
Chapter 1
Bottom-Up Estimation and Top-Down
Prediction: Solar Energy Prediction
Combining Information from Multiple
Sources

Youngdeok Hwang, Siyuan Lu and Jae-Kwang Kim

Abstract Accurately forecasting solar power using the data from multiple sources
is an important but challenging problem. Our goal is to combine two different physics
model forecasting outputs with real measurements from an automated monitoring
network so as to better predict solar power in a timely manner. To this end, we con-
sider a new approach of analyzing large-scale multilevel models for computational
efficiency. This approach features a division of the large-scale data set into smaller
ones with manageable sizes, based on their physical locations, and fit a local model
in each area. The local model estimates are then combined sequentially from the
specified multilevel models using our novel bottom-up approach for parameter esti-
mation. The prediction, on the other hand, is implemented in a top-down matter.
The proposed method is applied to the solar energy prediction problem for the US
Department of Energy’s SunShot Initiative.

1.1 Introduction

Solar energy’s contribution to the total energy mix is rapidly increasing. As the most
abundant form of renewable energy resource, solar electricity is projected to supply
14% of the total demand of Contiguous United States by 2030, and 27% by 2050,
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respectively (Margolis et al. 2012). Having a high proportion of solar energy in the
electric grid, however, poses significant challenges because solar power generation
has inherent variability and uncertainty due to varying weather conditions (Denholm
and Margolis 2007; Ela et al. 2011). Moreover, the uncertainty of solar power often
obliges system operators to hold extra reserves of conventional power generation at
significant cost. Accurate forecasting of solar power can improve system reliability
and reduce reserve cost (Orwig et al. 2015; Zhang et al. 2015). Applying statistical
methods on the forecasts from these numerical models can significantly improve the
forecasting accuracy (Mathiesen and Kleissl 2011; Pelland et al. 2013).

Computermodels have advancedbeyond scientific research to becomean essential
part of industrial applications. Such expansions need a different methodological
focus. To take advantage of the availability of such computer models, matching the
model output with the historical observations is essential. This task is closely related
to model calibration (Gramacy et al. 2015; Wong et al. 2016) to choose the optimal
parameters for the computer model.

In thiswork,we consider a general framework to exploit the abundance of physical
model forecasting outputs and realmeasurements from an automatedmonitoring net-
work, usingmultilevel models. Ourmethod addresses the aforementioned challenges
for large-scale industrial applications. The proposed bottom-up approach has a com-
putational advantage over the existing Bayesian method in computation for parame-
ter estimation, because it does not rely on the Markov chain Monte Carlo (MCMC)
method. Our approach is a frequentist based on the Expectation-Maximization (EM)
algorithm.

1.2 Global Horizontal Irradiance

In this section, we describe our solar energy application and the overall problem. Our
goal is to improveGlobalHorizontal Irradiance (GHI) prediction over theContiguous
United States (CONUS). GHI is the total amount of shortwave radiation received
by a surface horizontal to the ground, which is the sum of Direct Normal Irradiance
(DNI, the amount of solar radiation received by a surface perpendicular to the rays
that come from the direction of the sun), Diffuse Horizontal Irradiance (DHI, the
amount received by a surface that has been diffused by the atmosphere), and ground-
reflected radiation.GHI forecast is ofmain interest of the participants in the electricity
market.

Tomonitor the GHI, sensors are located over CONUS. The collected observations
are obtained from the sensor locations marked on Fig. 1.1. The GHI readings are
recorded at 1,528 locations in 15-min intervals. Hence, the data size grows very
quickly; every day, thousands of additional observations are added. The data from
each site are separately stored in the database indexed by the site location. The
readings are obtained from various kinds of sensors, whichmay cause some potential
variability among different locations. In our application, we consider two models to



1 Bottom-Up Estimation and Top-Down Prediction: Solar Energy … 5

Fig. 1.1 The map of the 1,528 monitoring network locations, marked by dots

forecast GHI: Short-Range Ensemble Forecast (SREF, Du and Tracton 2001) and
North American Mesoscale Forecast System (NAM, Skamarock et al. 2008). They
share a common overall trend; however, there are certain discrepancies between the
two model outputs. The model outputs are available at any location in a pre-specified
computational domain, which covers the entire CONUS. The model output is stored
at every hour, but can be matched with 15-min interval measurement data after post-
processing.

