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Chapter 7
Biofertilizers Based on Bacterial 
Endophytes Isolated from Cereals: 
Potential Solution to Enhance These Crops

Lorena Celador-Lera, Alejandro Jiménez-Gómez, Esther Menéndez, 
and Raul Rivas

Abstract  Due to the increasing demand for the use of agricultural products, along 
with new and more restrictive policies regarding the application of fertilizers, the 
search for alternative ways to increase crop production in a responsible way with 
respect to the environment is necessary, especially considering that the use of 
nitrogen-based fertilizers are both very costly and polluting. As regards this chapter 
focuses on the production of cereals because they represent the most important 
source of total food consumption, particularly in developing countries with diets 
based mainly on these types of crops. One possible solution is the application of 
microbial-based fertilizers (biofertilizers) to enhance crop production. In the litera-
ture, bacteria that not only promote plant growth but are also capable of colonizing 
the interior of plants, known as endophytic bacteria, have been described. Several 
studies have characterized the different ways of locating these bacteria inside plants, 
as well as the effects of their colonization. In addition, some entophytes are able to 
fix nitrogen for their hosts, produce phytohormones (auxins, cytokinins, gibberel-
lins), degrade harmful compounds, decrease the effects of saline stress and improve 
seed germination, among others benefits. Several companies have attempted to 
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exploit the positive effects caused by endophytic bacteria on their hosts by 
developing different products, used worldwide (e.g. Inogro®, QuickRoots®), that are 
based on these types of bacteria. The application of these products occurs despite 
the governing legislation of the different countries where it is used, and there are 
usually no specific regulations controlling the process of production, security and 
marketing of these biofertilizers.

Keywords  PGPBEs · Biofertilization · Maize · Azospirillum · Bioinoculants

7.1  �Introduction

The United Nations Food and Agriculture Organization (FAO) estimates that the 
total demand for agricultural products will be ~60% higher in 2030 than it is today. 
Remarkably, developing countries comprise ~85% of the global food demand. For 
over half a century, the world population has relied on modern agriculture for 
enhancing crop yields. Cereals are the most important source of total food con-
sumption, especially in developing countries, where diets are based mainly on these 
types of crops. World cereal production has significantly increased during the last 
two decades, and during this time, the grain yields of several cereal crops has 
increased to ~122% all over the world, responding to this ever-increasing demand 
for food. However, this trend in grain production cannot be maintained due to the 
decrease in the number of hectares of cultivable land, which has been dedicated to 
rapidly growing urbanization (Mia and Shamsuddin 2010; Meena et  al. 2013a, 
2016a; Bahadur et al. 2014; Maurya et al. 2014; Jat et al. 2015; Kumar et al. 2015, 
2016b; Ahmad et al. 2016; Parewa et al. 2014; Prakash and Verma 2016).

One of the most important factors in obtaining high-yield cereal crops is the 
application of nitrogen-based fertilizers, which is why farmers apply high amounts 
of these types of fertilizers that are both very costly and hazardous to the environ-
ment, especially when used indiscriminately. In addition, ~50% of applied 
N-fertilizers are somehow lost through different bio-geological processes, which 
not only represent an economical loss but also pollute the environment (Ladha et al. 
1998). Thus, crop scientists all over the world are facing this alarming situation and 
searching for cost-effective and biosafe alternatives (Jeyabal and Kupuswamy 
2001). With this aim in mind, the scientific community needs to investigate ways to 
increase crop production and at the same time to avoid the problems associated with 
the overuse of fertilizers (García-Fraile et al. 2015).

Therefore, it is necessary to enhance crop productivity in a sustainable manner, 
which does not exacerbate the problem of pollution. Furthermore, farmers need to 
be open to the idea of using other kinds of fertilizing schemes, such as biofertilizers. 
The application of plant growth-promoting bacteria, such as those used as biofertil-
izers, for sustainable agriculture may provide a solution to this problem (Meena 
et al. 2015a, b, f, 2016b; Priyadharsini and Muthukumar 2016; Kumar et al. 2016a, 
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2017; Raghavendra et  al. 2016; Zahedi 2016; Rawat et  al. 2016; Dotaniya et  al. 
2016; Jaiswal et al. 2016; Jha and Subramanian 2016).

The development of a proper biofertilizer requires: (i) isolation and selection of 
bacteria, (ii) effective carrier selection, (iii) observation of modes of entry of endo-
phytic bacteria into the host plant, (iv) determining the mechanisms involved in 
plant growth promotion, (v) verifying the effectiveness of inoculants, and (vi) to 
check the biosafety of these strains for the environment and health (Berg and Smalla 
2009; Chauhan et al. 2015). In addition, it is necessary to understand the nature of 
the microorganisms before their use as biofertilizers in order to utilize only micro-
organisms safe for human health; this includes not only the consumer or end user 
but also those handling the biofertilizers during their production (Meena et  al. 
2017). Strains belonging to the genera Azospirillum, Gluconacetobacter, Bacillus 
or Azotobacter, among others, are currently commercialized as biofertilizers for 
nonlegumes without any adverse effects being reported to date (Bashan 2014). In 
this chapter, we revise the available data regarding plant growth promotion by bac-
terial endophytes isolated from different cereals and focus on their possible use in 
biofertilization. Moreover, we will specifically focus on the culturomics approach, 
analysing the role of cultivable microorganisms since they are essential for agricul-
ture and very important in the movement and availability of the minerals required 
for plant growth (Yasin et al. 2016; Meena et al. 2016c, d; Saha et al. 2016a; Yadav 
and Sidhu 2016; Das and Pradhan 2016; Dominguez-Nunez et al. 2016). Ultimately, 
these microorganisms are essential for the partial or total reduction of synthetic 
fertilizers (Malusá and Vassilev 2014).

