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Preface

NCMMSC (the National Conference on Man–Machine Speech Communication) is
organized by the Speech Information Committee of the Chinese Information Pro-
cessing Society and co-organized by the Chinese Phonetics Association under CLP
(Chinese Language Society) as well as the Language, Audio, and Music Acoustic
Committee under ASC (Acoustical Society of China). Representing an important stage
for experts, researchers, and practitioners to share their ideas, NCMMSC significantly
promotes research and technical innovations in the corresponding fields. The papers in
these proceedings mainly address challenging issues in speech recognition and
enhancement, speaker and language recognition, speech synthesis, corpus and phonetic
in speech technology, speech generation, speech analyzing and modelling, speech
processing of ethnic minorities, speech emotion recognition, and audio signal pro-
cessing among others.

This year, NCMMSC received 133 submissions, including Chinese and English
submissions. After a thorough reviewing process, 98 papers were selected for pre-
sentation as regular papers. The overall acceptance rate of all submissions reached
73.7%. For English papers, after two rounds of reviewing, we selected 13 papers from
39 submissions for presentation. The acceptance rate is 33%. Furthermore, two papers
were selected for the Best Student Paper Award.

Many thanks to the authors for choosing NCMMSC to present their work and for
their contribution to the high level of the conference. We also express our heartfelt
thanks to the Program Committee members and Organizing Committee members, who
put a tremendous amount of effort into soliciting and selecting qualified research papers
with a good balance between quality and creativity.

We hope you enjoy reading and benefit from the proceedings of NCSMMSC 2017.

October 2017 Jianhua Tao
Thomas Fang Zheng
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Uyghur Word Stemming Based on Stem
and Affix Features

Hankiz Yilahun, Sediyegvl Enwer, and Askar Hamdulla(&)

Xinjiang University, Urumqi 830046, China
askar@xju.edu.cn

Abstract. Uyghur is an agglutinative language with complex morphology, and
word stemming is one of the essentials in Uyghur information processing.
However, the performance of Uyghur word-stem segmentation still leaves much
room for improvement. In this study, stemming was performed on Uyghur
words using an affix-occurred probability feature, which provided the stemming
accuracy of 88.59% for a baseline system. The performance of this stemmer was
further improved by using parameter ‘a’ in combination with the proposed
method.

Keywords: Uyghur � Agglutinative � Morphology � Supervised stemming

1 Introduction

Stemming is the process of reducing a given word to its root or stem. For any given
language, a stemmer is a basic linguistic resource required to develop highly accurate
Natural Language Processing (NLP) applications such as machine translation, docu-
ment classification, document clustering, text question answering, topic tracking, text
summarization and keyword extraction [1].

Stemming systems and algorithms for the English language have been studied since
1968 [2]. Other languages from the Germanic, Italic, and Semitic families were also
studied extensively in the 1990s. Stemming effectiveness in processing agglutinative
languages such as Finnish has been studied to some extent. (Ekmekҫioglu and Willett
[3]; Sever and Bitirim [4]; Korenius [5]). However, studies for the Turkic language
family, to which the Uyghur language belongs, first appeared only in the first decade of
the new millennium. Subsequent paragraphs, however, are indented.

Unlike Chinese and English, Uyghur is an agglutinative language. Agglutinative
languages are spoken in North and South Korea, Japan, Turkey and many other
countries.

Modern Uyghur uses an alphabetical script based on Arabic and some Farsi
characters. The Uyghur alphabet consists of 32 characters, including 8 vowels and 24
consonants. Each character may take different shapes at the beginning, in the middle
and at the end of a word.

Uyghur is written from right to left, and sentences consist of several words that are
separated by spaces or punctuation marks. Uyghur words are made up of some smaller
morphological units with no splitting remark between them. In Uyghur a morpheme

© Springer Nature Singapore Pte Ltd. 2018
J. Tao et al. (Eds.): NCMMSC 2017, CCIS 807, pp. 1–12, 2018.
https://doi.org/10.1007/978-981-10-8111-8_1



can be any prefix, stem, or suffix. The morpheme structure of Uyghur words is “suf-
fixn +���+ suffix2 + suffix1 + stem + prefix” (see Fig. 1).

As is characteristic of an agglutinative language, Uyghur grammatical form is
completed by attaching suffixes to the beginning or the end of the basic word. The real
grammatical meaning of each word is expressed by the different affixes and suffixes
attached to the stem, and this produces relatively long words. In this way, an Uyghur
word can correspond to multiple strings in real Uyghur text.

Due to the limited size of the average dictionary, it seems that most of these
different forms cannot be found in dictionaries. Therefore, we need to discover the
relationship between stems and suffixes. It is easy to see the significance of splitting
suffixes that have different roles. Without separating these stem-suffix and suffix-suffix
parts, it is difficult to acquire the whole meaning of a given word.

Suffixes not only change the meaning of a word, they also determine the role of a
word in a sentence. Different suffixes attached to a stem (indicating property, tense, and
number) will generate new and different words accordingly. As an example of this,
some inflectional forms of verb “yaz” are listed in Table 1.

An Uyghur word is a character string with no clear differentiating tags between
stems and suffixes. These formation features greatly aggravate the complexity of
Uyghur language information processing. Thus, Uyghur word-stem segmentation plays
an important role in Uyghur language information processing.

In this study a stem-centered segmentation method is proposed. Since, in Uyghur,
the stem remains unchanged after suffixation, this method is easier than suffix-centered
segmentation methods in terms of the necessary manual effort and complex suffix
structures.

 Cn...C2C1BA Prefix

Stem

Suffix Suffix

Fig. 1. The structure of Uyghur words

Table 1. Building on the stem “yaz”.

2 H. Yilahun et al.



For this study, a text corpus of 10,025 sentences and their manual segmentations
was prepared. These sentences were collected mainly from texts on general topics.
From this corpus, we automatically generated a stem list, a suffix list and a compound
suffix list. In the preliminary work, a collection of 11,157 Uyghur stems and 313
singular suffixes were collected.

The remainder of this paper is organized as follows: In Sect. 2 we briefly introduce
some of the previous work that has been done on word-stem segmentation. In Sect. 3
some information is provided about the implementation of an Uyghur word stemming
system. Experiments and their results are described in Sect. 4, and finally some con-
clusions are outlined in Sect. 5.

2 Survey of Related Work

One of the obvious differences from English and Chinese is that the Uyghur language
has a rich inflectional morphology. To date, when compared with Chinese and other
languages, there has been little research on the Uyghur language, especially in the area
of word stemming. This section explains some of the stemming methods that have been
proposed for the Uyghur language:

(1) Rule-based methods
Rule-based methods are based on specific linguistic rules such as voice harmony
restoration and stem segmentation. Linguists formulate the voice harmony rules
and stem segmentation rules according to the characteristics of each language.
Popular stemming algorithms for English are based on language rules developed
by Lovins in 1968 [2], Porter in 1980 [6], and Ekmekҫioglu and Willett in 2000
[3]. A rule-based morphological analysis stemmer has also been applied to
Turkish [7]. Rule-based stemming methods have also been used in Uyghur
information processing.
Adongbieke and Ablimit [8] put forward a method for handling the basic phonetic
features of Uyghur words, such as the final vowel change, rules of vowel and
consonant harmony, and syllable segmentation. Her paper summarizes the mor-
phological and phonetic properties of Uyghur words.
Abuduwaili et al. [9] proposed an Uyghur verb stemming method based on an
artificially tagged verb stemming corpus, suffix attaching rule collection and verb
category inflectional suffix attaching frame.

(2) Statistical methods
Statistical methods use tagged corpora to extract many characteristics and their
statistical probabilities. They then employ Maximum Entropy models, Condi-
tional Random Fields (CRFs) models and language models to obtain the best
results. The statistical stemmer, investigated by Majumder in 2007 [10] and
Ŝnajder and Baŝic in 2009 [11], is an example of a cluster-based suffix stripping
algorithm.
Some statistical stemming methods have been applied to Uyghur words. Aisha
[12] used a statistical-based Uyghur morpheme analysis method with CRFs

Uyghur Word Stemming Based on Stem and Affix Features 3



model. The preliminary experimental results demonstrated that the proposed
method is effective, with the F-measure of morpheme analysis reaching 87%.
Aili et al. [13] put forward a directional graph model for Uyghur morphological
analysis, and this performed Uyghur word stem segmentation with about 94%
accuracy. However, this model sometimes produces too many illegal candidates
for a word, with unnecessary ambiguity.

(3) Hybrid methods
A hybrid approach is an effective method that can avoid the limitations of the
above methods while astutely combining their advantages. At present, more and
more researchers are looking to other language features (such as grammar and
voice) as considerable stemming factors.

Ablimit et al. [14] presented a successful combination of rule-based and statistical
approaches for the Uyghur language, achieving a stemming accuracy of 95%.

Enwer and Lu [15] proposed an N-gram based stem segmentation method for
Uyghur which combines the part of speech feature and context information. Experi-
mental results showed that combining with the part of speech feature and the context
information of the stem can increase the performance of Uyghur word-stem segmen-
tation, significantly outperforming the N-gram based stemming method. The part of
speech feature and the context information yielded 95.19% and 96.60% accuracy
respectively. However, the results depend on the stems and affixes library, and the
problem of fragmentation also appeared.

3 Implementation of an Uyghur Stemmer

3.1 A Stemming Framework for Uyghur Words

Figure 2 shows the framework of a stemming system for Uyghur words.

Step 1: The system reads a word.
Step 2: According to the characters in the word, the candidate segmentation of each
word is generated using a positive and reverse matching algorithm [6].

(1) If the word length is less than three, it is considered to be a stem.
(2) Otherwise, the word is divided into the prefix and the remaining part using

positive matching.
(3) A segmentation process is conducted on the remaining part by positive matching.

Then the remaining part is divided into word-stem and compound suffix form.
(4) Compound suffixes are divided into several singular suffixes using reverse

matching because each compound suffix (word endings or stem endings in some
papers) may have several different singular suffix segments.

(5) Finally, the given word is written in the form “suffix + stem + prefix”.

4 H. Yilahun et al.



The above steps are repeated for all splits until the stem is not found in the stem list.

Step 3: The frequencies of each stem and suffix of the given segmentation result are
determined from the training corpus. Then the probability of each candidate seg-
ment is calculated.
Step 4: The segmentation result with the highest probability is chosen as optimal,
and the provided corresponding stem is considered to be the stem of the given word.

3.2 A Proposed Approach for an Uyghur Stemmer

For a given word, all possible segmentation results are extracted with reference to stem
and suffix, and their probabilities are computed to obtain the best result.

Firstly, a word is split into two parts (stem and suffix), and several possible stem-suffix
pairs are obtained. For a word with a compound suffix, the compound suffix is segmented
into singular-suffixes, since each one has several different singular-suffix segments.

Read a word

Start

Forward-backward matching algorithm

Get candidate segmentation set of each word

Calculate the probability

Choose the best segmentation result

End

Fig. 2. An Uyghur word stemming system

Uyghur Word Stemming Based on Stem and Affix Features 5



Equation (1) shows the probability of all possible segmentations. The probability of all
segmentations is determined by the frequencies of the stem and suffixes that are generated
by the segmentation.

prefix1 þ stem1 þ
Pn

j¼1
suffix1j;

prefix2 þ stem2 þ
Pn

j¼1
suffix2j;

..

.

prefixm þ stemm þ Pn

j¼1
suffixmj

ð1Þ

Taking the log of both sides of Eq. (2), and ignoring the constant terms, we obtain
Eq. (3).

pðsplitÞ ¼ pðstemiÞ � pðprefixiÞ � pðsuffixiÞ ð2Þ

logðpðsplitÞÞ ¼ logðpðstemiÞÞþ logðpðprefixiÞÞþ logðpðsuffixiÞÞ ð3Þ

The frequencies of shorter stems and suffixes are very high compared with those of
the slightly longer ones. Thus, Eq. (4) can be obtained from Eq. (3) by multiplying
each term by its length. Suffix and prefix terms in the function are used to compensate
for this disparity.

f ðxÞ ¼ argmaxfPi¼1;2...n½ðlength of stemiÞ � logðfreqðstemiÞÞ
þ ðlength of prefixiÞ � logðfreqðprefixiÞÞþP

j¼1;2...k ðlength of suffixiÞ � logðfreqðsuffixijÞÞ�g
ð4Þ

Finally, the segmentation result that maximizes the f(x) given by Eq. (4) is chosen
as the optimal segmentation result.

E.g., for the word with no prefix:

if stem = frequency = 9, suffix1 = frequency = 9, suffix2 = frequency =
7074, P = 12.5

if stem = frequency = 9, suffix1 = frequency = 240, suffix2 = fre-
quency = 7074, P = 18.4

if stem = frequency = 2473, suffix1 = frequency = 5597, suffix2 = fre-
quency = 7074, P = 24.2

In the above example, P = 24.2 is the highest, so the optimal segmentation result is
, where is the stem, and the other two are suffixes.

3.3 Establishment of an Uyghur Stem Segmentation Corpus

3.3.1 Stem List
For this study, we compiled the lists of 16,130 stems to cover most general words in the
Uyghur language. A partial stem list is given in Fig. 3.

6 H. Yilahun et al.



3.3.2 Suffix List

1. Prefix list
In Uyghur only a few stems can receive a prefix (and only one), and in this study
only 8 prefixes were used (it is difficult to find more). These prefixes are given in
Fig. 4.

2. Singular suffix list
The morphological structure of an Uyghur word can be defined as follows:

“suffixn þ . . .þ suffix2 þ suffix1 þ stem þ prefix”

We can see that a stem is combined with several suffixes (one, two or more). For
this study, 108 singular suffix types were defined and grouped according to their
semantic and syntactic functions. They can be analyzed as 305 different surface
forms. Figure 5 is a partial list of the singular suffix forms.

Fig. 3. Stem list

Fig. 4. Prefix list

Uyghur Word Stemming Based on Stem and Affix Features 7



3. Compound suffix list
The so-called compound suffixes are suffixes consisting of two or more singular
suffixes in combination. We listed compound suffixes from the training corpus.
With manual checking, 5,880 compound suffixes were obtained. Figure 6 shows
some of the compound suffix forms obtained.

3.3.3 Training Corpus
For this study we prepared a text corpus of 10,025 sentences on general topics and
performed manual segmentation according to the stem list and suffix list. Figure 7
shows the training corpus format.

Fig. 5. Singular suffix list

Fig. 6. Compound suffix list

Fig. 7. Training corpus format

8 H. Yilahun et al.



3.4 Stemming a Given Uyghur Word

According to the framework shown in Fig. 2, the first step is the calculation of the
frequency of occurrence of all stems and suffixes. Table 2 shows some of the output of
the most frequent suffixes and stems, along with their frequencies.

Attention is then turned to word length. If the word length � 3, the word itself is
determined to be the stem. Otherwise, all possible segmentation results are extracted
using positive and reverse matching. Finally, the segmentation result with the maxi-
mum probability as given by Eq. (4) is selected as the optimal segmentation result.

4 Experiments and Results

4.1 Experimental Settings

The performance of the stemmer can be evaluated in three different ways. The first of
these is to evaluate accuracy based on the standard data containing the ideal stems and
suffixes of all words in the manually tagged test set. Accuracy is defined as the
percentage of words stemmed correctly by the stemmer.

The second way is to limit the number of singular suffixes, since, in Uyghur, a stem
can be combined with several suffixes.

The third way is to provide uneven weighting to the stem and suffix, thus adjusting
the stem filter threshold and the suffix filter threshold respectively. A total of 9,025
sentences were used for training, and a data-set with a volume of 1,000 sentences was
put through the test. Table 3 shows the corpus statistics.

Table 2. Highest frequency stems and suffixes.

Uyghur Word Stemming Based on Stem and Affix Features 9



4.2 Analysis of Experiments and Results

Some of our experiments studied the impact of different combinations of these
heuristics. This impact was used to compare the various factors discussed above. The
following subsections describe the results of these experiments.

4.2.1 Accuracy Based on the Standard Data
The standard data consists of the test corpus of 1,000 sentences with manual seg-
mentation. Equation (5) gives the definition of the segmentation accuracy.

p ¼ Correct segmentationwords count
The total number of words

� 100% ð5Þ

4.2.2 Limiting the Number of Singular Suffixes
Table 4 shows how this stemming algorithm performed in our experiments. It can be
observed from Eq. (4) that every morpheme is independent. However, in an agglutinate
language like Uyghur, there are constrained relations between stem and suffixes. For
this reason, we added a stem-suffix boundary and placed some limits on the number of
the singular suffixes in terms of Eq. (4).

Based on the training corpus, we calculated the frequency of the stem–boundary
suffix in order to express the correlation of stem and boundary suffixes. If the number of
singular suffix was more than three, we kept the first three singular suffixes and the last
one. In all other cases, all the singular suffixes were kept. Table 4 shows the results.

Parameter 1 of Table 4 was obtained from Eq. (1); Parameter 2 by adding the
stem-suffix boundary frequency (their average length is 7); and Parameter 3 by limiting
the number of singular suffixes.

Table 4. Accuracy achieved with stemming algorithms.

Parameter Accuracy (%)

1 88.59
2 90.36
3 94.04

Table 3. Corpus statistics.

Number of sentences Number of words

Training corpus 9,025 123,788
Test corpus 1,000 6,737
OOV – 2,489

10 H. Yilahun et al.



4.2.3 Providing Uneven Weights to Stem and Suffix Limiting the Number
of Singular Suffix
Initially, the same weighting was provided to both stem and suffix according to Eq. (4),
which is responsible for determining the optimal segmentation of a word. Equation (6)
is then obtained from Eq. (4) by introducing a parameter ‘a’ which introduces uneven
weightings for stems and suffixes. The effect of these weightings on the performance of
the stemmer was observed, and Table 5 shows the results.

f ðxÞ ¼ argmaxfPi¼1;2...n ½a�ðlength of stemiÞ
� logðfreqðstemiÞÞþ ð1� aÞðlength of prefixiÞ
� logðfreqðprefixiÞÞþ ð1�aÞPj¼1;2...k ðlength of suffixiÞ
� logðfreqðsuffixijÞÞ�g

ð6Þ

It can be observed that the highest accuracy of 95.37 was obtained by assigning
weighting a = 0.9 to stems, and (1 − a) = 0.1 to suffixes.

5 Conclusions

Stemming is one of the basic steps in the indexing process. A supervised stemming
algorithm has been proposed in this study. An accuracy of 88.59% was achieved using
this method, with performance further improving when parameter ‘a’ was added.

The proposed stemming algorithm also provided consistent improvements in
retrieval performance for the Uyghur language, which to date has been poorly
resourced. However, it is expected that this stemming method can help open the way
for the future development of Uyghur language processing.
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Abstract. With the recent development of sequence-to-sequence
framework, generation approach for short text conversation becomes
attractive. Traditional sequence-to-sequence method for short text con-
versation often suffers from dull response problem. Multi-resolution gen-
eration approach has been introduced to address this problem by dividing
the generation process into two steps: keywords-sequence generation and
response generation. However, this method still tends to generate short
and dull keywords-sequence. In this work, a new multi-resolution gener-
ation framework is proposed. Instead of using the word-level maximum
likelihood criterion, we optimize the sequence-level GLEU score of the
entire generated keywords-sequence using a policy gradient approach in
reinforcement learning. Experiments show that the proposed approach
can generate longer and more diverse keywords-sequence. Meanwhile, it
achieves better scores in the human evaluation.

Keywords: Short text conversation · Sequence-to-sequence
Multi-resolution · Policy gradient

1 Introduction

With the emergence of social media, more and more available conversation data
makes data-driven approaches for conversation possible. Short text conversation
is a simplified conversation problem: one round of conversation formed by two
short texts, with the former being an initial post from a user and the latter being
a comment given by the computer. This problem is the route towards solving
the conversation problem.

Recently, sequence-to-sequence models with attention mechanisms show
promising results on machine translation and machine summarization [1,2], this
model is also used in short text conversations. One of the apparent advantages
of the sequence-to-sequence approach over the retrieval-based approach is its
ability to generate responses that are not in the corpus.

However, the sequence-to-sequence model cannot generate informative and
diverse responses and tends to reply dull responses [3,4], such as “I think so”,
c© Springer Nature Singapore Pte Ltd. 2018
J. Tao et al. (Eds.): NCMMSC 2017, CCIS 807, pp. 13–23, 2018.
https://doi.org/10.1007/978-981-10-8111-8_2
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“Where is it?” and so on. This phenomenon has various explanations. The tra-
ditional sequence-to-sequence model is trained according to the maximum likeli-
hood criterion (MLE), which optimizes the Kullback-Leibler divergence (KLD)
between the true distribution and the distribution given by the model. Mini-
mizing the KLD avoids assigning an extremely small probability to any data
point but assigns a lot of probability mass to the non-data region [5]. For short
text conversation tasks, the generated responses only depend on the mode of the
distribution given by the model. However, there is no guarantee that the true
probability density in the mode of this distribution is high by minimizing the
KLD. So it is likely that the model will generate dull responses, which is rare in
the corpus. Meanwhile, the high perplexity of the responses given the posts also
indicates that the posts do not provide much useful information.

The previous observations analyze the weakness of the model. However, the
fundamental reason why the traditional sequence-to-sequence model generates
dull responses is related to the mechanism of conversation. Unlike machine trans-
lation, which transforms the same content from one representation to another,
responding a post contains following several steps. The first step is to under-
stand the content of the post. Then, combined with personal experiences, to
decide what to reply. Finally, in the form of natural language to express our
meaning. A successful short text conversation system also should follow these
steps. The sequence-to-sequence model generates dull responses since it does not
explicitly model the second step.

To generate diverse and rich responses, it is necessary to imitate the deci-
sion process of the conversation, and additional information should be provided
to the generation step. The keywords in the responses are most likely to be
treated as additional information. [6] proposes a content-introducing approach
to generate responses in a two-step fashion. First, it predicts a single keyword
which is a noun reflecting the semantics of the response. Then it uses a modi-
fied encoder-decoder framework to generate the response, explicitly making sure
that the predicted keyword is in the response. Although this approach improves
the richness and diversity of the responses, it is not enough for a single key-
word to summarize what the response is talking about. Considering this issue,
multi-resolution recurrent neural network [7] regards a sequence of keywords
as the additional information, which extends the model as two parallel discrete
stochastic processes: a sequence of high-level coarse tokens and a sequence of nat-
ural language tokens. In practice, this model first generates a sequence of nouns,
then taking the generated noun sequence as the additional input to another
sequence-to-sequence network to generate the natural language response. How-
ever, the keywords-sequence generation network encountered the similar problem
as the traditional sequence-to-sequence framework for short text conversation.
The generated keywords-sequence tends to be short and dull. This phenomenon
is also related to MLE.

