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Abstract. Natural language generation (NLG) plays a critical role in
spoken dialogue systems. This paper presents a new approach to NLG
by using recurrent neural networks (RNN), in which a gating mechanism
is applied before RNN computation. This allows the proposed model
to generate appropriate sentences. The RNN-based generator can be
learned from unaligned data by jointly training sentence planning and
surface realization to produce natural language responses. The model
was extensively evaluated on four different NLG domains. The results
show that the proposed generator achieved better performance on all
the NLG domains compared to previous generators.

1 Introduction

Natural Language Generation is a critical component in a Spoken Dialogue Sys-
tem (SDS), and its task is to convert a meaning representation produced by the
dialogue manager into natural language utterances. Conventional approaches to
NLG follow a pipeline which typically breaks down the task into sentence plan-
ning and surface realization. Sentence planning decides the order and structure
of sentence, which is followed by a surface realization which converts the sen-
tence structure into the final utterance. Previous approaches to NLG still rely on
extensive hand-tuning templates and rules that require expert knowledge of lin-
guistic representation. There are some common and widely approaches to solve
NLG problems, including rule-based [3], corpus-based n-gram models [10], and
a trainable generator [15]. Joint based generators use a two-step pipeline [4,14];
or applying a joint model for both tasks [19,22].

Recently, approaches based on recurrent neural networks have shown advan-
tages in solving the NLG tasks. RNN-based models have been used for NLG as a
joint training model [19,22] and an end-to-end training model [23]. A recurring
problem in such systems is requiring datasets annotated for specific dialogue
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acts1 (DA). Moreover, previous works may lack ability to handle cases such as
the binary slots (i.e., yes and no) and slots that take don’t care value which
cannot be directly delexicalized [19], or to generalize to unseen domains [22].
Furthermore, a problem of the current generators is that the generators produce
the next token based on the information from the forward context, whereas the
sentence may depend on the backward context. As a result, the generators tend
to generate nonsensical utterances.

We propose a statistical NLG based on a gating mechanism on a GRU model,
in which the gating mechanism is applied before RNN computation. The pro-
posed model can learn from unaligned data by jointly training the sentence
planning and surface realization to generate required sentences. We found that
the proposed model can produce sentences in a more correct oder than the
existing models. The previous RNN-based generators may have lack of con-
sideration about the order of slot-value pairs during generation. For example,
given a DA with pattern: Compare(name =A, property1 = a1, property2 = a2,
name =B, property1 = b1, property2 = b2 ). The pattern for correct utterances
can be: [A-a1-a2, B-b1-b2 ], [A-a2-a1, B-b2-b1 ], [B-b1-b2, A-a1-a2 ], [B-b1-b2,
A-a2-a1 ]. Therefore, a generated utterance: “The A has a1 and b1 properties,
while the B has a2 and b2 properties” is an incorrect utterance, in which b1
and a2 properties were generated in wrong order. This occasionally leads to
inadequate sentences.

We assessed the proposed generators on varied NLG domains, in which the
results showed that our proposed method outperforms the previous methods in
terms of BLEU [11] and slot error rate ERR [22] scores. To summary, we make
three contributions in this study where we: (i) propose two semantic refinement
RNN-based models, in which a gating mechanism is applied before computa-
tional RNN to refine the original inputs, (ii) conduct extensively experiments on
four NLG domains, and (iii) analyze the effectiveness of the proposed models on
ability to handle the undelexicalized tokens, and to generalize to unseen domain
when limited amount of in-domain data was fed.

2 Related Work

Conventional approaches to NLG traditionally split the task into two subtasks:
sentence planning and surface realization. Sentence planning deals with map-
ping of the input semantic symbols onto a linguistic structure, e.g., a tree-like
or a template structure. The surface realization then converts the structure into
an appropriate sentence [15]. Despite their success and wide use in solving NLG
problems, these traditional methods still rely on the handcrafted rule-based gen-
erators or rerankers. The authors in [10] proposed a class-based n-gram language
model (LM) generator which can learn to generate the sentences for a given DA
and then select the best sentences using a rule-based reranker. Some of the lim-
itation of the class-based LMs were addressed in [13] by proposing a method
1 A combination of an action type and a list of slot-value pairs. e.g. inform(name=
‘Frances’; area= ‘City Center’).
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based on a syntactic dependency tree. A phrase-based generator based on fac-
tored LMs was introduced in [8], which can learn from a semantically aligned
corpus.