7.2  �Endophytic Bacteria: Definition, Importance 
and Mechanisms of Action

For many years, scientists from all around the world have developed and published 
several studies reporting on the great potential that some bacterial strains have in the 
promotion of plant growth, namely, plant growth-promoting bacteria or PGPB, 
through several mechanisms (García-Fraile et al. 2015). Many of these bacteria are 
endophytes, which are defined as bacteria living inside a plant tissue (“endo”, 
inside; “phyte”, plant). Some of them can influence plant growth and pertain to a 
subset of the endophytic population called PGPBEs (Gaiero et al. 2013).The poten-
tial of PGPBEs to improve plant health has led to a great number of studies examin-
ing their applied use as inoculants, primarily in agricultural crops (Kuklinsky-Sobral 
et  al. 2004; García-Fraile et  al. 2015). Because of these qualities, PGPBEs are 
important candidates to be used as inoculants to reduce the need for chemicals, such 
as pesticides and fertilizers, becoming important in the development of sustainable 
agricultural practices (Saha et al. 2016b; Verma et al. 2014, 2015a, b; Meena et al. 
2014a, 2015e; Sharma et al. 2016; Bahadur et al. 2016b).
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In general, endophytes are more likely to show plant growth-promoting effects 
than bacteria exclusively colonizing the rhizosphere (Conn et al. 1997; Chanway 
et al. 2000). Also, some endophytes are better colonizers and are capable of outcom-
peting others present in the surroundings (Verma et al. 2004).Therefore, endophytes 
(single or forming consortia) found in a particular plant species can be considered 
as more competent and suitable for their reinoculation in the same plant crop from 
which they were isolated.

7.2.1  �Plant Root Colonization

Colonization and infection processes in cereals by endophytic bacteria differ from 
leguminous plants. The infection process can take place at cracks, such as those 
occurring at root emergence sites or those created by deleterious microorganisms, 
as well as through cells situated at root tips (Reinhold-Hurek and Hurek 2011). To 
successfully colonize the host plant, endophytic bacteria have specific traits, such as 
flagella, cell wall degrading enzymes (CWDEs) or twitching motility, among others 
(Lodewychx et al. 2002). Due to endophytic bacteria being able to penetrate into the 
root of the host, they are better candidates than the bacteria found in the rhizosphere 
for use as PGPB in plants (Meena et al. 2013b, 2015c, 2016e; Shrivastava et al. 
2016; Velazquez et al. 2016; Bahadur et al. 2016a; Masood and Bano 2016; Teotia 
et al. 2016).

Active and passive mechanisms have been reported for the translocation pro-
cesses of endophytic bacteria inside their plant hosts, allowing them to progress 
from the rhizoplane to the cortex of the root system (Fig. 7.1). Once a bacterium 
reaches the root cortical zone, a barrier such as the endodermis can block further 
colonization of the inner tissues; only few bacteria are able to pass through the 
endodermis (Gregory 2006). It is likely that endophytes able to pass through the 
endodermis can secrete CWDEs allowing them to continue colonization through the 
inner roots (James et al. 2002). Alternatively, some bacteria may passively enter as 
a portion of this endodermal cell layer is often disrupted, such as during the growth 
of secondary roots, which derive from the pericycle situated just below the endoder-
mis barrier (Gregory 2006). Under natural conditions, some deleterious bacteria can 
also disrupt the endodermis, allowing endophytic bacteria at the same time to pass 
into the central cylinder to further reach the root xylem vessels of their hosts 
(Compant et al. 2010).

For example, Azorhizobium caulinodans are able to enter rice roots at emerging 
lateral roots (lateral root cracks) by crack entry and move into intercellular space 
within the cortical cell layer or roots (Goormachtig et al. 2004). Lateral root crack 
colonization of rice was also observed with similar frequency following inoculation 
with Azospirillum brasilense, where colonization was stimulated by naringenin and 
other flavonoids (Jain and Gupta 2003).

In addition, some strains may have the ability to infect rice root tissues via root 
hairs located at the emerging lateral roots and to spread extensively throughout the 

L. Celador-Lera et al.



179

rice root (Ladha et al. 1996; Francine et al. 2007). Some naturally occurring rhizo-
bia can invade the emerging lateral roots of rice, wheat, maize and oilseed rape 
(Cocking 2003; Bashan 2014; Yanni et al. 2016).

7.2.2  �How to Localize Endophytic Bacteria Inside Plants

Colonization by these bacterial endophytes can be confirmed through multiple 
methods. These methods include fluorescent-tagging, immunological detection, 
fluorescence/confocal microscopy or scanning and transmission electron micros-
copy. Bacterial entry routes into the host plant have been traced and scored in many 
cases by using these approaches (Prayitno et al. 1999; Chaintreuil et al. 2000; Verma 
et al. 2004; Perrine-Walker et al. 2007a). Otherwise, specific primers could be of 
use to analyse bacteria inside plants (Hartmann et al. 2000).

Other authors like Bulgarelli et al. (2015) combine 16S rRNA gene profiling and 
shotgun metagenomic analysis to investigate the structure and function of the 

Fig. 7.1  Sites of plant colonization by endophytic bacteria. Plant growth-promoting endophytic 
bacteria (PGPBE), white circles; other endophytic microorganisms, black triangles
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bacterial root microbiota in wild and domesticated barley (Hordeum vulgare). 
Moreover, Stets et al. (2013) used matrix-assisted laser desorption ionization time-
of-flight mass spectrometry (MALDI-TOF MS) to assess the diversity of wheat-
associated bacterial isolates. Also, they validated their results by using 16S rRNA 
gene sequence analyses, which correlated with the clusterization of the mass spectra 
profiles. The results obtained demonstrated that this technique had the potential to 
classify bacteria at different levels.

Several authors have previously demonstrated the potential of in situ visualiza-
tion of specific gfp-tagged bacteria in plant roots (Chelius and Triplett 2000; Ramos 
et al. 2002). GFP-tagged B. subtilis CB-R05 strain was studied to monitor its inter-
action in Oryza sativa under axenic conditions by using confocal laser scanning 
microscope (CLSM). CB-R05 cells penetrate through the rhizoplane, especially in 
the elongation and differentiation zones of the rice roots and, also, are able to colo-
nize it intracellularly (Ji et al. 2014).