MLE evaluates how the model fits the data. However, generation task follows
a different operating process. First it generates a sequence of tokens, then evalu-
ates it. In this view, the reverse KLD seems to be a better choice [8]. The reverse
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KLD is the KLD between the distribution given by the model Q(x) and the true
distribution P (x), which can be divided into two terms (1). The first term uses
the negative log-level true probability density to evaluate the expected quality of
the generated samples. The second term is the entropy of the distribution given
by the model, which would encourage the diversity of the model. However, we
cannot directly optimize this equation, because we do not know P (x).

dKL(Q|P ) = Ex∼Q[− log P (x)] + Ex∼Q[log Q(x)] (1)

However, the reverse KLD is similar to the policy gradient approach in rein-
forcement learning [9] if we regard the cumulative rewards in reinforcement learn-
ing as the approximated log-level true probability density. Policy gradient app-
roach optimizes the policy to get the maximum expected cumulative rewards,
which is similar to the first term of (1). This approach suffers from high variance
and inefficient explorations. The entropy term prevents it from being radical
[10]. The most important element of the reinforcement learning is the reward,
which provides the training signal. For machine translation, we can use BLEU
as the reward function. However, for short text conversation, there is no good
automated evaluation method. There are two reasons that BLEU is not a good
metric to evaluate the quality of the responses. First, for open domain conver-
sation, the responses are diverse from semantic level to expression level, and
several references cannot contain all the variabilities. Second, when the model is
incapable of generating very good responses, it is easier for the model to focus on
promoting non-essential similarities, such as stop words, tone phrases and so on,
and it is not worth generating a meaningful word that is highly likely not in the
references. However, if we optimize the BLEU score on the keywords-sequence
level, it can compensate the second drawback of optimizing the BLEU score on
the natural language responses, and avoid the disadvantage of MLE. This app-
roach only keeps essential words left, which helps the model generate diverse
responses. Meanwhile, BLEU score has some undesirable properties when used
for a single sentence, since it was designed as a corpus measure. GLEU score [11]
is more suitable for measuring sentence level similarity, which is consistent with
BLEU score in corpus level.

In this work, a new multi-resolution generation framework is proposed.
Instead of using the word-level maximum likelihood criterion, we optimize the
sequence-level GLEU score of the entire generated keywords-sequence using a
policy gradient approach in reinforcement learning. It successfully overcomes
the drawback of MLE, generates long and more diverse keywords-sequences,
thus generating better natural language responses.

2 Model Architecture

Our approach follows the framework of the multi-resolution method [7], which
consists of two steps. The first is the keyword-sequence generation step, which
uses a sequence-to-sequence network to generate keywords-sequence. The sec-
ond is the natural language response generation step, which takes the keywords-
sequence as an additional input to another sequence-to-sequence network to gen-
erate the natural language response. In the training step, the keyword-sequence,
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which is the output of the first step and one of the inputs of the second step, is
the ground truth extracted from the corresponding response. In the generation
step, the keyword-sequence for the second step is the output of the first step.

Considering the unsatisfying result of the MLE training for the keywords-
sequence generation, we train the keywords-sequence generation network with
the GLEU-guided policy gradient approach.

2.1 Network Structure for Keywords-Sequence Generation

The first step is to generate keywords-sequence. The input of the model is a post,
and the output of the model is a sequence of keywords. We use the sequence-
to-sequence network with the attention mechanism to model the relationship
between the post and the keywords-sequence.

In sequence-to-sequence generation tasks, each input X is paired with a
sequence of tokens to predict: Y = y1, y2, ..., yn. Each token is a word, and the
last token yn is a special token <eos>, which represents the end of a sentence.
The network sequentially predicts tokens until generate <eos>.

Denote Xi and Yi as the i-th post and response in the corpus. mi and li
are the lengths of Xi and Yi. xi

t and yi
t are the t-th words in Xi and Yi. The

maximum likelihood criterion is minimizing:

−
n∑

i=1

log P (Yi|Xi) = −
n∑

i=1

li∑

t=1

log p(yi
t|xi

1, x
i
2, ..., x

i
mi

, yi
1, y

i
2, ..., y

i
t−1) (2)

The encoder is a one-layer bidirectional long short-term memory (LSTM)
[12]. We concatenate the last hidden vector of each direction of the encoder as
the initial hidden vector of the decoder. Traditional sequence-to-sequence model
encodes the information of the post into a fixed-size vector, which cannot encode
sufficient information when the post is long. To solve this issue, the attention
mechanism is introduced in [13]. We also apply this method. Our decoder has
two LSTM cells, which are connected in series rather than in parallel. Denote
the hidden vector and the cell vector of the encoder as henc

t , cenc
t . Denote the

hidden vector and the cell vector of the two LSTM cells of the decoder as hdec1
t ,

cdec1
t , hdec2

t , cdec2
t . Denote the operations of the two LSTM cells in the decoder

as fdec1, fdec2. The hidden vector and the cell vector of the first LSTM cell in
time step t is computed according to

hdec1
t , cdec1

t = fdec1(yt−1, h
dec2
t−1 , cdec2

t−1 ) (3)

The attention weight at,u is the attention over the u-th hidden vector of the
encoder at the t-th moment, which is computed by a two-layer neural network
g. The input of the attention network is the hidden vector of the encoder in each
time step and the current hidden vector of the first LSTM cell in the decoder
(4). The attention weight at,∗ is used for calculating the context vector ctxt (5),
which is fed to the second LSTM cell (6). The hidden vector of the second LSTM
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cell hdec2
t is used for predicting token and initializing the hidden vector of the

first LSTM cell in the next time step.

at,u =
expg(hdec1

t ,henc
u )

∑m
u=1 expg(hdec1

t ,henc
u )

(4)

ctxt =
t∑

1

ath
enc
t (5)

hdec2
t , cdec2

t = fdec2(ctxt, h
dec1
t , cdec1

t ) (6)

2.2 GLEU-Guided Policy Gradient Training

Usually, the sequence-to-sequence network is trained with MLE. However, as
discussed before, MLE is unsuitable for generation task. Thus, we apply the
policy gradient approach [9] instead.

For a given post p, there is a list of references ref1, ref2, ..., refn. Assume
that the network has already generated a sequence of tokens y1, y2, ..., yi−1,
and is going to generate yi. In this case, the state is the collections of p and
y1, y2, ..., yi−1, the action is yi. We use GLEU score to evaluate the similarity
between the references and the hypothesis. In order to avoid the sparsity of the
reward signal, we do not just give the nonzero reward at the last time step. The
reward of taking action yi is designed to be the difference of the GLEU score of
the hypothesis and the references before and after yi is generated.

r(si, ai) = r(yi, p, y1, y2, . . . , yi−1)
= GLEU([ref1, ref2, . . . , refn], [y1, y2, . . . , yi]) (7)

− GLEU([ref1, ref2, . . . , refn], [y1, y2, . . . , yi−1])

The goal of the policy gradient approach is to find a policy π(at|st) which
can maximize the expected return (8). In the sequence generation task, π(at|st)
is equal to P (yt|p, y1, y2, . . . , yt−1).

J(π) = Es1,a1,···∼π[Σ∞
t=1r(st, at)]

= Σa1,s2,a2,...π(a1, s2, a2, s3, . . . |s1)Rs1,a1,s2,a2,... (8)

Rs1,a1,s2,a2,... is the cumulative reward of the state-action trajectory.

RsT ,aT ,sT+1,aT+1,... = Σ∞
t=T r(st, at) (9)

Denote the parameters of the policy π as θ. Using the likelihood ratio trick,
the gradient of the expected return J is

∇θJ(θ) = Σa1,s2,a2,...∇θπ(a1, s2, a2, s3, . . . |s1; θ)Rs1,a2,s2,...

= Σa1,s2,a2,...π(a1, s2, a2, s3, . . . |s1; θ)
∇θ log π(a1, s2, a2, s3, . . . |s1; θ)Rs1,a2,s2,... (10)

= Es1,a1,s2,···∼π∇θ log π(a1, s2, a2, s3, . . . |s1; θ)Rs1,a2,s2,...

≈ Σ∞
t=1∇θ log π(at|st; θ)Rst,at,st+1,...



18 X. Liu and K. Yu

The gradient of the expected return is estimated based on a single rollout
trajectory according to the policy π. We sample the keyword one by one until
sample <eos>. During training, we sample multiple trajectories at the same time
to reduce uncertainty. Policy gradient approach suffers from high variance, slow
convergence and inefficient exploration. It tends to learn an extreme policy, which
is harmful for exploration. So, as introduced in [10], we add a weighted entropy
term to prevent the policy from being extreme and encourage exploration, which
also encourages the diversity of the generated keywords-sequence.

∇θJ(θ) ≈ Σ∞
t=1∇θ log π(at|st; θ)Rt − γΣ∞

t=1∇θΣaπ(a|st; θ) log π(a|st; θ) (11)

2.3 Response Generation

The response generation network generates the natural language response given
the post and the keywords-sequence. The network architecture is very similar to
the keywords-sequence generation network with only several difference. In the
response generation network, the output is the natural language response, but
the keywords-sequence becomes another input besides the post. The keywords-
sequence is encoded by a bidirectional LSTM. The hidden vector of the keyword
sequence is concatenated with the hidden vector of the post to be the initial
hidden vector of the decoder. The attention network is still focusing on the post.
We still train the response generation network according to MLE.

3 Experiments

3.1 Data Set

We evaluate our approach on a Chinese weibo corpus. We blend the training
corpus of the STC1 [14] and STC2, remove similar post-response pairs (since
the corpus of the STC1 and the STC2 partially coincide), and segment the posts
and responses by LTP [15]. Since one post may correspond to several responses,
to avoid over-emphasizing some posts, we also truncate the post-response pairs
if the corresponding post appears more than 100 times. We split part of the
remaining data into the training set and the validation set. The training set has
1713277 post-response pairs and 155435 distinct posts. The validation set has
86295 post-response pairs and 8674 distinct posts. The test set has 100 distinct
posts. The training set, the validation set, and the test set share no posts. We
construct the vocabulary independently for the post and the response. Any word
that appears in more than five different posts is included in the post vocabulary.
Any word that appears in more than 25 different responses is included in the
response vocabulary. Others are replaced by a special symbol <unk>. Keywords-
sequence shares the same vocabulary with the response vocabulary, although
only part of the words can be used as keywords. The size of the post vocabulary
is 33187, and the size of the response vocabulary is 39278.
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3.2 Training Details

For the keywords-sequence generation network and the natural response gener-
ation network, the dimension of the word-embedding is 512, and the dimension
of the hidden vector is 1024. We use the ADAM optimizer [16] to train the
network. The learning rate is 0.0005 for the supervised learning and 0.00005
for the policy gradient approach. The validation set is used for early stopping.
Different from [7], the part-of-speech (POS) of the acceptable keywords are not
limited to nouns. Nouns, verbs, and adjectives can be the keyword unless it is
in the stop-word list. The stop-word list has more than one thousand words.
The reason that we accept words of more POS as the keyword is that nouns
cannot represent the whole response. Sometimes, a good response may not con-
tain nouns. However, it contains at least one of the nouns, verbs or adjectives.
In our experiment, we also compare different POS limitation of the keywords.
When calculating the GLEU score, we only count unigram and bigram overlaps.
From our point, bigram can represent the relationship between continuous key-
words, but trigram is unnecessary for calculating keywords-sequences similarity.
Before training the keywords-sequence generation network with policy gradient
approach, the parameter is initialized according to the MLE. The entropy term
weight is set to 0.0002. We sample 64 trajectories for one post at the same time.

3.3 Evaluation Methods

It is still very tough to automatically evaluate the generative conversation sys-
tem. Traditional metrics used to evaluate machine translation or machine sum-
marization, such as BLEU, ROUGE, are not suitable for open domain conversa-
tion system. Given this observations, we perform the human evaluation. There
are five volunteers to annotate the results of the test set, which consists of 100
distinct posts. All the volunteers are familiar with this field. We follow the eval-
uation criterion of the STC2 task. The basic requirement is that the response is
acceptable as a natural language text and is logically connected to the original
post. The advanced requirement is that the response provide new information in
the eye of the originator of the post and the assessor can judge the comment by
reading nothing other than the post-response pair. If the basic requirement is not
met, the label is “L0”. If the basic requirement is met, but the advanced require-
ment is not met, the label is “L1”. If the basic requirement and the advanced
requirement are met, the label is “L2”. Meanwhile, to tackle dull response prob-
lem, we add a special label “LC” to represent the dull response. Although the
dull response does not conflict with the basic requirement, it would make the
conversation boring. When calculating the final score of the system, “L2” counts
two points, “L1” counts one point, “L0” and “LC” counts zero.

3.4 Results

Figure 1 shows how the GLEU score of the generated keywords-sequences varies
with the progress of the training. From this figure, we can see the average GLEU
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score of the keywords-sequences generated by sampling on the training and val-
idation set, and the average GLEU score of the first or the first ten keywords-
sequences generated by beam search on the validation set. The starting point is
the MLE system. Although the network is initialized with supervised training,
the initial average GLEU score of the keywords-sequences generated by sam-
pling on the validation set is rather low. This is because the difference in the
probability between a good keywords-sequence and a bad keywords-sequence is
too small to get a reasonable keywords-sequence by sampling. However, beam
search can make up for this to some extent since beam search is not as random as
sampling. For the average GLEU score of the first keywords-sequence generated
by beam search on the validation set, it rises from 0.221 to 0.235. In the training
step, we use sampling to generate samples, because it can provide randomness.
However, In the generation step, we use beam search since it can generate better
keywords-sequences.

Fig. 1. Learning curve

Figure 2 shows the length and diversity statistics of the keywords-sequences
on the validation set, which consists of 8674 distinct posts. The responses are gen-
erated by beam search. For each post, we count the result of the first response and
the first ten responses. The x-axis is the number of training samples. The starting
point of the x-axis is the MLE system. The first figure shows the number of dis-
tinct keywords-sequences. The second figure shows the number of distinct words.
The last figure shows the average length of the generated keywords-sequences.
Our method can generate longer and more diverse keywords-sequences. Although
it seems that the word level diversity of our approach is worse than baseline,
our method can utilize the combination of keywords rather than generating
rare words. We think this property is good for the response generation. Longer
keywords-sequences also mean the responses will contain more information.

Table 1 shows the results of the human evaluation. “S2SA” is the attention
based sequence-to-sequence baseline. “MR” means the multi-resolution frame-
work. “NOUN” means only accepting nouns as keywords while “NVA” means
accepting nouns, verbs, and adjectives as the keywords. “MLE” means using
supervised training method to train the keywords-sequence generation network.
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Fig. 2. Diversity and length statistics of keywords-sequences

“RL” means using policy gradient approach to train the keywords-sequence gen-
eration network. “NVA” is better than “NOUN” because it can generate less
“L0” responses. This result verifies our judgment that nouns representation is
not enough. Policy gradient approach does not achieve a better result on nouns
level keywords-sequence since the nouns-level keywords-sequence is usually short,
the GLEU-guided training method does not exert its strength. The policy gra-
dient approach achieves a better result on “NVA” level keywords-sequence.

Table 1. Human evaluation

Model L2 L1 L0 LC Score

S2SA 18.8 12.2 54.4 14.6 0.498

MR+NOUN+MLE 35.4 13.8 49.0 1.8 0.846

MR+NVA+MLE 35.0 16.8 43.0 5.2 0.868

MR+NOUN+RL 35.8 12.6 48.8 2.8 0.842

MR+NVA+RL 37.0 16.8 40.2 6.0 0.908

3.5 Case Study

We provide case studies in Table 2. For each post, we show the top three
keywords-sequences and the corresponding responses. MLE tends to gener-
ate short keywords-sequence. GLEU-guided policy gradient approach generates
longer and more coherent keywords-sequence. This observation is consistent with
the length and diversity statistics in Fig. 2.
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Table 2. Generation examples

4 Conclusion

Multi-resolution approach splits the generation task into two steps, the
keywords-sequence generation step, and the natural language generation step.
This approach was introduced to solve the dull response problem. Although this
approach relieves the pressure of response generation and adds to the diversity of
responses, it still tends to generate short and dull keywords-sequence. To tackle
this problem, we apply the GLEU-guided policy gradient training, which over-
comes the drawbacks of the maximum likelihood criterion and generates long
and diverse keywords-sequence. The proposed method achieves better results in
the human evaluation.
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Abstract. The present study applied functional partition to investigate disyl-
labic lexical tonal-pattern categories in an under-resourced Chinese dialect,
Jinan Mandarin. A Two-Stage partitioning procedure was introduced to process
a multi-speaker corpus that contains irregular lexical variants in a semi-
automatic way. In the first stage, a program provides suggestions for the
phonetician to decide the lexical tonal variants for the recordings of each word,
based on the result of a functional k-means partitioning algorithm and tonal
information from an available pronunciation dictionary of a related Chinese
dialect, i.e. Standard Chinese. The second stage iterates a functional version of
k-means partitioning with Silhouette-based criteria to abstract an optimal
number of tonal patterns from the whole corpus, which also allows the
phoneticians to adjust the results of the automatic procedure in a controlled way
and so redo partitioning for a subset of clusters. The procedure yielded eleven
disyllabic tonal patterns for Jinan Mandarin, representing the tonal system used
by contemporary Jinan Mandarin speakers from a wide range of age groups. The
procedure used in this paper is different from previous linguistic descriptions,
which were based on more elderly speakers’ pronunciations. This method
incorporates phoneticians’ linguistic knowledge and preliminary linguistic
resources into the procedure of partitioning. It can improve the efficiency and
objectivity in the investigation of lexical tonal-pattern categories when building
pronunciation dictionaries for under-resourced languages.
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1 Introduction

Pronunciation dictionaries are usually expensive to build, especially for under-resourced
languages and dialects [1]. Sometimes, linguistic descriptions and dictionaries are
available. However, these resources usually only cover the canonical or stable lexical
variants used by elderly speakers, while under-resourced languages and dialects usually
have rich lexical variants, due to the lack of standardization.

As for tonal dialects of Mandarin Chinese, many of which are widely used but not
standardized, lexical variants usually come with different tonal-patterns. For instance,
as shown in Fig. 1, the word ‘simple’ allows for two different tonal variants in Jinan
Mandarin (JM), while the word ‘very’ allows for only one [2].

To further model such dialects, whether for linguistic or engineering purposes, the
following questions need to be answered: Which tonal variant(s) does a given word
have? Which tonal patterns does the language system have?

These questions are basic. The results can be used in building linguistic theories or
baseline dictionaries, which can then be used for the evaluation of NLP models.
However, to achieve answers to these questions, laborious manual labeling is required
and the results suffer from subjectivity and human errors. If we can introduce some
automaticity into the procedure, the workload can be reduced and the accuracy can be
improved. Based on the above consideration, a Two-Stage semi-automatic partitioning
procedure is proposed in this paper.

1.1 Two-Stage Semi-automatic Partition

We propose a Two-Stage semi-automatic partitioning procedure to retrieve the
word-wise tonal variant(s) and the basic tonal patterns from a multi-speaker disyllabic
corpus (as demonstrated in Fig. 2).

The core algorithm of this Two-Stage Semi-Automatic Partition is functional
k-means partition [3], which partitions the observed curves into a given number (k) of
clusters. K-means partition is chosen over the other types of partitioning methods for
the following reason: the centroid-based nature of k-means partition fits the nature of

Fig. 1. Pitch contour distributions from a mono-pattern word (left) and a dual-pattern word
(right) [2].
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phoneme perception. Psycholinguists found that there are “prototypes” in phonological
categories, and it is more difficult to discriminate sounds that are closer to the proto-
types in acoustic distribution than those that are closer to non-prototypes [4, 5].
K-means partition also assumes “prototypes” within each cluster, and the adscription of
items depends on their distance from the closest prototypes [3]. Compared with the
assumptions of other approaches - such as the dichotic hierarchy assumed by the
hierarchical clustering, the within-cluster normalcy assumed by the distribution-based
clustering, and the sparse areas assumed by density-base clustering [6] - the prototypes
assumed by k-means partition are more reasonable.

In the current proposal, a functional version of k-means partition is used, which
means every pitch contour is treated as one curve, and the algorithm partitions the
curves into a given number of clusters [7]. Depending on the stage of investigation, the
number of clusters is either given to the model directly or selected from a range based
on Silhouette width [8, 9]. The partitioning is performed in two stages, yielding lexical
tonal variants and general tonal patterns, respectively.

In the first stage, a phonetician utilizes the program to decide the lexical tonal
variants for each word. The word-wise procedure is as follows: (1) plotting all the
normalized pitch contours for this word; (2) dividing the curves into a chosen number
of clusters; (3) the phonetician typing in a label for each cluster; (4) the phonetician
verifying the label of each curve (optional). In this process, the phonetician can choose
to see referential labels from a related and more resourceful dialect or a historical
system. This stage yields tonal classifications and variant probabilities for each word. It
can also extract a preliminary and subjective classification of tonal patterns according
to the labels given by the phonetician.

The second stage then chooses an optimal partitioning solution of tonal patterns for
the tonal system derived from the lexical tonal variants. Different from the preliminary
classification decided by the phonetician, whether two lexical tonal variants belong to
the same tonal pattern is decided automatically in this stage by the program, which
takes the distribution of all variants into consideration. The results from the previous
word-wise stage are fed into the model in the second stage. The procedure is as follows:
(1) automatically calculating one prototypical curve for each lexical tonal variant using

Fig. 2. Diagram of the Two-stage semi-automatic partition procedure
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a depth-based criterion [7, 10], which yields a collection of prototypical curves;
(2) excluding the lexical tonal variants with extremely small probabilities, which may
in fact be production errors (optional); (3) calculating one preliminary prototype for
each cluster, based on a provided preliminary classification; (4) using the preliminary
prototypes as the initial center curves to calculate k-means partitions for the proto-
typical curves; (5) removing the center of the least distinguishable cluster (the cluster
with the smallest Silhouette width [8]) and redoing the k-means partition; (6) iterating
step 5 until there are only two clusters left, and keeping a record of all the solutions
generated in steps (4 and 5; 7) calculating the mean and standard deviation (SD) of the
Silhouette values for each partition, subtracting the SD from the mean as the goodness
value of the solution, and choosing the solution with the highest goodness value as the
optimal partitioning solution.

