On Using Priority Inheritance-Based)
Distributed Static Two-Phase Locking L
Protocol

Sarvesh Pandey and Udai Shanker

Abstract Two-phase locking with high priority (2PL-HP), a well-suited concur-
rency control protocol for distributed real-time database systems (DRTDBS) because
of being free from priority inversion problem, is used for accessing data items to
resolve conflicts among the concurrently executing transactions. However, it suf-
fers from the problems of wastage of system resources responsible for degrading
the system performance. In DRTDBS, our basic aim is to minimize the number of
transactions missing their deadline. In this paper, static two-phase locking with pri-
ority inheritance (S2PL-PI) protocol has been proposed specifically to minimize the
wasted system resources, i.e., CPU and data items by avoiding unnecessary abort of
transactions by optimal use of priority inheritance mechanism. A DRTDBS is sim-
ulated for comparison of the performance of S2PL-PI protocol with previous other
protocols, and results confirm the significant improvement in system performance.

Keywords Concurrency control - Two-phase locking - 2PL-HP - Priority
inheritance - Distributed real-time database

1 Introduction

Database systems (DBS) are a collection of logically interrelated data items shared
by multiple users [1, 2]. A user can interact with databases by means of a partially
ordered set of read and write actions termed as a transaction. Every transaction
follows ACID (Atomicity, Consistency, Isolation, and Durability) property [3, 4].
Isolation is one of the essential transaction properties. The role of isolation comes
into play when more than one transactions concurrently execute in the database using

S. Pandey (X)) - U. Shanker

Department of Computer Science and Engineering, MMM University of Technology,
Gorakhpur, UP, India

e-mail: pandeysarvesh100@gmail.com

U. Shanker
e-mail: udaigkp @gmail.com

© Springer Nature Singapore Pte Ltd. 2018 179
M. L. Kolhe et al. (eds.), Advances in Data and Information Sciences, Lecture Notes
in Networks and Systems 38, https://doi.org/10.1007/978-981-10-8360-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8360-0_17&domain=pdf

180 S. Pandey and U. Shanker

critical resources [5]. To ensure the isolation among concurrently executing transac-
tions, the system must govern the interaction among them by having a serializable
schedule. Concurrency control (CC) schemes ensure the serializability among con-
currently executing transactions [6]. Results obtained from concurrently executing
transactions can be reflected in the database only when there exists an equivalent
serial execution schedule of such concurrently executing transactions. CC schemes
are broadly classified as pessimistic and optimistic. In pessimistic CC scheme, con-
flict is detected before access of data item, while in optimistic CC scheme, conflict is
detected after the access of data item. After detection of conflict among a set of con-
currently executing transactions, a conflict resolution mechanism comes into play.
Conflict resolution mechanism specifically does the following.

1. Select transaction(s) from the set of conflicting transactions to prosecute.
2. Take an appropriate action against selected transaction(s) at a suitable time.

The two most used actions are blocking and abort. If a conflict is detected before
data item access, one of both actions can be taken. However, abort action is appropri-
ate in case of conflict detected after data item access. Several CC schemes have been
proposed to overcome the problem of inconsistency [6, 7]. Most of the techniques
used to facilitate concurrent execution of transactions rely on the notion of locking of
data items. The commercial conventional DBS uses two-phase locking (2PL) [8] as
a CC scheme. They use locking of data items to ensure isolation among concurrently
executing transactions and thereby guaranteeing serializability. Every data item in a
DRTDBS is associated with a variable that describes the possible operations that can
be performed on it. 2PL protocol says that all locking operations on a transaction
precede the first unlock operation. In 2PL, every transaction obtains a lock before
accessing any data item. Transaction execution divides into two phases: growing
phase and shrinking phase [9]. A transaction can acquire a lock on data items during
growing phase, but any of the locks that are acquired during this phase cannot be
released. In shrinking phase, a transaction can release all the locks acquired during
growing phase, but cannot acquire any new lock.

