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Chapter 16
Theoretical and Applied Epigenetics  
in Plants

Yuhya Wakasa, Taiji Kawakatsu, and Fumio Takaiwa

Abstract  Artificial regulation of gene expression through RNA-directed DNA 
methylation (RdDM)-mediated epigenome editing is one the most important and 
attractive next-generation technologies for plant trait improvement, often called 
“new plant breeding techniques” (NPBTs). RdDM can induce transcriptional gene 
silencing (TGS) of a target gene via modification of the cytosine methylation levels 
of its promoter region; thus, RdDM is useful as a method for suppression of gene 
expression without changing the genomic DNA sequence. Likewise, several types 
of strict epigenetic regulation occur at both the DNA and chromatin levels under 
normal growth conditions in plants. Recent studies have revealed genome-wide and 
organ-specific landscapes of epigenetic modifications and their close relationship to 
plant growth regulation. Therefore, understanding recent findings concerning epi-
genetic regulation in plants is very important to the future application of epigenome 
editing in plant breeding. In this chapter, we illustrate several aspects of theoretical 
and applied epigenetics in plants through discussion of recent studies.

Keywords  Epigenetics · Chromatin · Histone · Methylation · New plant breeding 
techniques · RNA-directed DNA methylation · Transcriptional gene silencing

16.1  �Mechanisms of Epigenetic Regulation in Plants

16.1.1  �DNA Methylation

Cytosine DNA methylation (5mC) is a covalent modification of the fifth carbon 
residue of cytosine. 5mC is conserved in eukaryotes including mammals and plants, 
although absent in some organisms such as Drosophila melanogaster and 
Caenorhabditis elegans (Law and Jacobsen 2010). There are three main strategies 
to assay DNA methylation levels: (1) digestion of methylated/unmethylated DNA 
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fragments with methylation-sensitive restriction enzymes (MSREs), (2) methylated 
DNA immunoprecipitation (MeDIP) using an antibody against methylated cyto-
sine, and (3) bisulfite sequencing, in which unmethylated cytosine is converted to 
uracil by sodium bisulfite, which is reported as thymine in sequence reads. Each 
strategy can be combined with high-throughput sequencing technology and extended 
to genome-wide analysis (Cokus et al. 2008; Down et al. 2008; Lister et al. 2008; 
Maunakea et al. 2010). However, bisulfite sequencing is the most comprehensive 
and accurate way to quantify DNA methylation levels, so it is widely used for 
genome-wide analysis (Urich et al. 2015).

In plants, 5mC occurs in three distinct sequence contexts: CG and CHG, which 
are both symmetric, and CHH (H = C, A, or T), which is asymmetric (Law and 
Jacobsen 2010). Based on extensive studies in Arabidopsis thaliana, four distinct 
DNA methylation pathways are known. CG methylation is catalyzed by DNA 
METHYLTRANSFERASE 1 (MET1) and maintained in a semiconservative man-
ner during DNA replication (Kankel et al. 2003). CHG methylation is catalyzed by 
CHROMOMETHYLASE3 (CMT3), which recognizes methylation at the 9th lysine 
residue of the H3 tail (H3K9) (Bartee et al. 2001; Lindroth et al. 2001). CMT2, a 
homolog of CMT3, catalyzes CHG and CHH methylation in deep heterochromatic 
regions (Zemach et al. 2013; Stroud et al. 2014). DOMAINS OF REARRANGED 
METHYLTRANSFERASE 2 (DRM2) catalyzes cytosine methylation in all three 
sequence contexts, in a process referred to as RNA-directed DNA methylation 
(RdDM) (Cao and Jacobsen 2002; Law and Jacobsen 2010; Kawashima and Berger 
2014; Cuerda-Gil and Slotkin 2016). In RdDM, 21- or 24-nucleotide (nt) small 
interfering RNAs (siRNAs) guide DRM2 to target regions, marked with DNA meth-
ylation and H3K9me, through association with three conserved Argonaute proteins, 
AGO4, AGO6, and AGO9 (Gao et  al. 2010; Havecker et  al. 2010; McCue et  al. 
2015). Non-CG DNA methylation and histone methylation (see Sect. 16.1.2) form 
a self-reinforcing loop, in which H3K9me controls non-CG DNA methylation and 
non-CG DNA methylation controls H3K9me (Stroud et  al. 2014). Interplays 
between these pathways have been implicated by comprehensive methylome analy-
sis of components in these pathways (Stroud et al. 2013).