Since the optimal partitioning solution in this stage is only the best that k-means
partition can achieve, there is still space for improvement. One potential problem of
k-means partition is that the clusters are expected to be of similar sizes [3]. The real
tonal system can involve closely overlapping tonal patterns, which can be distinguished
from other tonal patterns. However, with k-means partition such overlapping tonal
patterns would be put in the same cluster within the optimal partitioning solution.

To improve the partition, an additional procedure is introduced, which rearranges a
subset of the clusters while keeping the rest of the clusters the same as it was in the
given partition. The phonetician, after viewing the plots of the given partition, picks out
two clusters that need to be rearranged together, and the number of clusters is desig-
nated by the phonetician. The new clusters then replace the original two clusters in the
given partition, yielding an adjusted partition. This procedure can start from the optimal
solution and be repeated until the adjusted partitioning solution fits the intuition of the
phonetician.

2 Experiment

The Two-Stage Semi-automatic Partition is tested with a small multi-speaker corpus of
Jinan Mandarin (JM) disyllabic words.

2.1 Corpus Preparation

Forty-two JM native speakers read 400 disyllabic Chinese words in JM. The written
words were selected from a corpus of Chinese film subtitles [11], including a list of 200
high-frequency words and a list of 200 low-frequency words. Tonal combinations
reported in a published linguistic dictionary for JM are represented as evenly as pos-
sible in this corpus [12]. The list was presented in a different randomized order for each
JM speakers in a self-paced way.

Praat [13] is used to extract pitch contours from the rhymes. A trained phonetician
manually marked the rhymes. Also, in this process, recordings with speech and
recording errors were excluded. The pitch contours were converted to semitones with
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100 Hz as the base and then transformed into z-scores based on the speakers’ means
and standard deviations [14, 15]. The normalized pitch contours were then interpolated
to 20 points per-syllable to remove the difference in duration. A density-based local
approach was adopted to eliminate the possible outliers [16]. Local Outlier Factors
(LOF) were calculated for each speaker’s pitch contours. Any pitch contours with a
LOF greater than 1.5 [16] and belonging to the 2.5% with the highest integral density
were eliminated from the corpus.

2.2 Word-Wise Partitioning and Verification

In the first stage, word-wise partitioning and verification is performed using the
kmeans.fd function of the fda.usc package [7] in R [17] to look for the lexical tonal
variants for each word.

Here the procedure for the word “simple” is demonstrated as an example. The pitch
contours of all the exemplars of this word were first plotted, as shown in Fig. 3a, in
which the tonal categories of Standard Chinese (SC) were displayed for reference. With
the number of clusters (number of lexical tonal variants) designated as two, k-means
partition provided the optimal partitioning solution, as shown in Fig. 3b. According to
the referential labeling and the tone sandhi rules described by Qian et al. [12], the first
cluster was labeled as “35” and the second cluster was labeled as “31”. Then we
verified the label of each curve and found that the one produced by Speaker 06
probably belongs to another tonal pattern (with a falling contour in the second syllable,

as shown in Fig. 3(c)), and so we assigned a different label “34” to this curve. The final
partitioning solution for “simple” is shown in Fig. 3(d).

Note that, in this step, the phonetician’s labeling assumed a preliminary classifi-
cation. For instance, the lexical variant “simple_35”, “eye_35”, and “careful_35” were
all labeled with “35” as shown in Fig. 4, which means the phonetician assumed that
these variants carry the same tonal pattern. This is the preliminary classification (largely
subjective, so not an objective partition).

Fig. 3. (a) All the pitch contour curves for the word “simple”, (b) the result of k-means
partition, (c) the curve whose label was changed, (d) final partitioning solution for this word.
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2.3 Partitioning for Basic Tonal Patterns

Calculating Prototypical Pitch Contours for Lexical Variants. One prototypical
pitch contour was calculated for each lexical tonal variant in this step, using the
depth.mode function from the fda.usc R package [7]. There are two ways to decide the
prototypical curve, choosing the deepest curve (as a real prototype) [7] or calculating a
trimmed mean curve (as an abstract prototype) [10], as shown with an example in
Fig. 4. In the present experiment, the collection of abstract prototypes was used in the
analysis.

Optimizing the General Partitioning solution. In this step, each lexical tonal variant
was represented with one prototypical curve. The same collection of these prototypical
curves was then partitioned with different parameters according to the following
procedure.

The first round of partitioning was fitted with given initial centers [7]. In the
experiment, these initial centers were calculated as follows. As mentioned in Sect. 3.2,
the prototypical curve for each lexical tonal variant labeled with the same tonal pattern
was assumed to belong to the same tonal pattern. Here the deepest prototypical curve
for each tonal pattern assumed by the phonetician was calculated. The collection of
these prototypical curves was taken as the initial centers for the first round of parti-
tioning [7]. The first solution assumed the same number of tonal patterns as given in the
preliminary classification, and it adjusted the position of the centers and the corre-
sponding clusters.

Fig. 4. Pitch contours for the lexical tonal variants “simple_35”, “eye_35”, and “careful_35”.

Fig. 5. All the curves for the lexical tonal variant “simple_31” (grey dotted curves), the real
prototype (red solid curve), and the abstract prototype (blue dashed curve). (Color figure online)
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Then Silhouette width was calculated for each of the clusters in the first partition.
The cluster with the smallest Silhouette width was the least distinguishable cluster [8]
and could be inaccurate. Thus, the center corresponding to this cluster was removed in
the next round of partitioning. Also, in every coming round of partitioning, the cluster
that was least distinguishable in the previous round was removed, until there were only
two clusters left. This procedure is illustrated in Fig. 6.

A record of Silhouette widths was kept for all the clusters, as well as their mean and
standard deviation (SD), in every round of partitioning. On the one hand, the greater the
Silhouette width is, the more distinguishable the cluster is, which also applies to the mean
Silhouette widths of the whole partition. On the other hand, when comparing the solution
where all the clusters are similarly distinguishable against the solution where only some
clusters are very distinguishable (and others very messy), we prefer the former.

Fig. 6. From the first to the last solutions.
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This means that the smaller the SD of Silhouette widths is, the better the solution is. Thus,
the goodness of a solution is defined as the Silhouette SD subtracted from the Silhouette
mean, taking both criteria into consideration. Accordingly, the optimal solution is chosen
from all the candidates (as shown in Fig. 7).

Adjusting the General Partitioning Solution. Note that some clusters in the optimal
partitioning solution, for instance Cluster 7 as shown in Fig. 7, appeared to involve
different tonal patterns, highlighting that there were sub-clusters that needed further
investigation. The phonetician in this study picked out Cluster 7 together with its most
similar cluster (Cluster 6) and partitioned them again into four new clusters, Cluster 6,
7, 9, and 10, as demonstrated in Fig. 8. The phonetician repeated this procedure until
the adjusted solution fit her intuition. Note that, in this process, the adscription of curve
was never manually changed. Thus, the adjusted partitioning solution still conformed to
the logic of k-means partition, only now with sub-clusters surfacing.

3 Results

3.1 Word-Wise Partitioning

As shown in Fig. 9, Lexical tonal variants are frequent in JM, but many lexical tonal
variants have a low probability.

The phonetician labeled 20 preliminary disyllabic tonal patterns as the preliminary
classification. Obviously, the disyllabic tonal patterns are related to the citation tones of
the morphemes which composed these disyllabic words. The coding contains two parts,
the citation tone of the first syllable (1, 2, 3, or 4) and the citation tone of the second

Fig. 7. The optimal partitioning solution

Fig. 8. Adjusting Cluster 7 and 6 from the optimized general partitioning solution (upper panel)
into four new clusters (Cluster 6, 7, 9, and 10 in the lower panel)
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syllable (1, 2, 3, 4, or 5 = neutral tone). As expected, the labeling is more complex than
the published linguistic dictionary for JM [12] and the SC tonal categories for refer-
ence. Many words had two variants, one ending with a neutral tone and one with
non-neutral tones, such as the “35” and “31” variants of “simple” in Fig. 5. Since
exemplars with extreme values were excluded in corpus preparation, the deepest curve
and the trimmed mean curve were usually similar, except that latter was smoother.

3.2 Optimized and Adjusted General Partitioning Results

Figures 9 and 10 show the optimized and adjusted general partitioning solution (with
low-probability lexical variants removed). The clusters plotted in separate panels are
clearly distinguishable. They represent the disyllabic tonal patterns of JM, optimally
eight but these can be further classified into eleven. A prototypical curve can be found
for each cluster (either trimmed means or deepest curve), each representing the shape of
one tonal pattern.

Fig. 9. Density plots for the number of variants per word (upper panel) and for the probability of
variants.

Fig. 10. Optimized general partitioning solution color- and line- coded according to the
preliminary classification
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The general partitioning results indicate tonal merging. Compared with the pre-
liminary classification by the phonetician, the general partitioning results seem to
ignore the difference of citation tones in the first syllable. For instance, curves from the
presumed tonal classes “31” and “21” were partitioned into the same cluster (as shown
in Fig. 11 Cluster 2), where these two presumed tonal classes are indeed visually
indistinguishable. Similar merging was also found between other presumed tonal
classes in “3” and “2” (such as in “31-21”, “32-22”,“33-23”, and “34-24”), and
between “1” and “4” (such as in “12-42”, “13-43”, “14-44”). The neutral tone showed a
regressive dissimilating sandhi effect on the previous syllable, and its disyllabic tonal
pattern sometimes converged with unrelated tonal combinations. For instance, as
shown in Fig. 11, the presumed tonal class “35” primarily portioned into the same
clusters with “13-43” (Clusters 3) or “12-42” (Cluster 4), but showed a very different
tonal pattern compared with those of the other tonal classes beginning with the citation
tone “3” (e.g. in Clusters 2, 6, 8, and 9). Also, the highest tonal patterns (shown as
Cluster 7 in Fig. 10 and as Clusters 6, 7, and 9 in Fig. 11) were very similar, and only
surfaced after adjustments. Nevertheless, the sub-clusters seemed to reflect the differ-
ence of monosyllabic citation tones that relate to the disyllabic tonal classes. The
Clusters 6, 7, and 9 within the adjusted general partitioning solution are primarily
associated with the tonal classes “33-23”, “25”, and “22-32” respectively.

Fig. 11. Adjusted general partitioning solution color- and line- coded according to the
preliminary classification
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3.3 Discussion and Conclusion

In this paper, we proposed a Two-Stage semi-automatic partitioning procedure to
extract lexical tonal variants and tonal patterns from a multi-speaker corpus.

This procedure integrates the phonetician’s linguistic knowledge with the objective
procedure of partitioning. All the steps conform to the logic of k-means partition [3]
and perceptual magnet theory [4, 5], while manual labeling is limited to the lexical
level.

The phonetician’s workload is reduced in different ways. First, resources from
related dialects can be introduced as references in the labeling procedure, reducing the
intensity of intellectual challenge. Second, the automatic partitioning and model
selection procedures liberate the phonetician from the most difficult and subjective
decisions. He or she only needs to mark any curves that “may” come from different
tonal categories with different labels, and the algorithms will automatically find out the
most appropriate number of tonal patterns and the ascription of each lexical variant.
Third, even when part of the optimal partitioning solution is counter-intuitive, the
manual adjustments are still limited to pointing out the clusters to be refined, instead of
manually correcting the labeling one-by-one.

This procedure also has limitations. First, it can only be applied on corpuses with
multiple renditions of the same words. Second, the exemplars processed together must
contain the same number of syllables. For instance, the JM corpus only includes
disyllabic words. Third, the duration and metrical differences between different tonal
patterns are ignored, although they can be important for tonal perception.

In sum, this Two-Stage semi-automatic partitioning procedure, although with
limitations, can improve the efficiency and objectivity in the investigation of lexical
tonal-pattern variants and basic tonal patterns of an under-resourced language.
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Abstract. This paper makes a comparative study of acoustic features of Eng-
lish vowels by English as a Foreign Language Learners (EFL learners) from
Guanhua dialectal region and native English speakers in a typological per-
spective. We focus on exploring the degree of phonetic transfer of dialects onto
English (L2). Eleven English monophthones, e.g., the corner vowels /i/, /u/, /a/,
are selected as target samples and their corresponding F1&F2 formants are
employed as parameters in the study. The Speech Learning Model (SLM) is
adopted to examine the differences caused by different dialectal accents. Results
show a great divergence between EFL learners in all four dialects and American
(AM) native speakers, with regard to the tongue position of vowels. Specifically,
/i/, /u/ and /a/ are affected by BJ and XA dialects, which can be explained by the
SLM. On the other hand, /u/ produced by JN and HEB learners is similar to that
by American speakers. Therefore, for L2 learning, all the four dialects from the
Guanhua region could affect the learners’ L2 vowel systems.

Keywords: Guanhua dialect � Vowel formant � Convergence � Divergence
Language transfer

1 Introduction

English teaching has been implemented in different parts of China. Due to its
increasing importance, researchers have long been interested in second language (L2)
speech learning. In the field of L2 acquisition, learners’ knowledge of their first lan-
guage (L1) has long been regarded as an important factor in phonological acquisition.
The feature hypothesis posits that if a phonetic feature in L2 is not meaningful in L1
phonology, then the learners acquire the feature with a lower accuracy [1]. The simi-
larities and dissimilarities between L1 and L2 would influence the process of L2
phonology acquisition, which is known as L1 transfer.

There has been a literature on English acquisition of Chinese speakers from the
phonetic perspective, which mainly explore the super-segmental features (Duan [2];
Wang [3]; Qian [4]; Hu [5]). Recently, an increasing attention has been paid to the
acoustic characteristics of English vowels produced by English as a Foreign Language
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(EFL) learners in dialectal regions (Jia [6]; Tang [7]; Li [8]; Ruan [9]; Chen [10]; Wang
[11]; Jiang [12]; Shi [13]; Yang [14]).

Previous studies concentrated on inter-language and the influences of Mandarin or a
particular dialect. However, little attention had been paid to the convergence and
divergence among different dialects from a typological perspective.

In the late 1950s, Greenberg [15] established a new field of linguistic research,
namely linguistic typology, which has evolved into an important subject of contem-
porary linguistics. Based on cross-linguistic comparison, linguistic typology explores
the universal laws of languages through observation, data collection and comparison
over a large number of languages, and identifies major constraints in forming these
laws. However, in the process of language research and acquisition, it is often difficult
to find the universal laws. Moreover, if we ignore the similar and dissimilar features
across different languages, the effectiveness of language acquisition would be limited.
Recently, the language typology theory and research methodology has been applied to
English acquisition. The main approach is to explore the commons and differences
between English and the EFL learners’ mother language (e.g., Chinese in our study), so
as to uncover the universal laws between them.

The present study adopts the concept of Speech Learning Model (SLM) [16]. Paper
systematically investigates the convergence and divergence in the acoustic features of
English pure vowels between EFL learners from four major Chinese Guanhua regions
(BJ, XA, JN and HEB) and native English speakers, from the typological perspective.
Particularly, it aims to find out the vowel systems of dialects how effect the vowel
output by EFL learners.

2 Methodology

2.1 The Vowel Inventory of Guanhua Dialect

The selected dialect regions in this study are Beijing, Xi’an, Jinan and Harbin, which
all belong to Guanhua dialect. According to its internal differences, it could be divided
into eight sub dialects, specifically, Beijing, Northeast, Jiaoliao, Ji-lu, Zhongyuan,
Lanyin, Southwest, Jianghuai [17]. Xi’an, Jinan and Harbin dialects are important
branchs of Zhongyuan, Ji-lu and Northeast dialects respectively. Compared with
English, from the point of view of specific vowel distribution, there are 7 pure vowels
[ɿ ʅ ɤ i u y a] in BJ dialect, which can appear in (C)V structure; additionally, XA dialect
and HEB dialect are the same, while there are two more vowels [e ɔ] in JN dialect. But
English has twelve oral monophthongs. Phonologically speaking, Chinese dialects do
not contrast in a long vs. short vowel distinction. Certainly, the same goes for Man-
darin, while there are distinctions in English. By comparison, interesting distinctions
can be obtained from this study. It is important for EFL learners to improve their
pronunciation of English.
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2.2 Materials

One hundred and ten meaningful monosyllabic words in CVC structure were selected
as test words. Each target vowel has 10 test words, preferably everyone with an initial
of plosive, fricative and affricate and the same were true of the syllable coda. Due to
space limit, the similar vowels were mainly focused on 3 corner vowels, i.e., /i/, /u/, /a/,
which can reflect the general pattern of the vowel system [18]. With regard to BJ, XA,
JN and HB dialects, 30 words were selected respectively.

Subsequent paragraphs, however, are indented.

2.3 Subjects

Twenty-four English learners from four regions participated in this experiment,
including 3 females and 3 males in each dialect, are all born and raised in their own
dialectal city where they have been learning English for more than 10 years. In
addition, they are skillful in using their dialect without speech and hearing disorders.
6 American native speakers, 3 females and 3 males, spoke general American English
without regional accent.

2.4 Recording

Recording was conducted in a sound-treated booth, with headset microphone (Senn-
heiser PC 166) connected to a laptop. The sampling frequency was set at 16000 Hz,
and bit depth 16 digits. Then the speech data were automatically segmented and
annotated with software, and manually adjusted by trained annotators based on acoustic
cues and auditory impression.

2.5 Data Analysis

Core data of vowel formants & vowel duration were extracted by PRAAT script and
imported into EXCEL. To eliminate the physiological differences caused by age and
gender, the data of vowels were plotted in NORM [19], and the Bark Difference Metric
method was used to plot the vowels trajectories. The formula is as following:

Zi ¼ 26:81= 1þ 1960=Fið Þ � 0:53 ð1Þ

Where Fi (i = 1, 2, 3) denotes the frequency value of vowel formant. Zi refers to the
normalization value of formant frequency extracted from each of the sampling points of
the target vowel. It then computes the differences Z3 − Z1 and Z3 − Z2. Z3 − Z2 is
used to plot the normalized front-back dimension and Z3 − Z1 is used to plot the
normalized height dimension.

For similar reason, vowel durations are calculated through the following formula:

X�
i ¼ Xi � Xminð Þ= Xmax � Xminð Þ ð2Þ

Where Xi (i = 1, 2,…, n) denotes individual’s duration. While, Xmax and Xmin are
the maximum and minimum value of the duration in each output item respectively.
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3 Findings

In this part, the acquisition of English pure vowels produced by learners in Guanhua
dialectal region and native speakers was explored from typological perspective. Fur-
ther, acoustic analysis of the vowels produced by EFL learners in all four dialects and
native speakers were conducted to account for L1’s effect on L2. This section revealed
the divergences between English vowels produced by 2 groups, and further discussed
L1 vowel systems’ impact on L2 vowel production, from both spectral and temporal
perspective. Based on this observation, as for the production of English vowels, the
common and different characteristics among the four dialects can be found out.

3.1 Spectral Properties

Illustrated in Fig. 1 is the formant chart of the same set of English pure vowels plotted
to show the systematic differences between the EFL learners in BJ, XA, JN and HEB
dialects and native speakers, in which the Y-axis represents the height of the vowels,
and the X-axis is the vowels’ front-back.

Fig. 1. Vowel plots of native speakers’ and BJ, XA, JN and HEB learners’ English.
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From the plots above, noticeable cross-group disparity among subjects chosen for
the experimental study can be spotted. To account for BJ learners’ performance, the
downward and more forward tendency for pure vowels when compared with speakers
from the controlled group is quite noticeable. In terms of individual vowels, it is
obvious that /i/, /e/, /ɜ/, /ʌ/, /ɑ/ and /u/ produced by English learners are far away from
their native counterparts.

In order to prove the above-mentioned observation, several independent sample
T-tests were conducted, examining the differences between vowels produced by BJ
learners and native speakers. The results of the T-tests reveal significant differences in
F1 values of /i/ (p < .01), /e/ (p < .05), /ɜ/ (p < .05), /ʌ/ (.01 < p < .05), /ɑ/ (p < .05),
/u/ (p < .05), F2 values of /ʌ/ (p < .05), /ɑ/ (p < .05), /u/ (.01 < p < .05), while there
are no significant differences in F2 values of /i/, /e/, /ɜ/ (/i/ (p > .05), /e/ (p > .05), /ɜ/
(p > .05)). As shown by the result of comparison of the two subject groups in the
values of other vowels, they show similar performance on the production of /I/, /æ/, /ɒ/,
/ɔ/, /ʊ/, that is to say, BJ learners are able to acquire it accurately.

Similarly, great disparities are to be found between learners from XA, JN and HEB
dialects and native speakers. And it is interesting the characteristics of vowels produced
by English learners in these three regions are the same as those of learners in Beijing to
some extent. Especially, the vowels pronounced by EFL learners take lower position
than native speakers except for /I/. In addition, for the front vowels, the more backward
tendency can be observed, while concerning the central and back vowels articulated by
EFL learners, it shows more frontward in tongue position.

On the other hand, the distribution of native speakers is more scattered than that of
BJ learners and the most striking aspect of Fig. 1 is the non-separation of English
tense-lax vowels produced by learners. That is to say, BJ learners cannot distinguish
the vowels of /i/-/I/ (p > .05), /e/-/æ/ (p > .05), /ʊ/-/u/ (p > .05) basically. Moreover,
there is no showing any sign of tense-lax vowels merging in the other 3 dialects.
Concretely, it is difficult for XA learners to differentiate /e/-/æ/ (p > .05), /ʊ/-/u/
(p > .05), for JN learners to distinguish /i/-/I/ (p > .05), /ʊ/-/u/ (p > .05). Similar to BJ
learners, HEB learners also cannot differentiate /i/-/I/ (p > .05), /e/-/æ/ (p > .05), /ʊ/-/u/
(p > .05).

