
A Bloom Filter-Based Data
Deduplication for Big Data

Shrayasi Podder and S. Mukherjee

Abstract Big data is growing at an unprecedented rate with text data having a large
share and redundancy is a technique to ensure availability of this data. Large growth
of unstructured text data hinders the primary purpose of the big data rendering the
data difficult to store and search. Data compression is a solution to optimize the
use of the storage space for big data. Deduplication is the most useful compression
techniques. This paper proposes a two-phase data deduplication mechanism for text
data. In the syntactic phase, a combination of clustering and Bloom Filter is used.
In the semantic phase, a combination of SVD and WordNet synset is employed.
Experimental results show the efficacy of the proposed system.

Keywords Deduplication · Bloom Filter · Clustering · SVD ·WordNet

1 Introduction

A large amount of data to the tune of terrabytes are generated every day by various
mediums. Eighty percent of generated data is claimed to be unstructured and in the
text format [1], making data management a difficult, time-consuming, and complex
task. The big data is primarily characterized by the rate of growth of the data. This
data is stored in various storage mediums including cloud. To contain such a massive
amount of data, storage continues to grow at an explosive rate (52% per year) [2, 3].
By the end of 2020, the size of the total generated data will surpass 30 zettabytes
(ZB) as per a very conservative estimation [4, 5].

However, generating new data is just one quantum of the real problem of the
growth of the data. Unprecedented growth of the data is also contributed to other,

S. Podder
Institute of Engineering and Management, Kolkata, India
e-mail: pshrayasi@gmail.com

S. Mukherjee (B)
DIST, CEG, Anna University, Chennai, India
e-mail: msaswati@auist.net

© Springer Nature Singapore Pte Ltd. 2018
M. L. Kolhe et al. (eds.), Advances in Data and Information Sciences, Lecture Notes
in Networks and Systems 38, https://doi.org/10.1007/978-981-10-8360-0_15

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8360-0_15&domain=pdf


162 S. Podder and S. Mukherjee

more complex, data handling mechanisms employed. To handle data easily, data
needs to be at the location of the user, and in the digital world today, a user may be in
any geographic location. While with the growth of the Internet, it is possible to serve
the data to a user anywhere, bandwidth and other issues pose as serious challenges. To
resolve this problem, typically data would be duplicated and distributed to various
geographic locations for ease of access, thereby relieving the need of bandwidth
usage and networking across large geographical regions. However, this causes a
unique problem of redundant duplicated data occupying more and more storage
space. Redundancy in the big data is contributing proactively to the rapid increase in
the size of this data. Although new forms of storage such as Cloud employ different
techniques to improve storage efficiency, it is a costly method, especially in the
scenario where the demand of a specific data reduces after an initial period. To
alleviate this problem, such duplicates must be managed, which entails ensuring that
the unnecessary duplicates are detected and deleted; a challenging task, given the
nature and size of the big data.

Typically, the technique of deduplication is widely used to identify and remove
similar contents from various data storages, thereby reducing cost and saving space
in data centers [6]. Deduplication is a very effective method that claims to save up
to 90–95% of storage. Even though data deduplication technique had evolved as a
simple storage optimization technique for secondary storages, it is widely adapted in
larger storage areas like cloud storage. Different data deduplication is widely used by
various cloud storage providers like Dropbox [7], Google Drive [8]. Deduplication is
becoming a popular method for not only in backups and archives, but also in primary
data centers. The major benefit of deduplication is saving disk space, and it also
reduces the search space for searching such data.

While applying deduplication mechanisms is difficult in numeric data, it is par-
ticularly challenging in case of text data since, besides having identical data blocks,
text data may also be similar in the semantic sense. Besides identifying and remov-
ing identical data, an efficient deduplication method for text data must identify and
eliminate semantically similar data as well.

To handle deduplication of text data effectively, this research proposes a two-stage
mechanism that can efficiently deduplicate a large amount of text data. The first phase
is the syntactic similarity phase, where two documents are subjected to a process of
detecting similarity by comparing the set of words in the documents. A combination
of clustering and a proposed Bloom Filter called Updatable Bloom Filter is used in
this phase. This mechanism can identify identical documents. Semantic similarity
is handled in the second phase. This is the process of detecting semantic similarity
between two documents by not only comparing the set of words in the documents
but also comparing their synonyms. A combination of SVD and WordNet synset is
used in this phase.

The paper is organized as follows. Section 2 investigates the existing work in the
area of deduplication, clustering, and Bloom Filter. Section 3 discusses the proposed
method. In Sect. 4, algorithms are described. Section 4 shows the efficacy of the
system using the experimental results with Sect. 5 bringing the conclusion.



