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Abstract This paper presents a fast scalar point multiplier for an elliptic curve
crypto-processor in the field GF (2'%?). Elliptic curve-based cryptographic algo-
rithms have been in wide use since the early 2000s after being introduced in 1986.
With the ever-increasing need for information security, it is essential for systems to
perform the required operations in a fast and efficient manner. In this work, a hybrid
type Karatsuba multiplier has been used for fast field multiplications and a dedicated
inverter module based on the extended Euclidean algorithm is used for fast field
inversions. The point multiplication is performed using the standard double-and-add
algorithm for which the point doubling and point addition are done using standard
projective coordinates. The use of the fast multipliers and field inverters makes the
implementation a fast one as compared to other high-performance implementations
that have been reported over the years, at the cost of increased resource usage. The
results obtained, however, justify this increased resource usage as the point multipli-
cation is the most time-intensive operation in the encryption and decryption process
of elliptic curve cryptography.

Keywords FPGA - Karatsuba multiplier - Extended Euclidean algorithm -
Elliptic curve cryptography (ECC) - Scalar point multiplication

1 Introduction

Cryptography, in its most classical form, has been around for thousands of years.
From Julius Caesar, who used a simple substitution cipher to relay messages to his
generals, to the Second World War, in which the breaking of the German cipher
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hastened the end of the war, cryptography and subsequently cryptanalysis have been
a part of society for a very long time. Till the 1970s, cryptography was an obscure
field, used primarily by the military and spy agencies. With the advent of modern
computers, and along with it the invention of Data Encryption Standard (DES) and
most importantly the RSA public-key cryptography algorithm, the field of cryptog-
raphy was brought to the public domain. With the increasing need to protect data
from unauthorized usage along with the ever-increasing computational power avail-
able, new algorithms are constantly being developed. Elliptical curve cryptography
is an algorithm which has gained popularity in recent times, even though it has been
around since the 1980s.

ECC is a public-key cryptographic algorithm first developed in 1985 by Neal
Koblitz and Victor S. Miller, and it has been standardized by [1-3]. Like the RSA,
ECC functions in a finite field, which can be a prime field represented by GF(p) or
a binary field GF(2™), where p and m are prime numbers. The chief reason for the
popularity of ECC is the smaller key size required to encrypt data as compared to the
RSA algorithm. For example, the security offered by a 1024-bit key in RSA can be
offered by a 160-bit key in ECC. Both RSA and ECC are used in applications where a
secure communication is to take place between two entities, and thus, for applications
such as IoT, Near-Field Communication (NFC), Bitcoin, their use is extensive. The
smaller key requirement of ECC thus enables it to have lesser hardware, making it
suitable for mobile applications.

The functionality of ECC is based on the manipulation of points present on the
elliptic curve, the most important being the scalar point multiplication Q = kP
which is the addition of P to itself k — 1 times. The security of ECC is thus based on
this manipulation, that given two points P and Q on the elliptic curve; it is difficult
to calculate the value of k. This problem is known as the Elliptic Curve Discrete
Logarithm Problem (ECDLP).

The relative ease with which software applications can be compromised has
resulted in the general popularity of hardware approaches towards cryptography.
Dedicated crypto-processors not only perform the encryption faster, they also pro-
vide security at a physical level from potential attackers as they cannot be compro-
mised without direct physical access to them. Hardware approaches towards ECC
can be broadly classified into two main categories based on the finite field used.
Approaches which use the prime field GF(p) are few as compared to the approaches
which use binary fields GF(2™) [4]. This skew is due to the difficulties involved with
large prime numbers on hardware as well as the ease with which binary fields can
be represented on hardware. As the scalar point multiplication is the most hardware
and time-intensive operation involved in any elliptic curve application such as the
elliptic curve Diffie—-Hellman (ECDH) key protocol or the Elliptic Curve Digital
Signature Algorithm (ECDSA), it is this operation that has been the prime area of
focus for crypto-processor systems. A high-speed crypto-processor implementation
using the Montgomery Point Multiplication Algorithm was presented in [5, 6] which
used pipelining as well as multiple multipliers and squarers for reducing the latency
of operations. Dual field approaches which implement both prime and binary fields
are also becoming popular, such as the architecture proposed in [7]. In general,
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most papers on the hardware implementation of ECC alternate between the various
point multiplication algorithms [8—11] and the inversion algorithm used, with the
Itoh-Tsujii being the most efficient algorithm in this case [4].