DNA methylation can be actively removed by DNA demethylases. In Arabidopsis, 
DNA glycosylases DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1)/
DEMETER-LIKE 1 (DML1), DML2, and DML3, are involved in DNA demethyl-
ation (Choi et al. 2002; Gong et al. 2002; Penterman et al. 2007; Ortega-Galisteo 
et  al. 2008). In contrast to mutants of DNA methylation components, which are 
usually viable, dme is embryo lethal, highlighting the importance of active demeth-
ylation (Bartee et al. 2001; Cao and Jacobsen 2002; Choi et al. 2002; Kankel et al. 
2003). DNA methylation and demethylation activities are balanced by a feedback 
loop between RdDM and ROS1 (Lei et al. 2015; Williams et al. 2015). ROS1 expres-
sion is promoted by RdDM in the ROS1 promoter region and repressed by ROS1 
activity itself.

CG methylation is broadly distributed across the genome and often resides within 
gene bodies (transcribed regions); this type of methylation is called gene body 
methylation (gbM). The distributions of gbM and histone variant H2A.Z are 
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mutually exclusive, and gbM is associated with higher gene expression (Tran et al. 
2005; Zhang et  al. 2006; Zilberman et  al. 2007). Therefore, gbM is thought to 
exclude H2A.Z and allow constitutive expression (Zilberman et al. 2008; Coleman-
Derr and Zilberman 2012). However, recent studies on intra- and interspecies varia-
tions of DNA methylation indicate that gbM does not have a great effect on gene 
expression or affect H2A.Z distribution within genes (Bewick et al. 2016; Kawakatsu 
et al. 2016a). Currently, the role of gbM is unclear. Co-localization of CG and non-
CG methylation is a characteristic of heterochromatin and transposable elements 
(TEs) and contributes to gene and TE silencing (Law and Jacobsen 2010). 
Population-wide methylome variations are largely associated with structural varia-
tions such as TE insertion or deletion (Kawakatsu et al. 2016a) and are enriched 
near signaling pathway genes or immune response genes. TE transposition has 
shaped the epigenome of Arabidopsis and has introduced variation in environmental 
responses during diversification.

DNA methylome studies are not limited to Arabidopsis, currently extending to 
nearly 100 species (Gent et al. 2013; Project 2013; Schmitz et al. 2013a; Stroud 
et  al. 2013; Zhong et  al. 2013; Seymour et  al. 2014; Ong-Abdullah et  al. 2015; 
Ausin et al. 2016; Niederhuth et al. 2016; Takuno et al. 2016). In addition, transgen-
erational, populational methylome variations, tissue- and cell-type-specific methy-
lomes, and stress-responsive methylomes have been reported (Hsieh et  al. 2009; 
Schmitz et  al. 2011; Calarco et  al. 2012; Dowen et  al. 2012; Ibarra et  al. 2012; 
Schmitz et  al. 2013a, b; Garg et  al. 2015; Secco et  al. 2015; Hsieh et  al. 2016; 
Kawakatsu et al. 2016a, b; Narsai et al. 2016; Park et al. 2016; Wibowo et al. 2016; 
Hossain et  al. 2017). Recent advances in single-molecule real-time sequencing 
enable detection of methylated cytosines from long reads without bisulfite conver-
sion (Rand et al. 2017; Simpson et al. 2017). These technologies potentially offer a 
paradigm shift in DNA methylome analysis, especially in crop species with large 
genomes and/or multiploidy.

16.1.2  �Histone Modification

Histone proteins package genomic DNA into nucleosomes, which in turn form 
chromatin (Roudier et al. 2009). Histones are conserved in eukaryotes. Four major 
histones (H2A, H2B, H3, and H4) act as core histones and H1 acts as a linker his-
tone (Kornberg 1974; Thoma and Koller 1977; Luger et al. 1997). The histone core 
is an octamer complex: two H2A-H2B dimers and an H3-H4 tetramer. Approximately 
147 bp of DNA wraps around each histone core and forms a nucleosome. Several 
histone variants share homology with major histone proteins (Deal and Henikoff 
2011a). In addition, histone tails can be posttranslationally modified through meth-
ylation (me) and acetylation (ac). These modifications are implicated in flowering, 
leaf development, seed maturation, flower development, circadian rhythm, and 
chloroplast development (Deal and Henikoff 2011a; Merini and Calonje 2015; 
Mozgova et  al. 2015). Chromatin immunoprecipitation followed by 
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high-throughput sequencing (ChIP-seq) is widely used for analyzing the genome-
wide distribution of histones, histone variants, and histone modifications (Luo and 
Lam 2014). Native chromatin digested by micrococcal nuclease (MNase) or cross-
linked chromatin fragmented by sonication can be subjected to immunoprecipita-
tion (N-ChIP [native ChIP] or X-ChIP [cross-linked ChIP]) using histone-, histone 
variant-, or histone modification-specific antibodies (Jackson 1978; O’Neill and 
Turner 1995; Barski et al. 2007; Schmid and Bucher 2007) (Fig. 16.1).