However, native speakers integrate two factors of the height and backward of the
tongue position to distinguish the tense and lax vowels /i/-/I/ (p < .01) and /ʊ/-/u/
(p < .01). In addition, when distinguishing the vowel of /e/-/æ/ (p < .05) and /ɔ/-/ɒ/
(p < .01), native speakers are mainly based on the vowel height. It means that native
English speakers are more obvious in distinguishing tense and lax vowels.

3.2 Transfer from Dialects

Phonologically speaking, the vowels /i/, /u/ and /ɑ/ in English, the vowels /i/, /u/ and /a/
in dialect are regarded as similar vowels [20]. This part is mainly to investigate the
influence of the similar sounds of dialect happened in English vowel inventory on the
acquisition of English. Within the figure, the X-axis represents the vowels’ front-back,
and the Y-axis is the height of the vowels.
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As shown in Fig. 2, the distribution of /i/, /u/ and /ɑ/ in English produced by EFL
learners is close to the development of the system of dialects, that is to say, /i/, /u/ and
/ɑ/ can find their counterparts in dialects respectively.

Firstly, in terms of the transfer from BJ Mandarin, the results of One-way ANOVA
analysis show that there is no great divergence on the production of /a/ and /ɑ/ (p > .05)
between Mandarin and English articulated by EFL learners. Additionally, with regard
to /i/ and /u/, they also can find their counterparts in BJ Mandarin on F2 value (p > .05)
and F1 value (p > .05) respectively. In summary, it is noticeable that similar vowels /i/,
/u/ and /ɑ/ produced by BJ learners are influenced by Mandarin.

Secondly, in view of the intra-lingual transfer induced by XA dialect, its dialects’
/i/, /u/ and /a/ show great sign of phonetic transfer since the results indicate that there is
no significant difference of the F1 and F2 value on the production of /i/ (p > .05), /u/
(p > .05) and /a/ (p > .05) between English and dialects spoken by EFL learners. As
for JN EFL learners, the transfer from dialect is same with XA dialect, while in view of
/a/ and /ɑ/ (p < .05), there is no difference between English and dialect, namely, JN
speakers can produce /ɑ/ well. Then, about the examination of English /i/, /u/ and /ɑ/
articulated by HEB learners, the analysis result manifests the significant difference of
F1 and F2 values on the production of /u/ (p < .05) and /ɑ/ (p < .05) with the dialect
vowels /u/ and /a/. Therefore, the production of English vowels /u/ and /ɑ/ articulated

Fig. 2. Vowel plots of native speakers’ and BJ, XA, JN and HEB learners’ English, dialect.
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by EFL learners are not exerted from the negative transfer from dialect; while the
English vowels /i/ (p > .05) produced by EFL learners are very close to that of dialect,
it can be demonstrate /i/ is influenced by HEB dialect.

To better prove the phonetic transfer from the four dialects respectively, a measure
of Euclidean distance (ED) was derived on the basis of rescaled normalized formant
values:

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 � x1Þ2 þðy2 � y1Þ2
q

ð3Þ

Where x1 and x2 refer to the normalized F1 of the two vowels, y1 and y2 correspond
to the normalized F2 of the two vowels. If ED of an English vowel by EFL learners to
dialect is bigger than that of native speakers, it suggests that EFL learners can pro-
nounce the sound well. Otherwise, it may be influenced by dialect.

Tables 1 and 2 provide statistical evidence for the above-mentioned observation.
We can see clearly that, English vowels /i/, /u/ and /ɑ/ produced by BJ, XA and JN
learners are more similar to their counterparts in dialects, except for /u/ articulated by
JN learners. For HEB learners, only /i/ can be found similar counterpart in dialect, that
is to say, /u/ and /ɑ/ cannot be explained in terms of phonetic transfer, deserve further
investigation. To sum up, it is reasonable to argue that the Guanhua dialectal students’
L2 learning, L1 could affect their L2 vowel system.

3.3 Transfer from Dialects

The normalized durations of English tense-lax vowels and the three similar vowels
from BJ, XA, JN and HEB dialects were summarized in the bar chart in Fig. 3.

Table 1. Euclidean distance between L1-L2 produced by BJ, XA, JN and HEB EFL learners.

BJ XA JN HEB

i 0.91 0.55 0.51 0.25
u 0.42 0.63 1.10 1.76
ɑ 2.07 1.01 0.16 3.01

Table 2. Euclidean distance of English produced by BJ, XA, JN and HEB EFL learners and
native speakers.

BJ XA JN HEB

i 1.49 1.06 1.76 1.02
u 2.09 1.74 0.62 1.00
ɑ 2.72 3.17 3.03 0.73
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It’s apparent from the Fig. 3 that the distinction of duration between tense-lax
vowels by native speakers is not as obvious as that of EFL learners (.01 < p < .05). It is
obvious that BJ and XA learners produce much shorter vowels than native speakers,
while JN and HEB learners longer than that of native speakers.

Additionally, as is shown on Fig. 3, the similar vowels /i/, /u/ and /a/ produced in
both BJ and XA dialect are much shorter than those produced by native speakers.
Therefore, it can be inferred that the short duration of tense-lax in L1 affect the duration
of L2 for BJ and XA learners. While with regard to JN and HEB learners, durations are
not influenced by dialects since the similar vowels /i/, /u/ and /a/ articulated in both JN
and HEB dialect are still much shorter than those produced by native speakers, which is
opposite to the characteristics of English tense-lax vowels produced by them.

When the duration of tense-lax vowels are shortened or lengthened simultaneously,
the data above are still not sufficient in assessing their performance in vowel contrast.
Therefore, the duration ratios of tense-lax pair were calculated, which can indicate the
degree of tense-lax contrast from the temporal perspective (Table 3).

Fig. 3. Temporal structures of English tense-lax vowels and similar vowels in English learners
and native speakers.

Table 3. Duration ratios of English tense-lax vowels produced by BJ, XA, JN, HEB learners
and native speakers.

AM BJ XA JN HEB

i-I 0 0.08 0.10 0.02 0.03
u-ʊ 0.16 0.06 0.09 0.08 0.18
ɔ-ɒ 0.03 0.01 0 0.12 0.03
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To sum up, after the analysis of the formant and duration, it indicates that, native
speakers make the distinction between tense-lax vowels mainly by the tongue position;
while for Guanhua dialectal EFL learners, they exhibit significant difference on the
duration of vowels.

4 Discussions

The present paper aims to research Guanhua dialectal students’ foreign accent of
English from the perspective of language transfer by an experimental study. Based on
the calculation of formant frequency and duration between English and dialects pro-
duced by BJ, XA, JN and HEB learners, the acoustic similar and dissimilar features can
be obtained.

Specifically, the results in Sect. 3 have shown a downward tendency in producing
vowels when compared with native speakers and revealed the difficulties in distin-
guishing English tense-lax vowels produced by EFL learners. Flege [20] claims that if
the target phones are similar to those of previous acquired languages, learners cannot
distinguish these categories. The three vowels /i/, /u/ and /ɑ/ of English can find their
counterparts in BJ, XA and JN dialect, except for /u/ articulated by JN learners.
According to the above analysis, the realization of similar vowels in English from EFL
learners’ /i/, /u/ and /ɑ/ always fall into the categories already established in their L1.
For HEB learners, only /i/ can be found similar counterpart in dialect, that is to say, /u/
and /ɑ/ cannot be explained in terms of phonetic transfer. This deserves further
investigation.

As far as duration, parametric analysis of the six target English vowels articulated
by EFL learners indicates that BJ, XA, JN and HEB EFL learners are not doing well in
outputting the tense vowels and lax vowels, instead they can make a general contrast
from the temporal perspective. Additionally, in terms of the duration of similar vowels
in L1 and L2 from BJ and XA learners is shorter than that of vowels in L2 produced by
native speakers, which inferred the short duration of tense-lax in L1 can affect the
duration of L2. While for JN and HEB learners, duration are not influenced by dialects.

This study still has limitations in many aspects. In further study, a larger corpus and
more regions in Guanhua dialectal area would be built up and other similar vowels
between Guanhua dialect and English need to be conducted. Furthermore, the specific
method to would be also established, which can help students in Guanhua dialect to
improve their pronunciation.

5 Conclusions

With a comparative study on the formant features and duration of English monoph-
thongs, the data extracted from this experimental research help to illustrate the con-
vergences and divergences in vowel production of EFL learners from Guanhua
dialectal region, in case study of BJ, XA, JN and HEB. Besides, the influences from
Dialect are researched meanwhile. Such observations, along with further statistical
analysis of the data collected from the experiment, can be expected to be more
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self-evident and reliable in guiding the EFL learners to acquire a more native-like
production of English pure vowels.
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Abstract. To explore how L2 listening competence, phoneme category and
word frequency influence English phoneme perception of Chinese learners, the
current research carried out a comprehensive study of phoneme perception by
means of received pronunciation (RP) English phonemic contrasts in minimal
pairs. 92 freshmen were divided into three groups, and received all tasks at two
different word frequency levels. We found high-proficiency group (HPG) out-
performed both low-proficiency group (LPG) and middle-proficiency group
(MPG) in terms of accuracy (ACC), implying that HPG tended to apply both
bottom-up process and top-down process in phonemic perception but LPG and
MPG were prone to adopt just bottom-up process. No significant main effect of
group concerning response time (RT) was found, which might be ascribed to
human’s physiological similarity in sound perception. Vowels were perceived
both faster and more accurately than consonants, which may be caused by
sudden decrease/increase or “zero point” in frequency of consonants, or a larger
acoustic power of vowels. Although no significant perception difference
between high-frequency words (HFW) and low-frequency words (LFW) was
found for all the interested contrasts, there was interaction between phoneme
category and word frequency in terms of ACC and RT, suggesting word fre-
quency effect on L2 phoneme perception. More specifically, Chinese students’
perception of diphthongs was better than that of monophthongs; high vowels
were perceived more accurately than low vowels. As for consonants, liquids,
glides and stops were better discerned than affricatives, fricatives and nasals.

Keywords: Speech perception � Listening competence
Phoneme category � Word frequency

1 Introduction

Second language (L2) listening is fundamental not only to the understanding of the
spoken discourse of the target language [1, 2], but also to its speech production in that
the mispronunciation may contribute to foreign accent, which, in turn, may cause
inability to perceive L2 in a nativelike manner [3]. However, listening comprehension,
of the four main language skills, remains arguably the least well understood and
researched [4], and literature revealed English learners have great difficulty in correctly
perceiving L2 sound categories, which is commonly regarded as one important stage in
L2 speech perception [5].
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L2 speech perception has been reported to be affected by many factors, typically
classified into two types of perceiver variables and task effects. Perceiver variables
include first language (L1) background [6–8], L2 experience [9, 10] and other factors
such as gender [10]. Task effects consist of contrast type [11–13], and word frequency
[14, 15].

Researches have been conducted on subjects with varying L2 proficiency, however
some showed better ability of experienced learners to distinguish L2 from L1 vowels
[16], while others postulated that perceptual category boundary might be hard to
change even if L2 proficiency improved [10, 13]. One primary possible reason is that
most of the previous studies conveniently adopted length of residence in one area or the
duration of speaking a foreign language, to represent participants’ language proficiency
level, which, however, did not necessarily result in good command of a foreign lan-
guage. It prompted us to take a more sufficient way to group participants of different
proficiency levels by referring to a standard examination performance as Lai measured
participants’ L2 proficiency by means of TOEIC scores [17]. The present study,
therefore, was intended to categorize participants into different proficiency levels by
examining L2 listening competence for its closer relationship with speech perception.

Speech perception difficulty varies with contrast types. For example, Yun [12]
found that for Korean-English learners, accuracy was much higher for stop contrasts
and affricate contrasts than for fricative and approximant contrasts. Levey and Cruz
[11] reported that front vowels were better perceived than back vowels for
Spanish-English bilinguals. The perception of /i/-/i:/ contrast was better than /e/-/æ/ for
Catalan learners of English [13]. However, Yun [12] found that there was no significant
difference between these two phoneme contrasts for Korean learners of English,
indicating that there may be a language/sound category interaction. Due to the scarce
literature regarding the effect of sound category on perception and lack of a compre-
hensive study, we sought to unfold a more thorough map of English phonemes
including both vowels and consonants to broaden our knowledge of English speech
perception.

Exploration of word frequency’s role in word perception is still underway.
Although some research found that students’ perception of phoneme pairs was not
affected by word frequency [18], the bulk has verified the advantage of high-frequency
words over low-frequency ones [19, 20]. The verification has been made by different
tasks, including identification in noise, lexical decision, and naming [20], but not word
discrimination task. Compared with the other two paradigms in perception tests—
identification and rating, discrimination is more preferable to probe how word fre-
quency functions in the present study for it can both record the accuracy as well as
response time.

We would adopt a mixed design with the factor of L2 listening competence as the
between-subject factor and the phoneme category and word frequency as the
within-subject factors. The following questions would be uncovered: (i) Is L2 phoneme
perception by Chinese-English bilinguals affected by various proficiency levels of L2
listening competence? (ii) Is L2 phoneme perception influenced by phoneme category?
(iii) Is L2 phoneme perception impacted by word frequency? (iv) How do the three
factors interact to show a variation of Chinese EFL learners’ perception of English
phonemes?
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2 Method

2.1 Participants

131 non-English major freshmen at a key university in Xi’an, China, participated in
this experiment. They had a self-reported mean of 8-year-duration of English language
learning and none was reported to have experienced any hearing impairment. All
participants took a simulated listening test of College English Test Band 4 (CET-4), the
most popular and authoritative test for English in China, and the scores were calculated
to measure their listening comprehension. Accordingly, they were categorized into
three groups, high proficiency group (HPG, score � M + 0.5 SD), middle proficiency
group (MPG, score � M + 0.25 SD) and low proficiency group (LPG, score �
M – 0.5 SD), thus the total group of 92 were selected (F[2, 89] = 313.50, p < 0.001).
The post-hoc pairwise comparison LSD analysis using SPSS 19.0 showed that the
mean difference between each two groups were significant (t1(HPG, MPG) = 7.51,
p < 0.001; t2(HPG, LPG) = 14.34, p < 0.001; t3(MPG, LPG) = 6.83, p < 0.001).
Descriptive statistics of the three groups are shown below (Table 1).

2.2 Stimuli

We tested how participants discriminated the received pronunciation (RP) English
phonemic contrasts in minimal pairs (minimal pairs are pairs of words in a particular
language that differ in only one phonological element). 48 phonemes in RP were the
basic experimental materials. The sub-category of vowels, monophthongs, was
grouped according to their pronunciation positions in two dimensions of frontness
(front, central and back) and highness (high and low). The other sub-category of
vowels, diphthongs, was divided into three types according to their tail phonemes.
Consonants were classified along three dimensions: manner of articulation, voicing and
place of articulation.

A pair of monophthongs could form a phonemic contrast when they were identical
at least in one dimension. For example, /i:/ and /i/ could be put together because they
shared features in both dimensions of frontness and highness, both front and high
vowels; /i:/ and /ə:/ could form a contrast because both of them were high vowels in
spite of the difference in frontness; phonemic contrasts should not include such pairs as
/i:/ and /ə/, because they shared no feature in either frontness or highness. As to
diphthongs, those with the same ending could form a contrast, such as the pair of /ai/
and /ei/ with the same /i/ tail, while /ai/ and /iə/ could not be paired. A pair of consonant

Table 1. Descriptive statistics of the three groups’ scores for listening comprehension test.

N Mean SD

HPG 31 23.77 0.552
MPG 30 16.27 0.185
LPG 31 9.43 0.383
Total 92 16.57 0.661
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contrast only differed in one dimension. For instance, /p/ and /b/ could form a contrast
for both were the same in place of articulation and manner of articulation, bilabial and
stop, but different in voicing, voicing and voiced respectively. While /p/ and /n/ could
not because the former was voiceless bilabial stop and the latter voiced alveolar nasal,
differing in all three dimensions.

Based on the principles above, 92 phonemic contrasts were paired with exclusion
of 8 contrasts for word scarcity. All the contrasts were embedded in minimal pairs at
two word frequency levels: high-frequency words (HFW, in Chinese English teaching
syllabus for middle and high schools) and low-frequency words (LFW, advanced
words in CET-4, CET-6, TOEFL and IELTS etc.). In total, 92 high-frequency word
pairs and 92 low-frequency word pairs (e.g. jaw-raw, jug-rug for /dʒ/-/r/), together with
120 filler pairs (two words in a pair were identical, e.g. rig-rig, nearly 1/3 less than the
target pairs) were determined.

Then, these pairs were recorded with the help of youdao.com (developed by
NetEase) and chazidian.com (developed by chazidian) at the recording frequency of
44.1 kHz/16 bit. All the recording files were saved as WAV format. Finally, all files
were denoised and edited with Goldwave (v5.56, developed by Goldwave Inc.) and were
programmed by the E-prime software (developed by Psychology Software Tools, Inc.).

2.3 Procedure

The perception tests were conducted in a quiet room and the stimuli were presented to
subjects in succession via high-quality headphones from desktop computers. In each
trial, a sound for 500 ms would first be presented to remind the beginning of the trial.
Two words would be then presented for 1000 ms each, with a 500 ms
inter-stimulus-interval (ISI). Subjects were required to decide whether the two words
sound the same within 2000 ms as soon as they heard the second word with a practice of
30 trials. Both response time and accuracy were recorded. The ones that were not decided
within the given time would be counted as wrong answers and were not calculated for
response time. The whole experiment was composed of 2 blocks, 142 trials each. Par-
ticipants can take a short break of one minute at the end of the first block. Repeated-
measures, one-way ANOVA and simple effect analysis were conducted.

3 Results

3.1 Vowels and Consonants

Figure 1 showed the significant main effect of the three factors for all vowel and
consonant pairs. Concerning ACC, the main effect of phoneme category reached sig-
nificance (F[1, 88] = 6.33, p < 0.05), namely, discrimination accuracy was higher for
vocalic contrasts than for consonantal contrasts (91.5% vs. 86.3%). The main effect of
L2 listening competence was also statistically significant (F[3, 88] = 3.02, p < 0.05).
Post-hoc pairwise comparison LSD analysis displayed that HPG’s ACC was signifi-
cantly higher than LPG’s (t = 0.047, p < 0.05), and MPG’s (t = 0.052, p < 0.05).
However, we failed to find significant main effect of word frequency.
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The interaction was found between the factors of phoneme category and word
frequency. Simple effect analysis demonstrated HFW vowels were perceived more
accurately than LFW vowels (t = 9.00, p < 0.001), LFW consonants (t = 8.86,
p < 0.001), HFW consonants (t = 5.04, p < 0.001). The ACC of LFW vowels sig-
nificantly exceeded that of LFW consonants (t = 4.26, p < 0.001), and the ACC of
HFW consonants was higher than that of LFW consonants (t = 2.90, p < 0.05).

In terms of RT, the analysis only revealed significant main effect of phoneme
category (F[1, 89] = 11.84, p < 0.001), but not the main effect of the other two factors.
To be specific, RTs were shorter for vowels than for consonants (520.6 ms vs.
543.6 ms). There was no significant interaction between the three factors at all.

3.2 Vowels

To gain a deep insight into whether and how the sound category would influence the
speech perception with the other two factors, the sound categories of monophthongs
and diphthongs, and of high vowels and low vowels were analyzed independently.

Monophthongs and Diphthongs. Figure 2 showed the significant differences of the
three factors for monophthong and diphthong contrasts. As to ACC, the main effect of
phoneme category was found significant (F[1, 89] = 29.4, p < 0.001). That is to say,
these Chinese bilingual speakers were more accurate in discrimination of diphthong

Fig. 1. Significant differences between vowels and consonants.

Fig. 2. Significant differences between monophthongs and diphthongs. (Note: Easy represents
the pairs in high-frequency words; Hard represents the pairs in low-frequency words; It is the
same for the following two figures.)

Perception of English Phonemes by Chinese College Students 51



pairs than of monophthong pairs (96.1% vs. 90.6%). Moreover, Fig. 2 revealed sig-
nificant main effect of listening competence in perception of all monophthong and
diphthong pairs (F[2, 89] = 4.34, p < 0.05). The main effect of word frequency
reached significance too (F[1, 89] = 15.08, p < 0.001). Participants could perceive
HFW vowels (94.5%) less erroneously than LFW ones (92.1%).

Phoneme category was confirmed to have interaction with word frequency (F[1,
89] = 40.2, p < 0.001) concerning ACC. Simple effect analysis demonstrated that the
ACC of LFW diphthongs was significantly higher than those of HFW monophthongs
(t = 3.12, p < 0.05), and LFW momophthongs (t = 7.90, p < 0.001). HFW Monoph-
thongs were perceived significantly more accurately than LFW monophthongs
(t = 9.07, p < 0.001), HFW diphthongs more accurately than LFW monophthongsn
(t = 5.73, p < 0.001). But, no much difference was found between HFW monoph-
thongs and HFW diphthongs, or between HFW diphthongs and LFW diphthongs.

Concerning RT, we only found significant main effect of the phoneme category (F
[1, 89] = 6.05, p < 0.05). Specifically, participants discriminated monophthongs more
quickly than diphthongs (517.11 ms vs. 545.55 ms). However, neither two-way nor
three-way interaction was found concerning RT for all the monophthongs and diph-
thongs involved.

High Vowels and Low Vowels. Figure 3 showed the significant differences of the three
factors for high vowels and low vowels. On ACC, the repeated measures revealed sig-
nificant main effect of phoneme category (F[1, 89] = 229.38, p < 0.001), indicating the
learners were perceptually less sensitive to the distinction between low vowels compared
to the difference between high vowels (86.9% vs. 95.9%). Furthermore, the significant
main effect of listening competence was found under investigation (F[2, 89] = 5.45,
p < 0.05). HPG performed better in discriminating high and low vowels than MPG
(93.5% vs. 88.8%, t = 0.047, p < 0.05). Additionally, there was significant main effect of
word frequency (F[1, 89] = 95.06, p < 0.001). The analysis exhibited the mean ACC of
the HFW phonemic contrasts excelled that of LFW ones (95.7% vs. 87.1%).

