
Semi-automatic Ontology Builder Based
on Relation Extraction from Textual Data

Anjali Thukral, Ayush Jain, Mudit Aggarwal and Mehul Sharma

Abstract This paper proposes a semi-automated tool to build ontology from text.
The tool consists of an analyzer to parse the given text and a mapper that maps NLP
triple to RDF triple under user supervision. The resulted RDF triple is then vali-
dated through “triple validator” for its existence in the ontology. The triple is
augmented to the ontology if it does not exist. System learns during this process and
provides better mapping suggestions with time, making ontology building faster.

Keywords Ontology builder ⋅ Text to ontology ⋅ Concept ontology
RDF triple

1 Introduction

Ontology is a description (like a formal specification of a program) of the concepts
and relationships that can formally exist for an agent or a community of agents [1].
A domain ontology (or concept ontology) represents the conceptual model under-
lying a certain domain, describing it in a declarative way [2]. In the present time,
majority of the data is in the textual form such as journals, documents, and website.
Converting these unstructured data into ontologies requires a lot of time and manual
work. So, there is high requirement of some kind of automation to make the task of
conversion easier. To fulfill this requirement, we developed a tool that converts text
into concept ontology with minimum human intervention. The tool uses three main
methods relation extraction, rule-based mapping, and validator and storage which
are described in later sections. This paper is organized as follows: Sect. 2 presents
the related work on building ontologies. Details of the proposed system are pro-
vided in Sect. 3. Section 4 provides performance evaluation of the system, followed
by the conclusion in Sect. 5.

A. Thukral (✉) ⋅ A. Jain ⋅ M. Aggarwal ⋅ M. Sharma
Keshav Mahavidyalaya University of Delhi, Delhi, India
e-mail: athukral@keshav.du.ac.in

© Springer Nature Singapore Pte Ltd. 2018
S. Bhattacharyya et al. (eds.), Advanced Computational and Communication
Paradigms, Advances in Intelligent Systems and Computing 706,
https://doi.org/10.1007/978-981-10-8237-5_33

343

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8237-5_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8237-5_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8237-5_33&domain=pdf

2 Related Work

A lot of attention has been given toward the building of ontology over the years.
A huge set of efforts have been put in the field of automatic building of ontologies,
mainly focusing on domain (concept) ontology. Maddi et al. [3] presented the
method of extraction of ontologies for text documents using linear algebraic method
called as single-value decomposition for obtaining the concepts from terms and
used bipartite ontology graphs to represent the results. Yeh and Yang [4] proposed a
method of automatic ontology creation for historical documents from digital library
using latent topic extraction and topic clustering. Bedini and Nguyen [5] presented
a framework that evaluates the automation of ontology generation. The work also
provides a comprehensive analysis of existing software. The work of Moreno and
Sanchez [6] provides a methodology to build ontologies automatically and
extracting information from web documents. The work of Gantayat and Iyer [7] for
automatic building of ontology from lecture notes is available at several courseware
repositories. It uses NLP for keyword extraction, term frequency inverse document
frequency (tf-idf) for extracting the concepts from keywords, and “apriori
algorithm” to determine associations among concepts. Gillam and Ahmad [8] have
proposed statistical methods for extracting the concepts from the text. Most of the
work done for building of ontology is for a specific domain, whereas the proposed
tool is a generic system that can build any ontology in less time under the domain
expert (user) supervision, irrespective of its domain. Moreover, final decision is in
the hands of domain expert, so it prevents the insertion of ambiguous and incorrect
information into the ontology. This tool generates standard OWL ontology which
can be accessed and manipulated in ontology editors such as protégé [9].

3 Proposed Approach

The proposed tool is a user-friendly generic semi-automated ontology builder
which uses relation extraction and rule-based mapping procedure to build concept
ontologies from text (Please refer Fig. 1). The ontology builder creates the concept
ontology, besides domain learning during the building process. With time and
enough learning, the system is able to produce concept ontology in less time with
minimal human intervention. It prunes the input texts and converts it into basic
form, i.e., triples (subject, predicate, and object) using relation extraction and adds it
to ontology after validation from user. If builder is not able to recognize the
semantics of the information, user will provide the semantics, which will intern add
to the learning of the software, so that it becomes capable to recognize the similar
semantics of the information in future and is able to add the correct information in
the ontology.