Two widely known 2PL variants available in the literature are static 2PL and
dynamic 2PL. In static 2PL, the data item access list, i.e., locks required by a transac-
tion are presumed to be granted prior to the start of its execution [10]. The transaction
locks all needed data items before it begins its execution. Here, a data item access
list is predeclared before execution of any transaction. Note that a data item access
list consists of a set of data items required to be granted access for completion of a
transaction. If any of the predeclared data items of the data item access list cannot be
granted an access, then the transaction does not lock any of the data items; however,
it waits until all data items are available for locking. In dynamic 2PL, transactions
obtain locks to access data items on request and release locks upon expiry or com-
mit. The working principle of static 2PL is like dynamic 2PL except the technique
of setting locks on data items. In general, static 2PL requires smaller number of
messages for setting locks as compared to dynamic 2PL. Static 2PL does not suffer
from deadlock since blocked transactions cannot hold a lock on any data item.

On Using Priority Inheritance-Based Distributed Static ... 181

In non-real-time static 2PL, a transaction gets blocked if any of its required lock(s)
from the predeclared data item access list is/are locked by some other transactions.
At the time of transaction blocks, some of the data items required by it may be free.
Such data items that were free at the time when conflict occurred can be seized by
other transactions later. As a result, even after the original conflicting data items
are released, the transaction may get blocked by other transactions arrived after
it. Consequently, the requesting transaction blocking time can be randomly long
because of extended blocking which is a result of waiting for more than one locks.
Real-time S2PL (RT-S2PL) protocol [11] overcomes this problem. Here, each data
item in the database is assigned a priority equal to the priority of highest priority
transaction from the set of transactions that have requested access to this data item.
Like S2PL, all the data items required to be accessed by a transaction need to be
locked before starting execution of a transaction. If a conflict occurs for any of the
data items, none of the required locks will be assigned to a requesting transaction.
Note that in case a data item requested by a transaction has lower priority than that of
the transaction itself, its priority will be updated to that of the requesting transaction.
All such features of RT-S2PL lead to its suitability for DRTDBS.

The 2PL wait promote (2PL-WP) protocol [12, 13] is identical to 2PL in its res-
olution of conflicts. As in 2PL, 2PL-WP resolves the conflict (if any) by means of
blocking a requesting transaction. It is the first concurrency control protocol based
on priority inheritance mechanism to reduce the negative impact of priority inver-
sion problem [14], which is inherent in a real-time environment. In case of priority
inversion, low-priority lock-holding transaction inherits the priority of the highest
priority transaction from the set of transaction requested access to the data item. Fur-
ther, lock-holding transaction retains this inherited priority until it either commits or
restarted. Priority inheritance mechanism specifically reduces the priority inversion
duration so that requesting high-priority transactions can get the conflicting resource
earlier [15, 16].

The 2PL high-priority (2PL-HP) protocol [12, 13] ensures that low-priority trans-
actions do not delay high-priority transaction by eliminating priority inversion prob-
lem. It does so by resolving data conflicts instantly in favor of the transaction with
higher priority. 2PL-HP concurrency control protocol suffers from the problem of the
cyclic restart. Just like 2PL-HP, the S2PL high-priority (S2PL-HP) protocol also [1]
does not suffer from priority inversion problem. It does so by resolving data conflicts
instantly in favor of the transaction with the higher priority. Lengthy transactions
suffer from the starvation problem due to use of S2PL-HP. One more severe problem
with S2PL-HP protocol is that it may lead to undesirable wastage of resources due
to ABORT of low-priority lock-holding transactions in case of conflict with high-
priority transaction. This may lead to the increase in a number of transactions missing
their deadline. S2PL-HP concurrency control protocol suffers from the problem of
the cyclic restart. Let us consider an example to explain this problem.