Although histone modifications are conserved in eukaryotes, their distribution 
patterns and functions vary. For example, mono-methylation of H3 (H3K9me1) is 
enriched in heterochromatin in Arabidopsis but is enriched at the transcription start 
sites (TSS) of active genes in animals (Fransz et al. 2006; Fuchs et al. 2006). H3K9 
di-methylation (H3K9me2) is also enriched in heterochromatin (Turck et al. 2007). 
In contrast, H3K9 tri-methylation (H3K9me3) is enriched in euchromatin and is 
associated with active genes (Turck et al. 2007). H3K9 methylation is catalyzed by 
SET- and RING-associated (SRA) domain-containing SU(VAR) HOMOLOGUE 1 
(SUVH1), SUVH4–6, and SET- and WIYLD-domain-containing SU(VAR)3–9 
related 4 (SUVR4) (Ebbs et  al. 2005; Ebbs and Bender 2006). INCREASED 
BONSAI METHYLATION 1 (IBM1) demethylates H3K9 (Inagaki et al. 2010).

Fig. 16.1  Comparison of 
ChIP-seq protocols for 
genome-wide chromatin 
mark(s) distribution. 
Native chromatin is 
digested by micrococcal 
nuclease (MNase) in native 
ChIP (N-ChIP). Cross-
linked chromatin is 
fragmented by sonication 
in cross-linked ChIP 
(X-ChIP). Nucleosomes 
are subjected to 
immunoprecipitation with 
specific antibodies
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H3K27 methylation tends to be associated with low-expression genes and tissue-
specific genes (Turck et al. 2007; Roudier et al. 2011). H3K27me1 and H3K27me2 
are distributed in both euchromatin and heterochromatin, and H3K27me3 is mainly 
observed in euchromatin (Roudier et  al. 2011). H3K27me1, me2, and me3 mark 
distinct sets of genes. H3K27me1 and H3K27me3 are enriched in the transcribed 
regions of marked genes, relative to flanking regions. However, H3K27me2 levels 
are uniformly higher in both the transcribed and flanking regions of marked genes 
than in unmarked genes. H3K27me1 is catalyzed by ARABIDOPSIS TRITHORAX-
RELATED PROTEIN 5 (ATXR5) and ATXR6 (Jacob et  al. 2009). H3K27m3 is 
catalyzed by Polycomb Repressive Complex 2 (PRC2) (Margueron and Reinberg 
2011). Drosophila PRC2 consists of four subunits: (1) enhancer of zeste (E(z)), (2) 
suppressor of zeste 12 (Su(z)12), (3) nucleosome-remodeling factor 55 kDa subunit 
(NURF55), and (4) extra sex combs (ESC). Arabidopsis possesses three E(z) homo-
logs (CURLY LEAF [CLF], MEDEA [MEA], and SWINGER [SWN]), three 
Su(z)12 homologs (EMBRYONIC FLOWER 2 [EMF2], VERNALIZATION 2 
[VRN2], and FERTILIZATION-INDEPENDENT SEED 2 [FIS2]), five NURF55 
homologs (MULTI-SUBUNIT SUPPRESSOR OF IRA 1–5 [MSI1–5]), and one 
ESC homolog (FERTILIZATION-INDEPENDENT ENDOSPERM [FIE]) (Ach 
et al. 1997; Goodrich et al. 1997; Grossniklaus et al. 1998; Kenzior and Folk 1998; 
Luo et  al. 1999; Gendall et  al. 2001; Yoshida et  al. 2001; Hennig et  al. 2003; 
Chanvivattana et al. 2004; Jullien et al. 2006; Makarevich et al. 2006; Zhang et al. 
2007; Jiang et al. 2008; Kim et al. 2010; Lafos et al. 2011; Pazhouhandeh et al. 2011; 
Derkacheva et al. 2013). PRC2 target genes especially depend on E(z) homologs.

