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Abstract The electrocardiogram (ECG) signal expresses unique cardiac features
among individuals. This paper proposes a novelmethod to human identification using
ECG. The proposed method utilizes a band-pass filter for quality check and autocor-
relation (AC) for feature extraction. Furthermore, the Walsh–Hadamard transform
(WHT) is used for feature transformation. To get cost- and time-efficient classi-
fication performance, the dimensionality of feature vector is reduced using linear
discriminant analysis (LDA). Experimental results show the best identification rate
of 95 and 97% over MIT-BIH arrhythmia database and QT database, respectively.

Keywords Human identification · Electrocardiogram · Walsh–Hadamard
transform · Discriminant analysis

1 Introduction

The identity of a person needs to be determined in many applications of access
control. Traditional identity verification methods based on passwords and ID cards
are vulnerable to identity theft [1]. In order to offer better security to identity proving
systems, many body parts and behaviors are being used from last decade [2, 3]. This
class of strategy offers better security to identification system. Among them, some
modalities are widely accepted but lack to provide robustness to circumvention or
replay attacks and user privacy. In the recent years, researchers have suggested that
physiological signals like electrocardiogram (ECG) have potential to be used for
identity proofing and provide robustness in identification [4, 5].
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In the literature, it has been shown that the ECG signals of different individuals
are heterogeneous [6, 16]. The discriminatory features in ECG are found among
individuals due to different levels of ionic potential, plasma level of electrolytes as
well as physical structure, position, and size of heart. Different methods are found
in the literature to analyze the ECG and its use to biometric application. One of the
early studies of use of ECG biometric was presented by Biel et al. [6]. They have
used multivariate method on a group of 20 subjects and achieved 100% identifi-
cation rate. Shen et al. [7] have investigated the feasibility of ECG as a biometric
by using time-domain and appearance-based features. They have achieved 95 and
80% classification accuracy by template matching and decision-based neural net-
work approaches, respectively. By combining these two approaches, the reported
identification result is 100% for 20 subjects.

Singh et al. [8–10] have analyzed the ECG using signal processing techniques.
They have classified the individuals using a variety of features those are extracted
from temporal, amplitude, and angle features with an accuracy of over 99%.
Plataniotis et al. [11] have introduced a non-fiducial feature extraction method based
on autocorrelation (AC) and discrete cosine transform (DCT). They reported the
recognition rate of 100% on a data set of 14 healthy subjects. Chan et al. [12] have
classified 50 subjects with accuracy of 95%, using three different quantitative mea-
sures: residual difference, correlation coefficient, and distancemeasure usingwavelet
transform.

A short-time frequency method has been developed by Odinaka et al. [13]. They
have performed experiments on a sample of 269 subjects. The equal error rates of
verification are found to be 5.58% on multisession data. When training and testing
samples are collected from same day, the verification results are improved further.
Agrafioti et al. [14] have presented an autocorrelation-based approach in conjunction
withDCTand linear discriminant analysis (LDA).Wanget al. [15] havedemonstrated
the comparison of fiducial-based approach using analytic and appearance attributes
and non-fiducial-based approach using AC and DCT. Li et al. [16] have proposed a
hybrid approach fusing temporal and cepstral information and achieved identification
accuracy of 98.26% on 18 subjects.

The issues related to these studies include individuality of ECGover larger popula-
tion, sensitivity to exact localization of fiducial points, heart rate variations, different
anxiety level. In this paper, a novel method is proposed that addresses the issues like
the individuality of ECG and accurate localization of dominant fiducials. Themethod
calculates the AC coefficients from the windows of filtered ECG signal. Further, the
AC coefficients are transformed intoWHT coefficients and LDA is applied to reduce
the dimensionality. Experimental results show that the proposedmethod outperforms
other methods on MIT-BIH arrhythmia database and QT database. The rest of the
paper is outlined as follows: Sect. 2 presents the novel method of ECG analysis and
its characterization that is used for biometric application. The experimental results
are presented in Sect. 3. Finally, the conclusion is noted in Sect. 4.
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Fig. 1 A schematic of proposed ECG biometric system

2 Proposed Methodology

A schematic diagram of proposed biometric system is depicted in Fig. 1. It involves
mainly: preprocessing, feature extraction, feature reduction, and classification. Dif-
ferent types of noise and artifacts are removed in preprocessing step. Features are
extracted from an ECG trace of 50 seconds, by autocorrelation followed by Walsh–
Hadamard transform (WHT). The LDA is used for feature reduction, and the last step
of the identification process is classification based on match scores of the subjects.