Suppose, at time 71, a distributed real-time transaction 7’| starts its execution at site
S. Coordinator of transaction 7'; divides it into a set of subtransactions as Ty = {71y,
T2, T13, ..., Tin}, where N is the number of cohorts participating to complete 7T';.
All these subtransactions execute at different sites in the database system. At time

182 S. Pandey and U. Shanker

1, subtransaction 7', is in the processing phase and completed locking phase. The
data item O is locked by T'|», during its locking phase. Note that execution period
consists of locking phase and processing phase, respectively. This same data item O
is further required by some other transaction 7', that enters in the system. Note that
priority of T, is greater than the priority of 7. So, as per S2PL-HP, the transaction
T, is aborted (or restarted), and the data item O will be given to T,. Note that all
the subtransactions participating to complete the execution of 7'; will be restarted,
no matter conflict arrives only at the site where subtransaction 7'y is running. There
is a possibility that after a restart of transaction 7'y, its priority may become higher
than the priority of T as a result of decrease in slack time, which directly affects
the deadline of the transaction. In such case, transaction 7', is aborted (or restarted)
and transaction 7; will again lock the data item O. This leads to the cyclic restart
problem among transactions (transactions 71 and T'»). Transactions involved in cyclic
restart miss their deadline at the end, which in turn leads to the wastage of resources
and degradation in performance of the system in terms of increase in a number of
transactions missing their deadline.

Based on S2PL, S2PL-HP, and 2PL-WP, static two-phase locking with prior-
ity inheritance (S2PL-PI) protocol has been proposed which optimistically uses the
priority inheritance mechanism to minimum resource wastage. It also improves a
chance of the low-priority transaction to get completed even after the conflict with
some high-priority transaction provided that high-priority transaction can manage to
wait for completion of low-priority transaction. S2PL-PI also overcomes the starva-
tion problem with lengthy transactions up to some extent.

Section 2 discusses proposed S2PL-PI concurrency control protocol in detail. The
performance study presented in Sect. 3 shows significant performance improvement
in S2PL-PI protocol over other protocols. Finally, in Sect. 4, conclusions are drawn
with future directions of works.

2 S2PL-PI: A Real-Time Concurrency Control Protocol

The lifetime of a cohort is divided into two phases, i.e., execution phase and commit
phase. In SWIFT protocol, execution phase is further divided into two phases, i.e.,
locking phase and processing phase [17]. During locking phase, the cohorts lock all
the required data items, and then, during processing phase, the cohort does some
necessary computation. WORKSTARTED message to the coordinator is sent before
the start of processing phase. If there are dependencies, then the sending of WORK-
DONE message is deferred till the removal of dependencies. S2PL-HP is used as a
concurrency control protocol in SWIFT protocol which is a combination of S2PL
and 2PL-HP. Further, it is suggested that a focused and coordinated research work
is required to develop a new concurrency control protocol which directly affects the
performance of SWIFT and all the existing commit protocols.

In case a high-priority distributed transaction Ty requests access to the data item
that is already locked by some low-priority lock-holding transaction 7', then con-

On Using Priority Inheritance-Based Distributed Static ... 183

flict resolution strategy is used to resolve such conflict that affects the system’s
performance. Although it is clear that minimum the wastage of resources (CPU and
data items) because of ABORT, maximum the chance of successful completion of
transaction, but at the same time, there is need to ensure that the concurrency con-
trol algorithm is more focused toward respecting priority of transaction rather than
minimizing wastage of resources or increasing throughput of the system. Hence, a
new S2PL-PI protocol has been proposed which optimistically minimizes wastage
of resources, reduces the starvation problem, and in turn minimizes the number of
transactions missing their deadline. In S2PL-PI protocol, the ABORT of lock-holding
cohort is done based on the intermediate priority of all the cohorts of a lock-holding
transaction 7. and the priority of lock-requesting transaction 7'y. It is a temporary
priority assignment policy without affecting the initial priorities [18] and is based
on the remaining execution time (7 remain) Needed by the lock-holding low-priority
cohorts (T, T'o,..., T1;) and the slack time available with the newly arrived higher-
priority cohort (T'y). It also solves the problem of starvation of long cohorts that arises
due to the high probability of access conflicts. The slack time is the amount of time
the distributed transaction can afford to wait in order to complete before its deadline.
The remaining execution time of the lock-holding cohorts (71, T12,..., T1;) is given
as:

TRemain = R — TElapse

where R; is the minimum transaction response time; 7 remain 1S rf€maining execution
time needed by T'; Tlapse 1S €lapsed execution time of 7.