PRC1 is also required for transcriptional repression of H3K27me3-marked 
genes. PRC1 can catalyze histone H2A mono-ubiquitination (H2Aub) of target 
genes (de Napoles et al. 2004; Wang et al. 2004). Drosophila PRC1 consists of four 
subunits (Gil and O’Loghlen 2014): (1) chromodomain protein Polycomb (Pc), (2) 
RING-finger protein Posterior sex comb (Psc), (3) RING-finger protein Drosophila 
RING1 (dRING1), and (4) Polyhomeotic (Ph). In Arabidopsis, LIKE 
HETEROCHROMATIN PROTEIN 1 (LHP1)/TERMINAL FLOWER 2 (TFL2) 
plays a similar role to Pc (Turck et al. 2007). Drosophila Psc possesses a RING-
finger domain, a RING-finger and WD40-associated ubiquitin-like (RAWUL) 
domain, and a long intrinsically disordered C-terminal region (CTR). The CTR 
domain of Psc is involved in inhibition of nucleosome remodeling, gene repression, 
and chromatin compaction; however, it is missing from Arabidopsis Psc homologs 
AtBMI1A, AtBMI1B, and AtBMI1C (Sanchez-Pulido et al. 2008). EMBRYONIC 
FLOWER 1 (EMF1) is similar to the CTR domain and acts in a similar manner 
(Aubert et al. 2001; Calonje et al. 2008). AtRING1A and AtRING1B correspond to 
dRING1 (Schoorlemmer et al. 1997; Xu and Shen 2008). No plant homolog of Ph 
has yet been identified.

JUMONJI (JMJ) proteins RELATIVE OF EARLY FLOWERING 6 (REF6)/
JMJ12, EARLY FLOWERING 6 (ELF6)/JMJ11, JMJ30, and JMJ32 are H3K27 
demethylases (Noh et al. 2004; Lu et al. 2011; Gan et al. 2014). Notably, four C2H2 
zinc finger domains of REF6 recognize a CTCTGYTY motif and guide REF6 to its 
binding sites to modulate H3K27me3 levels (Cui et al. 2016; Li et al. 2016).
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A hierarchical model for gene repression, in which PRC2 acts upstream of PRC1, 
has been widely accepted (Mozgova et al. 2015). In this model, PRC2 methylates 
H3K27 (to H3K27me3) in target genes as the first step. Second, PRC1 is guided 
there through H3K27me3 recognition by Pc or LHP1, and target genes are marked 
with H2Aub, leading to gene repression. However, the hierarchical order of PRC2 
and PRC1 is more complicated than once thought (Merini and Calonje 2015). For 
example, PRC1 is required for H3K27me3 at many PRC2 target genes (Kim et al. 
2012; Yang et al. 2013), and PRC2 is not necessarily required for H2Aub at target 
genes (i.e., PRC1 recruits) (Pengelly et  al. 2015). H2Aub can recruit PRC2 and 
promote H3K27me3 in animals (Blackledge et al. 2014; Cooper et al. 2014; Kalb 
et al. 2014). In addition, some PRC1 and PRC2 components interact with each other 
(Xu and Shen 2008; Derkacheva et al. 2013; Wang et al. 2014). Therefore, the inter-
actions between PRC1 and PRC2 may include a positive feedback loop, direct inter-
play, and mutually independent mechanisms.

H3K36me3 is associated with actively expressed genes (Roudier et  al. 2011). 
H3K36me3 is most prevalent within TSSs but is distributed throughout transcribed 
regions. SDG8, and possibly SDG4 and SDG25/ATXR7, catalyze H3K36me2 and 
H3K36me3 (Zhao et al. 2005; Cartagena et al. 2008; Xu et al. 2008; Berr et al. 2009). 
H3K36me3 and H3K27me3 play antagonistic roles—activation and repression—
and rarely co-exist on the same histone tail (Roudier et al. 2011; Yang et al. 2014).