1.3 Model

In this section, we present the basic setup and our proposed method. A model with
three levels is considered in this paper, but the number of levels can be arbitrary.

1.3.1 Multilevel Model

Assume that the sensors are divided into H exhaustive and non-overlapping groups.
For group h, measurements are collected at nh sensors. From the i th sensor in group
h, the measurements yhi j are available, as well as the output from computer models
as the covariates xhi j , for j = 1, . . . , nhi . Information at sensor or group level, ch
and chi , is also available. Note that the covariates x are often more widely available
than yhi j ’s; in our application in Sect. 1.4, the computer model output is available not
only at monitoring sites but also everywhere in the spatial domain of interest. We
assume that nh can be relatively small while nhi is usually large, because managing



6 Y. Hwang et al.

Storage

Storage

Storage

Sensor

Sensor

Sensor

Level 1

Level 1

Level 1

Level 2

Site 1

Site 2

Site 3

Individual

data

Site summary

Group

summary

Fig. 1.2 Overall description of the data storage and modeling structure, where the data are stored
separately for each site

the existing sensors and taking additional measurements from them usually do not
cost much, while deploying new monitoring sensors often causes considerable cost.

Figure1.2 shows the overall data storage and modeling structure of our proposed
method to achieve these goals. Our so-called bottom-up approach builds up a hier-
archy with the measurements by taking the following three steps.

The first step is summarization. There is no direct measurement for the kth level
model (k ≥ 2), so we use the observations from the lower level model to obtain a
‘measurement’ and construct an appropriate measurement model. The second step
is combination; we combine the measurement model and structural model to build
a prediction model using Bayes’ theorem. The third step is learning, in which we
estimate the parameters by using the EM algorithm. In the bottom-up approach, the
computation for each step uses a summary version to ease the storage of data and
spare the use of computer memory despite the large amount of data. In the subsection
below, we describe each step in detail.

1.3.2 Bottom-Up Estimation

In this section, we give a detailed description of the estimation procedure. First,
consider the level one and level two models,

yhi ∼ f1(yhi |xhi ; θhi ), (1.1)

θhi ∼ f2(θhi |chi ; ζh), (1.2)
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where yhi = (yhi1, . . . , yhinhi )
� and xhi = (x�

hi1, . . . , x
�
hinhi

)� are the observations
and covariates associated with the i th sensor in the hth group for the level one model,
respectively, and θhi is the parameter in the level one model. In (1.2), θhi is treated
as a random variable and linked to the unit-specific covariate chi and parameter ζh
in the level two model.

To estimate ζh in (1.2), we use the three-step approach discussed in Sect. 2.1. In
the summarization step, for each sensor, we treat (xhi , yhi ) as a single data set to
obtain the best estimator θ̂hi of θhi , a fixed parameter. Define g1(θ̂hi | θhi ) to be the
density of the sampling distribution of θ̂hi . This sampling distribution is used to build
a measurement error model, where θ̂hi is a measurement for the latent variable θhi ,
while (1.2) is a structural error model for θhi .

The sampling distribution g1(θ̂hi | θhi ) is combined with the level twomodel f2 to
obtain the marginal distribution of θ̂hi . Thus, the MLE of the level two parameter ζh
can be obtained by maximizing the log-likelihood derived from the marginal density
of θ̂hi . That is, we maximize

nh∑

i

log
∫

g1(θ̂hi | θhi ) f2(θhi | chi ; ζh)dθhi (1.3)

with respect to ζh , combining g1(θ̂hi | θhi ) with f2(θhi | chi ; ζh). The maximizer of
(1.3) can be obtained by

ζ̂h = argmax
ζh

nh∑

i=1

E

[
log{ f2(θhi | chi ; ζh)} | θ̂hi ; ζh

]
. (1.4)

Note that ζh is the parameter associated with the level two distribution, and (1.4)
aggregates the information associated with θ̂hi to estimate ζh .