The ANOVA for repeated measurement also showed significant interaction
between phoneme category and word frequency concerning ACC for high and low
vowels (F[1, 89] = 95.58, p < 0.001). Simple effect analysis demonstrated the ACC of
HFW high vowels was significantly higher than those of LFW high vowels (t = 2.35,
p < 0.05), HFW low vowels (t = 3.31, p < 0.001), LFW low vowels (t = 15.26,
p < 0.001). Besides, the ACC of LFW high vowels was significantly higher than that

Fig. 3. Significant differences between high vowels and low vowels.
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of LFW low vowels (t = 15.17, p < 0.001), and the ACC of HFW low vowels higher
than that of LFW low vowels (t = 11.99, p < 0.001). No significant difference was
found between LFW high vowels and HFW low vowels.

As to RT, we only found the main effect of word frequency (F[1, 89] = 10.86,
p < 0.05). The perception of HFW contrasts was significantly faster than that of LFW
contrasts (505.9 ms vs. 541.3 ms). No factor showed its interaction with the others on
RT for these pairs.

3.3 Consonants

The significant differences of the three interested factors for consonant contrasts
grouped by manner of articulation were depicted in Fig. 4. In terms of ACC, there was
significant main effect of phoneme category (F[3.6, 317.9] = 108.32, p < 0.001).
Specifically, the perceptions of liquid, glide and stop contrasts were significantly more
accurate than those of affricative, fricative and nasal contrasts (94.0%, 92.4%, 89.2%,
80.2%, 78.8%, 56.7%, all p � 0.005). Liquid contrasts were perceived more accu-
rately than stop pairs, affricatives more accurately than nasals, and fricatives more
accurately than nasals (all p � 0.005). Yet, listening competence was confirmed to
have no much impact on the stimuli perception. As to word frequency, we found its
significant main effect on phoneme perception (F[1,89] = 38.08, p < 0.001). The
participants tended to discern HFW consonantal contrasts (85.2%) with higher accu-
racy rate compared to LFW consonants (78.6%).

The interaction between phoneme category and word frequency in terms of ACC
was found (F[3.3, 296.1] = 22.30, p < 0.001). Simple effect analysis between sixty-six
pairs were conducted to find that LFW glides were perceived more accurately than
HFW affricatives, LFW stops, HFW stops, HFW glides, HFW fricatives, LFW frica-
tives, LFW affricatives, HFW nasals and LFW nasals; HFW liquids more accurately
than HFW fricatives, LFW fricatives, LFW affricatives, HFW nasals and LFW nasals;
LFW liquids more accurately than HFW fricatives, LFW fricatives, LFW affricatives,
HFW nasals and LFW nasals; HFW affricatives more accurately than LFW stops, HFW
stops, HFW fricatives, LFW fricatives, LFW affricatives, HFW nasals and LFW nasals;
LFW stops more accurately than HFW fricatives, LFW fricatives, LFW affricatives,

Fig. 4. Significant differences between consonantal contrasts grouped by manner of articulation.
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HFW nasals and LFW nasals; HFW stops more accurately than HFW fricatives, LFW
fricatives, LFW affricatives, HFW nasals and LFW nasals; HFW glides more accu-
rately than LFW fricatives, LFW affricatives, HFW nasals and LFW nasals; HFW
fricatives more accurately than LFW fricatives, LFW affricatives, HFW nasals and
LFW nasals; LFW fricatives more accurately than LFW affricatives, HFW nasals and
LFW nasals; LFW affricatives more accurately than LFW nasals; HFW nasals more
accurately than LFW nasals (all p < 0.05). Among them, difference between LFW
glides and HFW nasals was the most significant (t = 16.59, p < 0.001), followed by
that between HFW affricatives and LFW affricatives (t = 15.73, p < 0.001).

Similar to ACC, main effect of phoneme category concerning RT was revealed as
well (F[2.6, 235.5] = 13.57, p < 0.001). The perception RTs of liquid, glide and stop
contrasts were significantly shorter than those of affricative, fricative and nasal con-
trasts; affricatives shorter than fricatives and nasals; fricatives shorter than nasals
(500.3, 507.0, 528.2, 597.0, 602.3, 665.6; all p < 0.05). Interestingly, like ACC, the
RTs of learners at three proficiency levels showed no much difference in discriminating
consonantal pairs. As expected, the repeated ANOVA revealed significant main effect
of word frequency concerning RT for the interested consonants (F[1, 89] = 54.66,
p < 0.001). The perception of the HFW consonants (507.857 ms) was significantly
shorter than that of LFW consonants (625.59 ms).

Phoneme category, for another time, was verified its interaction with word fre-
quency on RT (F[3.4, 299.6] = 7.76, p < 0.001). Simple effect analysis displayed that
learners discriminated HFW glides significantly faster than HFW stops, HFW nasals,
LFW liquids, HFW affricatives, LFW stops, LFW glides, HFW fricatives, LFW
fricatives, LFW affricatives and LFW nasals; HFW stops faster than HFW affricatives,
LFW stops, LFW glides, HFW fricatives, LFW fricatives, LFW affricatives and LFW
nasals; HFW liquids faster than HFW affricatives, LFW stops, LFW glides, HFW
fricatives, LFW fricatives, LFW affricatives and LFW nasals; HFW nasals faster than
HFW fricatives, LFW fricatives, LFW affricatives and LFW nasals; LFW liquids faster
than LFW affricatives and LFW nasals; HFW affricatives faster than HFW fricatives,
LFW fricatives, LFW affricatives and LFW nasals; LFW stops faster than HFW
fricatives, LFW fricatives, LFW affricatives and LFW nasals; LFW glides faster than
LFW nasals; HFW fricatives faster than LFW nasals; LFW fricatives faster than LFW
nasals; LFW affricatives faster than LFW nasals (all p < 0.05). Among them, the most
significant differences were between HFW glides and LFW nasals (t = −9.30,
p < 0.001), and between HFW stops and LFW nasals (t = −8.50, p < 0.001).

4 Discussion

This study confirmed that L2 listening competence, phoneme category and word fre-
quency were important factors influencing Chinese EFL learners’ perception of RP
English phonemes. The factor of listening competence played a vital role in phonemic
perception since high-proficiency learners were significantly more accurate than
low-proficiency and middle-proficiency learners when both vocalic and consonantal

54 Y. Feng et al.



pairs were investigated. This finding was partly in line with another study, which
exhibited that learners in the low English proficiency group were significantly more
erroneous in vowel pairs than the high proficiency group [17]. Yet, there was no
significant difference between these groups on RT. This interesting result might be
accounted for with the information processing model—Interactive Activation Model
[21]. When perceiving minimal pairs, high-proficiency learners tended to apply both
bottom-up process and top-down process, which enabled them to rank top on accuracy.
However, for the time of perceiving a sound, which is doomed to be more of a
physiological ability, average people might bear no evident difference after thousands
of years of evolution.

As to the second research question whether the type of phonemic contrasts would
affect listeners’ perception ability, the present study indicated a positive answer. In the
dimension of vocalicity, the perception of vowels was better than that of consonants
both on ACC and RT. This might lead us to speculate that the ability of Chinese
university students to discriminate the distinctive characteristic of consonants was not
as good as the ability to discern that of vowels. The possible reason might be that
vowels are more steady in spectrogram while consonants are presented with sudden
decrease or increase or “zero point” in frequency. Or, vowels (9–47 µW) sound more
intense than consonants (0.08–2.11 µW) [22].

Meanwhile, Chinese students perceived diphthongs more accurately than
monophthongs. This better performance of diphthongs might be due to the longer
duration of diphthongs, which allows more time for listeners to process diphthong
contrasts than to deal with monophthong contrasts. And the more accurate perception
of high vowels compared with low vowels indicated a negative transfer effect for the
absence of some low vowels in Chinese, such as /e/, /æ/, /ʌ/, /ɔ:/, /ɔ/.

Moreover, participants showed variation on the perception of different consonant
contrasts caused by manner of articulation. Specifically, both on ACC and RT, liquid,
glide and stops were better perceived than affricatives, fricatives and nasals. This was
partly compatible with Yun’s study [12], which found that for Korean learners of
English, accuracy was much higher for stop contrasts than for fricatives. For Chinese
students, English stops could find their equivalents in Chinese language (/p/, /b/, /t/, /d/,
/k/, /g/) but some of fricatives (/v/, /h/, /ð/, /ʃ/, /ʒ/) were absent in Chinese. Those absent
phonemes demanded more efforts for them to learn their differences. Nasals (/m/, /n/, /
ŋ/), in spite of the equivalents in Chinese, were differently pronounced and sequenced
in English. As claimed by both Perceptual Assimilation Model [23] and Speech
Learning Model [24], L2 sounds which are similar to those in L1 but not quite identical
are predicted to cause the greatest difficulty in acquisition. Therefore Chinese students
found it terribly hard to perceive the subtle difference of these phonemes from one
another.

Although no significant perception difference between high-frequency words
(HFW) and low-frequency words (LFW) was found for all the interested contrasts,
there was interaction between phoneme category and word frequency for subcategories,
suggesting word frequency effect on L2 phoneme perception. It was verified to be
influential for simple words were better perceived than difficult ones with different
vowel categories and consonant categories. The easier identification of high-frequency
words could be explained with Logogen Model [25], for high-frequency words would
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require less stimulus information for the count to rise above the threshold. However,
Hwang and Lee [18] found that the perception of vowel phonemic contrasts was not
affected by word familiarity. This might be due to the fact that most of the words used
in their study were simple vocabulary in our study.

Importantly, the interactions were mainly revealed between phoneme category and
word familiarity, suggesting more crucial impact of the task effects. This implies
learners’ ability to acquire accurate L2 perception so long as they adopt the apt strategy
and have sufficient practice.

Pedagogically, high accuracy of HPG reminded us of the importance of association
while improving L2 learners’ listening ability, processing information from up to
down. L2 learners are supposed to facilitate listening comprehension based on context
and upper level association and guessing, instead of making endeavor to catch every
phonological sound. Moreover, it is strongly proposed that L2 learners should construct
L2 phonetic and phonological system at the threshold, conscious of the similarities and
differences between L1 and L2, both systematically and trivially. Since L2 perception
relies on neuromechanism for sensing both natural sound and meaningful utterance of
human beings, and neuromechanism for processing L2 sound develops gradually until
its complete formation, instructors need to assist them build L2 perception neu-
romechanism. Finally, the word frequency effect can be a basis for L2 learners to
expand the circumference of vocabulary and do more practice on high-frequency key
words.
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Abstract. This paper presents a unified model to perform language and
speaker recognition simultaneously and together. This model is based on
a multi-task recurrent neural network, where the output of one task is
fed in as the input of the other, leading to a collaborative learning frame-
work that can improve both language and speaker recognition by sharing
information between the tasks. The preliminary experiments presented
in this paper demonstrate that the multi-task model outperforms similar
task-specific models on both language and speaker tasks. The language
recognition improvement is especially remarkable, which we believe is
due to the speaker normalization effect caused by using the information
from the speaker recognition component.

1 Introduction

Language recognition (LRE) [1] and speaker recognition (SRE) [2] are two impor-
tant tasks in speech processing. Traditionally, the research in these two fields
seldom acknowledges the other domain, although there are a number of shared
techniques, such as SVM [3], the i-vector model [4–7], and deep neural models [8–
16]. This lack of overlap can be largely attributed to the intuition that speaker
characteristics are language independent in SRE, and dealing with speaker vari-
ation is regarded as a basic request in LRE. This independent processing of
language identities and speaker traits, however, is not the way we human beings
process speech signals: it is easy to imagine that our brain recognizes speaker
traits and language identities simultaneously, and that the success of identifying
languages helps discriminate between speakers, and vice versa.

A number of researchers have noticed that language and speaker are two
correlated factors. In speaker recognition, it has been confirmed that language
mismatch indeed leads to serious performance degradation for speaker recogni-
tion [17–19], and some language-aware models have been demonstrated success-
fully [20]. In language recognition, speaker variation is seen as a major corruption
and is often normalized in the front-end, e.g., by VTLN [21,22] or CMLLR [23].
These previous studies suggest that speaker and language are inter-correlated
factors and should be modelled in an integrated way.
c© Springer Nature Singapore Pte Ltd. 2018
J. Tao et al. (Eds.): NCMMSC 2017, CCIS 807, pp. 58–69, 2018.
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This paper presents a novel collaborative learning approach which models
speaker and language variations in a single neural model architecture. The key
idea is to propagate the output of one task to the input of the other, resulting in a
multi-task recurrent model. In this way, the two tasks can be learned and inferred
simultaneously and collaboratively, as illustrated in Fig. 1. It should be noted
that collaborative learning is a general framework and the component for each
task can be implemented using any model, but in this paper, we have chosen
to make use of recurrent neural networks (RNN) due to their great potential
and good results in various speech processing tasks, including SRE [9,24] and
LRE [15,22,25,26]. Our experiments on the WSJ English database and a Chinese
database of a comparable volume demonstrate that the collaborative training
method can improve performance on both tasks, and the performance gains on
language recognition are especially remarkable.

In summary, the contributions of this paper are: firstly, we demonstrate that
SRE and LRE can be jointly learned by collaborative learning, and that the col-
laboration benefits both tasks; secondly, we show that the collaborative learning
is especially beneficial for language recognition, which is likely to be due to the
normalization effect of using the speaker information provided from the speaker
recognition component.

SRE
Neural model

LRE
Neural model

Front-end

Speaker
identities

Language
identities

Fig. 1. Multi-task recurrent model for language and speaker recognition.

The rest of the paper is organized as follows: we first discuss some related
work in Sect. 2, and then present the collaborative learning architecture in
Sect. 3. The experiments are reported in Sect. 4, and the paper is concluded
in Sect. 5.

2 Related Work

This collaborative learning approach was proposed by Tang et al. for addressing
the close relationship between speech and speaker recognition [27]. The idea of
multi-task learning for speech signals has been extensively studied, e.g., [28,29],
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and more research on this multi-task learning can be found in [30]. The key dif-
ference between collaborative learning and traditional multi-task learning is that
the inter-task knowledge share is on-line, i.e., results of one task will impact other
tasks, and this impact will be propagated back to itself by the feedback connec-
tion, leading to a collaborative and integrated information processing framework.

The close correlation between speaker traits and language identities is well
known to both SRE and LRE researchers. In language recognition, the con-
ventional phonetic approach [31,32] relies on the compositional speech recog-
nition system to deal with the speaker variation. In the HMM-GMM era,
this often relied on various front-end normalization techniques, such as vocal
track length normalization (VTLN) [21,22] and constrained maximum likeli-
hood linear regression (CMLLR) [23]. In the HMM-DNN era, a DNN model
has the natural capability to normalize speaker variation when sufficient train-
ing data is available. This capability has been naturally used in i-vector based
LRE approaches [33,34]. However, for pure acoustic-based DNN/RNN methods,
e.g., [14,15], there is limited research into speaker-aware learning for LRE.

For speaker recognition, language is often not a major concern, perhaps due
to the widely held assumption that speaker traits are language independent.
However from the engineering perspective, language mismatch has been found
to pose a serious problem due to the different patterns of acoustic space in
different languages, according to their own phonetic systems [17–19]. A simple
approach is to train a multi-lingual speaker model by data pooling [17,18], but
this approach does not model the correlation between language identities and
speaker traits. Another potential approach is to treat language and speaker as
two random variables and represent them by a linear Gaussian model [35], but
this linear Gaussian assumption is perhaps too strong.

The collaborative learning approach benefits both tasks. For SRE, the lan-
guage information provided by LRE helps to identify acoustic units that the
recognition should focus on, and for LRE, the speaker information provided
by SRE helps to normalize the speaker variation. It is important to note that
the models for these two tasks are jointly optimized, and the information are
transmitted from both tasks during decoding. This means that the collaborative
learning is collaborative in both model training and inference.

3 Multi-task RNN and Collaborative Learning

This section first presents the neural model structure for single tasks, and then
extends this to the multi-task recurrent model for collaborative learning.

3.1 Basic Single-Task Model

For the work in this paper we have chosen a particular RNN, the long short-term
memory (LSTM) [36] approach to build the baseline single-task systems for SRE
and LRE. LSTM has been shown to deliver good performance for both SRE [9]
and LRE [15,22,25]. In particular, the recurrent LSTM structure proposed in [37]
is used here, as shown in Fig. 2, and the associated computation is as follows:
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it = σ(Wixxt + Wirrt−1 + Wicct−1 + bi)
ft = σ(Wfxxt + Wfrrt−1 + Wfcct−1 + bf )
ct = ft � ct−1 + it � g(Wcxxt + Wcrrt−1 + bc)
ot = σ(Woxxt + Worrt−1 + Wocct + bo)

mt = ot � h(ct)
rt = Wrmmt

pt = Wpmmt

yt = Wyrrt + Wyppt + by.

Fig. 2. Basic recurrent LSTM model for LRE and SRE single-task baselines.

In the above equations, the W terms denote weight matrices and the b terms
denote bias vectors. xt and yt are the input and output vectors; it, ft, ot represent
the input, forget and output gates respectively; ct is the cell and mt is the cell
output. rt and pt are the two output components derived from mt, in which rt is
recurrent and used as an input of the next time step, while pt is not recurrent and
contributes to the present output only. σ(·) is the logistic sigmoid function, and
g(·) and h(·) are non-linear activation functions, often chosen to be hyperbolic.
� denotes the element-wise multiplication.

3.2 Multi-task Recurrent Model

The basic idea of the multi-task recurrent model, as shown in Fig. 1, is to use
the output of one task at the current time step as an auxiliary input into the
other task at the next step. In this study, we use the recurrent LSTM model to
build the LRE and SRE components, and then combine them with a number of
inter-task recurrent connections. This results in a multi-task recurrent model,
by which LRE and SRE can be trained and inferred in a collaborative way.
The complete model structure is shown in Fig. 3, where the superscripts l and s
denote the LRE and SRE task respectively, and the dashed lines represent the
inter-task recurrent connections.
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A multitude of possible model configurations can be selected. For example,
feedback information can be extracted from the cell ct or cell output mt, or from
the output component rt or pt; the feedback information can be propagated to
the input variable xt, the input gate it, the output gate ot, the forget gate ft,
or the non-linear function g(·).

Fig. 3. Multi-task recurrent learning for LRE and SRE.

Given the above alternatives, the multi-task recurrent model is rather flex-
ible. The structure shown in Fig. 3 is one simple example, where the feedback
information is extracted from both the recurrent projection rt and the non-
recurrent projection pt, and propagated to the non-linear function g(·). Using
the feedback, the computation for LRE is given as follows:

ilt = σ(W l
ixxt + W l

irr
l
t−1 + W l

icc
l
t−1 + bli)

f l
t = σ(W l

fxxt + W l
frr

l
t−1 + W l

fcc
l
t−1 + blf )

glt = g(W l
cxxl

t + W l
crr

l
t−1 + blc + W ls

crr
s
t−1 + W ls

cpp
s
t−1)

clt = f l
t � clt−1 + ilt � glt

olt = σ(W l
oxxl

t + W l
orr

l
t−1 + W l

occ
l
t + blo)

ml
t = olt � h(clt)
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rlt = W l
rmml

t

plt = W l
pmml

t

yl
t = W l

yrr
l
t + W l

ypp
l
t + bly

and the computation for SRE is given as follows:

ist = σ(W s
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3.3 Model Training

The model can be trained ‘completely’, where each training sample is labelled by
both speaker and language, or ‘incompletely’ where only one task label is avail-
able. Our previous research has demonstrated that both cases are suitable [27].
In this preliminary study, we have focused on using ‘completely’ training. The
natural stochastic gradient descent (NSGD) algorithm [38] is employed to train
the model.

4 Experiments

This section first describes the data profile, and presents the baseline systems.
Finally, experimental results of our collaborative learning approach are given.

4.1 Data

Two databases were used to perform the experiment: the WSJ database in
English and the CSLT-C300 database in Chinese1. All the utterances in both
databases were labelled with both language and speaker identities. The develop-
ment set involves two subsets: WSJ-E200, which contains 200 speakers (24, 031
utterances) selected from WSJ, and CSLT-C200, which contains 200 speakers

1 This database was collected by our institute for commercial usage, so we cannot
release the wave data, but the Fbanks and MFCCs in the Kaldi format have been
published online. See http://data.cslt.org. The Kaldi recipe to reproduce the results
is also available there.

http://data.cslt.org
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(20, 000 utterances) selected from the CSLT-C300 database. The development
set was used to train the i-vector, SVM, and multi-task recurrent models.

The evaluation set contains an English subset WSJ-E110, which contains 110
speakers selected from WSJ, and a Chinese subset CSLT-C100, which contains
100 speakers selected from the CSLT-C300 database. For each speaker in each
subset, 10 utterances were used to enrol its speaker and language identity, and
the remaining 13, 236 English utterances and 9, 000 Chinese utterances were used
for testing. For SRE, the test is pair-wised, leading to 13, 236 target trials and
1, 442, 724 imposter trials in English, plus 9, 000 target trials and 891, 000 Chi-
nese imposter trials. For LRE, the number of test trials is the same as the number
of test utterances, which is 13, 236 for English trials and 9, 000 for Chinese trials.

4.2 LRE and SRE Baselines

Here, we first present the LRE and SRE baselines. For each task, two baseline
systems were constructed, one based on i-vectors (still state-of-the art), and
the other, based on LSTM. All experiments were conducted with the Kaldi
toolkit [39].

i-vector Baseline. For the i-vector baseline, the acoustic features were 39-
dimensional MFCCs. The number of Gaussian components of the universal back-
ground model (UBM) was 1, 024, and the dimension of the i-vectors was 200.
The resulting i-vectors were used to conduct both SRE and LRE with differ-
ent scoring methods. For SRE, we consider the simple Cosine distance, as well
as the popular discriminative models LDA and PLDA; for LRE, we consider
Cosine distance and SVM. All the discriminative models were trained on the
development set.

The results of the SRE baseline are reported in Table 1, in terms of equal
error rate (EER). We tested two scenarios, one is a Full-length test which uses
the entire enrolment and test utterance; the other is a Short-length test which
involves only 1 second of speech (sampled from the original data after voice
activity detection is applied). In both scenarios, the language of each test is
assumed to be known in advance, i.e., the tests on English and Chinese datasets
are independent.