This paper presents an implementation of an elliptic curve crypto-processor in the
finite field of GF (2'9%). The point multiplication has been accomplished using stan-
dard projective coordinates, and the extended Euclidean algorithm has been used for
the inversion. To perform quick field multiplications, a hybrid Karatsuba multiplier
has been used. The structure of the paper is as follows: Sect. 2 presents the basics of
ECC as well as the architecture of the modules used in this work, Sect. 3 presents
the implementation and results, and conclusions are put forth in Sect. 4.

2 Methodology

2.1 Elliptic Curve Cryptography Preliminaries

The elliptic curve E for a binary field GF(2™) is given below:
E:y’+xy=x+ax+b @))

wherea € [0, 1Tand b # 0. Any operation on a point that satisfies the curve E follows
a specific set of group laws which govern how the operation can be performed. These
group laws differ according to the field in which the elliptic curve is defined.

Elliptic curves have a wide range of modular arithmetic operations associated
with them. These include the field multiplication, field squaring, field reduction,
field addition and the field inversion operations. As mentioned earlier, the scalar point
multiplication is the most important operation in ECC. The scalar point multiplication
involves repeated point doublings and point additions which in turn require the field
arithmetic operations mentioned above. Depending on the algorithm used for the
point multiplication, field inversion can be required for every point doubling and
addition or just once for every point multiplication. This variability comes from the
use of coordinate systems such as standard projective coordinates and the Lopez-
Dahab projective coordinates that differ from the one in which the curve E is defined
in. The field arithmetic as well as the group laws governing elliptic curves are given
in detail in [12].

2.2 Proposed Design

The architecture for the proposed arithmetic unit for implementing a point multipli-
cation for ECC in GF (2") is shown in Fig. 1. A hybrid Karatsuba multiplier has
been used for the field multiplication along with a field inverter based on the extended
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Fig. 1 Architecture for the arithmetic unit

Euclidean algorithm. The dedicated hardware made for field inversions guarantee a
fast inversion process at the cost of increased area usage.

The register file contains the registers used for storing the values of the intermedi-
ate as well as final coordinates of the point multiplication process. The registers W1
and W2 are the two working registers that are loaded with the values that need to be
operated on. The working registers form the input to the arithmetic blocks, namely
the squarer, double squarer, adder, multiplier and field inverters. Working register
W1 is used to provide the singular inputs to the adder, squarer, double squarer and
Inverterl as well as the dual inputs to the multiplier along with working register W2.
W2 also provides the input to the second inverter module, Inverter2. It should be
noted that in a field of GF(2™), all registers and wires are m-bits wide.

The algorithm that has been used for the scalar point multiplication is called the
left-to-right double-and-add algorithm. Starting from the MSB of the key, every bit
is checked whether it is a 0 or a 1. Depending on the value of the current bit, a point
doubling and a point addition are performed on the points. The algorithm is given in
Fig. 2.

Thus, if the present bit of the key is 1, a point addition is performed after the point
doubling. The total length of the key in this case will decide the worst-case execution
time of the entire point multiplication.

The point addition and doubling are part of the group law which governs the
elliptic curve being used. When standard affine coordinates (X, Y) are being used,
the point doubling and point additions require a field inversion every time they
are executed. Because the field inversion is the most time-intensive operation of
the point multiplication process, a better alternative is to use a different coor-
dinate system which requires a field inversion only once during the entire point
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Fig. 2 Algorithm for scalar point multiplication
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multiplication process. One such system is the standard projective coordinate system
which introduces an additional coordinate Z which reduces the point doubling and
addition operations to field multiplications, squaring and addition. The projective
coordinates can be converted back into affine coordinates by using a suitable
transformation. A method of point doubling and point addition using standard
projective coordinates is given in [13]. During point addition, the point P is added
to the starting point G. Thus, the generator points (G, G,) in affine coordinates
can be converted into the projective coordinate (G, Gy, 1). This can be verified
using the projective to affine conversion (X, Y, Z) — (X/Z,Y/Z?%). Thus, the
final coordinates in P can be converted into affine coordinates to obtain the points
(Py, Py). The algorithm for point doubling and point addition is given in Fig. 3.