There are three ways to minimize the number of transactions missing their dead-
line.

1. If Ty is in the execution phase and MaxT remain(TL1> TL2,---, T'Li) i less than the
slack time (T'y), then the priority of 7 gets inherited to 7Ty, and Ty is inserted
into the wait queue.

2. If Ty is in the execution phase, MaxT remain(TL1, T'12,---, TL;) i greater than or
equal to the slack time (T'y), and T, then the low-priority lock-holding transac-
tion gets aborted.

3. If Ty, is in commit phase (have sent a PREPARED message to its coordinator),
then the priority of T, gets inherited to Ty, and Ty is inserted into wait queue,
no matter the requesting transaction Ty is a high-priority transaction. Although,
the priority inheritance applied here, gives the conflicting transactions a chance
of successful completion by reducing the priority inversion duration.

In brief, S2PL-PI protocol optimistically minimizes the wastage of resources by
using priority inheritance mechanism and overcomes the starvation problem with
lengthy transactions up to some extent. The following algorithm shows how the
locks are granted in S2PL-PI.

184 S. Pandey and U. Shanker

2.1 S2PL-PI Algorithm to Resolve Data Conflict

Input: T, is a high priority transaction requesting access to the data item O.

T, is a low priority transaction that has locked the data item O.

T, T,, T, are the subtransactions of a transaction T,
BEGIN
S2PL-PI lock acquire ()
{

for each Data item, di
if (! lockConflict)
assign a data item to T,;
else

{

check priority of conflicting cohorts oOf T, holding the data item;
if (priority (T,) > MaxPriority (T,,, T ,, ..., T,,))

N
{
if (conflicting cohort T, haven’t sent PREPARED message to its

coordinator, and is in processing phase of execution period)

{
if (slack time(T,) OMaxT

Il*slack time(T,,) 20 #//

T, Ty eeees T,))

Remain (L1

{
insert T, in wait queue;
T, inherits priority of T,;
}
else
{
T, aborts T, ;
allocate data item to T,;
}
b
else
{
insert T, in wait queue;
T, inherits priority of T ;
b
else T, waits for completion of T,;
b
}

END

On Using Priority Inheritance-Based Distributed Static ... 185

2.2 Major Contributions

The major contributions of S2PL-PI protocol are as follows.

1. Minimization of number of Aborts optimistically by use of priority inheri-
tance scheme, and intermediate priority assignment policy (based slack time
of lock-requesting high-priority transaction and remaining execution time of
lock-holding low-priority transaction), which in turn minimizes the number of
transactions missing their deadline.

2. Overcomes the starvation problem with lengthy transactions up to some extent
using the intermediate priority assignment policy. Such problem arises due to the
high probability of access conflicts in case of lengthy transactions.

3 Performance Evaluation

In the DRTDBS research community, there is no hands-on benchmark available to
assess the performance of the proposed protocol. Therefore, a DRTDBS including N
sites was simulated in accordance with the environment assumed in earlier studies
[17, 19-21]. We ensured a significant level of resource and data contention during
performance study. Table 1 presents different parameters used in a simulation study
with their default values.