LRE is an identification task, with the purpose to discriminate between
two languages (English and Chinese). We therefore use identification error rate
(IDR) [40] to measure performance, which is the fraction of the identification
mistakes in the total number of identification trials. For a more thorough com-
parison, the number of identification errors (IDE) is also reported. The results
of the i-vector/SVM baseline system are reported in Table 2.

r-vector Baseline. The r-vector baseline is based on the recurrent LSTM struc-
ture shown in Fig. 2. The SRE and LRE systems use the same configurations: the
dimensionality of the cell was set to 1, 024, and the dimensionality of both the
recurrent and non-recurrent projections was set to 100. For the SRE system, the
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Table 1. SRE baseline results.

Test System Dataset EER(%)

Cosine LDA PLDA

Full i-vector English 0.88 0.70 0.62

Chinese 1.28 0.97 0.84

r-vector English 1.25 1.38 3.57

Chinese 1.70 1.61 4.93

Short i-vector English 7.00 4.01 3.47

Chinese 9.12 6.16 5.69

r-vector English 3.27 2.70 7.88

Chinese 4.77 3.99 8.21

Table 2. LRE baseline results.

Test System IDR(%) IDE

Full i-vector/Cosine 3.43 763

i-vector/SVM 0.01 2

r-vector/Cosine 0.11 25

r-vector/SVM 0.21 47

r-vector/Softmax 0.13 29

Short i-vector/Cosine 10.21 2270

i-vector/SVM 1.40 311

r-vector/Cosine 0.98 218

r-vector/SVM 0.63 139

r-vector/Softmax 0.58 129

output corresponds to the 400 speakers in the training set; For LRE, the output
corresponds to the two languages to identify. The output of both projections
were concatenated and averaged over all the frames of an utterance, resulting
in a 200-dimensional ‘r-vector’ for that utterance. The r-vector derived from the
SRE system represents speaker characters, and the r-vector derived from the
LRE system represents the language identity.

As in the i-vector baseline, decisions were made based on distance between r-
vectors, measured by either the Cosine distance or some discriminative models.
The same discriminative models as in the i-vector baseline were used, except
that in the LRE system, the softmax outputs of the task-specific LSTMs can be
directly used to identify language. The results are shown in Tables 1 and 2 for
SRE and LRE, respectively.

The results in Table 1 show that for SRE, the i-vector system with
PLDA performs better than the r-vector system in the Full-length test. How-
ever, in the Short-length test, the r-vector system is clearly better. This is
understandable as the i-vector model is generative and relies on sufficient data
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to estimate the data distribution; the LSTM model, in contrast, is discrimina-
tive and the speaker information can be extracted with even a single frame.
Moreover, the PLDA model works very well for the i-vector system, but rather
poor for the r-vector system. We estimate that this could be due to the unreli-
able Gaussian assumption for the residual noise by PLDA. A pair-wised t-test
confirms that the performance advantage of the r-vector/LDA system over the
i-vector/PLDA system is statistically significant (p < 1e−5).

The results in Table 2 show a similar trend, that the i-vector system (with
SVM) works well in the full-length test, but in the short-length test, the r-
vector system shows much better performance, even with the simple Cosine
distance. Again, this can be explained by the fact that the i-vector model is
generative, while the r-vector model is discriminative. The advantage of the r-
vector model on short utterances has previously been observed, both for LRE [15]
and SRE [10].

4.3 Collaborative Learning

The multi-task recurrent LSTM system, as shown in Fig. 3, was constructed by
combining the LRE and SRE r-vector systems, with inter-task recurrent con-
nections augmented. Following research in [27], we selected the output of the
recurrent projection layer as the feedback information, and tested several con-
figurations, where the feedback information from one task is propagated into
different components of the other task. The results are reported in Tables 3 and 4
for SRE and LRE, where i, f, o denotes the input, forget and output gates, and
g denotes the non-linear function.

Table 3. SRE results with collaborative learning.

Feedback Input EER(%)

Full Short

i f o g Eng. Chs. Eng. Chs.

r-vector Baseline 1.38 1.61 2.70 3.99√
1.27 1.43 2.50 3.61√
1.38 1.38 2.55 3.52√
1.19 1.31 2.48 3.66√
1.37 1.48 2.67 3.52√ √ √ √
1.32 1.31 2.52 3.69

The results show that collaborative learning provides consistent performance
improvement on both SRE and LRE, regardless of which component the feed-
back is applied to. The results show that the output gate is an appropriate
component for SRE to receive the feedback, whereas for LRE, the forget gate
seems a more suitable choice. However, these observations are based on rela-
tively small databases. More experiments on large data are required to confirm
and understand these observations. Finally, it should be highlighted that the
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Table 4. LRE results with collaborative learning.

Feedback Input IDE

Full Short

i f o g Cosine SVM Softmax Cosine SVM Softmax

r-vector Baseline 25 47 29 218 139 129√
5 2 0 11 6 2√
1 0 0 3 1 1√

11 2 0 21 8 3√
0 0 1 2 2 1√ √ √ √
6 2 0 17 10 2

collaborative training provides very impressive performance gains for LRE: it
significantly improves the single-task r-vector baseline, and beats the i-vector
baseline even on the full-length task. This is likely to be because the LRE model
trained with the limited training data is largely disturbed by the speaker varia-
tion, and the language information provided by the SRE system plays a valuable
role of speaker normalization.

5 Conclusions

This paper proposed a novel collaborative learning architecture that performs
speaker and language recognition as a single and unified model, based on a multi-
task recurrent neural network. These preliminary experiments demonstrated that
the proposed approach can deliver consistent performance improvement over the
single-task baselines for both SRE and LRE. The performance gain on LRE is
particularly impressive, which we suggest could be due to the effect of speaker
normalization. Future work involves experimenting with large databases and ana-
lyzing the properties of the collaborative mechanism, e.g., trainability, stability
and extensibility.
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Abstract. As the first very step to activate speech interfaces, wake-up word
detection aims to achieve a fully hand-free experience by detecting a specific
word or phrase to activate the speech recognition and understanding modules.
The task usually requires low-latency, highly accurate, small-footprint and
easily migratory to power limited environment. In this paper, we describe the
creation of HelloNPU, a publicly-available corpus that provides a common
testbed to facilitate wake-up word detection research. We also introduce some
baseline experimental results on this proposed corpus using the deep KWS
approach. We hope the release of this corpus can trigger more studies on
small-footprint wake-up word detection.

Keywords: Keyword spotting � Wake-up word detection
Deep neural network

1 Introduction

Thanks to the rapid development of deep learning based speech recognition in recent
years [1], speech has become a major interface between user and various smart devices.
As the first step to activate speech interfaces, wake-up word detection, a special case of
keyword spotting (KWS), aims to use a specific word or phrase to activate down-stream
speech recognition and understanding modules with a fully hand-free experience. All
well-known speech services, such asGoogleAssistant, Apple Siri,Microsoft Cortana and
Amazon Alexa, all use a simple wake-up phrase. Comparing with wake-up word
detection, typical KWS systems focus on finding the predefined words in speech with the
help of a filler model [2–4]. These shortcomings make the traditional KWS systems
difficult to be applied inmodern embedded systems. There is no doubt that both KWS and
wake-up word detection aim to construct a hand-free interface, but the latter task has
harsher requirements, e.g., low-latency, highly accurate, small-footprint and easily
migratory to power limited environment, like mobile and embedded devices.

Recently, deep neural networks (DNN) have been successfully used in
small-footprint wake-up word detection [5–7]. For example, Chen et al. have proposed
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a small-footprint deep KWS approach that uses a simple DNN to score the keyword
labels and a “rubbish” label [5]. The various publically available speech recognition
corpora are able to support traditional LVCSR-based KWS research which aims to
detect a set of predefined words in the audio stream. However, to the best of our
knowledge, there is no open dataset for small-footprint wake-up word detection
research. Experiments in the literature were conducted using different datasets that were
not accessible for general researchers [5–7]. To bridge the gap, in the paper, we
describe the creation of HelloNPU, a dataset that provides a common testbed that can
facilitate small-footprint wake-up word detection research.

Besides introducing the details of the corpus, we present some baseline wake-up
word detection results. The popular deep KWS approach [5] is used as the baseline
system. We hope the release of this corpus can trigger more studies on wake-up word
detection.

2 Related Work

There is an extensive literature in the KWS re-search which aims to detect predefined
keywords from an audio stream [5–9]. But many proposed approaches are not designed
for small-footprint wake-up word detection applications. Instead, they aim to search the
appearances of the keywords from large speech databases. Subsequently, these
approaches usually assume offline processing of speech and search on the lattices of an
LVCSR. Another competitive approach that may fit the wake-up task is the
keyword-filler model [2–4], in which the keyword-filler topology includes a key-word
model and a filler model, both modeled by hidden Markov models (HMMs). At run-
time, Viterbi decoding is usually used.

Neural networks have been introduced to the KWS task many years ago [10, 11]
and have shown some improvements over the HMM approach. However, these KWS
approaches are not specifically designed for wake-up word detection as they need to
process the entire speech utterance and detection latency is unavoidable. Recently,
neural networks have re-emerged as a powerful tool for modeling speech. Deep neural
networks (DNN) have been success-fully used in many tasks, such as speech recog-
nition [12–14] and synthesis [15]. Motivated by the success of DNN, Chen et al. have
recently pro-posed a simple discriminative KWS approach based on DNN, which
perfectly matches the small-footprint and low-latency wake-up task. In this Deep KWS
approach, similar to the classic keyword-filler topology, a DNN is trained directly to
predict the posteriors of the keyword(s) and the filler. In contrast with the HMM
approach, this approach does not need sequent search, leading to simpler implemen-
tation, smaller computation and memory footprint. As wake-up decisions are made
every 10 ms, the latency is limited to 10 ms.

Followed by the success of Deep KWS, more complex neural network models, e.g.,
convolutional neural networks (CNN) and the combination of CNN and recurrent
neural networks, namely CRNN, have been introduced to KWS [6, 7]. To use
DNN-based wake-up detection in low-resource devices, model compression and
computation acceleration are also studied [16, 17]. Since wake-up detection is usually
used in real-world challenging scenarios, e.g., far-field speech interfaces with noise
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interference and reverberation, some recent studies have focused on the robustness of
KWS using multi-style [18] and multi-task learning [19].

3 The Corpus

In this paper, we propose HelloNPU, a Mandarin dataset especially designed for
wake-up word detection research. The corpus is available at http://kingline.
speechocean.com/exchange.php?id=16814&act=view. The dataset was collected from
college students at Northwestern Polytechnical University, Xi’an, China. It contains
speech from 113 student speakers with 66 males and 47 females, aged between 18 and
25 years old. All of them speak Chinese Mandarin, but some may have accents from
different provinces. We developed an Android APP to collect speech, and installed it
on various Android phones. Speakers were asked to read the prompted text and to
upload the speech to a server. In order to simulate the real talking scenarios, we did not
make restrictions on the recording scenes. Hence speech was collected in both quiet
environments (laboratory, office, etc.) and noisy environments (dormitory, campus,
canteen, etc.).

For each speaker, we asked them to read 40 sentences in total. Each sentence is
composed as three parts: a head keyphrase, a random sentence (from a set of 2000) in
the middle and a tail keyphrase. The first 20 sentences start with the keyphrase
“ ” and ends with the keypharse “Hello ”. The two keyphrases are
switched for the rest 20 sentences. We manually checked all the collected utterances
and removed some that did not meet our requirements. Finally, we collected 4,450
utterances from different types of Android phones with a total duration of 10.2 h.
Figure 1 is the pie chat that shows the time durations of the two keyphrases and middle
sentences. Figures 2 and 3 shows two samples of speech clips recorded in quiet and
noisy environments, respectively.

Fig. 1. The percentage of different portions in audio speech in the corpus
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Although the corpus is initially designed for wake-up detection, it also can be easily
used for speaker verification or recognition task for both text dependent and text
independent conditions. The two keyphrases can be segmented out for the use in the
text-dependent task while the rest can be used for the text-independent task.

4 Deep KWS System

We implement a popular small-footprint wake-up word detection system, Deep KWS
[5] to achieve some baseline KWS results on the proposed HelloNPU dataset.
According to [5], the framework of the system is shown in Fig. 4. Please note that only
“Hello ” is used as the wake-up phrase in our system for simplicity and the system
can be easily extended to detect multiple keyphrases.

4.1 Feature Extraction

Since low-level feature is more effective for DNN acoustic modeling [5], we use
40-dimentional filter-bank as the acoustic feature, computed every 10 ms over a
window of 25 ms. To model the context, 10 future frames and 30 past frames are
stacked as the DNN input.

Fig. 2. A speech clip sample recorded in quiet environment

Fig. 3. A speech clip sample recorded in noisy environment (noise in low frequency)
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4.2 Deep Neural Network

The DNN model is a standard feed-forward fully-connected network with stacked
filter-bank feature as input. In the KWS task, modeling units can be subwords (e.g.,
phonemes). However, according to [5], word units are also quite effective and the
model parameters are reduced accordingly as compared with subwords modeling units.
Hence the output of the network are the posteriors of three targets: “Hello”, “ ” and
Rubbish.

4.3 Posterior Handling

After obtaining the framewise DNN posteriors pij for the ith label and the jth frame, we
can improve the detection performance through a posterior handing module. Specifi-
cally, posterior smoothing is achieved by

p0ij ¼
1

j� hsmooth þ 1

X j

k¼hsmooth
pik ð1Þ

where p0ij is the smoothed posterior of original DNN posterior pik and hsmooth ¼
maxf1; j� wsmooth þ 1g is for regulating the smoothing window. Then we calculate the
confidence score at jth frames with

confidence ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Yn�1

i¼1
maxhmax � k� j piik

n�1

r

ð2Þ

Here, we use confidence score as the criterion to make the final decision, where
hmax ¼ maxf1; j� wmax þ 1g ensures that the result is reliable enough in the sliding
window. According to [5], wsmooth is set to 30 frames and wmax is set to 10 frames.

We implement the above deep KWS approach using an Android APP. The
screenshot is shown in Fig. 5, in which the posteriors of the three labels and the
confidences are drawn in curves with different colors.

Fig. 4. The deep KWS system. From left to right: feature extraction, DNN for wakeup word and
filler modeling and posterior handling.
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5 Data Augmentation

Because data collection is a time-consuming task, we only collect a small dataset with
about 10 h of speech. DNN is able to learn robust and variability-irrelevant models
with sufficient data from different training examples. Hence, we use typical data
augmentation strategy and multi-style training [20] to train robust DNN models.
Specifically, according to [20], we simulate some far-field speech data from the original
data as the augmentation for model training.

Far-field speech data typically consists of reverberated speech and point-source
noises. We generate simulated far-field speech using the following equation:

xr t½ � ¼ x t½ � � hs t½ � þ
X

i
ni t½ � � hi t½ � ð3Þ

where x[t] is the input speech signal, hs[t] is the room impulse responses (RIRs)
corresponding to the speaker position, ni[t] is the point-source noise and hi[t] is the
RIRs corresponding to the point-source noise. The noise corpus we used are the same
as [5], and point-source portion of this corpus is collected from the MUSAN [21]
corpus.

In our experiments, we convolute a random RIR signal to the original audio signal,
and then add a point-source noise on it. Signal Noise Ratio (SNR) was randomly
chosen from 0, 5, 10, 15, 20 dB.

Fig. 5. Screenshot of the Android APP for wake-up word detection. (Color figure online)
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6 Experimental Results

We used a simple DNN with 3 hidden layers and 128 hidden nodes per layer. Rectified
linear unit (ReLU) activation function was used in the hidden layer and softmax
function in the last layer. The loss function is cross entropy.

The training, cross-validation and testing sets in the experiments are shown in
Table 1. The training and cross-validation sets are used for DNN training and
parameter tuning while the testing set is used for performance evaluation of wake-up
phrase detection. Please note that the test set is composed of a positive subset that has
395 utterances embedded with the wake-up word “Hello ” from 10 speakers and a
negative subset that has the same 395 utterances from the 10 speakers and extra 3465
utterances from outside 112 speakers. The DNN target labels (Hello, and rubbish)
are generated by forced alignment using an LVCSR trained by 500 h of speech data.

We use receiver operating characteristic (ROC) curve to evaluate the performance,
where X-axis and Y-axis denotes the false alarm and false reject rates, respectively. The
closer to the central point; the better the detection performance. We also calculate the
false rejected rate at the point false alarm rate equals to 0.5% as one single criterion for
performance evaluation.

First, we test the minimum number of frame window (N) for keyword spotting, i.e.,
if continuous N frames whose confidence in Eq. (2) exceeds the threshold, a keyword is
spotted. The ROC curves for different N are shown in Fig. 6. We see that the per-
formance is not sensitive to N. So we keep N = 5 for the rest of the experiments
(Fig. 7).

We test four cases:

• Original training set + Clean test: this is the baseline results based on the original
training and testing sets in Table 1.

• Augmented training set + Clean test: the training set is composed of original
3702 utterances in the training set in Table 1 and another 3702 utterances with data
augmentation; the test set is the original set in Table 1.

• Original training set + Noise test: this is the mismatched case. The DNN is
trained using the original training set in Table 1 and tested with the noise set created
by reverberant and noise contamination on the test set in Table 1.

• Augmented training set + Noise test: the DNN is trained by the augmented
training set and tested with the noise set.

Table 1. The training, cross-validation and testing sets in the experiments.

Speakers Utterances

Training set 94 3702
Cross-validation set 9 353
Positive test set 10 395
Negative test set 10 + 112 395 + 3465
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Results are summarized in Fig. 6 and Table 2. We can clearly see that data aug-
mentation significantly improve the performance. At 0.5% FA rate, the FR rate is
reduced from 0.0253 to 0.0076. We believe that part of the speech samples in our
corpus are recorded at some different noisy and reverberant environments (e.g., canteen

Fig. 6. ROC curves when frame window equals to 5, 10 and 20.

Fig. 7. ROC curves for four training and testing conditions.

Table 2. False rejected rate when FA equals 0.5%

Original training set Augmented training set

Clean test 0.0253 0.0076
Noise test 0.2810 0.0987
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and dormitory) and augmented data has covered these environments to some extent.
We also notice that in the mismatched case, i.e., model trained using original data and
tested at noisy reverberant conditions, performance encounters a major degradation.
The FR rate is increased from 0.0253 to 0.2810 at 0.5% FA rate. Finally, when the
DNN is trained by the augmented training set and tested with the noise set, the per-
formance is clearly improved to 0.0987 at 0.5% FA rate.

7 Conclusion

In this paper, we introduce a corpus for small-footprint wake-up word detection. We
also provide some baseline experimental results on this corpus using a recent popular
DNN-based KWS approach. The aim of the corpus is to trigger more studies on
small-footprint KWS as it becomes more and more important with the privilege of
speech-enabled smart devices. Note that in real scenarios, the acoustic environments
are rather complicated. More data coverage may be desired to achieve a robust model.
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Abstract. In this paper we investigate the performance of Multitask learning
(MTL) for the combined model of Convolutional, Long Short-Term Memory
and Deep neural Networks (CLDNN) for low resource speech recognition tasks.
We trained the multilingual CNN model followed by the MTL using the DNN
layers. In the MTL framework the grapheme models are used along with the
phone models in the shared hidden layers of deep neural network in order to
calculate the state probability. We experimented with universal phone set
(UPS) and universal grapheme set (UGS) in the DNN framework and a com-
bination of both UPS and UGS for further accuracy of the overall system. The
combined model is implemented on Prediction and Correction (PAC) model
making it a multilingual PAC-MTL-CLDNN architecture. We evaluated the
improvements on AP16-OLR task and using our proposed model we get 1.8%
improvement on Vietnam and 2.5% improvement on Uyghur over the baseline
PAC model and MDNN system. We also evaluated that extra grapheme mod-
eling task is still efficient with one hour of training data to get 2.1% improve-
ment on Uyghur over the baseline MDNN system making it highly beneficial for
zero resource languages.

Keywords: MTL � Multilingual speech recognition
Human computer interaction � Uyghur first section

1 Introduction

It is believed that humans can only hear the sound of a spoken language when it is
heard along with other graphemes, the lexical contexts and its resemblance or differ-
ence from other languages.

Deep neural networks (DNN) [5–8] have overcome the previous techniques of
HMM/GMM [1–4] in multilingual speech recognition. Recently, Long short-term
memory recurrent neural networks (LSTM-RNNs) [30] and Convolutional neural
networks (CNNs) [10] have shown quite a lot of improvements on the multilingual
speech recognition task. A combined model for all of these three techniques is shown
in [11–13]. Among them [13] proposed a multitask learning (MTL) approach to
construct a static decoding network encoding the multiple context-dependent state
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inventories from the distinct acoustic models. Our MTL combined model is adopted
from [8] in which the difference is that our model performs the MTL on DNN and we
combined it with PAC-CLDNN but [8] just performs the MTL on the shared hidden
layers of DNN.

Prediction and Correction (PAC) previously used the LSTM RNN and DNN
technique to predict the posterior probability by using the stack bottleneck (BN) fea-
tures from the prediction DNN and used it as an input to the correction DNN [11, 30].
In our work the difference from [30] is that we concatenated the multilingual CNN
model with the PAC model to improve the estimation of the phonetic models of a
low-resource language by learning other related task(s) together in the DNN layer. If
each task shares the same inputs and the respective internal representation, we jointly
learn the related tasks so that we can improve the generalization performance of each
specific task. In our proposed method it is the mapping between the ordinary and the
supplementary tasks in the MTL framework. Furthermore, if a number of low resource
languages are to be learned together, we derive a UPS among the languages and use the
UPS learning as an additional task in the learning of the multilingual phonetic models.
The UPS learning not only implicitly encodes an indirect mapping among the phones
of all the involved languages, but also serves as a regularizer for the learning of the
phonetic models of each language [8].

Multitask learning is an approach driven from machine learning to improve the
overall performance of the learning tasks by jointly learning multiple related tasks
together. MTL has been applied successfully in many speech, language, image and
vision tasks with the use of neural network (NN) because the hidden layers of an NN
naturally capture learning knowledge that can be readily transferred or shared across
multiple tasks. For example, [14] applies MTL on a single convolutional neural net-
work to produce state of the art performance for several language processing predic-
tions; [15] improves intent classification in goal oriented human-machine spoken
dialog systems which is particularly successful when the amount of labeled training
data is limited; in [16], the MTL approach is used to perform multi-label learning in an
image annotation application.