The proposed system contains three modules analyzer subsystem, mapper sub-
system, and triple validator and storage. Home screen of the tool provides the

344 A. Thukral et al.

interface for the features like starting a new ontology building session, viewing the
current ontology file, importing and exporting of OWL file, rule file, and perfor-
mance CSV file which are explained below.

3.1 Analyzer Subsystem

Analyzer subsystem performs the task of relation extraction. It processes the input
text and presents all the possible relations that can be extracted from the given
sentence by passing the text through OpenIE component [10] of “Stanford
CoreNLP API [11]”. User then selects the best relation among the system sug-
gestions, which is then passed to the mapper subsystem for further processing.

Fig. 1 Proposed system flow

Semi-automatic Ontology Builder Based on Relation … 345

3.2 Mapper Subsystem

The mapper uses a relation that was extracted using analyzer, schema of the concept
ontology, and the rule file which defines certain mapping rules to map predicate text
to an appropriate OWL property. Mapping of subject/object text is done using label
annotations of existing individual in the ontology. If the predicate text is mapped to
a data property, then object and subject text are mapped to a literal and an indi-
vidual, respectively. But, both subject and object texts are mapped to an individual
if predicate is mapped to an object property.

Rule File
The rule file contains rule of format “Predicate text” → “OWL property IRI”.
Rules are arranged in the lexical order of predicate text for efficient searching.
During the mapping process whenever user explicitly maps predicate text to an
OWL property, then corresponding rule is added to the rule file.

Working of Mapper
The mapper first tries to map subject, predicate, and object itself (Ref. Fig. 2). In
case the mapper does not find an appropriate solution, it recommends the possible
options to be selected by a user manually. After mapping all the components of
relation, it creates appropriate OWL triples using OWL API [12]. User is asked to
give a feedback from scale of 0–5 as on what level tool was helpful. User feedback
is saved in a CSV file with the help of Java CSV API.1 The resulted triples are then
passed to the next module, i.e., Triple validator and storage system.

Fig. 2 Mapper screen

1https://www.csvreader.com/java_csv.php.

346 A. Thukral et al.

https://www.csvreader.com/java_csv.php

3.3 Triple Validator and Storage

Validator module checks for the existence of all the triples received from mapper, in
the ontology either as it is or in the form of inference from the existing information
in ontology using HermiT Reasoner [13]. “Already Exists” status depicts that triple
information is already present in the ontology, and “New” status depicts that the
triple is added to the ontology as it was not there earlier. After adding all the triples,
ontology is checked for the consistency using HermiT Reasoner [13]. In case of
inconsistency, changes are not reflected in the original ontology file.

4 Experimental Results

We created ontology on “Technology Classification” for experimental purpose. The
ontology classifies various fields and subfields of science and technology. The
ontology and relevant text data (collected from various sources) were fed into the
system. Experiment was performed over four sessions under supervision of domain
expert to display the building process. Growth of ontology, generated rule file, and
performance of the system were captured. Ontology graph was created using SOVA
plug-in2 for Protégé ontology editor [9].

4.1 Technology Classification Ontology

Ontology is illustrated in Fig. 3. Ontology schema “Technology Classification” fed
to the application was created using protégé ontology editor [9] and was fed to the
system as ontology schema.

Figure 4 illustrates the populated “Technology Classification” ontology which
was obtained after passing significant amount of text data into the system.

4.2 Rule File Generation

All rules formed during the mapping procedure for the predicate text part of the
relation are stored in rule file. The system refers to this rule file for mapping
purpose.

2https://protegewiki.stanford.edu/wiki/SOVA_1.0.0.

