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Abstract An efficient, convenient and environmentally benign procedure for the
construction of various bioactive spirooxindoles has been developed by conden-
sation reactions of isatins, malononitrile and a-methylene carbonyl compounds/
enols in the presence of starch solution as expedient, eco-friendly and biodegrad-
able catalyst at 60 °C. The prominent features of the above protocol are short
reaction time, high atom economy, simple work-up, cost-effectiveness, avoidance
of toxic chemicals.
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1 Introduction

Spirooxindole based compounds possess wide array of activities such as antitumuor
[1], antimicrobial [2, 3], antitubercular [4], antimycobacterial [5], antiproliferative
properties [6]. The unique structure of spirooxindoles and their highly pronounced
biological activity has attracted the interest among various researchers [7–9].

Moreover design and development of methods to access biologically relevant
complex molecules has become increasingly popular at the forefront of contem-
porary organic synthesis. Multicomponent reactions (MCRs), provide one of the
most dominant platforms for the sustainable synthesis of polyfunctionalized hete-
rocyclic compounds owing to their atom economy, operational simplicity, envi-
ronmental friendliness and green chemistry characteristics [10–13].
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As a part of our research interest toward the development of environmentally
benevolent, efficient and economically viable protocol for the synthesis of hetero-
cycles [14–20], we envisaged on the synthesis of spiropyran annulated heterocycles
through one pot condensation of isatins with malononitrile and a-methylene car-
bonyl compounds/enols. Starch solution which is easily available, inexpensive,
biodegradable as well as non-toxic in nature was used as catalyst for the synthesis
of aforementioned heterocycles.

2 Results

In the present work, a novel, proficient and green protocol for the synthesis of
spirooxindoles has been described via one pot condensation reactions of isatins,
malononitrile and a-methylene carbonyl compounds/enols namely
5,5-dimethylcyclohexane-1,3-dione (dimedone), cyclohexane-1,3-dione,
4-hydroxycoumarin, 2,4-dihydro-5-methyl-pyrazol-3-one in presence of starch
solution at 60 °C.

In order to optimise the reaction conditions isatin, malononitrile and
cyclohexane-1,3-dione were selected as model substrates. Various reactions of
isatin (1.0 mmol) with malononitrile (1.5 mmol) and cyclohexane-1,3-dione
(1.0 mmol) were attempted in presence of varying amount of starch solution
which serve as dual role of catalyst as well as reaction media at different temper-
ature. The impact of different amounts of catalyst load as well as reaction
temperature on the yield of desired product i.e. 2-amino-2′,5-dioxo-5,6,7,8-
tetrahydrospiro[chromene-4,3′-indoline]-3-carbonitrile (Ia) and reaction time is
shown in Table 1. The best result was obtained using 5.0 mL starch solution at
60 °C. The reaction was complete in 10 min. and gave 93% of Ia.

Table 1 Optimization of reaction conditions for the formation of Ia

Entry Starch solution (mL) Temperature (°C) Time (min) Yield (%)

1 5.0 r.t. 60 55

2 5.0 50 60 75

3 5.0 60 10 93
4 5.0 70 10 93

5 4.0 60 25 70

6 6.0 60 10 93

7 8.0 60 10 93
1Reactions were carried out in 1.0 mmol scale with 1:1.5:1 ratio of isatin, malononitrile and
1,3-cyclohexane-1,3-dione in starch solution
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Using these optimised reaction conditions, reactions of isatin, malononitrile with
3,3-dimethylcyclohexane-1,3-dione/4-hydroxycoumarin/2,4-dihydro-5-methyl-
pyrazol-3-one were also performed. All the reactions underwent completion in
10–15 min and afforded the corresponding spirooxindoles (Ib-d).

The scope of the above condensation reaction was also examined by using
5-bromoisatin for reactions with malononitrile and 1,3-dicarbonyl compounds
(dimedone, cyclohexane-1,3-dione) under otherwise identical conditions and
2-amino-5′-bromo-7,7-dimethyl-2′,5-dioxo-5,6,7,8-tetrahydrospiro[chromene-4,3′-
indoline]-3-carbonitrile (Ie), 2-amino-5′-bromo-2′,5-dioxo-5,6,7,8-tetrahydrospiro
[chromene-4,3′-indoline]-3-carbonitrile (If) were obtained respectively. All these
results have been shown in Table 2 and represented in Eq. 1.
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Table 2 Synthesis of spirooxindoles (I) via reaction of isatins, malononitrile and a-methylene
carbonyl compounds/enols in starch solution at 60 °C

Entry Isatin a-methylene
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(continued)
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3 Discussion

The proposed mechanism for the synthesis of spirooxindoles is shown in Fig. 1.
The starch is expected to form micelle-like structure, which is capable of holding
the molecules and thereby catalysing the reaction. Initially, Knoevenagel conden-
sation of isatin with malononitrile takes place to give an intermediate. The inter-
mediate so formed underwent Michael addition with a-methylene carbonyl
compounds/enol to furnish an intermediate. The hydroxyl group of this interme-
diate underwent cycloaddition to cyano group to yield I.