Moreover, Chi et al. (2005) examined the colonization and infection of rice plant 
tissues by different species of gfp-tagged rhizobia and their influence on the growth 
physiology of rice. Other studies aim to evaluate the potential of Rhizobium sp. to 
colonize the roots of a wide variety of cereals by tagging bacteria with fluorescent 
proteins (Mitra 2014). Results derived from these studies showed that in the first 
days of the rhizobia-plant root interaction, bacteria predominantly colonized the 
elongation zone of the roots, the root surfaces and, interestingly, root hairs. Also, 
other studies reported the inoculation of rice seedlings with a GFP-tagged strain of 
Rhizobium, displaying some phenotypes similar to those seen in the infection pro-
cess that occurs in leguminous plants. Results suggest that some strains may have 
the ability to infect rice root tissues via root hairs located at the emerging lateral 
roots and to spread extensively throughout the rice roots (Perrine-Walker et  al. 
2007b).

Quadt-Hallmann and Kloepper (1996) used antibodies coupled to fluorophores 
to study the colonization of internal tissues of different plant species by the endo-
phytic bacteria Enterobacter asburiae JM22. Polyclonal and monoclonal antibodies 
applied in enzyme-linked immunosorbent assay (ELISA), dot blot assay, tissue 
printing, or immunogold labelling was sensitive and specific enough to detect 
JM22 in plant tissues.

Thomas and Reddy (2013) used the fluorophore Syto9 (S9), which binds nucleic 
acids in bacteria, in combination with propidium iodide (PI) to localize endophytic 
bacteria in the inner tissues of Musa acuminate (banana) by epifluorescence and 
confocal laser scanning microscopy (CLSM). Their results showed an extensive 
bacterial colonization of banana tissues. Rothballer et al. (2003) examined the endo-
phytic potential of two strains of A. brasilense, Sp245 and Sp7, on roots of different 
wheat cultivars using fluorescent in situ hybridization (FISH) in combination with 
confocal laser scanning microscopy. The results obtained revealed which strain was 
able to grow better in contact with wheat roots.

The location of bacteria inside the plants reveals information about the prefer-
ences of colonization of internal tissues by the endophytic bacteria. We can also 
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distinguish if they perform an intra- or extracellular colonization. However, these 
techniques just give us a qualitative idea of the colonization. To quantify and give an 
accurate result of bacterial colonization, techniques based on fluorescence should 
be combined with other techniques, such as bioinformatic tools. In this sense, Liu 
et  al. (2001) developed a computer-aided interactive system called “CMEIAS” 
(Center for Microbial Ecology Image Analysis System) to analyse the high degree 
of morphological diversity in growing microbial communities associated or not to a 
substrate, which might be the plant root surface.

7.2.3  �Plant Responses to Endophytic Bacterial Colonization

Once bacteria enter into the plant, different defence reactions have often been 
described. For example, the strengthening of cell walls, the production of antibiot-
ics, growth-stimulating substances or enzymes and gum formation inside vessels 
have been observed (James et al. 2002; Compant et al. 2005; Miché et al. 2006). 
However, in contrast to the plant response to phytopathogens, few defence mecha-
nisms have been described in plant response to PGPBEs. Moreover, certain plants 
have been shown to change their chemical responses when interacting with PGPBEs 
compared with non-beneficial bacteria, indicating that the plant does not recognize 
the PGPBEs as harmful agents (Miché et al. 2006; Rocha et al. 2007). It has also 
been reported that plants may show defence reactions controlling endophytic colo-
nization, involving the production of salicylic acid (SA), jasmonic acid (JA) or 
ethylene, among other molecules. For example, dicotyledonous plants are known to 
use salicylic acid (SA) and ethylene as signalling molecules, which control coloni-
zation by some endophytes (Iniguez et al. 2005).

In monocotyledonous plants such as rice, the addition of jasmonic acid (JA), but 
not ethylene, was shown to interfere with the colonization of the diazotroph 
Azoarcus sp., suggesting that plant defence responses involving the JA signalling 
pathway may also control endophytic colonization inside the root system. However, 
in a compatible endophytic association, JA-associated plant responses were less 
pronounced and did not restrict endophytic colonization (Miché et al. 2006).

For example, rhizobial inoculation in cereal plants, especially rice, is associated 
with an increased accumulation of phenolic substances such as gallic, tannic, ferulic 
and cinnamic acids in plant leaves (Mirza et al. 2001). Such increases in phenolic 
acids are a pathogenic stress-related phenomenon in plants (Pieterse et al. 2002). 
Defence reactions triggered in response to rhizobial invasions are termed as 
rhizobacteria-mediated induced systemic resistance. However, this systemic 
resistance is not enough to prevent the entry of the Rhizobium inside the plant. 
Thus, rhizobia successfully colonize and disseminate throughout the inner host 
plant without evoking an observable defence reaction in the plant (Mia and 
Shamsuddin 2010).
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7.3  �Nitrogen-Fixing Bacterial Endophytes

Several studies have shown that endophytic bacteria are able to enter the inner tis-
sues of plants, successfully colonize them and cause benefits. Therefore, it is inevi-
table that the use of these endophytic bacteriaasan alternatives to chemical fertilizers 
as a means to aid in the demand for food will receive support. According to FAO, 
the main cereal crops in terms of global production are maize, rice and wheat. In 
2011, their production was more than 833, 723 and 704 Mt., respectively (Perez-
Montaño et al. 2014). In order to maintain high production levels, there is a massive 
use of N-based fertilizers, and ~60% of the total synthetic nitrogen fertilizers pro-
duced worldwide is currently used in cereal crops (Dobermann 2007; Westhoff 
2009). As nitrogen continues to be a serious problem for agriculture, due to the lack 
of available forms for plants or due to the excess of N-based fertilizers, the formula-
tion of biofertilizers based in nitrogen-fixing endophytic bacteria presents itself as 
the more suitable solution to overcome these problems. In this section, we focus on 
endophytic bacteria that are able to fix nitrogen for these cereal crops with higher 
yields worldwide (Mia and Shamsuddin 2010; Sindhu et  al. 2016; Meena et  al. 
2013c, 2014b, 2015d; Singh et al. 2016, 2015).