Recently, RNNs-based approaches have shown promising performance in the
NLG domain. The authors in [6,17] used RNNs in a multi-modal setting to
generate captions for images, while a generator using RNNs to create Chinese
poetry was also proposed in [24]. The authors in [7] encoded an unstructured
textual knowledge source along with previous responses and context to produce
a response for technical support queries. For task-oriented dialogue systems, a
combination of a forward RNN generator, a CNN reranker, and a backward RNN
reranker was proposed in [19] to generate utterances. A semantically conditioned-
based Long Short-Term Memory (LSTM) generator was introduced in [22], which
proposed a control “reading” gate to the traditional LSTM cell and can learn
the gating mechanism and language model jointly. A recurring problem in such
systems is the lack of sufficient domain-specific annotated data.

3 Recurrent Neural Language Generator

The recurrent language generator proposed in this paper based on a RNN lan-
guage model [9], which consists of three layers: an input layer, a hidden layer
and an output layer. The input to the network at each time step t is a 1-hot
encoding wt of a token2 wt which is conditioned on a recurrent hidden layer
ht. The output layer yt represents the probability distribution of the next token
given previous token wt and hidden ht. We can sample from this conditional
distribution to obtain the next token in a generated string, and feed it as the
next input to the generator. This process finishes when a stop sign is generated
[6], or some constraint are reached [24]. The network can generate a sequence
of tokens which can be lexicalized3 to form the required utterance. Moreover, in
order to ensure that the generated utterance represents the intended meaning of
the given DA, the generator is further conditioned on a vector z, a 1-hot vector
representation of DA. Inspired by work in [18], we propose an intuition: Gating
before computation, in which we add gating mechanism before the RNN com-
putation to semantically refine the input tokens. The following sections present
two proposed Semantic Refinement (SR) gating based RNN generators.

3.1 SRGRU-BASE

In this model, instead of feeding an input token wt to the RNN model at each
time step t, the input token is filtered by a semantic gate which is computed as
follows:

dt = σ(Wdzz)
xt = dt � wt

(1)

2 Input texts are delexicalized in which slot values are replaced by its corresponding
slot tokens.

3 The process in which slot token is replaced by its value.
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where: Wdz is a trained matrix to project the given DA representation into the
word embedding space, and xt is new input. Here Wdz plays a role of sentence
planning since it can directly capture which DA features are useful during the
generation to encode the input information. The � element-wise multiplication
plays a part in word-level matching which learns not only the vector similarity,
but also preserve information about the two vectors. dt is called a refinement
gate since the input tokens are refined by the DA information. As a result, we
can represent the whole input sentence based on these refined inputs using RNN
model.

In this study, we use GRU, which was recently proposed in [2], instead of
LSTM as building computational block for RNN, which is formulated as follows:

rt = σ(Wrxxt + Wrhht−1) (2)

ut = σ(Wuxxt + Wuhht−1) (3)

h̃t = tanh(Whxxt + rt � Whhht−1) (4)

ht = ut � ht−1 + (1 − ut) � h̃t (5)

where: Wrx,Wrh,Wux,Wuh,Whx,Whh are weight matrices; rt, ut are reset
and update gate, respectively, and � denotes for element-wise product. The
Semantic Refinement GRU (SRGRU)-Base architecture is shown in Fig. 1.

Fig. 1. SRGRU-Context cell. The blue dashed box is a traditional GRU cell in charge
of surface realization, while the red parts form sentence planning based on a sigmoid
control gate dt and a dialogue act z. The contextual information ht−1 is imported into
the refinement gate dt via red dotted line. The SRGRU-Base is achieved by omitting
this link. (Color figure online)
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Finally, the output distribution of each token is defined by applying a softmax
function g as follows:

P (wt+1 | wt, wt−1, ...w0, z) = g(Whoht) (6)

where: Who is learned linear projection matrix. At training time, we use the
ground truth token for the previous time step in place of the predicted output. At
test time, we implement a simple beam search to over-generate several candidate
responses.