The field squaring, double squaring, multiplication and addition are performed
using entirely combinational circuits which thus enable these operations to be per-
formed in a single clock cycle. The addition, squaring and double squaring can be
done using simple XOR operations. The various modules including the control logic
are explained below:
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The Karatsuba Multiplier: The Karatsuba multiplier is one of the many alter-

natives available for designing a finite field multiplier. The efficiency of the
Karatsuba multiplier, especially for large number multiplication, has made it
one of the most popular choices for the finite field multiplier module in ECC
cryptosystems. The Karatsuba multiplier used in this paper differs from the tra-
ditional recursive Karatsuba multiplier that requires operands with a bit length
of an integral power of 2. To accommodate the fields and word lengths required
in ECC, a hybrid Karatsuba multiplier is used as presented in [14]. The 163-
bit multiplication is split into two multiplications with lengths 81 and 82 bits,
respectively. These are further split into 40- and 41-bit multiplications, and
the remainder of the tree can be grown likewise. The last layer of multipli-
ers, namely the 20-bit and 21-bit multipliers, can be implemented using simple
AND and XOR logic. The properties of polynomial arithmetic in GF(2™) do
not allow the generation of any carries during any arithmetic operation, and
thus, combining the multipliers together to obtain the final product requires
simple XOR operations. It should be noted that a field multiplication of 2m-bit
numbers will result in a product with (2m — 1) bits. The modular reduction of
this product according to the irreducible polynomial of that field is done using
a reduction module that is present with the multiplier. This reduction unit has
not been shown in the diagram, but it converts the (2m — 1) bit product to a
m-bit product. The multiplier tree for the field GF (2!9) is shown in Fig. 5.

Finite Field Inversion: The finite field inversion has been performed using the

extended Euclidean algorithm for binary fields, as shown in Fig. 4. The extended
Euclidean algorithm works on the principle of continuously dividing the poly-
nomial until the remainder is 1. While the area requirement of such an inversion
process is larger than other approaches such as the Itoh-Tsujii [15], it has the
advantage of being faster. The inverter block shown in Fig. 1 also has the control
word input from the control unit and an “End” output which signals the end of
the inversion process. The control unit reads this output.

Control Unit: The control unit controls which register values are transferred to

the working registers as well as the selection of outputs of the various arith-
metic modules. The state diagram for the control unit is shown in Fig. 6. The
control unit issues a control word (CW) which is specific to the present state
of the control unit. The states are broadly classified in four different types: the
initial state, which initializes all registers and is active until the active low asyn-
chronous reset is enabled; the point doubling and point addition states which
are switched according to the present bit of the input key; the projective to affine
conversion state, which is entered when the point multiplication is complete.
The projective to affine state issues the control word for starting the inversion
process in the inverters and reads the “End” output of both inverters. The inverter
outputs are transferred to the register file only after both inverters have com-
pleted their operations. Once the point multiplication has been completed, the
control unit asserts the “finished” signal which indicates the end of the point
multiplication process. The final outputs are available from the register file from
the P, P, registers.
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Finite field inversion using the extended Euclidean algorithm
Input: A polynomial a, irreducible polynomial p of the field
GF(2™)
Output: b = a~*mod(p)
1. ueauvep
2. g1-1g.<0
3. While(u+#1landv+1)do
3.1. if (u[0] = 0) then,
311l ue(u>»1)
3.1.1.2.1If (g,[0] = 0), then g, « (g, > 1); else
g1 (g +p)»>1
3.2. If (v[0] = 0) then,
321lve(v>»1)
32.12.1f (g,[0] = 0), then g, « (g, > 1); else
g2 (g2+p)»1
33. If u>v, then ueu+vg, « g, + g
esevev+ug, —g.+g,
4. Ifu =1, return(g,); else return(g.)