ECG signals may have different type of noises such as low-frequency noise com-
ponents including baseline oscillations, respiration or body movements and high-
frequency noise components due to power line interferences. A band-pass filter is
used to eliminate the effects of noise by combining a low-pass (Eq.1) and a high-pass
(Eq.2) filter [17]. The cutoff frequency of low-pass filter and high-pass filter is about
11 and 5Hz, respectively. The reason behind selecting this combination of filter is
that most of the energy of ECG signal lies within the above frequency range.

yn = 2yn−1 − yn−2 + xn − 2xn−6 + xn−12 (1)

yn = 32xn−16 − (yn−1 + xn − xn−32) (2)

The filteredECGsignal is divided into non-overlapping segments. Thewindowing
criteria are followed with the motivation that the maximum correlation among data
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samples can be found, if the window size is at least two heartbeats. The length of
window can be chosen heuristically according to the sampling rate of signals. For
this experiment, all the data is sampled at 200Hz, and the data window of size 50
seconds is chosen.

The fiducial-based feature extraction techniques may not achieve better classi-
fication performance, since it is highly dependent on the accurate localization of
dominant fiducials of ECG wave. Several factors may affect the exact delineation of
fiducial points such as noise present in the ECG signal. This motivates us to adopt
a method which is independent of fiducial points of ECG signal. To extract fea-
tures from ECG signal without localization of fiducial points, autocorrelation (AC)
is applied on windowed ECG. The AC shows similarity of samples as a function of
time lag between them. The AC provides an automatic, shift-invariant representation
of similarity features over multiple cardiac cycles. The normalized AC (̂ACyy[t]) for
ECG signal, y[i] of length n can be computed as follows,

̂ACyy[t] =
n−|t|−1
∑

i=0

y[i]y[i + t]
̂ACyy[0]

(3)

where y[i + t] is determined by shifting windowed ECG with a time lag of t =
0, 1, . . . (m − 1);m << n.

The AC coefficients are transformed using WHT to maximize the inter-class
dissimilarity and intra-class similarity.Walsh function offers a fast method of solving
nonlinear differential and integral equations with the reduction in calculation speed
and storage space [18]. The Walsh function has only three possible values:+1 or −1
in the interval 0 � x � 1 and a value zero outside this interval. The Walsh transform
of a given series of numbers x0, x1, x2 . . . xN−1 can be calculated as follows,

aj = 1

N

N−1
∑

t=0

xt ∗ wj(xt), j=0,1, . . .N-1 (4)

whereN is the number of samples in the series, andwj is theWalsh function calculated
as:

wj(x) = 0, for x < 0 or x > 1 (5)

w0(x) = 1, for 0 <= x <= 1 (6)

w2j(x) = wj(2x) + (−1)jwj[2(x − 1/2)] (7)

w2j+1(x) = wj(2x) − (−1)jwj[2(x − 1/2)], for j=0,1, . . .N-1 (8)

The feature vectors formed with Walsh coefficients have higher dimension. To
retain the discriminatory information even with lower dimension, LDA is applied to
the feature vector. The LDA seeks to reduce dimensionalitywhile preserving asmuch
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the class discriminability as possible. It linearly transforms the feature characteristics
in a lower dimension space.More formally, let us assume that training setχ = {χi}Ni=1

contains the patterns of N classes. Each class χi = {χij}Ni
j=1 with χij windows and a

set of M feature basis vectors {�t}Mt=1 are estimated by maximizing Fisher’s ratio.
Fisher’s ratio is defined as the ratio of between-class scatter to within-class scatter.
The maximization can be formulated as follows,

� = argmax

( |�T Sb�|
|�T Sw�|

)

(9)

where � = [�1, . . . , �K ], and Sb and Sw are the between- and within-class scatter
matrices, respectively, defined as:

Sb = 1

n

N
∑

i=1

Ni(χi − χ)(χi − χ)T (10)

Sw = 1

n

N
∑

i=1

Ni
∑

j=1

(χij − χi)(χij − χi)
T (11)

where n = ∑N
i=1 Ni, is the total number of training windows. The mean of class χi

is χi = 1
Ni

∑Ni
j=1 χij. The discriminatory feature vectors can be found corresponding

to the vectors of largest eigenvalues. In this experiment, set � contains eigenvectors
corresponding to k eigenvalues computed from (Sw)−1Sb.