3.2 SRGRU-CONTEXT

SRGRU-Base uses only the DA information to gate the input sequence token
by token. As a results, this gating mechanism may not capture the relationship
between multiple words. In order to import context information into the gating
mechanism, the Eq. 1 is modified as follows:

dt = σ(Wdzz + Wdhht−1)
xt = dt � wt

(7)

where: Wdz and Wdh are weight matrices. Wdh acts like a key phrase detec-
tor that learns to capture the pattern of generation tokens or the relationship
between multiple tokens. In other words, the new input xt consists of informa-
tion of the original input token wt, the dialogue act z, and the hidden context
ht−1. dt is called the refinement gate because the input tokens are refined by a
combination gating information of the dialogue act z and the previous hidden
state ht−1. By taking advantage of gating mechanism from the LSTM model
[5] in which the gating mechanism is employed to solve the gradient vanishing
and exploding problem, we propose to apply the refinement gate deeper into the
GRU cell. Firstly, the GRU reset and update gates can be further influenced
on the given dialogue act z and the refined input xt. The Eqs. (2) and (3) are
modified as follows:

rt = σ(Wrxxt + Wrhht−1 + Wrzz) (8)

ut = σ(Wuxxt + Wuhht−1 + Wuzz) (9)

where: Wrz and Wuz act like background detectors that learn to control the style
of the generating sentence. Secondly, Eq. (4) is modified so that the candidate
activation h̃t also depends on the refinement gate,

h̃t = tanh(Whxxt + rt � Whhht−1) + tanh(Wdcdt) (10)

By this way, the reset and update gates learn not only the long-term dependency
but also the gating information from the dialogue act and the previous hidden
state. We call the resulting architecture Semantic Refinement GRU (SRGRU)-
Context which is shown in Fig. 1.
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3.3 Training

The cost function was the negative log-likelihood and computed by:

F (θ) = −
T∑

t=1

y�
t logpt (11)

where yt is the ground truth word distribution, pt is the predicted word dis-
tribution, T is length of the input sequence. The generators were trained by
treating each sentence as a mini-batch with the l2 regularization was added to
the cost function for every 10 training examples. The models were initialized
with pre-trained word vectors GLOVE [12] and optimized by using stochastic
gradient descent and back propagation through time. To prevent over-fitting,
early stopping was implemented using a validation set.

3.4 Decoding

The decoding phase we employ here is similar to [16] which consists of over-
generation and re-ranking phases. The forward generator, in the over-generation
phase, is conditioned on the given DA uses a beam search algorithm to generate
candidate utterances, whereas the cost of forward generator Ffw(θ), in the re-
ranking phase, is computed to form the re-ranking score R as follows:

R = Ffw(θ) + λERR (12)

where λ is a trade off constant which is set to a large value in order to severely
penalize nonsensical outputs. The slot error rate ERR, which is the number of
generated slots that are either redundant or missing, is computed by:

ERR =
p + q

N
(13)

where N is the total number of slots in DA, and p, q is the number of missing
and redundant slots, respectively. The ERR re-ranking criteria as mentioned in
[22] cannot handle arbitrary slot-value pairs, i.e. binary slots or slots that take
don’t care value, because such these pairs cannot be delexicalized and matched.

4 Experiments

4.1 Datasets

We conducted experiments using four different NLG domains: finding a restau-
rant, finding a hotel, buying a laptop, and buying a television. The Restaurant
and Hotel domains were collected in [22] which contain system dialogue acts,
shared slots, and specific domain slots. The Laptop and TV datasets have been
released in [20] with about 13K distinct DAs in the Laptop and 7K distinct DAs
in the TV. These two datasets have a much larger input space but only one
training example for each DA so that the system must learn partial realization
of concepts and be able to recombine and apply them to unseen DAs. The num-
ber of dialogue act types and slots of datasets is also larger than in Restaurant
and Hotel datasets. As a result, the NLG tasks for the Laptop and TV datasets
become much harder.
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4.2 Experimental Setups

The generators were implemented using the TensorFlow library [1] and trained
by partitioning each of the datasets into training, validation and testing set
in the ratio 3:1:1. The hidden layer size was set to be 80, and the generators
were trained with a 70% of dropout rate. We perform 5 runs with different
random initialization of the network and the training is terminated by using
early stopping as described in Sect. 3.3. We select model that yields the highest
BLEU score on the validation set. The decoder procedure used beam search
with a beam width of 10. We set λ to 1000 to severely discourage the reranker
from selecting utterances which contain either redundant or missing slots. For
each DA, we over-generated 20 candidate utterances and selected the top 5
realizations after reranking. Because the proposed models work stochastically,
except the results reported in Table 1, all the results shown were averaged over
5 randomly initialized networks.