H3K4 methylation is mostly found in genes and other euchromatin (Roudier 
et al. 2011). In contrast to enhancer-associated H3K4me1 in animals, H3K4me1 in 
Arabidopsis is distributed inside transcribed regions but is less prevalent near TSSs 
and transcription end sites (TESs). Both H3K4me2 and H3K4me3 are enriched 
around TSSs but depleted around TESs. H3K4me3 is associated with highly 
expressed genes, whereas H3K4me1 and H3K4me2 are associated with tissue-
specific genes (Roudier et al. 2011). ARABIDOPSIS TRITHORAX 1 (ATX1)/SET 
DOMAIN GROUP 27 (SDG27) and Complex Proteins Associated with Set1 
(COMPASS)-like complex catalyze H3K4me3, and ATX2/SDG30 catalyzes 
H3K4me2 (Saleh et  al. 2008; Jiang et  al. 2011). SDG2 catalyzes H3K4me1, 
H3K4me2, and H3K4me3 in  vitro, but in  vivo, sdg2 shows reduction only in 
H3K4me3 (Berr et al. 2010; Guo et al. 2010). JMJ14 and homologs of LYSINE-
SPECIFIC HISTONE DEMETHYLASE 1 (LSD1), FLOWERING LOCUS D 
(FLD)/LSD1-like 1 (LDL1), and LDL2 are required for H3K4 demethylation 
(Deleris et al. 2010; Lu et al. 2010; Greenberg et al. 2013).

H3K9ac and H3K27ac are associated with active gene expression (Charron et al. 
2009). Levels of both H3K9ac and H3K27ac peak near TSSs and are distributed inside 
gene bodies. The H3K9ac and H3K27ac target regions are largely the same but distinct 
from H3K27me3 target regions. H3K9ac and H3K27ac are catalyzed by histone acet-
yltransferase (HAT) family proteins, such as homologs of general control non-dere-
pressible (GCN5) and TATA binding protein-associated factor 1 (TAF1) (Pandey et al. 
2002; Benhamed et al. 2006). AtGCN5 also catalyzes H4K14ac. Histone deacetylase 
(HDAC) family proteins, such as HDA6, are responsible for histone deacetylation 
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(Pandey et al. 2002; Earley et al. 2006; To et al. 2011; Liu et al. 2014). HATs and 
HDACs act as transcriptional co-activators and co-repressors, respectively.

Combinations of histone modifications are thought to be important for the pre-
cise expression state and responsiveness of a gene. Two opposing histone marks, for 
example, H3K27me3 (repressing) and H3K4me3 (activating), can be co-localized 
in the same genomic regions (Roudier et al. 2011). As in animals, bivalent chroma-
tin regions in plants are associated with several transcription factors (TFs) that are 
normally expressed at low levels but are induced at specific timing and/or in specific 
tissues by developmental cues (Saleh et al. 2007; Jiang et al. 2008; Berr et al. 2010; 
Roudier et al. 2011). It is also possible that a mixture of different cell types with 
different chromatin modification states could be misinterpreted as co-localization of 
opposing histone marks. Cell-type-specific profiling would promote further under-
standing not only of cell-type-specific properties but also of the combinatorial func-
tions of histone modifications. Several recent developments show considerable 
promise in this area. For example, low-input ChIP-seq methods and high-throughput 
sequencing technologies are evolving (Adli and Bernstein 2011; Brind’Amour et al. 
2015; Schmidl et al. 2015). Recently developed simple but highly efficient INTACT 
(Isolation of Nuclei Tagged in specific Cell Types) is feasible for cell-type-specific 
profiling (Deal and Henikoff 2011b).

16.1.3  �Chromatin Accessibility

Transcriptional activation is primarily regulated by TF binding to regulatory DNA 
elements, where chromatin is open or accessible. Genome-wide chromatin acces-
sibility can be assayed directly or indirectly through a combination of nuclease 
digestion and high-throughput sequencing (Meyer and Liu 2014). As in N-ChIP, 
MNase digests bare DNA that is not protected by nucleosomes, whereas DNase I 
cleaves unprotected DNA.  Therefore, MNase digestion followed by sequencing 
(MNase-seq) identifies nucleosome positioning and indirectly detects open chroma-
tin regions (Schones et al. 2008), whereas DNase I cleavage followed by sequencing 
(DNase-seq) directly detects open chromatin regions (Boyle et al. 2008). FAIRE-
seq (Formaldehyde-Assisted Isolation of Regulatory Elements) also directly detects 
open chromatin regions by isolating un-cross-linked DNA with nucleosomes (Giresi 
et al. 2007). Transposase Accessible Chromatin sequencing (ATAC-seq) uses Tn5 
transposase to insert sequencing-ready adaptor sequences into open chromatin 
regions, starting with as few as 500 cells (Buenrostro et al. 2013). Genome-wide 
chromatin accessibility studies have been limited in plants (Zhang et  al. 2012a, 
2012b; Li et al. 2014; Wu et al. 2014; Zhang et al. 2015; Lu et al. 2016). Nevertheless, 
these studies clearly demonstrate that the identified open chromatin regions are 
associated with gene expression and TF binding sites. ChIP-seq has been used for 
assays of genome-wide TF binding sites in  vivo (Song et  al. 2016). However, 
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preparing antibodies against a wide variety of TFs or transgenic plants expressing 
tagged TFs with native promoters is time-, cost-, and labor-consuming. DNA affin-
ity purification sequencing (DAP-seq) is a new technology to cost-effectively iden-
tify TF binding sites in vitro (O’Malley et al. 2016). The combination of chromatin 
accessibility assays and DAP-seq is expected to greatly advance our knowledge of 
transcriptional regulatory networks.

