist between the two words in each of those
word-pairs.

To overcome the above mentioned issues in the holistic approach, Turney [1,8]
proposed the Dual Space approach, where the relations between two words is
composed using features related to individual words. Specifically, he used nouns
and verbs as features for describing respectively the domain and function spaces.
The proposal to use verbs as a proxy for the functional attributes of words that
are likely to contribute towards semantic relations is based on linguistic intu-
ition. Although this intuition is justified by the experimental results, the ques-
tion can we learn descriptors of semantic relations from labeled data? remains
unanswered.

We address this question by proposing a method for ranking lexical descrip-
tors for representing semantic relations that exist between two words. Given a
set of word-pairs for a particular relation type, we model the problem of extract-
ing descriptive features as a linear classification problem. Specifically, we train a
linear-SVM to discriminate between positive (analogous) and randomly gener-
ated pseudo-negative (non-analogous) word-pairs using features associated with
individual words. The weights learnt by the classifier for the features can then
be used as a ranking-score for selecting most representative features for a partic-
ular semantic relation. Experimental results on a benchmark dataset for relation
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classification show that the proposed feature selection method outperforms sev-
eral competitive baselines and previously proposed heuristics.

The paper is organized as follows: in Sect. 2 we discuss some related work of
feature selection in NLP. The methodology adopted in this work is presented in
Sects. 3 and 4. The dataset applied in this research with the experimental results
are discussed in Sect. 5. Finally, we conclude the paper and discuss some possible
future works.

2 Related Work

Identifying appropriate feature space for NLP tasks is a problem that have been
studied widely in the literature. The most popular and effective method is based
on matrix factorisation such as Non-Negative Matrix Factorization (NMF), Prin-
ciple Component Analysis (PCA) and Singular Value Decomposition (SVD).
Basically, those methods aim to transform the high-dimensional distributional
representations to low-dimensional latent space. For word-level representation,
Latent Semantic Analysis (LSA) is a method relying on SVD to represent a
word in a vector space using only top, i.e. 300 or more, dimensions to cap-
ture the meaning of words in the low-dimensional latent space [9]. For word
pairs representation, Latent Relational Analysis (LRA) is a method proposed by
Turney [10] for measuring the similarity in the semantic relations between two
pairs of words. In LRA, SVD has been applied to pair-pattern matrix to repre-
sent a latent feature space. Although LRA achieve satisfied result for answering
the 374 SAT questions (56.1%), it is complex process to factorize a huge matrix
and thus it is time-consuming method (requires 9 days to run).

On the other hand, many feature selection methods have been proposed in
the literature. Selecting important features using classification approach has been
used for different NLP tasks such as sentiment analysis [11] and text classification
[12,13]. Given a number of examples for specific task, linear classifier ables to
recover the features that are relevant to separate the examples into classes.
For example, in text classification a documents are represented by words in
the vocabulary which suffer from the curse of dimensionality. A linear classifier
generates coefficients of the features in the space which are used to rank the
most informative words that helps in separating documents into categories.

For sentence-level similarity, Ji and Eisenstein [14] apply data-driven app-
roach for weighting the features for paraphrase classification task. Based on
supervised (labeled) dataset, they propose new weighting metric for features
in order to distinguish the deterministic features for sentence semantics. The
weighting metric uses KL Divergence to weight the distributional features in
the co-occurrence matrix for sentences before decomposing process. They report
significant improvement on sentence similarity in comparison with other works.

Another approach to select a subset of informative feature is using mutual
information based methodology. PMI statistical weighting method has been
applied for feature selection for document categorisation [15,16]. It calculates
the amount of information that a feature includes about a specific categories.
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Xu et al. [15] show that MI is not efficient approach to select relevant feature
for text classification compared with other known approach such as Document
Frequency (DF) and Information Gain (IG).

While there are efforts spent for feature selection for many NLP tasks, only
few attentions have been directed to relational similarity between two pairs of
words. Turney [1] heuristically identify a space for semantic relations called
function space which consist of verb patterns. For example, for an analogy
(word, language), (note,music), word and note share the same function, e.g.
the function of building units (vocabularies). Similarity, language and music
share the same function, the function of communications. To the best of our
knowledge, there is no work yet on feature selection data-driven methods for
relational similarity task. Consequently, this paper contribute to handle that
issue.

3 Relational Similarity in Feature Space

Let us consider a feature x in some feature space S. We do not impose any
constraints on the type of features here, and the proposed method can handle
any type of features that can be used to represent a word such as other words that
co-occur with a target word in the corpus (lexical features), or their syntactic
categories such as part-of-speech (POS) (syntactic features). The feature space
S is defined as the set containing all features we extract for all target words. We
represent the salience of x in S by the discriminative weight w(x,S) ∈ R. For
example, if x is a representative feature of S, then it will have a high w(x,S). The
concept of a discriminative weight can be seen as a feature selection method. If
a particular feature is not a good representative of the space, then it will receive
a small (ideally zero) weight, thereby effectively pruning out the feature from
the space.