Since some sentences may depend on both the past and the future during
generation, we train another backward SRGRU-Context to utilizing the flexi-
bility of the refinement gate dt, in which we tie its weight matrices such Wdz

and Wdh (Eq. 7) for both. We found that by tying matrix Wdz for both forward
and backward RNNs, the proposed generator seems to produce more correct and
grammatical utterances than those having the only forward RNN. This model
called Tying Backward SRGRU-Context (TB-SRGRU).

In order to better understand the effectiveness of the proposed model, we
conduct more experiments to compare the SRGRU-Context with the previous
generator SCLSTM in a variety of setups on proportion of training corpus, beam
size, and top-k best results. Firstly, the Restaurant and TV datasets were chosen,
in which the SCLSTM model obtained the best performances and the NLG task
comes from a limited domain to a more diverse domain as described in Sect. 4.1.
In this setup, the models were run with different size of training corpus. Secondly,
we examined the stability of SRGRU-Context model on different setups of beam
size and top-k best results.

4.3 Evaluation Metrics and Baselines

The generator performance was assessed by using two objective evaluation met-
rics, the BLEU score and the slot error rate ERR. Note that the slot error rate
ERR was computed as an auxiliary metric alongside the BLEU score and cal-
culated by averaging slot errors over each of the top 5 realizations in the entire
corpus. Both metrics were computed by adopting code from an open source
benchmark toolkit for Natural Language Generation4.

We compared our proposed models against with the general GRU (GRU-
Base) and three strong baselines released from the NLG toolkit:

– ENCDEC proposed in [21] which applies the attention mechanism to an RNN
encoder-decoder.

4 https://github.com/shawnwun/RNNLG.

https://github.com/shawnwun/RNNLG
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– HLSTM proposed in [19] which uses a heuristic gate to ensure that all of the
attribute-value information was accurately captured when generating.

– SCLSTM proposed in [22] which can learn the gating signal and language
model jointly.

5 Results and Analysis

Overall, the proposed models SRGRUs consistently achieve better perfor-
mance in term of the BLEU score in all domains. Especially, on the Hotel and
TV datasets, the proposed models outperform the previous methods in both
evaluation metrics. Moreover, our models also outperform the GRU basic model
(GRU-Base) in all cases. However, the proposed models get worse on the Restau-
rant and Hotel datasets in terms of the error rate ERR score in comparison with
SCLSTM. This indicates the advantage of the proposed refinement gate. A com-
parison of the two proposed generators is shown in Table 2: Without the back-
ward RNN reranker, the generator tends to make semantic errors since it gains

Table 1. Comparison performance on four datasets in terms of the BLEU and the
error rate ERR (%) scores; bold denotes the best and italic shows the second best
model. The results were produced by training each network on 5 random initialization
and selected model with the highest validation BLEU score.

Model Restaurant Hotel Laptop TV

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

ENCDEC 0.7398 2.78% 0.8549 4.69% 0.5108 4.04% 0.5182 3.18%

HLSTM 0.7466 0.74% 0.8504 2.67% 0.5134 1.10% 0.5250 2.50%

SCLSTM 0.7525 0.38% 0.8482 3.07% 0.5116 0.79% 0.5265 2.31%

GRU-Base 0.7381 1.41% 0.8455 2.66% 0.5153 1.77% 0.5245 2.03%

SRGRU-Base 0.7549 0.56% 0.8640 1.21% 0.5190 1.56% 0.5305 1.62%

SRGRU-Context 0.7634 0.49% 0.8776 0.98% 0.5191 1.19% 0.5311 1.33%

TB-SRGRU 0.7637 0.47% 0.8642 1.56% 0.5208 0.93% 0.5312 1.01%

Table 2. Comparison performance on variety of SRGRU models on four datasets in
terms of the BLEU and the error rate ERR(%) scores. The results were averaged over
5 randomly initialized networks for each proposed model. areported in [22].