Semi-automatic Ontology Builder Based on Relation … 347

https://protegewiki.stanford.edu/wiki/SOVA_1.0.0

4.3 Performance

A user may follow the guidelines (tabulated in Fig. 5) while providing feedback
regarding the mapping accuracy.

For subject/object, 0, 1, and 2 stand for new resource, existing resource but not
mapped by the system, and existing resource which is mapped by the system,
respectively. Similarly, for predicate, 0 and 1 stand for predicate which was not
mapped to a property and mapped to a property, respectively.

Figure 6 shows the performance of the tool during four sessions. It shows that as
the process of ontology building continues, the system is able to efficiently convert
text to RDF triples, making the ontology building process faster.

Fig. 3 Ontology schema
“Technology Classification”
fed to the application

Fig. 4 Ontology obtained
after processing through
application

348 A. Thukral et al.

Fig. 5 Feedback guidelines
regarding mapping

Fig. 6 The tool performance (rating based)

Semi-automatic Ontology Builder Based on Relation … 349

5 Conclusion

A tool for building ontology from text was proposed in the paper. The design of the
proposed tool is modular with three components: analyzer subsystem, mapper
subsystem, and triple validator and storage. The experiment was performed on
technology classification ontology. It was noted that system’s performance and
results are greatly dependent upon the ontology schema and the input text fed to the
tool. The ontology building is a learning process, and the perceived knowledge is a
result of user’s interaction with the system. It was also noted that whatever be the
ontology, after converting a certain amount of text (which covers good amount of
domain’s knowledge) into triples, the system was able to get trained and was able to
make correct recommendations. As the future work, the analyzer subsystem module
can be improved to handle complex sentences.

References

1. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. Int.
J. Hum. Comput Stud. 43(5–6), 907–928 (1995)

2. Bedi, P., Thukral, A., Banati, H., Behl, A., Mendiratta, V.: A multi-threaded semantic focused
crawler. J. Comput. Sci. Technol. 27(6), 1233–1242 (2012)

3. Maddi, G.R., Velvadapu, C.S., De Lamadrid, J.G.: Ontology extraction from text documents
by singular value decomposition (2001)

4. Yeh, J.H., Yang, N.: Ontology construction based on latent topic extraction in a digital
library. In: International Conference on Asian Digital Libraries, pp. 93–103. Springer, Berlin,
Heidelberg (2008)

5. Bedini, I., Nguyen, B.: Automatic ontology generation: state of the art. PRiSM Laboratory
Technical Report. University of Versailles (2007)

6. Sanchez, D., Moreno, A.: Creating ontologies from web documents. In: Recent Advances in
Artificial Intelligence Research and Development, vol. 113, pp. 11–18. IOS Press (2004)

7. Gantayat, N., Iyer, S.: Automated building of domain ontologies from lecture notes in
courseware. In: 2011 IEEE International Conference on Technology for Education (T4E),
pp. 89–95. IEEE (2011)

8. Ahmad, K., Gillam, L.: Automatic ontology extraction from unstructured texts. In: On the
Move to Meaningful Internet Systems 2005: Coopis, Doa, and Odbase, pp. 1330–1346 (2005)

9. Musen, M.A.: The protégé project: a look back and a look forward. AI Matters 1(4), 4–12
(2015)

10. Angeli, G., Premkumar, M.J., Manning, C.D.: Leveraging linguistic structure for open
domain information extraction. In: Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics (ACL 2015) (2015)

11. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The
Stanford CoreNLP natural language processing toolkit. In: ACL (System Demonstrations),
pp. 55–60 (2014)

12. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. Semant. Web 2
(1), 11–21 (2011)

13. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2 reasoner.
J. Autom. Reason. 53(3), 245–269 (2014)

350 A. Thukral et al.

	33 Semi-automatic Ontology Builder Based on Relation Extraction from Textual Data
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Analyzer Subsystem
	3.2 Mapper Subsystem
	3.3 Triple Validator and Storage

	4 Experimental Results
	4.1 Technology Classification Ontology
	4.2 Rule File Generation
	4.3 Performance

	5 Conclusion
	References