Given the above setting, the task of discovering relational feature spaces can
be modelled as a problem of computing the discriminative weights for features.
We use φ(A) to denote the set of non-zero features that co-occur with the word
A. The salience f(A, x,S) of x as a feature of A in S is defined as:

f(A, x, S) = h(A, x) × w(x, S) (1)

Here, h(A, x) ≥ 0 is the strength of association between A and x, and can be
computed using any non-negative feature co-occurrence measure. In our exper-
iments we use positive pointwise mutual information (PPMI) computed using
corpus counts as h(A, x).

(1) is analogous to the tf-idf score used in information retrieval in the sense
that h(A, x) corresponds to the term-frequency (tf) (i.e. how significant is the
presence of x as a feature in A), and w(x,S) corresponds to the document-
frequency (df) (i.e. what is the importance of x as a feature in the space S). The
similarity, simS(A,C) between two words A and C in S can then be defined as
in (2) which is the sum of pointwise products over the intersection of the feature
sets φ(A) and φ(C).

simS(A, C) =
∑

x∈φ(A)∩φ(C)

f(A, x, S)f(C, x, S) (2)
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Moreover, by substituting (1) in (2) we get:

simS(A, C) =
∑

x∈φ(A)∩φ(C)

h(A, x)h(C, x)w(x, S)2 (3)

Following the proposal by [1], we can then compute the relational similarity,
simrel((A,B), (C,D)), between two word-pairs (A,B) and (C,D) as the geomet-
ric mean of their functional similarities:

simrel((A, B), (C, D)) =
√

simS(A, C) × simS(B, D) (4)

4 Learning Features Weights

The relational similarity measure described in Sect. 3 depends on the feature
space S via the discriminative weights w(x,S) assigned to each feature x. There-
fore, our goal of discovering a representative feature space from data can be seen
as a problem of learning w(x,S). We propose a supervised classification-based
approach for computing discriminative weights using labeled dataset.

Let us denote a labeled dataset consists of word-pairs (A,B) and (C,D)
annotated for l = 1 (i.e. the two word pairs are analogous) or l = 0 (otherwise).
Here, l ∈ {0, 1} denotes the class label. From (12) and (3), we see that for two
analogous word-pairs, (A,B) and (C,D), their relational similarity increases
if the two products h(A, x)h(C, x) and h(B, x)h(D,x) increase. Following this
observation, we define a feature x to appear in an instance word-pairs (A,B)
and (C,D) iff:

(x ∈ φ(A) ∩ φ(C)) ∨ (x ∈ φ(B) ∩ φ(D)) (5)

4.1 Linear Classifier Method for Relational Feature Ranking

For the proposed classification-based approach, each positive instance word pairs
((A,B), (C,D)) or negative word-pairs ((A′, B′), (C ′,D′)) have a corresponding
feature vector in S, such that the entry for x in the (A,B), (C,D) positive
instance is defined as follows:

g(((A,B), (C,D)), x) = I[x ∈ φ(A) ∩ φ(C)] + I[x ∈ φ(B) ∩ φ(D)] (6)

Here, g(((A,B), (C,D)), x) denotes the value of feature x in the feature vec-
tor representing the instance ((A,B), (C,D)), and I is the indicator function
which return 1 if the expression evaluated is true, or 0 otherwise. Likewise for a
negative instance. We train a linear-SVM binary classifier to learn a weight for
each feature in the feature space. w(x,S) can be interpreted as the confidence
of the feature as an indicator of the strength of analogy (relational similarity)
between (A,B) and (C,D). The absolute value of a weight of a feature can be
considered as a measure of the importance of that feature when discriminating
the two classes in a binary linear classifier. Therefore, we rank the features in the
space according to the absolute value of the weights |w(x,S)|. Only linearised
kernel classifier explicitly associates weights to individual features. Therefore,
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this approach is restricted to linear kernel. In the case of non-linear kernels such
as polynomial kernels that can be expanded prior to learning to all feature com-
binations considered in the kernel computation, we can still apply this technique
to identify salient feature combinations. However, we limit the discussion in this
paper to finding relational feature spaces consisting of individual features and
defer the study of salient feature combinations for relational similarity measure-
ment to future work.

The proposed method is compared against baseline methods namely: KL
and PMI in addition to random selection and heuristic verb space. KL and
PMI methods also require labelled data as in the proposed classification-based
approach.