Fig. 4 Extended Euclidean algorithm for field inversion
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Fig. 5 Tree for 163-bit Karatsuba multiplier
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From the point doubling and point addition algorithms, these operations will
require a fixed number of states and hence a fixed number of clock cycles for
execution.
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Another aspect of this architecture is that the key register is placed separately from
the register file. This physical separation of the key wherein it cannot be accessed
by any unauthorized means introduces the hardware-level protection for the key.
This physical boundary between the key and any malicious entity is one of the most
important advantages offered by hardware-based implementations over conventional
software implementations of cryptographic algorithms.

3 Discussions

The proposed design was implemented using the binary field GF(2!%%) with the
standard NIST recommended irreducible polynomial p = x'%% + x7 + x® + x* + 1.
The curve equation was taken to be the NIST recommended binary curve E: y*>+xy =
x3+x+1,i.e.a = b = 1. The proposed architecture makes use of a 163-bit hybrid
Karatsuba multiplier for field multiplications and dedicated inverter modules for field
inversions. While this will increase the speed of execution, the associated trade-off in
the area usage can be seen directly. The key register was 32-bit long. The comparisons
of the proposed architecture with other published papers using the same FPGA and
binary field GF(2!93) are given in Table 1. The number of clock cycles and the time
are the values obtained for one point multiplication.

From the table, it can be easily seen that area-efficient implementations are much
slower than the proposed design. However, the proposed design suffers from a very
low maximum clock frequency which makes the time required for one point mul-
tiplication comparable to the other implementations. But implementations with an
area usage which is comparable to the proposed design too require more time for the
execution of one point multiplication.

The area of the proposed design is large due to the use of the dedicated inverter
modules and the Karatsuba multiplier. The resource usage of these modules is given
in Table 2.

The area usage indicates that using a more area-efficient multiplier can reduce
the overall area requirement, at the cost of increased latency. The use of an inversion
algorithm such as the Itoh-Tsujii algorithm can further reduce area usage as this

Table 1 Comparison of proposed design with other published works

Ref. Slices LUTs Clock F max Time (us) | Field size | FPGA
cycles (MHz)

[16] 16,209 26,364 3,010 154 19.55 163 Virtex-4
[17] 12,834 22,815 3,372 196 17.2 163 Virtex-4
[5] 3,536 6,672 4,168 290 14.39 163 Virtex-4
[18] - 27,889 2,128 133 16 163 Virtex-4
[8] 4,080 7,719 4,050 197 20.56 163 Virtex-4
Ours 14,255 27,111 918 71 12.8 163 Virtex-4
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Table 2 Resource usage of various modules in the proposed design

Module Slices LUTs FPGA
Hybrid 163-bit 6,304 1,0982 Virtex-4
Karatsuba multiplier

Field inverter 1,365 2,581 Virtex-4
Double squarer 181 315 Virtex-4
Squarer 95 165 Virtex-4
Adder 94 163 Virtex-4

algorithm uses the existing squaring and addition modules. The other field arithmetic
modules, namely the adder, squarer and double squarer, have a negligible resource
usage as compared to the multiplier and inverter.

4 Conclusions

This paper presents a fast implementation of the scalar point multiplier required
for elliptic curve cryptography. The area usage, while large as compared to other
similar implementations, is a justified trade-off for the speed the design possesses.
The number of clock cycles required for the completion of one point multiplication is
the lowest and thus shows the high-speed nature of the design, which can be used for
many high-performance applications which do not have tight area constraints. The
resource usage can be lowered by using other inversion algorithms and multipliers,
but these optimizations will cause an increase in latency. The architecture for an entire
elliptic curve crypto-processor using the elliptic curve Diffie-Hellman protocol can
be constructed around this scalar point multiplier. A viable implementation of such
a processor on an FPGA can use the embedded MPU found on most modern FPGAs
such as the Artix-7.
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