Bacteria responsible for nitrogen fixation are called diazotrophs, which harbour 
nitrogenase, the enzyme complex that catalyses the conversion of N2 gas to ammo-
nia, a form that can be used by plants (Santi et al. 2013). Some of these diazotrophic 
bacteria are also PGPBEs. They have been detected inside the plant, causing benefi-
cial effects such as plant growth promoters and nitrogen fixation. These bacteria, 
found in close association with roots, are usually designated “associative” nitrogen-
fixing bacteria. However, the frontier between associative and endophytic plant 
colonization is not always clear since associative bacteria can also be observed in 
plant tissues; although, they are less abundant than strains originally classified as 
endophytes (Elmerich 2007). In contrast to what occurs in endosymbiosis, these 
bacteria do not induce differentiated structures in the roots, and although endo-
phytic bacteria invade plant tissues, they cannot be regarded as endosymbionts that 
reside intracellularly in living plant cells. Endophytic diazotrophs may have an 
advantage over root-surface associative diazotrophs as they colonize the interior of 
plant roots and can establish themselves in niches that provide more appropriate 
conditions for effective nitrogen fixation and subsequent transfer of the fixed nitro-
gen to the host plant (Reinhold-Hurek and Hurek 2011). Some of the main bacteria 
that can live in association with maize, rice and wheat and contribute to improve 
plant growth are presented in Table 7.1. Some bacterial genera, such as Azospirillum, 
Azoarcus, Herbaspirillum and Gluconacetobacter, which promote growth, fix 
nitrogen and have more efficiency in colonization, were isolated in a plant species 
and were more competent in the reinoculation in the same plant.

The use of the bacterial genus Azospirillum as inoculants and the discovery of the 
high acetylene reduction (AR) activity associated with the roots of cereals immedi-
ately attracted much interest among agronomists and soil microbiologists. Many 
studies were performed on the inoculation of these crops with Azospirillum sp., 
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particularly the Azospirillum brasilense type strain Sp7 originally isolated from the 
rhizosphere soil of Digitaria decumbens (and the closely related strain Cd) (Bashan 
and Levanony 1990). Boddey and Dobereiner (1995) showed that Azospirillum 
strains isolated from surface-sterilized roots of a certain cereal showed a greater 
aptitude to reinfect the same cereal and to promote responses in crop yield and/or N 
accumulation when these “homologous” strains were inoculated. In this respect, 
several studies showed that the A. brasilense strain Sp 245, isolated from surface-
sterilized wheat roots, repeatedly increased grain yield and N accumulation in wheat 
in both field and pot experiments, where Sp 7 and/or Cd promoted little or no plant 
response (Baldani et al. 2002). Similar results have been obtained with maize, wheat 
and pearl millet by other authors (Couillerot et al. 2013; Masciarelli et al. 2013; 
Piccinin et al. 2013; Morley 2013; Lakhani et al. 2014).

Table 7.1  Association of cereals and nitrogen-fixing PGP bacteria

Cereals Diazotroph inoculant
Benefits (% 
increase) References

Rice Azoarcus sp. 16 (total dry 
weight)b

Reinhold-Hurek and Hurek (1997), 
Engelhard et al. (2000)

Maize Burkholderia sp. 68 (shoot biomass)b Baldani et al. (2000)
19 (seed biomass)b

B. vietnamiensis 13–22 (yield)a Van et al. (2000)
Gluconacetobacter 
diazotrophicus

30 (total dry 
weight)b

Muthukumarasamy et al. (2005)

Herbaspirillum 
seropedicae

37.6 (plant dry 
weight)b

James et al. (2002)

Serratia marcescens 23 (total dry 
weight)b

Gyaneshwar et al. (2001)

Burkholderia sp. 5.9–6.3 (yield)a Estrada et al. (2005)
Azospirillum brasilense 13–25 (yield)b Riggs et al. (2001), Dobbelaere 

et al. (2001)33 (grain yield)a

Pseudomonas protegens 44 (total dry 
weight)b

Fox et al. (2016)

Wheat H. seropedicae 19.5 (yield)a Riggs et al. (2001)
Pseudomonas sp. 11.7 (total biomass)b Shaharoona et al. (2006)
H. seropedicae 49–82 (total 

biomass)b

Riggs et al. (2001)

P. protegens 47 (total dry 
weight)b

Fox et al. (2016)

Pearl 
millet

A.brasilense 12.05 (fresh weight 
of roots)b

Tien et al. (1979)

Soybean A.brasilense 9.19 (total root 
length)b

Molla et al. (2001)

Sorghum A. brasilense 33–40 (total number 
of length)b

Sarig et al. (1992)

Modified from Santi et al. (2013)
Experiments in fields (a) or in controlled conditions (b)
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The genus Azoarcus is a group of gram-negative, endorhizospheric diazotrophic 
bacteria, originally isolated from roots of the grass Leptochloa fusca (L.), namely, 
Kallar grass, which are able to invade plant tissues due to their cellulolytic enzymes 
(Reinhold-Hurek et al. 1993). Reinhold-Hurek et al. (1993) observed that Azoarcus 
is able to colonize the interior of sorghum plants by means of its cellulolytic 
enzymes. Therefore, Azoarcus sp. strain BH72 is not specific to its original host 
plant, Kallar grass, and maybe used as inoculum for other members of the Gramineae 
family. To evaluate its contribution of biological nitrogen fixation (BNF), the total 
nitrogen content in the whole system was analysed. After 28 days of cultivation, a 
sevenfold increase of total N was measured, from which the majority (72.6%) was 
located in the growth medium.