4.2 KL Divergence-Based Ranking Approach

We consider KL divergence-based weighting approach proposed by [14] to com-
pute w(x,S) for relational similarity measurement. For this purpose, we will
consider the two distributions for each feature x in S-space namely, p(x) and
q(x) where p(x) is computed for analogous ((A,B), (C,D)), while q(x) is taken
over the unrelated pairs of words ((A′, B′), (C ′,D′)). p(x) = P (x ∈ φ(A)|x ∈
φ(C), l = 1 or x ∈ φ(B)|x ∈ φ(D), l = 1). Similarly, q(x) = P (x ∈ φ(A′)|x ∈
φ(C ′), l = 0 or x ∈ φ(B′)|x ∈ φ(D′), l = 0).

Specifically, we compute the probability p(x) of a feature x being an indicator
of the analogous class as follows:

1

Zp(x)

∑

(A,B),(C,D)∈N+

g(((A, B), (C, D)), x) (7)

Here, N+ is the set of positive word-pairs, and the normalisation coefficient Zp(x)
satisfies,

∑
x∈S p(x) = 1. Likewise, we can compute q(x), the probability of a

feature x being an indicator of the negative (relationally dissimilar) class using
the features occurrences in negative instances ((A′, B′), (C ′,D′)) as follows:

1

Zq(x)

∑

(A′,B′),(C′,D′)∈N−

g(((A′, B′), (C′, D′)), x) (8)

Here, N− is the set of negative word-pairs, and the normalization coefficient
Zq(x) satisfies,

∑
x q(x) = 1. Having computed p(x) and q(x), we then compute

w(x,S) as the KL divergence between the two distributions as,

w(x,S) = p(x) log
(

p(x)
q(x)

)

. (9)

4.3 PMI Ranking Approach

PMI is used to weight a feature x such that:

w(x,S) = PMI(x,N+) − PMI(x,N−) (10)
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Where PMI(x,N+) measures the association between a feature x with analogues
word-pairs, whereas PMI(x,N−) indicates the co-occurrence of a feature with
relationally dissimilar pairs. PMI has been computed as follows:

PMI(x,N+) = log
(

h(x,N+)
h(x,N )|N+| |N |

)

(11)

N = N+ ∪ N−

Here N is the union set of the positive and negative word-pairs and h(x,N+) is
summed for all analogous pairs:

∑

(A,B),(C,D)∈N+

g(((A,B), (C,D)), x)

Similarly, h(x,N−) is calculated considering negative instances in the dataset.
We rank the features according to the absolute values of their weights by

each of the methods described to define the representative space to measure the
relational similarity. The relational similarity between two given word pairs is
computed as follows after reducing the word representations to the top ranked
feature space:

simrel((A, B), (C, D)) =
√

sim(A, C) × sim(B, D) (12)

Cosine similarity between two vectors is defined as follows:

sim(x ,y) =
x�y

‖x‖ ‖y‖ (13)

We experimented using both unnormalised word embeddings as well as �2
normalised word representations. We found that �2 normalised word represen-
tations perform better than the unnormalised version in most configurations.
Consequently, we report results obtained only with the �2 normalised word rep-
resentations in the remainder of the paper.

5 Experimental Design

5.1 Dataset

The above mentioned feature selection methods require a labelled dataset of
word-pairs for a particular relation type. To generate such a dataset we use the
following procedure. We used the DIFFVECS dataset proposed by Vylomova
et al. [17] that consists of triples 〈w1, w2, r〉, where word w1 and w2 are con-
nected by a relation r1. This dataset consists of 15 relation types, we include
the relation types for which we have efficient number of pairs to generate the
dataset. Consequently, 7 semantic relation types and their sub categories have
been considered in this study as presented in Table 1.
1 https://github.com/ivri/DiffVec.

https://github.com/ivri/DiffVec
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Table 1. Statistic of the dataset used in this study.

Relation type Sub-relations Example of
positive instance

No. of Pos
instances

No. of
testing pairs

Hypernym – (colour : green)
(tool : knife)

1,100 57

Meronym – (dishwasher :
door)
(tiger : mouth)

1,100 57

Event (objects
action)

– (arrive : train)
(fix : oven)

1,100 57

Cause-Purpose Enabling-Agent:
Object, Cause: Effect,
Agent: Goal,
Prevention

(eating :
fullness)
(illness :
discomfort)

1,149 56

Space-Time Item: Location,
Location: Process

(library :
reading)
(park : playing)

1,435 56

Reference Plan, Sign: Significant
Expression,
Representation

(red : stop)
(warning :
trouble)

1,047 54

Attribute Object: TypicalAc-
tion(noun.verb)
ObjectState
(noun.noun)

(musician : sing)
(tree : grow)

256 30

Total – – 7,187 367

For each relation, we exclude some pairs of words for testing the methods,
in total we have 367 testing pairs distributed among the relations. We generate
positive training instances by pairing word-pairs that have same relation types
(considering sub-relations), resulting in 7, 187 positive instances from this pro-
cedure. Next, we randomly pair a word-pair from a relation r with a word-pair
from a relation r′ such that r 	= r′ to create a pseudo-negative training dataset
that has approximately an equal number of instances as that in the positive
training dataset (i.e., 7, 000).