3 Experimental Results

The proposed ECG biometric method is tested onMIT-BIH arrhythmia database and
QT database of physionet [19]. Both databases include ECG recordings of men and
women with the age between 20 and 84 years. The databases have ECG recording
of normal and arrhythmia patients. For this experiment, ECG recordings of 48 sub-
jects from MIT-BIH arrhythmia database and 39 subjects of QT database are used.
The original sampling rate for MIT-BIH arrhythmia database and QT database is
360 and 250Hz, respectively. All these records are re-sampled at 200Hz for this
experiment. Each signal is processed with a band-pass filter. Eleven windows of
50seconds (10,000 samples) and 10 seconds (2000 samples) in length are chosen
from processed ECG signal of MIT-BIH arrhythmia database and QT database,
respectively. To avoid the sensor and body stabilization effects, the windows are
chosen from the middle of each recording. A data set of 528(48 × 11)× 10,000
for MIT-BIH arrhythmia database and of 429(39 × 11) × 2000 for QT database is
formed for feature extraction.
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Fig. 2 AC representation of filtered ECG signals: a single subject for different windows (eleven)
and b single window for different subjects (five)

-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0  20  40  60  80  100  120  140  160  180

W
H

T 
C

oe
ffi

ci
en

ts

Samples
Win1
Win2
Win3

Win4
Win5
Win6

Win7
Win8
Win9

Win10
Win11

-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0  20  40  60  80  100  120  140  160  180

W
H

T 
C

oe
ffi

ci
en

ts

Samples
Reord 100
Reord 101

Reord 102
Reord 103

Reord 104

(a) (b)

Fig. 3 Plots for Walsh transform of autocorrelated ECG signals: a single subject for different
windows (eleven) and b single window for different subjects (five)

On applying AC to these data sets, the feature vectors of 528 × 180 and 429 ×
180 are formed for MIT-BIH arrhythmia database and QT database, respectively.
The AC time lag of 180 samples is set for this experiment by considering the fact
that a normal heart beats 60 to 100 times a minute. The plots of normalized AC
for eleven windows of a subject and for five different subjects are shown in Fig. 2a
and in Fig. 2b, respectively. These feature vectors are transformed by WHT, in order
to minimize the intrasubject variations and to maximize the intersubject variations.
The results of WHT for eleven windows of single subject and single window of
five different subjects are shown in Fig. 3a and in Fig. 3b, respectively. The LDA is
applied for dimensionality reduction of feature vectors to different dimensions such
as 2, 5, 7, 10, 13, 15, 20, 22, 25, and 30. The intrasubject variability and intersubject
similarity on first three dimensions as achieved by LDA for ten subjects for each
database are shown in Fig. 4.

The last window from each record is used as template to form gallery data set.
A probe data set is prepared from rest of thewindows from each record. Thematching
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Fig. 4 Intrasubject similarity and intersubject variability represented by first three dimensions as
shown by DIM 1, DIM 2, and DIM 3 for ten different subjects of a MIT-BIH arrhythmia database
and b QT database

scores (genuine and imposter) are generated by comparing each projected feature
vector from gallery data set to all projected feature vectors in the probe data set.
Euclidean distance is used as similarity measure between gallery and probe data
sets. The match scores are genuine scores, if they are generated by comparing the
attribute sets of probe and gallery data of the same subject; otherwise, the scores
are impostor scores. Thus, 48 genuine scores and 2256(48 × 47) impostor scores are
generated, for the population ofMIT-BIH arrhythmia database. For the population of
QT database, the system generates 39 genuine scores and 1482(39 × 38) impostor
scores. The performance of the proposed identification system is evaluated using
classification accuracy by rank-k. The percentage of probe signals that have the
correct class as one of the top k scores is known as the rank-k classification accuracy
of the system. Further, the cumulative match characteristic (CMC) curve has been
drawn after computing the average rank classification accuracies.