As in [30], IARPA-Babel corpus is used entirely focusing on low resource lan-
guages. For our case we used AP16-OLR corpus [17] particularly focusing on multi-
lingual speech recognition tasks. We use Uyghur and Vietnam as our target language.
The reason of choosing Uyghur as a target language is because it has resemblances
with the Oriental languages. To our best knowledge multi-tasking and multilingual
speech recognition techniques are applied to Uyghur language.

Uyghur is the southeastern Turkic language which is spoken by ten million people
in China and the neighboring countries such as Kazakhstan, Kirghizstan [18]. It is
influenced primarily by Persian and Arabic and recently by Mandarin Chinese and
Russian.

The rest of the paper is structured in a way that Sect. 2 shows the combined
PAC-MTL-CLDNN architecture. Section 3 shows the experimental setup. Section 3.3
shows the results and the evaluation of the tasks. Section 4 is followed by conclusion
and references.
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2 PAC-MTL-CLDNN Combined Architecture

2.1 Model Structure

As for the overall architecture of our PAC-MTL-CLDNN model, shown in Fig. 1, we
adopted the PAC model from [30]. The major difference from [30] is that in our work
inside each prediction and correction frame we use MTL-CLDNN model.

The correction MTL-CLDNN calculates the state posterior probability [30]. Similar
input features are used for prediction MTL-CLDNN. The FC layer of the correction
MTL-CLDNN model depends on the FC layer of the prediction MTL-CLDNN model
that creates the recurrent loop. The contextual window size is adopted from [30] and
they are also set to 10 for the correction MTL-CLDNN and 1 for the prediction
MTL-CLDNN. As in [30], the frame cross-entropy (CE) criterion is used. As proposed
in [19] for the prediction MTL-CLDNN we used the phoneme label for prediction
targets.

2.2 Multilingual CNN Model

Convolutional neural networks after being widely used in computer vision [20, 21]
made their way towards speech recognition [22, 23]. Our model is adopted from the
multilingual VBX network defined earlier in [10]. The difference is that we use two
untied FC layers and combine it with the convolutional layer (CV). Frames of input
features along with the contextual vectors are applied as an input to the network. Each
frame is 40 dimensional log-mel feature and the kernel size is set to 3 * 3. The stride is
set as similar to the pooling size. With the help of convolutions we reduced the size of
the feature maps and the padding is applied in the highest layers of the network. The
weights and biases for all the languages are not the same. They are all concatenated in
the fully connected layers. In the multilingual CNN framework these both FC layers act

Fig. 1. Overview of PAC-MTL-CLDNN (UPS+UGS) architecture
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as the multilingual shared hidden layers. We untie the FC layers except the last two
layers and combine the last two layers with the convolutional layers with max-pooling
after every two convolutional layer.

Another difference from [30] is that we concatenated the LSTM layers with the FC
layers of CNN. The framework of LSTM is followed from [24]. As mentioned in
earlier work [30] that two layers of LSTM give better performance. We also stick with
the same and used two layers of LSTM.

2.3 Multitask Learning DNN Model

The output of the LSTM is passed to the multilingual MTLDNN layers. Our model for
DNN is adopted from [8]. The difference from [8] is that the input is a linear layer
concatenated with the FC layers of the CNN framework. Second difference is that the FC
layers are already the phone models so we experimented with the grapheme model of the
specific language to get the evaluation of that language. As in [8] we also used the phone
models along with grapheme models as the supplementary task to make a MTL
framework. We also created a universal grapheme set (UGS) and a universal phone set
(UPS) by taking the unions of the grapheme sets of all the languages which are under
investigation. UGS and UPS for the Uyghur language were generated from [28].

2.4 Multi-scale Features

Our aim is to add more information from all multiple languages and use it for further
processing without increasing the computation cost. In order to fulfill this need we
create different strides on the input window with the help of down sampling. This
process is only required at the first conv layer. The parameters are small for the rest of
the conv layers so this technique is not required at the other steps.

As for the combination of the conv layers with the DNN layers we add a linear
layer to reduce the parameters. The addition of linear layer is seen in [11] but in that it
concatenates CNN with LSTM but in our case it is used to combine shared CNN with
DNN layers.

2.5 Joint Acoustic Modeling with UPS and UGS

We propose to use a set of universal phone/grapheme (UPS/UGS) as a supplementary
learning task along with the phone model training of multiple low resource languages.
From the Optimization point of view UPS is used as a regularizer for the phonetic
modeling of all the involved languages. From the language point of view it will let the
multilingual MTL-DNN to encode a mapping among the phones of all the languages.
Trigrapheme models seem to outperform the triphone models with the smaller amount
of data. But this performance disappears when full training set was used. This finding
helps us to support the use of UGS as an additional task in MTL-DNN framework.
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3 Experiment

3.1 Database and Task

AP16-OL7 database comprises of seven different languages from East, Northeast, and
Southeast Asia with the main focus on the multilingual Speech Recognition of the
Oriental languages [25]. The database is a collaboration between the center of speech
and language technologies (CSLT) at the Tsinghua University and Speechocean. For
our evaluation we are going to consider 10 h of training set and approximately one
hour of speech from the full training set of each language. All are reading style,
recordings from the mobile phones with sampling rate as 16 kHz and sample size as 16
bits. We also keep it into consideration that the number of utterances for each speaker
remains the same. In addition to that we used THUYG-20 database [26] for Uyghur
training. From this database we selected 10 h of training data approx. All are sampled
at 16 kHz with sampling size of 16 bits.

3.2 Setup

The proposed training methods were evaluated on two low resource languages i.e.
Vietnam and Uyghur. The evaluation shown in Table 1 comprises of complete 10 h of
speech data. The configuration of the multilingual CNN is written in Sect. 2. As for the
configurations of the DNN model we used 3 hidden layers and 2000 nodes per layer
and were trained from 9 consecutive frames. The weights of the hidden layers were
initialized by unsupervised pre-training a deep belief network (DBN) of the same
architecture [27]. The DBN was configured with the stacking of RBM layers on top of
each other and the training was performed layer by layer.

During the pre-training stage, mini-batch size was kept steady at 128 (input vectors)
with the momentum of 0.5 employed at the beginning which was then increased to 0.9
after 5 iterations. After pre-training, a softmax layer was placed on top of the DBN to
get the final model of DNN. This DNN is now a feed forward MLP which is further
trained with stochastic gradient descent (SGD). The DNN framework was fine-tuned
with a learning rate of 0.02 and was halved with the passage of time due to the
performance gain at 0.5%.

Table 1. Shows the WER% of multilingual systems trained on the 10 h of training data.

System Vietnam Uyghur

MDNN 8.9 7.6
MCNN 7.7 6.5
MCDNN 7.5 6.3
PAC-MCLDNN 7.4 5.8
PAC-MTL-MCLDNN-UGS 7.6 5.6
PAC-MTL-MCLDNN-UPS 7.3 5.3
PAC-MTL-MCLDNN (UPS+UGS) 7.1 5.1
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The output layer in the MTL-DNN consists of two separate softmax layers one for
grapheme and other one from phonemes. For each training sample, two error signals
one from each tasks softmax layer were propagated back to the hidden layers. The
learning rate remains the same for the output layer but for the input we set it to half.

Two different sets of experiments were performed with the difference in the size of
the training data so that we can get the evaluation on the limited amount of data.

3.3 Results and Evaluation

This section presents the experimental results of our study. We trained phone based
standalone models of MCNN and MDNN with different initializations. MDCNN
models and a combined PAC-MCLDNN model with the concatenation of LSTM/RNN
are also trained with the same configurations. After that we trained another set of
experiments in which we turn by turn add UPS and UGS as an additional task to the
combined model. This addition was in the DNN layers forming a MTL framework.
These UPS and UGS were again combined in the proposed network of
PAC-MTL-MCLDNN making it PAC-MTL-MCLDNN (UPS+UGS).

We modified the DNN framework by including the universal grapheme set
(UGS) as the modeling units. We simply take the unions of all the graphemes involved
in these observational languages. As shown in Table 2 the performance drops when we
observed with 1 h of training data. We see a relative improvement of 2.4% in the
PAC-MTL-MCLDNN (UPS+UGS) framework. Another observation is that UGS
performs well with Uyghur language when we have small amount of training data.
UGS seems to be useful method for Uyghur language. It shows us that it’s a better
solution for low-resource language ASR.

MDNN was used as a baseline system for our experiments. We performed the
experiments on MCDNN. As we are resourced with other language in AP16-OLR
corpus we will take an advantage to improve the low-resource languages by exploiting
the relationship between phones from multiple languages via a universal phone set in
the MTL framework without directly defining the mapping between them.

Numerous techniques on multilingual ASR derive the International Phonetic
Alphabet (IPA) or a compact universal phone set (UPS) which is generated by merging
the phones in the IPA with the same ASCII format. During multilingual acoustic

Table 2. Shows the WER% of multilingual systems trained on 1 h of small training data.

System Vietnam Uyghur

MDNN 10.2 8.9
MCNN 8.9 7.5
MCDNN 8.7 7.4
PAC-MCLDNN 8.4 7.2
PAC-MTL-MCLDNN-UGS 8.1 6.8
PAC-MTL-MCLDNN-UPS 7.9 6.3
PAC-MTL-MCLDNN (UPS+UGS) 7.8 6.2
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modeling, phones available from different languages with the same UPS phonetic
symbol will share their training data. Due to this reason we will unite their phone sets
by removing all the duplicates from them to build a UPS. This is the supplementary
task along with DNN framework which makes it MTL-DNN network.

In the end we combined both the UGS and UPS as the extra learning task in the
MTL-DNN framework. In our joint modeling of UPS and UGS the weights are learned
in the output layer of the particular language that are determined by learning the
weights in the output layer of UPS and UGS. We saw that reducing the training data to
1 h decreased the improvement in the system. The decrease was 1.3% in the MDNN
baseline system, 1.0% in PAC-MCLDNN system and 0.7% in the
PAC-MTL-MCLDNN (UPS+UGS) system.

This combined network outperforms from the improved PAC-MCLDNN by 0.6%
and from the baseline model of MDNN by 2.4%. This gives us the evaluation that MTL
is a powerful learning method when the relationship between the languages inside a
single corpus is very strong.

This framework further reduces the WER of the overall model. Consistent per-
formance gain is observed for both the larger and smaller training sets in both the tasks.
The results demonstrated that MTL performed well in the DNN framework that works
well in the combination system. The generalization effect of MTL-DNN training also
gives us the observation that the framework performs better on the unseen data. Hence
we may conclude that the extra grapheme modeling task is still very effective with an
hour of training data. We conceive that this method is highly beneficial for zero
resource languages.

4 Conclusion

We believed that the future ASR systems have many compositional components and
recurrent feedbacks and they are able to make predictions, corrections and adaptations
by themselves. They can judge the number of speakers and then focus on some specific
speaker by removing the background noise and other speakers from it. This framework
was proposed just to keep this idea in mind.

In this paper, we propose a number of architectures. One is the improvement to the
prediction and correction (PAC) model by the addition of multilingual CNN model
making it PAC-MCLDNN network. Another is the addition of MTL in the DNN layers
of the PAC-MCLDNN network. We carefully sort out the related tasks and utilize
positive relationships among them based on our common knowledge. This MTLDNN
framework comprises of UPS/UGS prediction as the supplementary task in the
PAC-MCLDNN network leading to a PAC-MTL-MCLDNN-(UPS+UGS) system. Our
final model outperforms the MDNN model by 2.5% on the full training data and 2.1%
on one hour of data. In particular, we found the involvement of UGS in one hour of
data as an improvement in the overall system giving a room for the research in
low-resource ASR.
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Abstract. Mobile devices have limited computing power and limited memory.
Thus, large deep neural network (DNN) based acoustic models are not well
suited for application on mobile devices. In order to alleviate this problem, this
paper proposes to compress acoustic models by using knowledge transfer. This
approach forces a large teacher model to transfer generalized knowledge to a
small student model. The student model is trained with a linear interpolation of
hard probabilities and soft probabilities to learn generalized knowledge from the
teacher model. The hard probabilities are generated from a Gaussian mixture
model hidden Markov model (GMM-HMM) system. The soft probabilities are
computed from a teacher model (DNN or RNN). Experiments on AMI corpus
show that a small student model obtains 2.4% relative WER improvement over a
large teacher model with almost 7.6 times compression ratio.

Keywords: Model compression � Knowledge transfer
Deep neural networks � Automatic speech recognition

1 Introduction

Deep neural networks (DNNs) have recently showed state-of-the-art performance in
automatic speech recognition (ASR) tasks [1–6]. They have become the dominant
acoustic modeling approach for large vocabulary continuous speech recognition. With
a wide use of mobile devices, the industry has strong interests in utilizing DNN based
models on devices, such as mobile phones and smart watches. However, these devices
have limited computing power and limited memory. Unfortunately, top-performing
systems usually use very deep and wide acoustic models with many parameters [4–6].
One drawback of such large models is time consuming at calculating posteriors.
Another is that having large amounts of parameters results in high memory demanding.
So large acoustic models are not well suited for application on mobile device
applications.
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There are several attempts in the literature to address this problem at decoding
stage. These approaches can be roughly classified into the following categorizations:
low rank matrix [7–10], frame skipping [11, 12], vector quantization [13, 14],
Kullback-Leibler (KL) divergence [15, 16], knowledge distillation [17–19] and hashing
tricks [20]. The above mentioned approaches are able to either achieve faster calcu-
lating posteriors speed or have a smaller memory footprint. However, few of them can
achieve significant compression without any accuracy loss.

This paper proposes to use knowledge transfer to compress large acoustic models
without performance loss for mobile devices. The concept of knowledge distillation has
been around for a decade [17, 18]. A more general framework is proposed by Hinton
et al. [19] to transfer knowledge efficiently by using high temperature. At a high level,
distillation involves training a new model, which is called a student model. The student
model is trained to mimic the output distribution of a well-trained model which is
called a teacher model. Inspired by the KLD-regularized model adaptation [21–23], we
treat the output probability distribution of a large teacher model as a regularization term
to generalize a small student model. The student model is trained with a linear inter-
polation of hard probabilities and soft probabilities to learn generalized knowledge
from the teacher model. The hard probabilities are generated from a Gaussian mixture
model hidden Markov model (GMM-HMM) system. The soft probabilities are com-
puted from the teacher model using a forward pass. The experiments are conducted on
RASC863 and AMI corpus. The results show that the proposed method can compress
model without accuracy loss. Moreover, results on AMI corpus demonstrate that a
small model obtains about 2.4% relative WER improvement over a large model with
almost 7.6 times compression ratio.

The rest of the paper is organized as follows. Section 2 briefly discusses some
related work. Section 3 describes the proposed compression method. Section 4 intro-
duces the framework of the proposed method. Section 5 presents the experiments. The
results are discussed in Sect. 6. This paper is concluded in Sect. 7.

2 Related Work

There are a few attempts to compress models using knowledge distillation. The work
[15, 16] trains a small DNN model by utilizing KL divergence to minimize the output
of the two models. The small model is trained only with the soft probabilities. The
method [19] is proposed to distill a single model from ensemble of models with high
temperature. Most recently, the work [25] is to distill ensembles of models into a single
model using KL divergence. In computer vision tasks, the work [24] is proposed to
train deeper and thinner networks using hints training with output and intermediate
information.

However, our work focuses on compressing a large acoustic model into a small
acoustic model. Our approach is inspired by the KLD-regularized model adaptation
[21]. The compression is performed not at a high temperature but at a temperature of 1.
The student model is trained with an interpolation of hard probabilities and soft
probabilities to learn generalized knowledge from the teacher model.
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3 Proposed Compression Method

The KLD-regularized adaptation is first proposed in [21]. Inspired by the
KLD-regularized adaptation, this paper proposes to compress acoustic models with
knowledge transfer for mobile device applications.

This paper treats the output probability distribution of a large teacher model as a
regularization term to generalize a small student model. If the teacher model gener-
alizes well, the student model will generalize in the same way. This student model will
also obtain much better performance on the test set than the student model trained in
the normal way on the same training set.

The regularization term is added to the standard cross entropy loss function Lhard.
Given an input xij and an output label yij, the standard loss function Lhard is formulated
in Eq. (1).

Lhard ¼
X

i

X

j

tij log p yijjxij
� � ð1Þ

Where i is a sample id (frame id) in the training set and j denotes an output label id
(senone id), tij is the hard (true) probability for the output label yij, p yijjxij

� �

is the
posterior probability.

The regularized loss function is depicted as follow:

L ¼ ð1� qÞLhard þ q
X

i

X

j

qij log p yijjxij
� � ð2Þ

where q is the interpolation weight, qij is the soft (posterior) probability computed from
the teacher model with forward pass.

Equation (2) can be reorganized as:

L ¼
X

i

X

j

ðð1� qÞtij þ qqijÞ log p yijjxij
� � ð3Þ

L also can be defined:

L ¼
X

i

X

j

~tij log p yijjxij
� � ð4Þ

Therefore, we define:

~tij � ð1� qÞtij þ qqij ð5Þ

where ~tij is a linear interpolation of a hard probability tij and a soft probability qij.
The hard probability is a one-hot vector, such as [1 0 0 0]. The soft probability has

rank information for incorrect labels, like [0.9 0.01 0.02 0.07].
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By comparing Eqs. (1), (3) and (4), we can see that adding a regularization term to
the standard cross entropy loss function is equal to changing the target probability from
the hard probability tij to ~tij.

An excellent property of Eq. (5) is that the training of the student model can be
simply performed with normal back propagation algorithm. The only thing that needs
to be changed is the error signal at the output layer, which is now defined as a new
probability ~tij. Equation (5) shows that the student model is trained with the new
probability to learn generalized knowledge from the teacher model.

The interpolation weight can be adjusted, typically using a development set. When
the interpolation weight is set to 1, the student model is trained only with soft prob-
abilities. When the interpolation weight is set to 0, the student model is trained only
with hard probabilities.

4 Framework of the Proposed Method

The framework of the proposed method is shown in Fig. 1. All student models are
smaller than teacher models.

If a student model is trained with labeled data, hard probabilities are produced from
a GMM-HMM system. A large DNN or a recurrent neural network (RNN) based
acoustic model is trained as a teacher model. Then soft probabilities are computed from
the teacher model with a forward pass. A small DNN based student model is trained
with the probabilities, obtained by a linear interpolation of hard probabilities and soft
probabilities. We can see that the soft probability can provide more information than
the hard probability.

If a student model is trained with unlabeled data, soft probabilities are generated
from an existing large DNN or RNN based teacher model. Then the student model is
trained only with soft probabilities.

unlabeled data

teacher model
a large DNN/RNN

student model
a small DNN

soft probabilities

GMM-HMM

hard probabilities

hard probabilities

labeled data

linear
interpolation new probabilities

Fig. 1. The overview of the proposed framework.
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5 Experiments

To evaluate the proposed method, our experiments are conducted on two corpora:
RASC863 [26] and AMI [27]. The compression implementation is based on Kaldi
speech recognition toolkit [28].

The feature vector is a 40-dimensional filter bank (FBANK) energies calculated on
a 25 ms window every 10 ms. All the DNN models use a sliding context window of 11
consecutive speech frames as inputs. Bidirectional long short term memory (BLSTM)
RNN based models use a single frame as input. The language model (LM) is a 3-gram
LM. The used vocabulary has 80 K words and the decoder is based on weighted
finite-state transducers (WFST). The training terminates, if only a little improvement
between two epochs have been observed. The initial learning rate is set to 2� 10�3 and
8� 10�5 for DNN and BLSTM respectively.

In all experiments, L denotes the number of hidden layers. N denotes the number of
hidden nodes. Cmp. denotes the compression ratio for an acoustic model. Stor. denotes
the size of an acoustic model stored on the hard disk. Mem. denotes the size of an
acoustic model loaded in memory. RT100 denotes real-time factor assuming 100
frames/second.

5.1 Mandarin Corpus: RASC863

RASC863 is a Mandarin corpus which contains 4 regional accents, namely Chongqing,
Shanghai, Guangzhou and Xiamen. The training set has 25612 utterances about 50 h.
The development set has 2561 utterances about 5 h. The test set has 2676 utterances
about 5.5 h. There is no overlap among these data sets. The LM is trained on the
transcriptions of the training set about 2.6 M.

In order to develop methods to effectively compress large models, three group of
experiments are conducted on this corpus. Firstly, a large DNN model is trained with 4
hidden layers, 1024 hidden nodes and 2237 output nodes (senones). This model is used
as a teacher model (T-DNN).

Interpolation weight for compression
The first group of experiments are conducted to explore the relationship between the
interpolation weight and the performance of student models.

The large teacher model is T-DNN. The DNN based small student models are listed
in Table 1, denoted as S1, S2, S3, S4 and S5 respectively. The interpolation weight q is
set to 0.0, 0.2, 0.5, 0.8 and 1.0 for all student models. The weight is adjusted on the
development set.

Table 1. Student models with different depth and width.

Model S1 S2 S3 S4 S5

L 4 4 4 3 5
N 512 256 128 1024 256
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Table 2 presents WERs of the student models with different q. We can see that
when q is set to 0.0, all student models obtain the worst performance. When q is set to
0.8, all student models achieve the best performance. So q is set to 0.8 in the rest
experiments.

Width and depth for student models
This group of experiments explore how the performance of student models are affected
by their width and depth. The teacher model is T-DNN. There are four types of DNN
based student models described in Table 3: thinner, shallower, shallower & thinner and
deeper & thinner. The results of the experiments are listed in Table 3.

We can make some observations from Table 3. Reducing the number of neurons
per layer is more effective than completely removing a layer. We can obtain the highest
compression ratio 11.2, when L = 3 and N = 128. However, this results in a poor

Table 2. WERs (%) of five student models (S1-S5) with different interpolation weights on
RASC863 test set.

q S1 (%) S2 (%) S3 (%) S4 (%) S5 (%)

0.0 39.72 42.00 46.52 39.74 41.16
0.2 38.56 40.29 44.36 38.42 39.83
0.5 37.53 39.15 43.08 37.53 38.56
0.8 37.48 38.63 42.10 37.36 38.49
1.0 38.02 39.08 58.52 38.03 38.91

Table 3. Results for different types of student models on RASC863 test set.

Model L N WER (%) Cmp. Stor. Mem.