5.2 Evaluation Measures

During evaluation, we consider the problem of classifying a given pair of words
(w1, w2) to a specific relation r in a predefined set of relations R according to
the relation that exists between w1 and w2. We measure the relational similarity
between a given pair and all the remaining pairs in the testing data. Then, we
perform 1-NN relation classification such that if the 1-NN has the same relation
label as the target pair, then we consider it to be a correct match. Macro-
averaged classification accuracy is used as the evaluation measure. We use the
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PPMI matrix from Turney [18], which contains PPMI values between a word
and unigrams from the left and right contexts of that word in a corpus2. The
total number of features extracted (|S|) is 139, 246.

5.3 Results

For a classification method, we train linear SVM using scikit-learn library3. We
use 5 folds cross-validation to find the optimal value of penalty parameter C
of the error term. Following Turney [1], we used verbs as S to evaluate the
performance of the functional space for measuring relational similarity. We used
the NLTK POS tagger4 for identifying verbs in the feature space. The verb space
identified by the POS tagger contains 12k verbs.

In Table 2, we compare the feature weighting methods discussed in Sect. 4
for different semantic relation types used in the evaluated dataset (illustrated in
Table 1). The accuracies for SVM-based, KL, PMI and random ranking methods
are reported for the top 1k features. For verb-space, the results indicate the per-
formance of the 12k verbs in the feature space. Classification approach of weight-
ing features and verb-space perform equally for hypernym relation. For meronym,
event and attribute relation types the proposed linear-SVM outperforms other
methods of feature ranking. KL divergence-based method shows its ability to per-
form well compared with other methods for cause-purpose and space-time rela-
tions. Among different relation types compared in Table 2, classification-based
weighting method reports the highest macro-average accuracy compared with
other baselines. The fact that the proposed method could improve the perfor-
mance for many relations of relational classification task empirically justifies our
proposal for a data-driven approach for feature selection for relational similarity
measurement.

Table 2. Accuracy per relation type for the top 1000 ranked features.

Relation Classifier KL PMI Verb-space Random

Hypernym 73.68 71.93 56.14 73.68 54.39

Meronym 70.18 68.42 45.61 61.4 56.14

Event 78.95 73.68 29.82 66.67 54.39

Attribute 33.33 13.33 30.00 23.33 10.00

Cause-Purpose 41.07 44.64 28.57 37.50 21.43

Space-Time 58.93 64.29 33.93 62.5 46.43

Reference 57.41 59.26 42.59 64.81 33.33

Macro-average 59.08 56.51 38.10 55.7 39.44

2 The corpus was collected by Charles Clarke at the University of Waterloo.
3 http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.
4 http://www.nltk.org.

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://www.nltk.org
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Fig. 1. Cumulative evaluation of feature weighting methods.

We evaluate which of the ranking methods ranks the relational features at
the top of the weighted feature list. Figure 1 shows the micro-average accura-
cies of the top-ranked features selected by the different methods, verb-space
is not included in this comparison as it is not a ranking method for feature
selection. We start by evaluating the top ranked feature, subsequently adding
10 more features at a time. The random baseline randomly selects a subset of
features from S. As shown in the Fig. 1, the top-weighted features using the pro-
posed linear SVM-based approach outperforms all other methods for relational
similarity measurement. The proposed method statistically significantly outper-
forms (according to McNemar test with p < 0.05) all other methods for ranking
the most informative features in the top ranked feature list. This indicates that
the effective features for measuring relational similarity are indeed ranked at the
top by the proposed method. In addition, our results show that it is possible to
maintain a relational classification accuracy while using only small subset of the
features (top 100 features). KL divergence-based ranking method follow classifi-
cation approach for ranking the best features for relational similarity. However,
PMI method performs badly as it gives accuracies comparable with the random
feature selection method. PMI is known to give higher values to rare features
thereby preferring rare features. We believe this might be an issue when selecting
features for representing word-pairs.

6 Conclusion

We proposed the first-ever method for discovering a discriminative feature space
for measuring relational similarity from data. The relational classification results
show that using labeled data to train a linear classifier for feature selection
can improve the feature space for relational similarity measurement. The pro-
posed method outperforms KL and PMI methods for discovering relational
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feature space. Using PMI to discover relational features has been demonstrated
to have relatively poor performance, a finding which is consistent with previous
work for text classification task [15]. In addition, classification-based weighting
method reports better performance for many relation types compared with the
functional verb space. Future researches can be carried out to improve the fea-
ture space for relational similarity task by incorporating verb space with the
data-driven discovered features.
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