To evaluate the conditional expectation in (1.4), we derive

p2(θhi | θ̂hi ; ζh) = g1(θ̂hi | θhi ) f2(θhi | chi ; ζh)∫
g1(θ̂hi | θhi ) f2(θhi | chi ; ζh)dθhi

. (1.5)

The level two model can be learned by the EM algorithm. Specifically, at the t th
iteration of EM, we update ζh by

ζ̂
(t)
h = argmax

ζh

nh∑

i=1

E

[
log { f2(θhi | chi ; ζh)} | θ̂hi ; ζh = ζ̂

(t−1)
h

]
, (1.6)

where the conditional expectation is with respect to the prediction model in (1.5)
evaluated at ζ̂ (t−1)

h , which is obtained from the previous iteration of the EMalgorithm.
When θ̂hi is the maximum likelihood estimator, we may use a normal approx-

imation for g1(θ̂hi | θhi ). Asymptotically, θ̂hi is a sufficient statistic for θhi and
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normally distributed with mean θhi and the estimated variance {I1hi (θhi )}−1, where
{I1hi (θhi )}−1 is the observed Fisher information derived from g1.

Once each ζ̂h is obtained, we can use {ζ̂h; h = 1, . . . , H} as the summary of
observations to estimate the parameters in the level three model. Let the level three
model be expressed as

ζh ∼ f3 (ζh |ch; ξ) , (1.7)

where ch are the covariates associated with group h and ξ is the parameter associated
with the level threemodel. Estimation can be done in a similar fashion to the level two
parameters. However, ζh is now treated as a latent variable, and ζ̂h as a measurement.
Similar to (1.3), we maximize

H∑

h=1

log
∫

g2(ζ̂h | ζh) f3 (ζh | ch; ξ) dζh (1.8)

with respect to ξ to obtain ξ̂ , where g2(ζ̂h | ζh) is the sampling distribution of ζ̂h ,
which is assumed to be normal. The EM algorithm can be applied by iteratively
solving

ξ̂ (t) = argmax
ξ

H∑

h=1

E

[
log { f3 (ζh | ch; ξ)} | ζ̂h; ξ = ξ̂ (t−1)

]
, (1.9)

where the conditional distribution is with respect to the distribution with density

p3(ζh | ζ̂h; ξ) = g2(ζ̂h | ζh) f3 (ζh | ch; ξ)
∫
g2(ζ̂h | ζh) f3 (ζh | ch; ξ) dζh

evaluated at ξ = ξ̂ (t−1). The level three model can be chosen flexibly depending on
the usage, as it was in the lower levels.

1.3.3 Top-Down Prediction

In this section, we describe the prediction procedure. In contrast to the bottom-up
approach of Sect. 1.3.2, the prediction is made in a top-down fashion.

To describe the top-down approach to prediction, consider the three-level models
in (1.1), (1.2), and (1.7). The bottom-up estimation in Sect. 1.3.2 provides a way of
estimating the parameters, θhi , ζh , and ξ by θ̂hi , ζ̂h , and ξ̂ , respectively, using EM
algorithm or maximizing the marginal likelihood.
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Our goal is to predict unobserved yhi j values from the above models using the
parameter estimates. The goal is to generate Monte Carlo samples of yhi j from

p(yhi j | xhi j ; θ̂hi , ζ̂h , ξ̂) =
∫ ∫

f1(yhi j | xhi j ; θhi )p2(θhi | ζh , θ̂hi , ζ̂h , ξ̂)p3(ζh | ζ̂h , ξ̂)dζhdθhi∫ ∫ ∫
f1(yhi j | xhi j ; θhi )p2(θhi | ζhi , θ̂hi , ζ̂h , ξ̂)p3(ζh | ζ̂h , ξ̂)dζhdθhi dyhi j

(1.10)
where p2(θhi | θ̂hi , ζh, ζ̂h, ξ̂) = p2(θhi | θ̂hi , ζh) and p3(ζh | ζ̂h, ξ̂) are the predictive
distribution of θhi and ζh , respectively.