Model Restaurant Hotel Laptop TV

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

SCLSTMa 0.7211 0.62% 0.8020 0.78% - - - -

+deepa 0.7310 0.46% 0.8320 0.41% - - - -

GRU-Base 0.7208 1.55% 0.8426 1.97% 0.5158 1.94% 0.5244 2.11%

SRGRU-Base 0.7526 1.33% 0.8622 1.12% 0.5165 1.79% 0.5311 1.56%

SRGRU-Context 0.7614 0.99% 0.8677 1.75% 0.5182 1.41% 0.5312 1.37%

TB-SRGRU 0.7608 0.88% 0.8584 1.63% 0.5188 1.35% 0.5316 1.27%
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(a) Curves on the Restaurant dataset (b) Curves on the TV dataset

Fig. 2. Comparison of two generators SRGRU-Context and SCLSTM which are trained
with different proportion of training data.

the higher slot error rate ERR. However, using the backward SRGRU reranker
can improve the results in both evaluation metrics. This reranker provides benefit
to the generator on producing higher-quality utterances.

Figure 2 compares two generators trained with different proportion of data
evaluated on two metrics. As can be seen in Fig. 2a, the SCLSTM model achieves
better results than SRGRU-Context model on both of BLEU and ERR scores
since a small amount of training data was provided. However, the SRGRU-
Context obtains the higher BLEU score and slightly higher ERR score as more
training data was fed. On the other hand, in a more diverse dataset TV, the
SRGRU-Context model consistently outperforms the SCLSTM on both evalua-
tion metrics no matter how much training data is (Fig. 2b). This is mainly due
to the ability of refinement gate which feeds to the GRU model a new input xt

(a) Curves on variation of Beam size (b) Curves on variation of Top-k/Beam-size

Fig. 3. RGRU-Context generator was trained with different Beam size (a) and Top-k
best results (b) and evaluated on Restaurant and TV datasets.
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Table 3. Comparison of top responses generated for some input dialogue acts between
different models. Errors are marked in color (missing, misplaced, repeated, grammar
information). a and bdenotes the baselines and the proposed models, respectively.

Model Generated responses

Input DA inform count(type= restaurant; count= 2; food=Basque;
kidsallowed=no; pricerange=moderate)

Reference There are 2 restaurants where no children are allowed in the moderate
price range and serving Basque food

ENCDECa There are 2 restaurants that are moderately priced and do not allow
kids. [Basque]

HLSTMa There are 2 Basque restaurants that are moderately priced and
does not allow kids

SCLSTMa There are 2 Basque restaurants that are moderate and does not allow
children

SRGRU-Cb There are 2 moderate restaurants that serve Basque food and
does not allow children

TB-SRGRUb There are 2 moderately priced Basque restaurants that do not allow
kids

Input DA inform(name= the Carriage Inn; hasinternet= yes; dogsallowed=no)

Reference The Carriage Inn is a nice place, it has internet and where no dogs
are allowed

ENCDECa The Carriage Inn does not allow dogs. [has internet]

HLSTMa The Carriage Inn does not allow dogs, do not allow dogs
[do not allow dogs]

SCLSTMa The Carriage Inn does not allow dogs and has internet

SRGRU-Cb The Carriage Inn has internet and does not allow dogs

TB-SRGRUb The Carriage Inn does not allow dogs and it has internet

Input DA compare(name=Triton 52; ecorating=A+; family=L7;
name=Hades 76; ecorating=C; family=L9)

Reference Compared to Triton 52 which is in the A+ eco rating and is in the L7
product family, Hades 76 is in the C eco rating and is in the L9
product family. Which one do you prefer?