Parameter Meaning Default setting

DBsize Size of database (no. of pages | 200 data objects/site
in databases)

Nab No. of database sites 4

AR Transaction arrival rate per site | 0—4 transactions/sec

(uniformly distributed)

T com Communication delay among | Either 1 ms or 100 ms
transactions

Nop No. of operations in 4-20 (uniformly distributed)
transaction

SF Transaction slack factor 1-4 (uniformly distributed)

P(w) Probability of write operation | 0.60

CPUpage Processing time required for | 5 ms
accessing CPU page

Disk page Processing time required for | 20 ms

accessing disk page

Earliest deadline first (EDF) is used as the cohort’s priority assignment policy
for the performance study of S2PL-PI protocol. As per EDF, a transaction with the
closest deadline is assigned the highest priority in the system. In case of a tie, we

https://doi.org/10.1007/978-981-10-8360-0_1

186 S. Pandey and U. Shanker

Fig. 1 Transaction kill 6 Transaction Arrival Rate vs Kill Percent
percentage with resource and
data contention at 1 ms A 144 —e— SWIFT + (S2PL-HP)
communication delay under 12 o~ SWIFT + (S2PL-PI)
normal load 10 4
& 81
8
3 °]
5 4]
=%}
g %
0 ; . ‘ ‘ ‘
3.0 3.5 4.0 4.5 5.0 55 6.0
Transaction Arrival Rate/Site ------------ >
Fig. 2 Transaction kill 100 Transaction Arrival Rate vs Kill Percent
percentage with resource and A
data contention at 1 ms 80 —e— SWIFT + (S2PL-HP)
communication delay under i © - SWIFT + (S2PL-PI) -3

heavy load

Kill Percentage

6 8 10 12 14 16 18

Transaction Arrival Rate/Site ------------ >

assign priority to the transaction using FCFS scheme. The performance of S2PL-PI
protocol is measured based on the number of transactions missing their deadline.
Mathematical calculation of kill percent is done as the following,

Number of transactions aborted

Kill Percent = - -
Total number of transactions in the system

3.1 Simulation Study and Performance Results

To investigate the performance of the S2PL-PI when applied to a DRTDBS, a wide
range of operations (N o, = 4-20) in global as well as local transactions are introduced.
The simulation study is performed with disk-resident databases. We compared the
S2PL-PI concurrency control protocol with S2PL-HP protocol. Figures 1, 2, and 3
show the transaction kill percent at communication delay of either 1 ms or 100 ms
in disk-resident databases with different transaction arrival rates.

The proposed protocol performs better than SWIFT protocol+S2PL-HP protocol
under all load conditions. This is because of avoidance of ABORT of lock-holding
transaction wherever possible by using priority inheritance scheme.

On Using Priority Inheritance-Based Distributed Static ... 187

Fig. 3 Transaction kill 80 Transaction Arrival Rate vs Kill Percent
percentage with resource and A
i —e— SWIFT + (S2PL-HP
data cont.entl.on at 100 ms o WL 2PL-P|)) ‘
communication delay under 60 4
normal and heavy load
(%)
%0 40 4
=
[}
2
& 20
2
0 - - - - -
2 4 6 8 10 12 14
Transaction Arrival Rate/Site ------------ >

4 Conclusions

In this paper, the S2PL-PI protocol has been proposed to minimize the unnecessary
abort of the transaction via the optimal use of priority inheritance mechanism. Here,
an intermediate priority assignment policy has been introduced to assign an interme-
diate priority to the conflicting transactions at the time of data contention between
them. This policy avoids the wastage of resources such as CPU and data item by not
aborting a near to completion lock-holding transaction provided that a high-priority
lock-requesting transaction can wait for the conflicting data item without missing its
deadline or at least one of the lock-holding conflicting cohort is in PREPARED state.
In this way, cooperative execution of conflicting transactions may lead to success-
ful completion of all the competing transactions. It provided performance benefits
over SWIFT protocol+S2PL-HP by optimum use of priority inheritance scheme and
combination of initial and intermediate priority assignment strategies. A DRTDBS
is simulated for the comparison of the performance of S2PL-PI protocol with pre-
vious other protocols, and results confirm the significant improvement in system
performance.