To generate Monte Carlo samples from (1.10), we use the top-down approach.
We first compute the predicted values of ζh from the level three model,

p3(ζh | ζ̂h, ξ̂) = g2(ζ̂h | ζh) f3(ζh | ch; ξ̂)
∫
g2(ζ̂h | ζh) f3(ζh | ch; ξ̂)dζh

, (1.11)

where g2(ζ̂h | ζh) is the sampling distribution of ζ̂h . Also, given the Monte Carlo
sample ζ ∗

h obtained from (1.11), the predicted values of θhi are generated by (1.5).
The best prediction for yhi j is

ŷ∗
hi j = E3

[
E2

{
E1(yhi j | xhi j , θhi ) | θ̂hi ; ζh

}
| ζ̂h; ξ̂

]
(1.12)

where subscripts 3, 2, and 1 denote the expectation with respect to p3, p2, and f1,
respectively. Thus, while the bottom-up approach to parameter estimation starts with
taking the conditional expectation with respect to p1 and then moves on to p2, the
top-down approach to prediction starts with the generation of Monte Carlo samples
from p2 and then moves on to p1 and f1.

To estimate the mean-squared prediction error of ŷ∗
hi j given by Mhi j = E

{(ŷ∗
hi j − yhi j )2},we can use the parametric bootstrap approach (Hall andMaiti 2006;

Chatterjee et al. 2008). In the parametric bootstrap approach, we first generate boot-
strap samples of yhi j using the three-level model as follows:

1. Generate ζ
∗(b)
h from f3(ζh | ch; ξ̂), for b = 1, 2, . . . , B.

2. Generate θ
∗(b)
hi from f2(θhi | chi ; ζ

∗(b)
h ), for b = 1, 2, . . . , B.

3. Generate y∗(b)
hi j from f1(yhi j | xhi j ; θ

∗(b)
hi ), for b = 1, 2, . . . , B.

Once the bootstrap samples of Y∗(b) = {y∗(b)
hi j ; h = 1, 2, . . . , H ; i = 1, . . . , nh;

j = 1, . . . ,mhi } are obtained, we can treat them as the original samples and apply
the same estimation and prediction method to obtain the best predictor of yhi j . The
mean-squared prediction error (MSPE)Mhi j can also be computed from the bootstrap
sample. That is, we use

M̂hi j = E∗{(ŷ∗
hi j − yhi j )

2}

to estimate Mhi j , where E∗ denote the expectation with respect to the bootstrapping
mechanism.
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1.4 Prediction of Global Horizontal Irradiance

In this section, we give a detailed description of the available data and the model
that we use. We apply the proposed model and compare results to those of the
comparators.

1.4.1 Data Description

We use 15 days of data for our analysis (12/01/2014–12/15/2014). There are 1528
sites to monitor GHI, where the number of available data varies between 12 and 517
observations, and the total number of observations is 557,284. To borrow strength
from neighboring sites, we formed 50 groups that are spatially clustered by applying
theK-means algorithmon the geographic coordinates.We assume the sites belonging
to the same group are homogeneous. The number of sites in each group, nh , varies
between 10 and 59. Depending on the goal, one can use other grouping schemes
such as the distribution zone described in (Zhang et al. 2015). Calculated irradiance
is available at every 0.1 degree and is matched to the monitoring site location.

Since we are interested in the amount of irradiance, we first exclude zeros from
both observed measurements and computer model outputs for the analysis. Thus, all
values are positive and skewed to the right, and we used the logarithm transformation
for both predictors and responses. Hereinafter, all variables are assumed to be log-
transformed.

1.4.2 Model

This section presents the model that we used in the data analysis in detail. Let yhi j
be the j th measurement for the i th sensor in the hth group. Following the multilevel
modeling approach described in Sect. 1.3, we first assume that the measurement yhi j
follows

yhi j = xhi jθhi + ehi j , (1.13)

with a latent site-specific parameter θhi , where the covariates xhi j hasNAMandSREF
model output as predictors including an intercept term, and ehi j ∼ t (0, σ 2

hi , νhi ),
where σ 2

hi is scale parameter and νhi are the degree of freedom (Lange et al. 1989).
The degrees of freedom are assumed to be five in the analysis, but it also can

assumed to be unknown and estimated by the method of (Lange et al. 1989). Assume
that the level two model follows

θhi ∼ N (βh,Σh), (1.14)
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for some group-specific parameters βh = (βh1, . . . , βhp) and Σh . For further pre-
sentation, define the length H vector of j th coefficients of βh concatenated over H
groups