A Bloom Filter-Based Data Deduplication for Big Data 163

2 Background Details and Related Work

Over the years, many efficient solutions to the deduplication problem by measuring
document similarity and by using BloomFilter were proposed. Su et al. [9] suggested
the method of using an integer Bloom Filter in cloud storage. The algorithm used
for hashing in Bloom Filter is Secured Hash Algorithm (SHA-1). A number of hash
functions have been defined. Data is divided into chunks that are processed in differ-
ent clusters and are checked for duplicates using Bloom Filter in each cluster. As a
result, unique data are written on the storage. Merlo et al. [10] suggested a method of
deep learning, called Self-Organizing Maps (SOM). da Cruz Nassif et al. [11] used
clustering algorithms like k-means and k-medoids.K-medoid is the process of taking
median of data points in a cluster. K-means is the process of taking mean of data
points in a cluster. After this step, hierarchical clustering techniques like centroid-
based, average-link based were used to identify similar documents. Combinations of
k-means and k-medoid with hierarchical clustering techniques were performed and
the one with higher accuracy was chosen. Jiang et al. [12] suggested a simple method
of using a feature to check if the documents are similar. Feature can be a word or a
set of words. Feature can either appear in both documents, in any one document or,
in none of the documents. Based on the number of features matched, similarity score
is assigned between two documents. Pires et al. [13] proposed a vector space model
which involved machine learning techniques namely k-nearest neighbors, random
forests, and support vector machines. These techniques use cosine similarity as the
distance measure. Semantic analysis has also been performed which included word
co-occurrence, matching noun phrases, WordNet synonyms, etc. Gemmel et al. [14]
implemented an idea of removing duplicate entries from a spreadsheet of names and
addresses. The authors used affine gap distance, which is a variation of Hamming
distance to check whether two records are similar. Historically, most deduplication-
related publications focus on a narrow range of topics: maximizing deduplication
ratios and read/write performance. Further, existing research work on document
deduplication is either syntactic or semantic according to the need of the applica-
tion. Machine learning techniques used are largely time-consuming and many used
mechanisms cannot process very large documents. Attempts to modify clustering
techniques to improve time have been performed. The proposed model aims at creat-
ing a new model for deduplication using machine learning and semantic techniques,
attempting to optimize the limitations found by measuring the similarity of the data
both syntactically and semantically.

3 Proposed Approach

In the proposed method, we employ a two-phase deduplication. The first phase per-
forms deduplication based on the syntactic similarity, and the second phase is based
on semantic similarity.



164 S. Podder and S. Mukherjee

3.1 Syntactic Phase

To perform deduplication using syntactical similarity, it is required to find all pairs of
documents that are identical to each other and replace one with a pointer to the other.
This process can be recursively applied to all the documents for complete deduplica-
tion of a set of documents. However, in a big data environment, there will be a large
number of documents in a data center and the method of applying such mechanisms
consumes time as well as CPU cycles. This research proposes to optimize using
two approaches. First, the documents are clustered such that each cluster contains
lesser number of documents. Since clustering groups similar documents together,
similarity need not be measured between documents across clusters. To create the
initial clusters, we apply a k-means clustering. K-means clustering is dependent on
the initial seed and its efficacy depends on the robustness of initial seed selection. To
improve this method, we employ fractionation algorithm for obtaining the initial k
seeds. The corpus is broken into n/m buckets each of size m > k. An agglomerative
algorithm is applied to each of these buckets to reduce them by a factor of ν. Thus,
at the end of the phase, we have a total of ν · n agglomerated points. The process is
repeated by treating each of these agglomerated points as an individual record. This
is achieved by selecting one of the documents within an agglomerated cluster. The
approach terminates when a total of k seeds remain. These seeds are used as centroids
in standard k-means clustering algorithm in order to determine good clusters.

A document is added to the cluster having the smallest cosine similarity value
between the document and the corresponding centroid of that cluster. For every
iteration, cosine similarity is calculated between the documents and centroids to
decide whether a document should be moved to another cluster or not. The document
which lies closest to the mean value of all the documents in a cluster is made the new
centroid of that cluster. The above processes are repeated until the centroids do not
change.

During the formation of the clusters, deduplication is performedbyusing proposed
Forgetful Updatable Bloom Filter (FUBF). A Bloom Filter (BF) is a space-efficient
probabilistic data structure that can be used to test whether an element is a member
of a set.