Table 2 (continued)

Entry Isatin a-methylene
carbonyl
compounds/enols

Product (I) Time
(min)

Yield
(%)
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1Reaction conditions: Isatin/5-bromoisatin (1.0 mmol), 3,3-dimethylcyclohexane-1,3-dione/
cyclohexane-1,3-dione/4-hydroxycoumarin/2,4-dihydro-5-methyl-pyrazol-3-one (1.0 mmol) and
malononitrile (1.5 mmol) in presence of starch solution (5.0 mL) at 60 °C
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4 Materials and Methods

All the melting points were measured using Buchi melting point 545 apparatus and
are uncorrected. IR spectra were recorded on a Perkin Elmer FTIR spectropho-
tometer using KBr pellets. The 1H NMR spectra were recorded on Jeol JNM
ECX-400P (at 400 MHz) with DMSO-d6 as solvent and using TMS as internal
reference. Thin Layer Chromatography (TLC) was performed on precoated silica
gel plates (Merck).

General procedure for preparation of starch solution: The starch solution
employed for carrying out synthesis of spirooxindoles was prepared by stirring a
mixture of solid starch (1.5 g) in water (15.0 mL) at 25 °C for 30 min. After 30
min. the solution was filtered and the filtrate was used for synthesis of I.

Procedure for synthesis of spirooxindoles: To a 50 mL round-bottomed flask
isatins (1.0 mmol), malononitrile (1.5 mmol), a-methylene carbonyl compounds/
enols (1.0 mmol) and starch solution (5.0 mL) were added. The contents were
stirred vigorously at 60 °C for the appropriate times as mentioned in Table 2. After
completion of reaction (monitored by TLC), the content was cooled to room
temperature. The precipitate so obtained was filtered, washed with water and
subsequently with ethanol. All the synthesised products were known compounds
and were characterized by FT-IR, 1H NMR and comparison of their melting points
with known compounds [21–24].

Spectral Data of Representative Spirooxindoles:

2-Amino-7,7-dimethyl-2’,5-dioxo-5,6,7,8-tetrahydrospiro[chromene-4,3′-indo-
line]-3-carbonitrile (Ib): White solid; Yield = 94%; M.pt.: 300 °C IR
(KBr) tmax-/cm

−1 = 3377, 3314, 3145, 2960, 2192, 1722, 1682, 1656, 1471, 1348,
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Fig. 1 Mechanism for the formation of spirooxindoles
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1327, 1223; 1H NMR (400 MHz, DMSO-d6) d: 10.32 (1H, s, NH), 7.15 (2H, s,
NH2), 7.09-7.04 (1H, m, Ar-H), 6.91-6.80 (2H, m, Ar-H), 6.73-6.71 (1H, m, Ar-H),
2.44-2.43 (2H, m, CH2), 2.10 and 2.08 (AB system, 2H, J = 16 Hz, CHaHbC
(CH3)2), 0.96 (3H, s, CCH3), 0.93 (3H, s, CCH3).

2′-Amino-2,5′-dioxo-5′H-spiro[indoline-3,4′-pyrano[3,2-c]chromene]-3′-
carbonitrile (Ic): White solid; Yield = 95%; M.pt.: 294–296 °C; IR
(KBr) tmax-/cm

−1 = 3350, 3297, 3196, 2955, 2206, 1736, 1673, 1604, 1541, 1471,
1359, 1219, 1169; 1H NMR (400 MHz, DMSO-d6) d: 10.69 (1H, s, NH), 7.94 (1H,
d, Ar-H, J = 7.8 Hz), 7.77 (1H, t, Ar-H, J = 7.7 Hz), 7.66 (2H, s, NH2), 7.56 (1H,
t, Ar- H, J = 7.6 Hz), 7.49 (1H, d, Ar-H, J = 8.4 Hz), 7.22 (2H, t, Ar-H,
J = 7.6 Hz), 6.93 (1H, t, Ar-H, J = 7.6 Hz), 6.86 (1H, d, Ar-H, J = 7.9 Hz).

5 Conclusion

In this work, we report a rapid and green synthesis of spirooxindoles via multi-
component approach in the presence of starch solution. The benefits of this novel
environmentally benign protocol are excellent yields, short reaction time, ease of
product isolation and purification, use of environment-friendly catalyst.
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