16.2  �Application Studies on Epigenetics in Plants

16.2.1  �Application of Epigenome Editing to Plant Breeding

Gene manipulation (GM) techniques have been used as molecular breeding tools to 
develop various GM crops with excellent traits such as resistance to insect pests, 
plant diseases, and specific herbicides. Furthermore, “golden rice,” which accumu-
lates provitamin A in the seed, will be practical to use in the Philippines in the near 
future. GM crops are at present commercially cultivated in 28 countries worldwide. 
The total global cultivated area of transgenic crops was estimated to have reached 
approximately 179.7 million hectares by 2015 (James 2016). On the other hand, 
conventional GM techniques are still sometimes viewed as a serious issue in numer-
ous countries because the transgene is integrated into the genome of the target plant, 
and a number of people are concerned about gene flow from GM crops to the 
environment.

In recent years, technologies referred to as “new plant breeding techniques” 
(NPBTs) have been proposed as a solution for issues surrounding conventional GM 
crops. Genome editing (ZFN, TALEN, CRISPR/Cas9), “grafting with GM plants,” 
“reverse breeding,” Agrobacterium infiltration, and RdDM can all be classified as 
NPBTs (Lusser et al. 2012; Schaart et al. 2016). When these NPBTs are applied, it 
is difficult to distinguish between the newly introduced artificial mutation and natu-
ral mutations. In particular, changes to genomic DNA caused by RdDM cannot be 
detected by conventional molecular analysis methods such as PCR and DNA 
sequencing because there is no change to the DNA sequence. A key characteristic 
of RdDM-mediated transcriptional gene silencing (TGS) is the production of 
double-strand RNA (dsRNA) with homology to the promoter sequence of the target 
gene. The dsRNA is cleaved into 21–24 nt pieces of siRNA by DICER like (DCL) 
protein. In plants, these siRNAs become a cause of epigenetic modification of cyto-
sine residues in CG, CHG, and CHH contexts into methylated cytosine (5mC). Two 
types of DNA-dependent RNA polymerases (Pol IV and Pol V) are necessary to 
advance the process of RdDM (Matzke et al. 2015). The increased methylation lev-
els in the target gene promoter induce TGS, which is associated with changes in 
chromatin structure through histone modification (see Sect. 16.1.2).

Although posttranscriptional gene silencing (PTGS) has been used for functional 
analyses of target genes for about 20 years, TGS has an important advantage over 
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PTGS. Artificially induced methylation and TGS via RdDM may be preserved and 
inherited after removal of the trigger gene cassette; thus RdDM-mediated TGS 
could be considered as a type of NPBT. However, there are few research papers that 
discuss the relationship between the preservation or loss of TGS and the presence or 
absence of the trigger gene (Kasai and Kanazawa 2013).

The remainder of this chapter describes the application of epigenetic modifica-
tion to improvement of plant traits through various strategies of RdDM-mediated 
TGS. CRISPR/Cas9-mediated epigenome editing is also briefly discussed.