Gluconacetobacter diazotrophicus, a N2-fixing bacterium has been originally 
isolated from sugarcane roots and inside stems collected in various sites of Brazil 
(Cavalcante and Dobereiner 1988) and of Australia (Li and Macrae 1992). This 
endophytic bacterium is able to fix N2 even in the presence of nitrates and seems to 
be best adapted to the environment for growing sugarcane (Cavalcante and 
Dobereiner 1988). This bacterium could have more economic importance compared 
with other diazotrophs associated with sugarcane (Fuentes-Ramirez et al. 1993).

Moreover, some studies have shown its ability to act as a PGPBE (Fuentes-
Ramirez et  al. 1993; Saravanan et  al. 2008; Mehnaz and Lazarovits 2006; Sahai 
et al. 2015). Fuentes-Ramirez et al. isolated 18 strains belonging to this species that 
produce different concentrations of indoleacetic acid (IAA). Thus, considering that 
G. diazotrophicus was found within the plant tissue, the biosynthesis of IAA sug-
gests that these strains could promote root formation and improve sugarcane growth 
by direct effects on metabolic processes, in addition to their role in N2 fixation. G. 
diazotrophicus has been isolated from other plant hosts, such as wetland rice, pine-
apples, tea, coffee, etc. (Saravanan et  al. 2008). Mehnaz and Lazarovits (2006) 
showed the inoculation effects of G. diazotrophicus in maize provided significant 
plant growth promotion expressed as increased root and shoot weight when com-
pared to uninoculated plants.

Species from the genus Herbaspirillum, which are classified as plant growth-
promoting rhizobacteria (PGPR), can produce biological nitrogen fixation (BNF) 
for plants, as well as present P-solubilization and siderophore production 
(Richardson et  al. 2009). In a recent study, Alves et  al. (2015) showed the plant 
growth promotion effect of 21 strains of Herbaspirillum species on maize plants. In 
this trial, the grain yield was evaluated as well as the contribution of biological 
nitrogen fixation (BNF). This study showed that H. seropedicae ZAE94 was the 
best strain under controlled conditions, and its application as a field inoculant 
increased maize yield up to ~34%, depending on the plant genotype.

All these nitrogen-fixing endophytic bacteria also improve root development by 
the production of different classes of growth regulators that influence primary root 
growth and increase the number and length of lateral roots and elongating root hairs, 
which in turn results in an increase in the field productivity of crops (Dobbelaere 
et al. 1999; Contesto et al. 2008; Combes-Meynet et al. 2011; Walker et al. 2012).
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7.4  �Bacterial Endophytes from Cereals Used as Plant 
Probiotics

Many bacterial endophytes able to promote plant growth have been isolated from 
within the cereals, as shown in Table 7.2. Nevertheless, we can observe that these 
same isolates are then used to reinoculate the same plant host. It may be due to 
adaptation that the bacteria have to colonize the plant. This kind of bacteria has a 
potential to interact with cereals, due to the effects and benefits produced. In this 
part of the chapter, we focus on the description of various mechanisms used by 
endophytes to enhance plant growth, improve agronomic characteristics and solve 
problems of pollution.

Currently, there are a huge number of studies published that report the use of 
endophytic bacteria as PGPR inoculants (some of them summarized in Table 7.2). 
Commonly, plant growth promotion occurs due to a combination of different action 
modes, such as the improvement of the host’s nutrient status, promoting root surface 
area and increasing the availability of nutrients to the plants (Perez-Montaño et al. 
2014 (Fig. 7.2). Every bacterial strain may use one or several mechanisms, depend-
ing on the phase of plant’s life cycle (Long et al. 2008).

According to Govindarajan et  al. (2008), rice yield production was increased 
with respect to a control treatment when a bacterial inoculant was applied. Moreover, 
the effect of the inoculation caused rice seedlings to grow better under N-deficient 
conditions. Mäder et al. (2011) showed an increase in wheat grain yield (~31%) 
after the inoculation with Pseudomonas jessenii R62 and Pseudomonas synxantha 
R81, in comparison to uninoculated control plants.

Recently, the potential of endophytic bacteria to degrade pollutants in order to 
allow plants to emerge as the natural vegetation at a contaminated site or to decrease 
contaminant concentration is being analysed (Syranidou et  al. 2016). Although 
many number of studies focus on the degradation of compounds, such as herbicides, 
pesticides and hazardous organic compounds, in many occasions, these benefits and 
effects are also related and associated with an improvement of plant development. 
Sorty et  al. (2016) reported that endophytic bacteria could alleviate the harmful 
effects of salt stress and enhance seed germination in wheat, as well as to promote 
plant growth and to increase dry biomass and total soluble sugars. Wheat seedlings 
are able to germinate under different salinity regimes after co-inoculation with 
Bacillus subtilis SU47 and Arthrobacter sp. SU18 (Upadhyay et al. 2012).

Under stress conditions, plants increase their ethylene levels causing important 
cell damage (Argueso et al. 2007; Hardoim et al. 2015; Perez-Montaño et al. 2014). 
Thus, the role of ACC deaminase production by endophytic bacteria and the ability 
to decrease ethylene levels have been also analysed (Glick 2014; Etesami et  al. 
2014; Gamalero and Glick 2015; Khan et al. 2016). Ethylene is a plant hormone, 
which is also the key regulator of plant colonization by endophytic bacteria. 
According to Etesami et  al. (2014), the endophytic strain P. fluorescens REN1, 
selected for its high ACC deaminase production, significantly colonized rice seed-
ling roots in comparison with other ACC deaminase-producing isolates in controlled 
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Table 7.2  Bacterial endophytes isolated from cereals used as plant growth promoters

Bacterial endophytes 
isolated from cereals

Reinfection 
tests in cereals Effect (% increase) References

Wheat
Arthrobacter sp. and 
Bacillus subtilis

Wheat 26 (total dry weight) Upadhyay et al. 
(2012)

Pseudomonas jessenii (R62) 
and Pseudomonas synxantha 
(R81)

Wheat 41 (grain yield) Mäder et al. (2011)

Rhizobium leguminosarum 
bv. trifolii

Wheat 24 (wheat shoot dry 
matter and grain yield)

Hilali et al. (2001)

Maize
A. brasilense Maize 45 and 82 (grain yield and 

total N accumulation, 
respectively)

de Salamone et al. 
(1996)

Rhizobium etli bv. phaseoli Maize 20–45 (total biomass) Gutierrez-Zamora 
and Martınez-Romero 
(2001)

Serratia liquefaciens, 
Bacillus sp. Pseudomonas 
sp.