The CMC results at different dimensions for MIT-BIH arrhythmia database are
shown in Fig. 5a. The rank-1 classification accuracies of the system at dimensions
10, 13, 15, 20, 27, and 30 are found to be 66, 72, 81, 85, 62, and 60%, respectively.
It shows that the rank-1 classification accuracies increase with the increase in dimen-
sions up to twenty (DIM 20) and decreases above DIM 20. The system achieves the
better rank-1 classification accuracy of 85% at DIM 20. The CMC curve for DIM
10 shows poor classification performance and reported accuracies of 68% at rank-2,
80% at rank-3, 84% at rank-8, 86% at rank-10, 90% at rank-12, and 100% at rank-36.
The classification accuracies at DIM 13 are found to be 80% at rank-3. It increases
with the increase in rank and reported as 86% at rank-10, 90% at rank-18, 96% at
rank-25, and 100% at rank-29. The classification accuracies are improved at DIM 15
and achieve 100% accuracy at rank-28. The accuracies at other ranks are reported
as 85% at rank-2, 91% at rank-9, 97% at rank-25. At DIM 20, the classification
accuracies are 91% at rank-2, 95% at rank-10, 97% at rank-19, and 100% at rank-37.
The classification accuracies show degradation of performance above DIM 20. At
DIM 27, it reports accuracies of 89% at rank-2, 95% at rank-16, 97% at rank-23,
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Fig. 5 Cumulative match characteristic curves for rank-based classification accuracies: aMIT-BIH
arrhythmia database and b QT database

and 100% at rank-29. The classification accuracies at DIM 30 are found to be 89%
at rank-2, 95% at rank-19, 97% at rank-25, and 100% at rank-29.

The aforementioned system performs better on QT database. The CMC curve is
shown in Fig. 5b. The classification accuracies reported at dimension 22 (DIM22) are
found to be 97% at rank-1, 99% at rank-2, and 100% at rank-3. The CMC curve for
DIM 10 shows poor performance, and reported accuracies are 94% at rank-1, 96%
at rank-2, 98% at rank-4, and 100% at rank-5. At DIM 15, it reports classification
accuracies of 97% at rank-1, 99% at rank-3, and 100% at rank-4. The classification
accuracies at DIM 30 are found to be 96% at rank-1, 99% at rank-3, and 100% at
rank-4.

The average rank classification accuracies on different databases at different
dimensions are presented in Table1. On MIT-BIH arrhythmia database, the aver-
age rank classification accuracies are found to be 80, 86, 91, 95, 94, 94, and 91%
at dimensions 10, 13, 15, 20, 22, 25, and 30, respectively. The average rank classi-
fication accuracies on QT database at dimensions 10, 13, 15, 20, 22, 25, and 30 are
reported as 96, 97, 97, 97, 97, 96.6, and 96% respectively. These results reported
the highest average rank classification accuracies as 95% at DIM 20 on MIT-BIH
arrhythmia database and 97% at DIM 22 on QT database. For both databases, the
performance of the system degrades at higher dimensions. For example, above DIM

Table 1 Results of average rank classification accuracies at different dimensions for MIT-BIH
arrhythmia database and QT database.

Dimensions Average rank classification accuracy(%)

10 13 15 20 22 25 30

Database

MIT-BIH arrhythmia
database

80 86 91 95 94 94 91

QT database 96 97 97 97 97 96.6 96
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20 onMIT-BIH arrhythmia database and above DIM 22 on QT database, the average
rank classification accuracies are linearly decreasing.

These results show that the proposed method reports better identification per-
formance in comparison to the other methods of ECG biometric. For example, the
proposed method reports better result than fiducial-based identification method [2].
Although the identification accuracy of 100% was achieved by fiducial point-based
methods [6, 7], these methods were tested on only group of 20 subjects. The result of
proposed method can also be compared with non-fiducial-based ECG identification
methods [4, 11, 12, 15, 16]. Among these, the methods [4, 11, 15, 16] report better
performance but they are tested only at 74 healthy subjects, 14 healthy subjects, two
sets of 13 subjects each, and 18 subjects only. The proposed method proved to be
better in handling the issues like sensitivity to accurate localization of fiducial points
of ECG wave and individuality of ECG over larger population.

4 Conclusion

The ECG has emerged as a potential tool for biometric recognition due to its unsus-
ceptibility against spoofing andvitality detection features. TheECGanalysismethods
based on fiducial points take advantage of different morphological features. Tem-
poral, amplitude, and angle features are significantly different among individuals.
These methods rely on accurate localization of fiducial points and their onset and
offset. There is no universally acknowledged algorithm to find accurate wave bound-
aries. This study has analyzed the ECG signal to use as a biometric without detection
of its dominant fiducials. The autocorrelation is used to compute the discriminative
information available to the ECG signals among population. The autocorrelated sig-
nals are transformed into their Walsh coefficients to distinguish the features among
them. Further, linear discriminant analysis is used to reduce the dimension of feature
vectors to result time- and cost-efficient classification performance. The experimen-
tal result has demonstrated that the proposed method of ECG analysis proved to be
benchmark for biometric research community as it achieves high identification rate
for healthy subjects as well as the subjects having arrhythmia.
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