16.2.2  �Viral Vector-Mediated TGS in Plants

Plant viral vectors have been used to induce RdDM-mediated TGS (Fig. 16.2a). In 
this strategy, the plant defense response toward virus infection (called recovery) is 
applied to the production of dsRNA from target gene promoters. Viral vector-
mediated TGS in plants has been successfully induced in both reporter genes and 
endogenous genes. Kanazawa and co-authors used recombinant Cucumber mosaic 
virus (CMV) to induce TGS of Chalcone synthase-A and LeSPL-CNR genes in 
petunia and tomato, respectively (Kanazawa et al. 2011). Both plants showed clear 
phenotypic changes in association with epigenetic modification of the target gene 
promoters (Kanazawa et al. 2011). Interestingly, these new traits have been observed 
in subsequent generations even though the viral vector was not detected in these 
progenies (Kanazawa et al. 2011). These authors further reported that 2b protein, 
one of the endogenous proteins derived from CMV, is useful for stable induction of 
RdDM because it increases the expression of TGS induction-related genes and 
decreases the expression of demethylation-related genes. The 2b protein functions 
as an RNA silencing suppressor that can inhibit PTGS and virus-induced gene 
silencing (VIGS) (Goto et al. 2007). These results suggest that the combination of 
dsRNA and the 2b protein leads to highly efficient induction of RdDM-mediated 
TGS in a viral vector system.

As another example, TGS induction of Chalcone synthase-A gene in petunia was 
achieved via the use of apple latent spherical virus (ALSV) as a viral vector (Kon 
and Yoshikawa 2014). Tobacco rattle virus (TRV) vectors have also been used for 
induction of TGS, but most of the target genes have been reporter genes such as 
GFP and GUS under the control of the CaMV 35S promoter (Jones et al. 2001). 
However, recently, Bond and Baulcombe reported that TGS induction of endoge-
nous gene (FLOWERING WAGENINGEN, FWA) using TRV viral vector system in 
Arabidopsis and this report deeply discussed about initiation, establishment, and 
maintenance of TGS in endogenous gene, using FWA TGS Arabidopsis and various 
mutants of gene silencing-related genes (Bond and Baulcombe 2015).
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16.2.3  �Agrobacterium (T-DNA)-Mediated TGS in Plants

RdDM-mediated TGS in plants is generally induced by using T-DNA harboring 
gene cassettes to express dsRNA directed toward the promoter region of the target 
gene (Fig. 16.2b). Gene cassettes to express the dsRNA are introduced into the plant 
genome via Agrobacterium-mediated transformation. T0 plants expressing dsRNA 
derived from a foreign gene cassette should be treated as GM plants, whereas prog-
enies of TGS plants after removal of T-DNA by segregation can be treated as non-
GM plants in some world areas.
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Fig. 16.2  Various strategies for induction of RdDM-mediated TGS in plants. Viral vector-
mediated TGS (a), Agrobacterium (T-DNA)-mediated TGS (b), and grafting-mediated TGS (c) are 
shown. M methylation, RB right border, LB left border
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Although T-DNA-mediated TGS is very simple and easy to use, most research 
papers describe TGS of a reporter gene under the control of the CaMV 35S promoter. 
There are only a few reports of T-DNA-mediated TGS of endogenous genes in plants. 
In rice, RdDM-mediated TGS was attempted using a reporter gene (GFP under the 
control of the CaMV 35S promoter) and several endogenous genes. In these experi-
ments, TGS could be easily induced for GFP; TGS of most endogenous genes could 
not be induced in spite of highly efficient induction of cytosine methylation of the 
target gene promoters (Okano et al. 2008). Although different levels of chromatin 
modification were observed between the CaMV 35S promoter and the endogenous 
gene promoter, it is not yet understood why reporter gene constructs such as CaMV 
35S promoter::GFP can be silenced by TGS more easily than endogenous genes. On 
the other hand, successful induction of TGS of an endogenous gene by T-DNA-
mediated expression of dsRNA corresponding to the target promoter region has been 
reported in petunia (Sijen et al. 2001), Arabidopsis (Deng et al. 2014), and potato 
(Kasai et  al. 2016; Heilersig et  al. 2006). However, it seems that a reproducible 
method for stable induction of TGS via T-DNA has not yet been found in plants.

As an alternative Agrobacterium-mediated strategy, T-DNA harboring a viral 
vector sequence is used to deliver the viral vector to plant cells. After Agrobacterium-
mediated transformation or Agrobacterium infiltration, the viral vector is transferred 
into the nuclei of plant cells as a part of the T-DNA and can function independently 
as a viral vector. Viral vectors released from the T-DNA induce RdDM-mediated 
TGS (Ju et al. 2016).