Maize 14 (dry weight) Lalande et al. (1989)

Rice
R. leguminosarum bv. trifolii 
E11

Rice 8–22 (grain yield) Biswas et al. (2000)

R. leguminosarum bv. trifolii 
ARC100 and ARC101

Rice 19.7 and 6.31 (grain 
weight and grain yield, 
respectively)

Yanni et al. (1997)

Pantoea agglomerans Rice 63.5 (total biomass) Verma et al. (2001)
B. vietnamiensis MGK3 Rice 9.36 (grain yield) Govindarajan et al. 

(2008)
Herbaspirillum seropedicae 
LMG6513

Rice 2.6 (grain yield) Govindarajan et al. 
(2008)

B. vietnamiensis LMG10929 Rice 5.4 (grain yield) Govindarajan et al. 
(2008)

H. seropedicae LMG6513 Rice 2.6 (grain yield) Govindarajan et al. 
(2008)

Bradyrhizobium sp. 
ORS278

Rice 20 (total biomass) Chaintreuil et al. 
(2000)

Gluconacetobacter 
diazotrophicus

Rice 30 (total dry weight) Muthukumarasamy 
et al. (2005)

H. seropedicae Rice 38–54 (root biomass) Elbeltagy et al. 
(2001)

Rice 22–50 (shoot biomass) Gyaneshwar et al. 
(2002)

Rice 37.6 (plant dry weight) James et al. (2002)
Rice 52–112, 71 (fresh and dry 

weight)
Baldani et al. (2000)

(continued)
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conditions. This result supports the idea of the use of ACC deaminase activity as a 
powerful tool to select effective endophytic bacteria with plant growth-promoting 
capabilities.

Another key factor to be analysed in the plant-endophytes association is 
phytohormone production (auxins, gibberellins and cytokinins), which is one of the 
most well-studied mechanisms in relation to plant growth promotion (Hardoim 
et al. 2015). Auxins are a class of plant growth regulators, known to stimulate cell 
elongation in plants, and their production by endophytic strains has been reported 
(Long et al. 2008; Shi et al. 2009). Merzaeva and Shirokikh (2010) presented an 

Table 7.2  (continued)

Bacterial endophytes 
isolated from cereals

Reinfection 
tests in cereals Effect (% increase) References

Serratia marcescens Rice 23 (total dry weight) Gyaneshwar et al. 
(2001)

R. leguminosarum bv. trifolii Rice 15–22, 8–22 (grain yield) Yanni et al. (1997), 
(2001)

Pantoea agglomerans Rice 63.5 (total biomass) Verma et al. (2001)
B. vietnamiensis 
LMG10929T

Sugarcane 19.5 (yield) Govindarajan et al. 
(2006)

H. seropedicae Sugarcane 5–12 (yield) Govindarajan et al. 
(2008)

Sugarcane
Enterobacter cloacae Sugarcane 55 and 70 (root and shoot 

biomass)
Mirza et al. (2001)

Klebsiella pneumoniae Sugarcane 13–19.5 (total biomass) Govindarajan et al. 
(2007)

G. diazotrophicus BR 11281 Sugarcane (Mixture of five species) 
23.5 stalk fresh weight 
and 27.4 dry matter

Oliveira et al. (2002)
H. seropedicae BR 11335
Herbaspirillum 
rubrisubalbicans BR 11504
Azospirillum amazonense BR 
11115
Burkholderia sp. BR 11366
G. diazotrophicus 
LMG7603

Sugarcane 13–16 (yield) Govindarajan et al. 
(2007)

H. seropedicae 26 (plant dry weight) Muñoz-Rojas and 
Caballero-Mellado 
(2003)

18.83–49.86 (total 
biomass)

Suman et al. (2005)

35 (dry matter) Oliveira et al. (2002)
H. rubrisubalbicans Rice 6.6 (grain yield) Govindarajan et al. 

(2008)G. diazotrophicus LMG7603
Leptochloa fusca Rice 16 (total dry weight) Reinhold-Hurek and 

Hurek (1997)Azoarcus
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increase in the germination capacity of rye seedlings, which were treated with aux-
ins produced by endophytic bacteria.

Apart from being typical trait of root-associated endophytes, gibberellins pro-
duction elicits various metabolic functions of plant growth (Macmillan 2001), and 
the production by endophytes is currently described worldwide (Khan et al. 2014; 
Shahzad et al. 2016). Cytokinin production by bacterial endophytes is commonly 
analysed and reported in relation to plant growth promotion. According to the data 
presented by Kudoyarova et al. (2014), Bacillus subtilis IB-22 increased amino acid 
rhizodeposition in wheat roots due to its ability to produce cytokinins. Apart from 
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Fig. 7.2  Schematic representation of plant growth-promoting mechanisms of bacterial endophytes

L. Celador-Lera et al.



189

the fact that most of the described endophytes present the mechanisms explained 
above, some endophytes are also inoculated as biocontrol agents (Díaz-Herrera 
et al. 2016; Xu et al. 2017). According to Pan et al. (2015) B. megaterium BM1 
(entophytic strain isolated from wheat) significantly reduces the incidence and 
severity of infection by Fusarium graminearum in wheat crops.