A basic BF uses an array of m bits. The whole array is initially set to 0. When a
document is to be inserted, it is hashed using a fixed number of hash functions, k.
Therefore, the BF can be represented using parameters (m, k). Each hash output of
a BF maps to a bit in the filter, which is then set to 1. To check for the presence of a
document, the same set of hash functions are used to verify if all the mapped bits are
already 1. In a Bloom Filter, it is possible to get false positives (i.e., a document not
present may appear to be present) but no false negatives are possible (i.e., it always
returns the right answer for a document not present) [15]. However, research shows
that there have been ways to keep the rate of false positives to an acceptable level
(almost close to 0) by manipulating parameters [16, 17]. Hence, Bloom Filters can
be employed to check for the presence of a duplicate in a cluster during the process of



A Bloom Filter-Based Data Deduplication for Big Data 165

creating the cluster, thereby avoiding altogether the incidence of adding an identical
duplicate to a cluster.

While BF is an efficient way, it gives rise to two following problems that lead to
scalability issue [18].

1. Nothing is forgotten by the BF. Hence, the bits set by older operations cannot be
deleted.

2. Parameters (m, k) need to be fixed at the time of creation of the Bloom Filter.

As a result, once the Bloom Filter fills up, it is hard to “scale up” or “move”
its elements to another BF with different parameters. Hence, a BF provides more
and more false positives as it fills up since more bits are set to 1 by the incoming
documents.

We propose to use a Forgetful Updatable Bloom Filter (FUBF) that employs the
techniques of Forgetful Bloom Filter [18]. The proposed FUBF uses three filters for
the representation of the documents in each cluster:

1. A current documents Bloom Filter;
2. A old documents Bloom Filter;
3. A new documents Bloom Filter.

All theseBloomFilters are equal in size and identical in their use of hash functions.
Before a new document is to be inserted in a cluster, it is checked for the presence
of its duplicate in the cluster using FUBF. All the three filters of the FUBF of the
cluster are checked for this purpose. If the tested document is present in at least one
of the three constituent filters, a duplicate is found and the new document is not
inserted. However, if it is not found in any of the three filters, it is inserted only into
the new and current Bloom Filters, but not in the old Bloom Filter. This way, the
FUBF purges the filters of the older documents giving way to add more and more
documents in a cluster, ensuring scalability.

At the end of the complete syntactic similarity phase, we obtain k clusters of doc-
uments having no syntactically similar documents. We perform semantic similarity
on these clusters.

3.2 Semantic Phase

In the semantic phase, semantic similarities between documents are considered. We
propose to use a variant of Latent Semantic Analysis (LSA) to check the seman-
tic similarity. Documents in each cluster from syntactic phase are further divided
into concept-based clusters using LSA that employs Singular Value Decomposition
(SVD) method. We propose to apply LSA to obtain those documents that contain
the same concept and calculate similarity between all pairs of such documents. If the
similarity measure for a pair of documents is greater than a pre-defined threshold,
these documents are subjected to the next level of semantic checking whereWordNet
synset is used for obtaining sentence level concept-based similarity. In this level, each



166 S. Podder and S. Mukherjee

document from a pair is split into sentences. Nouns and named entities are used to
compare a sentence with sentences belonging to the other document in the pair. If the
targeted words of two sentences have the same tag, then the sentences are considered
to be similar. If all the sentences are similar, then the documents are considered as
duplicates.

4 Experimental Setup and Results

The proposed method is tested against four different datasets as follows:
a set of 6,000 documents which has details about different countries with 2,000
duplicates; a set of 10,000 documents having jokes that has 3,000 duplicates
randomly injected and a set of 25,000 documents having jokes that has 10,000
exact and semantic duplicates; a set of 10,000 books from Gutenberg Web site
with 2,000 exact duplicates. The proposed method is tested against two existing
approaches. The first is constraint-based k-means clustering algorithm which is

Table 1 Deduplication using the proposed model

Dataset name No. of data No. of duplicates
present

No. of duplicates
found

F-measure

Country dataset 6,000 2,000 1,809 0.94

Joke dataset 10,000 3,000 2,521 0.91

Joke dataset 25,000 10,000 9,107 0.95

Gutenberg books 10,000 2,000 1,823 0.94

Table 2 Deduplication using constrained k-means

Dataset name No. of data No. of duplicates
present

No. of duplicates
found

F-measure

Country dataset 6,000 2,000 1,409 0.70

Joke dataset 10,000 3,000 1,921 0.66

Joke dataset 25,000 10,000 7,897 0.78

Gutenberg books 10,000 2,000 1,389 0.76

Table 3 Deduplication using chunking

Dataset name No. of data No. of duplicates
present

No. of duplicates
found

F-measure

Country dataset 6,000 2,000 1,609 0.87

Joke dataset 10,000 3,000 2,121 0.76

Joke dataset 25,000 10,000 8,970 0.88

Gutenberg books 10,000 2,000 1,598 0.84



A Bloom Filter-Based Data Deduplication for Big Data 167

Fig. 1 Improved results of
the proposed system

0 

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 
Proposed Method Clustering