16.2.4  �Grafting-Mediated TGS in Plants

Grafting is a plant-specific strategy for inducing TGS. In vascular plants, the vascu-
lar bundle system functions to transport water, minerals, nutrients, proteins, and 
photosynthate from sink to source organs (or from source to sink). Some RNA mol-
ecules such as siRNA and microRNA (miRNA) are also transported by vascular 
bundle system. Specifically, these small RNA molecules are exclusively transported 
from sink to source organs through the phloem (Melnyk et al. 2011; Ham and Lucas 
2017) and can move from cell to cell through the plasmodesmata (Melnyk et al. 
2011; Ham and Lucas 2017). When a scion artificially expressing siRNA toward a 
target gene promoter (GM plant) is grafted onto a wild-type rootstock (non-GM), 
RdDM-mediated TGS can be induced in the rootstock via siRNA movement through 
the vascular bundle system and plasmodesmata. If a regenerated plantlet is obtained 
from the TGS rootstock, it would be transcriptionally silenced without insertion of 
foreign DNA into the genome. For this reason, “grafting on GM” is considered a 
type of NPBT (Fig. 16.2c). Bai and co-authors grafted transgenic tobacco scions 
expressing dsRNA directed toward parts of the CaMV 35S promoter region and 
under the control of the companion cell-specific Commelina yellow mottle virus 
(CoYMV) promoter onto transgenic tobacco rootstocks expressing GFP under the 
control of the CaMV 35S promoter. GFP fluorescence was drastically suppressed in 
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lateral roots of the rootstock, indicating that TGS was epigenetically induced in the 
rootstock (Bai et al. 2011). This study showed that the movement of siRNA from 
scion to rootstock was more efficient than from rootstock to scion (Bai et al. 2011). 
These same authors have also produced an epigenetically improved potato by graft-
ing with transgenic tobacco as the TGS inducer, resulting in modified amylose con-
tent through suppression of granule-bound starch synthase I (GBSSI) gene without 
changes in the genomic DNA sequences of the host potato (Kasai et al. 2016).

Vegetatively propagated crops such as potato and apple may have an advantage 
over seed-propagated crops with respect to the use of RdDM-mediated TGS because 
vegetatively propagated crops do not require meiosis for self-reproduction; thus, the 
modified methylation level may be preserved more stably than in seed-propagated 
crops. However, further investigation would be necessary to clarify this point.

16.2.5  �CRISPR/Cas9-Mediated Epigenome Modification

The CRISPR/Cas9 system is a convenient and powerful tool for genome editing in 
many organisms (Cong et al. 2013; Mali et al. 2013; Fauser et al. 2014). This system 
is very simple, consisting of the combination of a guide RNA and Cas9 nuclease 
(Fig. 16.3a). A modified CRISPR/Cas9 system can be applied to epigenome editing. 
A nuclease-activity-disrupted Cas9 (dCas9) fused with enzymes to modify genomic 
DNA or histone can be used as an epigenome editing inducer (Fig.  16.3b). For 
example, a fusion protein consisting of nuclease-disrupted Cas9 protein and human 
acetyltransferase p300 successfully catalyzed the acetylation of histone H3 at target 
sites in human cells, resulting in the robust transcriptional activation of target genes 
(Hilton et al. 2015). Further modifications of CRISPR/Cas9-mediated epigenome 
editing will continue to be developed in animals and plants (Johnson et al. 2014; 
Konermann et al. 2013).

genome editing
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Genomic DNA

epigenome editing

Genomic DNA

DNA or chromatin modification
eg) demethylation
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A B
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Cas9 nuclease

PAM
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Fig. 16.3  CRISPR/Cas9-mediated epigenome editing. (a), Normal scheme of CRISPR/Cas9 sys-
tem to induce double-strand break toward target genomic DNA. (b) Epigenome editing technology 
using fusion protein consists of effector and catalytically dead Cas9 (dCas9) lacking only endo-
nuclease activity to induce the other modification such as demethylation or acetylation toward 
target genomic DNA or chromatin
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16.3  �Future Perspectives

This chapter describes new findings from both basic and applied studies on epi-
genetics in plants. Recently, the study of epigenetics has developed rapidly because 
of an increase in the precision of genome-wide association studies (GWAS), which 
have received a lot of attention in both animals and plants. At present, application of 
RdDM-mediated epigenome editing to plant breeding is not yet practical owing to 
the need to obtain stable induction of TGS toward endogenous genes and stable 
inheritance of the modified epigenome after removal of the trigger gene. However, 
we expect that many interesting findings will continue to be reported in the epi-
genetics field, with the result that RdDM-mediated epigenome editing will become 
a promising technology to produce trait-improved plants in the near future.
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