7.5  �Current Situation of Commercial Products Based 
on Endophytic Bacteria

In order to satisfy the increase in food demand and environmental concerns, new 
ways of fertilization and the production of agronomic commercial products are 
being developed with the principal aim of creating a more sustainable agriculture. 
According to the new restrictive laws and some programmes and initiatives (e.g. 
Horizon 2020) concerning the use of chemical fertilizers, the creation and commer-
cialization of new green products is expanding worldwide, and several companies 
are developing a wide range of products based on different bacterial inoculants. 
Researchers and companies must consider the introduction and use of endophytes 
for the formulation of these products, where the full understanding of their behav-
iour under different conditions is probably the key aspect for developing an applica-
tion system that assures continuity and efficacy.

Despite the simplicity of production technologies and the low-cost industrial 
procedures of biofertilizer production, in comparison to the chemical fertilizer 
industry, there are big differences among the number of companies and the products 
they produce (Table 7.3), which are currently on sale globally (Naveed et al. 2015).

Europe is one of the areas that have developed more governmental policies for 
controlling the biofertilizer market (Garcia-Fraile et al. 2015). However, there are 
no existing specific regulations or a single process to regulate the quality for newly 
produced biofertilizers, and the already established laws are very different among 
the European Union member states. Some EU countries, such as the United 
Kingdom and Ireland, do not have specific regulations regarding the use of micro-
bial inoculants.

Since 1998, the European company “Xurian Environnement” has been analysing 
and producing a wide range of commercial green products. The team of technical 
experts provide personalized assistance to increase the biomass of cereal and oil-
seed crops. One of the bestselling products is Ovalis Rhizofertil®, a microbial inocu-
lant based on the strain P. putida I-4613. Another company, currently in expansion, 
is Symborg, which commercializes a product called VitaSoil®, a mix of rhizospheric 
microorganisms specific for the growth promotion of cereal crops and soil 
regeneration.

According to the Food and Agricultural Organization (FAO), Asia and the Pacific 
zone are the largest users of fertilizers in the world and import the three major nutri-
ents (nitrogen, phosphate and potassium) in large amounts. However, regional gov-
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ernments promote the development of the biofertilizer market in order to contribute 
to a more sustainable agriculture in these countries. The most important companies 
in terms of sales and production are Agri Life and Ajay Bio-tech (India) LTD. Some 
of the products sold by these companies are suitable for cereal crops, such as Ajay 
Azo/Rhizo/Azospirillum® (different biofertilizers based on Azotobacter, Rhizobium 
and Azospirillum species, respectively) and Agri Life Nitrofix® (biological fertilizer 
based on the strain A. chroococcum MTCC 3853), among others. These biofertilizers 
are based on single or combined efficient nitrogen-fixing bacteria (NFB) or phos-
phate-solubilizing bacteria (PSB) that help plant uptake of nutrients when applied 
to seed or through the soil. Moreover, the company “JSC Industrial Innovations” 
commercializes Azotobacterin®, which produces up to a ~20% increase in yield of 
crops such as wheat, barley and maize, among other cereals. This product contains 
the diazotrophic bacterial strain A. brasilense B-4485. According to Garcia-Fraile 
et al. (2015), this product is one of the most frequently used in Russia.

In China, the company “China Bio-Fertilizer AG” sells a product called “CBF”, 
which is formed by a mix of two bacterial species of the genus Bacillus (B. muci-

Table 7.3  Current commercial products for cereal crops based on endophytic bacteria

Company Product Crop type

Xurian Environnement Ovalis Rhizofertil® Cereal and oilseed
Symborg VitaSoil® Cereal
Ajay Bio-tech Ajay Azo® Wheat, paddy and cotton
Ajay Bio-tech Ajay Azospirillum® Cash
JSC Industrial Innovations Azotobacterin® Wheat, barley, maize, among other cereals
China Bio-Fertilizer AG CBF® Cash
Monsanto QuickRoots® Wheat and corn
Flozyme Corporation Inogro® Rice
Laboratorios BioAgro S.A. Liquid PSA® Wheat
Semillera Guasch SRL Zadpirillum® Maize
Gujarat State Fertilizers 
and Chemicals LTD

Azotobacter® Cereal, cash and horticultural

Gujarat State Fertilizers 
and Chemicals LTD

Azopirillum® Cereal, cash and horticultural

Gujarat State Fertilizers 
and Chemicals LTD

Phosphate 
Solubilizing Bacteria®

All kind of crops

INTERMAG BACTRIM STRAW® Maize and oilseed
Prabhat Fertilizer & 
Chemical Works

Azoto ® Cereals

Criyagen Agri Azospirillum 
Biofertilizer®

Paddy, sugarcane, maize, wheat, sorghum, 
Bajra, cotton and sunflower among others

Criyagen Agri PSB fertilizer® Maize, wheat, paddy
Abiosa BONASEED® Cereals
Criyagen Agri Bumper Crop 

Fertilizer®

Cereals
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laginosus and B. subtilis) that are able to solubilize phosphorus and potassium, 
resulting in an increase in crop yields (up to ~30% depending on plant species).

In America, farmers are expected to use an additional 300,000 tonnes of nitrogen 
fertilizers in 2018, which will be mainly applied to agricultural surface crops (wheat, 
corn and forage crops). This continent has the biggest worldwide biofertilizer com-
pany, Monsanto, which currently belongs to the company Bayer. Monsanto focuses 
on empowering farmers to produce more from their land while conserving natural 
resources such as water and energy. Also, they produce “QuickRoots®”, a microbial 
seed inoculant based on a bacteria-fungi mixture, mainly B. amyloliquefaciens and 
T. virens, to enhance nutrient uptake in wheat and corn crops, which results in an 
enhanced yield potential. Monsanto, as well as other companies such as Novozymes 
and BASF, also operates worldwide.