As a part of future work, an exhaustive real-life implementation work is required
to establish this approach as a value-based commercial product.

Acknowledgements We acknowledge the financial support provided by the Council of Scientific
and Industrial Research (CSIR), New Delhi, India under grant no 1061461137 during this research
work.

References

1. Shanker U, Misra M, Sarje AK (2008) Distributed real time database systems: background and
literature review. Int J Distrib Parallel Databases 23(02):127-149

2. Shanker U, Misra M, Sarje AK (2001) Hard real-time distributed database systems: future
directions. IIT Roorkee, India, pp 172-177

188

3.

10.
11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

S. Pandey and U. Shanker

Pandey S, Shanker U (2016) Transaction execution in distributed real-time database systems.
In: Proceedings of the international conference on innovations in information embedded and
communication systems, pp 96—-100

. Ramamritham K (1993) Real-time databases. Distrib Parallel Databases 01(02):199-226
. Faleiro JM, Abadi DJ (2015) FIT: a distributed database performance tradeoff. Data Eng

38(01):10-17

. Yu PS, Wu K-L, Lin K-J, Son SH (1994) On real-time databases: concurrency control and

scheduling. Proc IEEE 82(01):140-157

. Kao B, Garcia-Molina H (1993) An overview of real-time database systems. Real Time Comput

127:261-282

. Faleiro JM, Abadi DJ (2014) Rethinking serializable multiversion concurrency control. VLDB

08(11):1190-1201

. Harding R, Aken DV, Pavlo A, Stonebraker M (2016) An evaluation of distributed concurrency

control. VLDB 10(05):553-564

Lam KY (1994) Concurrency control in distributed real time database systems. Ph.D. thesis
Lam K-Y, Hung S-L, Son SH (1997) On using real-time static locking protocols for distributed
real-time databases. Real-Time Syst 13(02):141-166

Abbott RK, Molina HG (1992) Scheduling real-time transactions: a performance evaluation.
ACM Trans. Database Syst 17(03):513-560

Haritsa JR, Carey MJ, Livny M (1992) Data access scheduling in firm real-time database
systems. Real-Time Syst 04(03):203-241

Pandey S, Shanker U (2018) A one phase priority inheritance commit protocol. In: Proceedings
of the 14th international conference on distributed computing and information technology
(ICDCIT), Bhubaneshwar, India, 11-13 Jan 2018 (Accepted)

. Huang J, Stankovic JA, Towsley D (1991) On using priority inheritance in real-time databases.

In: Real-time systems symposium, pp 210-221

Huang J, Stankovic JA, Ramamritham K, Towsley D, Purimetla B (1992) Priority inheritance
in soft real-time databases. Real-Time Systems, vol 04, no 03, pp 243-278

Shanker U, Misra M, Sarje AK (2006) SWIFT—a new real time commit protocol. Distrib
Parallel Databases 20(01):29-56

Shanker U, Misra M, Sarje AK (2005) Priority assignment heuristic to cohorts executing in
parallel. In: 9th international conference on world scientific and engineering academy and
society (WSEAS)

Lee VCS, Lam KW, Hung SL (2002) Concurrency control for mixed transactions in real-time
databases. IEEE Trans Comput 51(07):821-834

Ulusoy O (1995) A study of two transaction-processing architectures for distributed real-time
data base systems. J Syst Softw 31(02):97-108

Qin B, Liu Y (2003) High performance distributed real-time commit protocol. J Syst Softw
68(02):145-152

	On Using Priority Inheritance-Based Distributed Static Two-Phase Locking Protocol
	1 Introduction
	2 S2PL-PI: A Real-Time Concurrency Control Protocol
	2.1 S2PL-PI Algorithm to Resolve Data Conflict
	2.2 Major Contributions

	3 Performance Evaluation
	3.1 Simulation Study and Performance Results

	4 Conclusions
	References