ENCDECa The Triton 52 has an A+ eco rating, the Hades 76 in the L7 product
family and has an C eco rating. [L7, L9]

HLSTMa The Triton 52 is in the L7 product family with an A+ eco rating,
while the Hades 76 has a C eco rating, which do you prefer? [L9]

SCLSTMa The Triton 52 has an A+ eco rating, the Hades 76 is in the L7 family
and has a eco rating of C. [L7, L9]

SRGRU-Cb The Triton 52 is in the L7 product family and an A+ eco rating, the
Hades 76 is in the L9 family and has an C eco rating

TB-SRGRUb The Triton 52 has an A+ eco rating, in the L7 product family, the
Hades 76 has a C eco rating and is in the L9 product family
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conveying useful information filtered from the original input and the gating
mechanism. Moreover, this gate also keeps the pattern of the generated utterance
during generation. As a result, it can have a better realization of unseen slot-
value pairs.

Figure 3a shows an effect of beam size on the SRGRU-Context model evalu-
ated on Restaurant and TV datasets. As can be seen that, the model performs
worse in terms of degrading the BLEU score and upgrading the slot error rate
ERR when the beam size increases. The model seems to perform best with beam
size less than 100. Figure 3b presents an effect of top-k best results in which we
fixed the beam size at 100 and top-k best results varied as k = 1, 5, 10 and 20. In
each case, the BLEU and the error rate ERR scores were computed on Restau-
rant and TV datasets. The results are consistent with Fig. 3a in which the BLEU
and ERR scores get worse as more top-k best utterances were chosen.

Table 3 shows comparison of top responses generated by different models for
given DAs. Firstly, both models SCLSTM and SRGRU-Context seem to produce
the same kind of error, for example, grammar mistakes or missing information,
partly because of using the same idea about gating mechanism. However, TB-
SRGRU, with tying the refinement gate, has ability to fix this problem and
produce the correct utterances (row 1 of Table 3). Secondly, as noted earlier, one
problem of the previous methods is the ability to handle the binary slot and slots
that take don’t care value. Both SCLSTM and the proposed models are able to
handle this problem (row 2 of Table 3). Finally, the TV dataset is more diverse
and much harder than the others because the order of slot-value pairs should be
considered during generation. For example, to generate a comparison sentence of
2 items Triton 52 and Hades 76 for given dialogue act compare(name=Triton
52; ecorating=A+; family=L7; name=Hades 76; ecorating=C; family=L9),
the generator should consider that A+ and L7 values belong to the former item
while C and L9 values to the latter. The HLSTM tends to make the repeated
information error while the ENCDEC and SCLSTM seem to misplace the slot
value during generation. Take L7 value, for instance, which should be generated
follow the Triton 52 instead of Hades 76 as in row 3 of Table 3. We found
that both proposed models SRGRU-Context and TB-SRGRU can deal with this
problem to generate appropriate utterances.

6 Conclusion and Future Work

We propose a gating mechanism GRU-based generator, in which we introduced
a refinement gate to semantically refine the original input tokens. The refined
inputs conveying meaningful information are then fed into the GRU cell. The
proposed models can learn from the unaligned data to produce natural language
responses conditioned on the given DA. We extensively evaluated our model on
four NLG datasets and compared against the previous generators. The results
show that the proposed models obtain better performance than the existing
generators on all of four NLG domains in terms of the BLEU and ERR metrics.
In the future, we plan to further investigate the gating mechanism to multi-
domain NLG since the refinement gate shows its ability to handle the unseen
slot-value pairs.
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22. Wen, T.H., Gašić, M., Mrkšić, N., Su, P.H., Vandyke, D., Young, S.: Semantically
conditioned LSTM-based natural language generation for spoken dialogue systems.
In: Proceedings of EMNLP. ACL (2015)

23. Wen, T.H., Vandyke, D., Mrksic, N., Gasic, M., Rojas-Barahona, L.M., Su, P.H.,
Ultes, S., Young, S.: A network-based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562 (2016)

24. Zhang, X., Lapata, M.: Chinese poetry generation with recurrent neural networks.
In: EMNLP, pp. 670–680 (2014)

http://arxiv.org/abs/1604.04562

	Semantic Refinement GRU-Based Neural Language Generation for Spoken Dialogue Systems
	1 Introduction
	2 Related Work
	3 Recurrent Neural Language Generator
	3.1 SRGRU-BASE
	3.2 SRGRU-CONTEXT
	3.3 Training
	3.4 Decoding

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setups
	4.3 Evaluation Metrics and Baselines

	5 Results and Analysis
	6 Conclusion and Future Work
	References