β( j) = (β1 j , . . . , βH j ),

and similarly define β̂( j). The subscript j is omitted hereinafter as we model each
parameter separately but in the same manner. To incorporate the spatial dependence
that may exist in the data, we assume that the level three model follows

β ∼ N (Fμ,Σ), (1.15)

where F is a pre-specified H by q model matrix, and μ is the mean parameter of
length q. In the analysis in Sect. 1.4.3, F is chosen to be 1, length H vector of 1’s
and a scalar μ. The spatial covariance Σ has its (k, l) th element

Σkl = cov(βk, βl) = τ 2 exp(−ρdkl),

where dkl is the distance between the groups. The distance between two groups is
defined to be the distance between the centroids of groups. The estimated spatial
effect for two coefficients is depicted in Fig. 1.3. Note that a group is formed by
collapsing several neighboring sites; hence, the number of groups is less than that
of sites. This also reduces the computational burden because the main computation
in our spatial model is associated with the number of spatial locations. Hence, it is
helpful to introduce the spatial components in the group level instead of the sensor
level to provide computational benefit.

Fig. 1.3 Spatial variation of the group-level coefficients from the second level for two computer
models, where the left panel shows the NAM model and the right panel the SREF model
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1.4.3 Results

This section presents the data analysis result. Under the linear regression model in
(1.13), the best prediction is ŷ∗

hi j in (1.12). We compared the multilevel approach
with two other modeling methods: (1) site-by-site model: fit a separate model for
each individual site; (2) global model: fit a single model for all sensor locations
using the aggregate data combining all sensors. To evaluate the prediction accuracy,
we conducted tenfold cross-validation. The data set is randomly partitioned into 10
subsamples. Of these 10 subsamples, one subsample was held out for validation,
while the remaining nine subsamples are used to fit the model and obtain predicted
values. The cross-validation process is repeated for each fold.

We considered two scenarios: (a) prediction made at observed sites and (b) pre-
diction made at new sites. For scenario (a), we partitioned the time point into ten
subperiods, while for (b) the sites into ten subregions.

We compare the accuracy of different methods by the root-mean-squared predic-
tion error (RMSPE), {N−1 ∑

j (yhi j − ŷhi j )2}1/2, with N being the size of the total
data set. Table1.1 presents the overall summary statistics for the accuracy of each
method, calculated from cross-validation. The standard deviation calculated over the
subsamples is in parentheses.

The rightmost column shows the overall accuracy. The global model suffers
because it cannot incorporate the site-specific variation. On the contrary, the site
model suffers from reliability issues for some sites because it does not use the
information from neighboring sites. The multilevel approach strikes a fine balance
between flexibility and stability. For a comprehensive comparison of each method,
we evaluate the accuracy measure divided by the number of available data points
for each site. As noted earlier, some stations may suffer from the data reliability
problem. As such, the available sample size can vary from station to station, which
affects the site-by-site model. When the prediction is made based on few available
samples due to the data reliability issues, the inference can be unstable, affecting the
accuracy of the prediction. The multilevel method can utilize information from other
sites belonging to the same group, so it is particularly beneficial for locations with
smaller sample sizes.

Table 1.1 Root-mean-squared prediction error comparison of the different modeling methods,
divided by the size of the training sample and overall

Training sample size

Method <200 ≥200 Overall

Multilevel 0.678 (0.129) 0.591 (0.052) 0.594 (0.055)

Site 1.344 (0.764) 0.593 (0.073) 0.632 (0.133)

Global 0.646 (0.038) 0.639 (0.009) 0.639 (0.009)
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1.5 Conclusion

With the advances in remote sensing and storage technology, data are now collected
over automatedmonitoring networks at an unprecedented scale.A simple yet efficient
modeling approach that can reliably handle such data is of great need.

In this paper, we have developed a general framework using amultilevel modeling
approach, which utilizes monitoring data collected to manage a large-scale system.
It is presented with a solar energy application, although it can be flexibly modified to
incorporate the data structure or overall goal. The computation can be automatedwith
deterministic criteria and be easily distributed. It has been shown that the method
can provide improved inference compared to naive approaches. Our methodology
can also be extended to incorporate discrete measurements.
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