Also in the USA, the Flozyme Corporation, a company that has been testing new 
technologies designed to increase crop production and reduce or eliminate the need 
for fertilizers, produces and commercializes “Inogro”. This product is a mix of more 
than 30 microbial species selected for their plant growth promotion abilities. 
Independent tests showed a significant increase in rice yields under greenhouse con-
ditions (www.flozyme.com/agriculture/).

Since 1984, the company “Laboratorios Bioagro S.A. (Argentina)” has focused 
on the research and development of highly environmental friendly products to help 
satisfy the farmers’ needs. One of their most famous products is “Liquid PSA”, 
which contains P. aurantiaca SR1 and is registered by the national service for agri-
cultural health of Argentina, due to its promotion of wheat growth. Moreover, in the 
same country, the company Semillera Guasch SRL launched a brand named Zaden 
Agrotecnologias®, which produces a biological inoculant called Zadpirillum® that is 
based on the plant growth-promoting strain A. brasilense AZ39 and enhances maize 
yields.

Even Africa will require 4 million tonnes of nitrogen fertilizers in 2018, and the 
use of biofertilizers varies widely among countries due to the farmers’ reticence to 
apply microbial biofertilizers. Therefore, the experts recommend a combination 
between using local technological knowledge and microbial fertilizers (Babalola 
and Glick 2012) as the only way to satisfy the increasing food demand that will 
continue to exist over the next decades. As regards there are projects searching for 
solutions, such as Engineering Nitrogen Symbiosis for Africa project (ENSA) or 
N2Africa project, led by two of the most important European research centres, John 
Innes Centre and Wageningen University, respectively, which have received funding 
from the Bill and Melinda Gates Foundation and aim to help African farmers to 
enhance their crop yields by engineering nonleguminous plants for fixing nitrogen 
and to improve inoculants based on microbial strains.

In this context, the collaboration between researchers and industries becomes a 
key aspect for the development of microbial-based biofertilizers. The underlying 
mechanisms of the interaction of plants with bacterial endophytes is still unknown, 
and there are also bio safety issues that need to be addressed; for example, strains 
forming part of biofertilization schemes must be tested in order to avoid damages. 
The comprehensive research of bacterial endophytic populations will allow more 
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efficient biofertilizers to be made. Moreover, it is very important that the efforts to 
develop biofertilizers must be approved and accepted by farmers around the world, 
where they are provided the proper education and simplified procedures for using 
the products correctly. These measures would be positive steps to encourage the 
commercialization and production of biofertilizers by companies worldwide.

7.6  �Conclusion and Future Perspectives

Enhanced cereal crop production by the application of PGPBE-based biofertilizers 
is the necessary breakthrough to underpin a more sustainable food production for 
feeding the global population and to overcome the environmental issues derived 
from the abuse of chemical fertilizers. In this chapter, we have presented the great 
diversity of bacterial endophytic strains isolated from several cereal crops and their 
potential as plant growth promoters when inoculated onto their isolation source or 
other types of crops. These PGPBEs are able to establish a more intimate relation-
ship with cereals crops, showing a better colonization of the inner tissues of these 
plants and performing their beneficial actions in a close interaction with their hosts. 
Hence, the progressive understanding of microbial populations that are applicable 
as inoculants for different crops is absolutely necessary in order to ensure higher 
yields in a sustainable way.

The Food and Agriculture Organization (FAO) promotes the use of biofertilizers 
in both developed and developing countries, and many have employed them to a 
greater or lesser extent (FAO 1991). Moreover, most countries have developed poli-
cies to reduce the use of chemical fertilizers due to the consumer demands for more 
organic food. Thus, the commercialization and application of bacterial fertilizers on 
agricultural crops are increasing year by year. In the near future, more efforts will 
be needed regarding the development of proper inoculants that enhance cereal 
growth and yields. Based on this premise, the Horizon 2020 Programme strongly 
supports European research dedicated to the biotechnological processes and prod-
ucts. Also, Latin America is one of the world’s largest fertilizer consumers, particu-
larly Mexico, and a programme to support the introduction of N-fixing biofertilizers 
based on Azospirillum was carried on ~1.5 M ha (Fuentes-Ramirez and Caballero-
Mellado 2005). India has the most complete legal framework in the world related to 
biofertilizers, and ~350–500  t of biofertilizers are requested form the Indian 
National Biofertilizer Development Center (NBDC) and the Bio-Tech Consortium 
of India Ltd. (BCIL) for agricultural purposes in India (Dewasthale and Bondre 
2008). In addition, Japan has long since begun to include nitrogen-fixing bacteria in 
the formulation of biofertilizers, and the Tokachi Federation of Agricultural 
Cooperatives (TFAC) is the largest producer and marketer of rhizobial biofertilizers 
since 1953. This company uses PGPR as biofertilizers and as biocontrol agents, 
among others. The Forum for Nuclear Cooperation in Asia (FNCA) is also located 
in Japan and actively develops biofertilizers in Asian countries (Naveed et al. 2015). 
According to Masso et al. 2014, in Africa, regulatory frameworks are required since 
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biofertilizers are of poor quality and consequently cause economic loss. For this 
reason, Babalola and Glick (2012) suggest the combined use of traditional tech-
niques together with microbial fertilizers.

Therefore, we propose that more work is needed in order to development better 
biofertilizers and to ensure their proper use. This also includes the establishment of 
specific legislation that regulates biofertilizers in order to facilitate the processes of 
production and commercialization. Governments should support the use of biofer-
tilizers and provide proper funding for research and the creation of companies in the 
field of biofertilizers. To reduce the farmer’s reticence towards these types of prod-
ucts, specific programmes and initiatives are needed to train farmers in the use of 
biofertilizers. Due to the increasing demand for fertilizers worldwide, more research 
efforts are needed to elucidate the inner mechanisms affecting the interaction 
between cereal crops and beneficial bacteria.
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