Chunking

a deduplication method proposed by Hu et al. [19]. The second is deduplication
using chunking method as suggested in [20]. These algorithms are applied on the
same datasets and the corresponding results are compared. Table 1 shows the result
of applying our proposed two-phase method on all four datasets. Table 2 shows
the results of constrained k-means clustering method on all the datasets using 200
constraints. Table 3 shows the results of applying chunking for deduplication over
the same datasets. F-measures are calculated for each method. Figure 1 shows the
performance comparison of the three methods. It could be noted that the F-measure
of the proposed model is higher than the other methods. It is evident that the extra
levels of Bloom Filter during clustering and LSA and WordNet-based methods after
clustering have increased the recall of the process, thereby improving F-measure.

5 Conclusions

From the results, it is clear that the performance of the proposed two-phase dedu-
plication method is better than the pure clustering or chunking-based approach. The
proposedmethod can be further improved by implementing concept-based clustering
for the semantic phase.



168 S. Podder and S. Mukherjee

References

1. CWADN, http://www.computerweekly.com/
2. EatonC,DeroosD,DeutschT, LapisG, Zikopoulos P (2012)Understanding big data.McGraw-

Hill Companies
3. https://www.smartfile.com/blog/the-future-forecast-for-cloud-storage-in-2018/
4. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-

index-vni/vni-hyperconnectivity-wp.html
5. ReedDA,GannonDB,Larus JR (2012) Imagining the future: thoughts on computing.Computer

45
6. Deduplication, http://en.wikipedia.org/wiki/Data_deduplication
7. https://www.dropbox.com/
8. https://www.google.com/drive/
9. Su YH, Chuan HM, Wang SC, Yan KQ, Chen BW (2014) Quality of service enhancement

by using an integer bloom filter based data deduplication mechanism in the cloud storage
environment. In: IFIP international conference on network and parallel computing. Springer,
Berlin, pp 587–590

10. Su YH, Merlo P, Henderson J, Schneider G, Wehrli E (2013) Learning document similarity
using natural language processing. Linguistik Online 17(5)

11. da CruzNassif LF, Hruschka ER (2013)Document clustering for forensic analysis: an approach
for improving computer inspection. IEEE Trans Inf Forensics Secur 8:46–54

12. Jiang J-Y, Lin Y-S, Lee S-J (2014) A similarity measure for text classification and clustering.
IEEE Trans Knowl Data Eng 26:1575–1590

13. Pires CE, Nascimento DC, Mestre (2016) Applying machine learning techniques for scaling
out data quality algorithms in cloud computing environments. Appl Intell 45:530

14. Gemmell J, Rubinstein BIP, Chandra AK. Improving entity resolution with global constraints.
https://arxiv.org/abs/1108.6016

15. Bose P, Guo H, Kranakis E, Maheshwari A, Morin P, Morrison J, Smid M, Tang Y (2008) On
the false-positive rate of bloom filters. Inf Process Lett 108(4):210–213

16. Bloom BH (1970) Space/time trade-offs in hash coding with allowable errors. Commun ACM
13(7):422–426

17. Wikipedia (2015) Bloom filter. https://en.wikipedia.org/wiki/Bloom_filter
18. Subramanyam R (2016) Idempotent distributed counters using a forgetful bloom filter. Clust

Comput 19(2):879–892
19. Hu G, Zhou S, Guan J, Hu X (2008) Towards effective document clustering: a constrained

K-means based approach. Inf Process Manag 44:1397–1409
20. Tolic A, Brodnik A (2015) Deduplication in unstructured-data storage systems. Elektroteh

Vestn 82(5):233

http://www.computerweekly.com/
https://www.smartfile.com/blog/the-future-forecast-for-cloud-storage-in-2018/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://en.wikipedia.org/wiki/Data_deduplication
https://www.dropbox.com/
https://www.google.com/drive/
https://arxiv.org/abs/1108.6016
https://en.wikipedia.org/wiki/Bloom_filter

	A Bloom Filter-Based Data Deduplication for Big Data
	1 Introduction
	2 Background Details and Related Work
	3 Proposed Approach
	3.1 Syntactic Phase
	3.2 Semantic Phase

	4 Experimental Setup and Results
	5 Conclusions
	References