T-DNN 4 1024 38.62 – 46.0 M 102 M
S-thinner 4 512 37.48 2.3� 20.0 M 64 M

4 256 38.63 4.9� 9.3 M 33 M
4 128 42.10 10.2� 4.5 M 19 M

S-shallower 3 1024 37.36 1.1� 42.0 M 94 M
2 1024 37.99 1.2� 38.0 M 86 M
1 1024 40.13 1.4� 34.0 M 75 M

S-thinner shallower 3 512 37.95 2.4� 19.0 M 63 M
3 256 38.92 5.1� 9.1 M 32 M
3 128 42.34 11.2� 4.1 M 18 M

S-deeper thinner 5 256 38.49 4.8� 9.6 M 33 M
6 256 38.15 4.7� 9.8 M 34 M
7 256 38.03 4.1� 11.0 M 35 M
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performance for the model. When L = 5 and N = 256, the student model outperforms
the teacher model with 4.8 times compression ratio and only occupies 33 M memory.

Various teachers for a student model
This group of experiments are designed to explore the performance of a student model
guided by different teacher models. Inspired by the above experiments, we train a DNN
model with 5 hidden layers and 256 hidden nodes as the student model (S-DNN). There
are two teacher models: T-DNN and T-BLSTM. T-DNN is the same model as in the

experiments above. T-BLSTM is a BLSTM based teacher model. The size of two
teacher models is similar. T-BLSTM has 4 hidden layers and 560 cells. The output
layer consists of has 2237 nodes. The results are listed in Table 4.

Table 4 shows that two students model both outperform their teacher models with
4.8 times compression and occupy less memory. The student model guided by
T-BLSTM obtains the best performance with a WER is 35.05%. The student model
also decodes faster than the teacher model with a 1.57–1.80 times speedup.

5.2 English Corpus: AMI

The AMI is an English corpus which consists of 100 h meeting recordings including
close-talking and far-field microphones etc. We use the close-talking data which is
collected from individual headset microphones (IHM). In our experiments, acoustic
models are microphone independent. The training set has 108221 utterances, which
equals about 82 h. The development set has 13059 utterances about 9.5 h. The test set
has 12612 utterances about 8.5 h. There is no overlap among these data sets. The LM is
trained on the transcriptions of the training set about 7.9 M.

This group of experiments empirically investigate the benefits of our method by
comparing various student models trained only with hard probabilities (hard DNN), KL
[16] or our proposed knowledge transfer based method (KT).

Firstly, a DNN model is trained with 6 hidden layers, 2048 hidden nodes and 2687
output nodes. This DNN model is used as the teacher model (T-DNN). Motivated by
the above experiments, all student models are DNN based and have 4 hidden layers and
512 hidden nodes. The results of the student models are listed in Table 5.

Table 4. Results of a student model with different teacher models on RASC863 test set.

Model WER (%) RT100 Stor. Mem.

T-DNN 38.62 1.32 46.0 M 102 M
S-DNN 38.49 0.84 9.6 M 33 M
T-BLSTM 35.18 1.48 45.0 M 111 M
S-DNN 35.05 0.84 9.6 M 33 M
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Table 5 shows that our proposed method KT achieves the best performance and the
student model outperforms the teacher model. When the student models are only
trained with hard probabilities, the performance of the student models will decrease.
Although the performance of the method KL [16] is improved compared with hard
DNN model, it still has some accuracy loss against the teacher model T-DNN.

6 Discussions

The above experiments show that our proposed method is effective. We make some
interesting observations as follow.

When compressing models, reducing the width of the student model is more
effective than reducing the depth.

Since the output layer has a large number of output labels and depth leads more
abstract representations at a higher layer.

Increases in the accuracy of the teacher models yield similar increases in the
accuracy of the student model. Since the teacher model has higher accuracy, the student
model will correct more errors.

The performance will decrease, if the student model is trained only with hard
probabilities or soft probabilities. The student model will obtain better performance,
when the interpolation weight of soft probabilities is higher than hard probabilities.

Our proposed method on AMI corpus achieves the best performance and the stu-
dent model outperforms the teacher model with 7.6 times compression. This is because
the student model is trained with a linear interpolation of hard probabilities and soft
probabilities. If some labels of the student model have errors, the teacher model may
eliminate some of these errors. Meanwhile, if some probabilities of the teacher model
are incorrect, the student model may correct errors. However, the method KL [16] is
proposed to train the student model only with soft probabilities. Therefore, our method
is more effective.

7 Conclusions

This paper proposes a method to compress large acoustic models with knowledge
transfer for mobile devices. The small student model is trained with a linear interpo-
lation of hard probabilities and soft probabilities. Thus, the student model can learn the
generalized knowledge from the teacher model. If some labels of the student model

Table 5. Results of different types of student models on AMI test set.

Model WER (%) Cmp. Stor. Mem.

T-DNN 35.24 – 144 M 341 M
Hard DNN 37.17 7.6� 19 M 61 M
Hard DNN-sMBR 36.73 7.6� 19 M 61 M
KL [16] 35.95 7.6� 19 M 61 M
Proposed KT 34.42 7.6� 19 M 61 M
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have errors, the teacher model may eliminate some of these errors and vice-verse. The
experiments on RASC863 and AMI corpus show that our proposed method can
compress acoustic models without performance loss. In future work, we plan to reduce
the parameters of the output layer.
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Abstract. Recently, Deep Neural Network (DNN), which is a feed-
forward artificial neural network with many hidden layers, has opened a
new research direction for Speech Synthesis. It can represent high dimen-
sion and correlated features efficiently and model highly complex map-
ping function compactly. However, the research on DNN-based Mongo-
lian speech synthesis is still in blank filed. This paper applied the DNN-
based acoustic model to Mongolian speech synthesis firstly, and built a
Mongolian speech synthesis system according to the Mongolian charac-
ter and acoustic features. Compared with the conventional HMM-based
system under the same corpus, the DNN-based system can synthesize
better Mongolian speech than HMM-based system can do. The Mean
Opinion Score (MOS) of the synthesized Mongolian speech is 3.83. And
it becomes a new state-of-the-art system in this field.

Keywords: Mongolian · Text-to-Speech (TTS)
Acoustic model · Deep Neural Network (DNN)

1 Introduction

There are probably seven thousand languages in the world today [1]. However,
the study of the Text-to-Speech (TTS) system only focuses on a few major
languages, such as English, Chinese, Japanese, Spanish, Turkey and so on. Mon-
golian is a widely influential language in the world, with about six million users,
but there is less research on Mongolian TTS. Furthermore, Mongolian has its
own special characteristics. Its words consist of stem and suffix to form a large
number of words. Due to the limited training data of Mongolian TTS, the seri-
ous data sparseness problem were caused [2]. These make TTS for Mongolian
difficult.

TTS is also called speech synthesis. While for the Mongolian speech synthesis,
Ochir et al. proposed a Mongolian speech synthesis system based on waveform
concatenation [3]; Monghjaya conducted a research on the Mongolian speech
synthesis based on stem and affixes [4]; Aomin carried on a study on Mongolian
speech synthesis based on the prosodic [5]; Zhao used the HMM-Based methods
in the Mongolian speech synthesis [6]. These studies have made contribution

c© Springer Nature Singapore Pte Ltd. 2018
J. Tao et al. (Eds.): NCMMSC 2017, CCIS 807, pp. 99–108, 2018.
https://doi.org/10.1007/978-981-10-8111-8_10



100 R. Liu et al.

to the Mongolian speech synthesis, but the naturalness of Mongolian speech
synthesis is less than satisfactory.

Recently, Deep Neural Networks (DNNs) [7] have achieved significant
improvement in many machine learning areas. Motivated by the success of DNNs
in speech recognition [8], DNNs have been introduced to statistical parametric
speech synthesis in order to improve the performance of speech synthesis. Zen et
al. [9] showed that DNN-based acoustic models offer an efficient and distributed
representation of complex dependencies between contextual and acoustic fea-
tures. However, DNNs can be introduced to components other than acoustic
modeling in statistical parametric speech synthesis and it should be further inves-
tigated about how DNNs can be used in statistical parametric speech synthesis.

In this paper, we investigate how to use DNNs in Mongolian speech synthe-
sis. We introduce the concept of DNN acoustic model, for the first time, into the
Mongolian statistical parametric speech synthesis. By replacing decision-trees
with DNN, the effect of DNN acoustic model in statistical parametric speech
synthesis is investigated. The rest of this paper is organized as follows. Section 2
describes the Mongolian TTS system based on DNN. The experimental condi-
tions and results are shown in Sect. 3. Conclusions are presented in Sect. 4.

2 Mongolian TTS System Based on DNN

In this study, we build a Mongolian TTS system based on DNN. Figure 1 illus-
trates a block diagram of the system. It consists of training part and synthesis
part.

Fig. 1. A Mongolian TTS system framework based on DNN.

2.1 Training Part

At the training part, there are two models are trained in advance, including
a HMM-based duration model and a DNN-based acoustic model. In order to
complete the model training we need to do the following work:



Mongolian Text-to-Speech System Based on Deep Neural Network 101

Mongolian Text Analysis. Firstly, we use PRAAT Toolkit [10] to label the
speech data in order to align phoneme boundary, mark the corresponding Mongo-
lian phoneme name (from Mongolian Phoneme Set) and prosodic phrase bound-
ary. Next, both monophone alignment labels and full context labels are extracted
from the labeled files generated in the previous step according to the Mongolian
Question Set [6] designed expressly.

Fig. 2. Mongolian Phoneme Set.

The Mongolian Phoneme Set is described with 60 phonemes which include
35 vowels, 23 consonants, a silence tag and a pause tag as listed in Fig. 2.

Speech Analysis. In the following acoustic model training, output vector of
DNN consists of excitation part and spectral part. In this work, the frame-level
excitation parameter (Log fundamental frequency, LogF0) and the frame-level
spectral parameter (Mel-generalized cepstral coefficient, MGC) are extracted by
using the Speech Signal Processing Toolkit (SPTK) [11].

HMM-based Duration Model. Using the previous acoustic features and a
decision-tree based context clustering technique [12,13], states of the context
dependent HMMs are clustered, and the tied context dependent HMMs are
reestimated with the embedded training. Simultaneously, state durations are
calculated on the trellis which is obtained in the embedded training stage, and
modeled by Gaussian distributions. Finally, context dependent duration models
are clustered by using the decision-tree based context clustering technique.

DNN-based Acoustic Model. In the TTS research, DNN is used as an alter-
native of the HMM shown in Fig. 3. The input linguistic feature vector is con-
verted to an output acoustic vector directly. In this approach, frame-level input
linguistic features lt rather than phoneme-level ones are used. They include
binary answers to questions about linguistic contexts (e.g. is-current-phoneme-
vowel?), phoneme-level numeric values (e.g. the number of words in the phrase,
duration of the current phoneme), and frame-level numeric features (e.g. the rel-
ative position of the current frame in the current phoneme). The target acoustic
feature vector ot includes spectral and excitation parameters and their dynamic
features. The weights of DNN are trained using pairs of input and target features
extracted from training data at each frame by Back-Propagation.
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Fig. 3. DNN-based acoustic model.

2.2 Synthesis Part

In synthesis part, we first extract the contextual text feature from the given
Mongolian text, then use the trained duration model to predict the duration
and use the trained acoustic model to generate the acoustic features vector,
finally obtain the speech parameter so as to output the synthesized Mongolian
speech. We will explain in the following contents.

Mongolian Text Analysis. This part consists of a Latin transcriptions mod-
ule, coding correction module, grapheme to phoneme conversion (G2P) module,
syllable segmentation module, prosody phrase prediction module and a linguistic
features extraction module.

(1) Latin transcriptions & coding correction module
In Mongolian language, there is a phenomenon that many words have the same
presentation form but represent different words with different codes. Since typ-
ists usually input the words according to their representation forms and cannot
distinguish the codes sometimes, there are lots of coding errors in Mongolian
corpus. For example, the Mongolian word “ ” means “complete” when its
right code is “guiqed”, its other wrong code is “guiqad”, “huiqed” or “huiqad”.

In this work, we transform the Mongolian characters to their corresponding
Latin transcriptions (code), and merge the words with same presentation forms
by Intermediate characters [14] to correct the code.

(2) G2P module
Then we use the statistic-based Mongolian grapheme to phoneme (G2P) con-
version method [15] to generate Mongolian phoneme sequence.
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(3) Syllable segmentation module
In this step, we mark the syllable boundary inside Mongolian words according
to the rules, and obtain marked phoneme sequence.

(4) Prosody phrase prediction module
Mongolian prosodic phrase prediction is essential for generating higher natu-
ralness speech [16]. We predict and mark the prosodic phrase boundary in the
marked phoneme sequence by using Conditional Random Field (CRF) Model
[16,17].

(5) Linguistic features extraction module
Finally, we extract the linguistic features lt from the processed phoneme
sequences according to the Mongolian Question Set and obtained phone-level
frame length.

Take Mongolian sentence “ ” (means: I am a college stu-
dent) for example, Fig. 4 shows the above process. The red error code in the
text is corrected for the green right code. Each Mongolian word in the Figure is
separated by “#” and each Mongolian syllable is separated by “/”, the predicted
prosodic phrase boundary is marked by “%”.

Fig. 4. A sample of Mongolian Text Analysis process. (Color figure online)

Parameter Generation & Mongolian Waveform Synthesis. We feed the
input linguistic features into the trained acoustic model to generate the frame-
level acoustic features. Then a sequence of speech parameter including spectral
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and excitation parameters is determined using the (Maximum Likelihood Param-
eter Generation) MLPG algorithm [18]. Finally, a speech waveform is resynthe-
sized directly from the generated spectral and excitation parameters by using a
source-filter model [19].

In this work, we use hts engine [20] to construct the speech waveforms.

3 Experiments and Results

We implement the Mongolian TTS based on the HTS speech synthesis toolkit
[21] and use HMM and DNN to train the Acoustic Model.

3.1 Dataset

We build a phonetically and prosodically rich Mongolian speech synthesis corpus
consisting of 2,620 training utterances which contains about 2 h (90% as training
set and the rest as testing set) and 40 extra utterances for evaluation. The
material includes Mongolian daily expressions recorded by a female speaker.
Speech signals are sampled at 16 kHz, windowed by a 25-ms window shifted
every 5-ms. The annotation of the corpus is done by two Mongolian students
according to the Mongolian Phoneme Set.

3.2 Experiments Setup

In the baseline HMM-based Mongolian TTS system, five-state, left-to-right
HMM phone models, where each state is modeled by a single Gaussian, diagonal
covariance output distribution, are adopted. The phonetic and prosodic contexts
in Mongolian [6] are used as a Question Set in growing decision trees. To model
LogF0 sequences consisting of voiced and unvoiced observations, a multi-space
probability distribution (MSD) was used [22]. The number of questions for the
Mongolian decision tree-based context clustering was 693. The sizes of decision
trees in the HMM-based systems were controlled by changing the scaling fac-
tor for the model complexity penalty term of the Minimum description length
(MDL) criterion [23,24].

In the DNN-based Mongolian TTS system, the input linguistic features were
automatically extracted from the Mongolian Question Set, the derived context
information about the text were further encoded into a vector of 693 dimensions
as the input to the neural network. The output feature vector contains 35 MGC,
LogF0, their delta and delta-delta features and voiced/unvoiced flag, totally 109
dimensions (3 ∗ (35 + 1) + 1 = 109). Voiced/unvoiced flag is a binary feature
that indicates whether the current frame is voiced or not. To model LogF0
sequences by a DNN, the continuous F0 with explicit voicing modeling approach
was used. All silence frames from the training data are adjusted to 0.3 s to
reduce the computational cost. The sigmoid activation function was used for
hidden and output layers. Input features were normalised to the range of [0.01,
0.99] and output features were standardised to have zero mean and unit variance.
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Both input and output features of training data are trained by back-propagation
procedure with a “mini-batch” based stochastic gradient ascent algorithm. The
weights of the DNN were initialized randomly and a learning rate of 0.001 was
used. A single network which modeled both spectral and excitation parameters
was trained.

For the testing utterances, the DNN outputs is firstly fed into a parameter
generation module to generate smooth feature parameters with dynamic feature
constraints [18]. Finally, the Mongolian speech waveforms are synthesized using
the Source-Filter Model.

3.3 Evaluation

Objective and subjective measures are used to evaluate the performance of two
acoustic model on testing data.

Synthesis quality is measured objectively in terms of distortions between
natural test utterances of the original speaker and the synthesized speech. We
employ the root mean squared error (RMSE) of LogF0, and the RMSE of MGC
as the evaluation metric.

RMSE is commonly used to evaluate the mean error between generated
parameter and original parameter. We define it as following function

RMSE =

√
√
√
√

N∑

i

(log (fo(i)) − log (fe(i)))
2
/N (1)

Where N is total frames in all sentence, fo(i) is original F0 parameter, fe(i) is
estimated F0 parameter.

For HMM trainings, because of space limitations, this article does
not show the objective measures of different MDL factors (α =
16, 8, 4, 2, 1, 0.5, 0.375, 0.25). Based on these results, we find out that larger MDL
factors yield worse objective measures, and the best objective measures emerge
from this MDL factors with α = 1.

The results of objective measures of different structures (different number of
hidden layers: 1, 2, 3, 4, 5 and units per layer: 256, 512, 1024, 2048) in DNN
trainings are shown in Table 1. From the experimental results can be seen. For
MGC RMSE, the simplest DNN structures (1 ∗ 256) yields the best results. For
LogF0 RMSE, the best performance emerges from the DNN structures which is
2 ∗ 512.

For all structures, the simple DNN structures are better than the complex
structures and the performance of multiple layers can match the performance of
more units per layer.

To evaluate the naturalness of the synthesized Mongolian speech by HMM-
based TTS system and DNN-based TTS system, a subjective listening test was
conducted. The naturalness of the synthesized speech was assessed by the mean
opinion score (MOS) test method. In this evaluation, the total number of test
utterances was 40, which are synthesized by the best baseline HMM system
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Table 1. The objective measures of different structure in DNN.

DNN structure MGC RMSE LogF0 RMSE DNN structure MGC RMSE LogF0 RMSE

1 ∗ 256 21.643 3.421 1 ∗ 1024 22.235 3.435

2 ∗ 256 22.965 3.350 2 ∗ 1024 22.156 3.347

3 ∗ 256 22.449 3.353 3 ∗ 1024 23.941 3.393

4 ∗ 256 22.540 3.391 4 ∗ 1024 23.429 3.390

5 ∗ 256 22.391 3.371 5 ∗ 1024 23.476 3.395

1 ∗ 512 21.816 3.425 1 ∗ 2048 22.592 3.415

2 ∗ 512 21.895 3.341 2 ∗ 2048 22.254 3.359

3 ∗ 512 23.422 3.382 3 ∗ 2048 23.915 3.399

4 ∗ 512 23.740 3.389 4 ∗ 2048 23.490 3.393

5 ∗ 512 23.055 3.388 5 ∗ 2048 23.657 3.399

(α = 1), the simplest DNN system (1 ∗ 256), the most complex DNN system
(5 ∗ 2048), the best DNN system (1 ∗ 256, 2 ∗ 512). The subjects were four
Mongolian students in our research group. Speech samples were presented in
random order for each test sentence. In the MOS test, after listening to each
test sample, the subjects were asked to mark the sample a five-point naturalness
score (5: natural, −1: bad).

Figure 5 shows the subjective evaluation results. It can be seen from the figure
that the TTS system, with 2 ∗ 512 DNN structures, obtain the highest MOS.
Most DNN-based Mongolian TTS systems outperform HMM-based Mongolian
TTS system. Too simple or too complex network structure may not be able to
achieve good results. This result indicates that replacing the tree-based clustered
models into a reasonable DNN-based acoustic model is effective, and the best
DNN structure of Mongolian TTS system is 2 ∗ 512.

Fig. 5. MOS of the best baseline HMM system and DNN systems.
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4 Conclusions

DNN-based acoustic model has been applied firstly in this study for Mongolian
TTS. The results show that DNN performs better than HMM-based baseline
does in Mongolian TTS system. The experiment results show that reasonable
DNN is efficient and effective in representing high dimensional and correlated
features.

In future work, we will investigate the effect of DNNs in statistical paramet-
ric speech synthesis on larger Mongolian database. Besides, Recurrent Neural
Network (RNN) is used more frequently in TTS now [25–27]. We plan to explore
its power in the Mongolian acoustic model.
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Abstract. This paper presents a hidden Markov model (HMM)-based
Mandarin-Tibetan cross-lingual emotional speech synthesis by using an
emotional Mandarin speech corpus with speaker adaptation. We firstly
train a set of average acoustic models by speaker adaptive training with
a one-speaker neutral Tibetan corpus and a multi-speaker neutral Man-
darin corpus. Then we train a set of speaker dependent acoustic models of
target emotion, which are used to synthesize emotional Tibetan or Man-
darin speech, by speaker adaptation with the target emotional Mandarin
corpus. Subjective evaluations and objective tests show that the method
can synthesize both emotional Mandarin speech and emotional Tibetan
speech with high naturalness and emotional similarity. Therefore, the
method can be adopted to realizing an emotional speech synthesis with
exiting emotional training corpus for languages lacking emotional speech
resources.

Keywords: Mandarin-Tibetan cross-lingual emotional speech
synthesis · Hidden Markov model (HMM) · Speaker adaptive training
Mandarin-Tibetan cross-lingual speech synthesis
Emotional speech synthesis

1 Introduction

Emotional speech synthesis, which has strong potential in enhancing effective
communication between human and computers in spoken dialog systems [1],
has been a hot topic of research in recent years [2]. Emotional speech syn-
thesis mainly includes waveform unit selection method [3,4], prosodic feature
modification method [5] and statistical parametric speech synthesis method [6].
Each method has its advantages and disadvantages. The waveform unit selec-
tion method needs a large emotional speech database that is not easy to
establish [7–9]. The prosodic feature modification method realizes emotional
speech synthesis by modifying prosodic features that will reduce the quality of
synthesized speech [10]. The hidden Markov model (HMM)-based speech syn-
thesis can be successfully applied to scalability tasks by speaker adaptation
c© Springer Nature Singapore Pte Ltd. 2018
J. Tao et al. (Eds.): NCMMSC 2017, CCIS 807, pp. 109–121, 2018.
https://doi.org/10.1007/978-981-10-8111-8_11
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techniques and has been shown to significantly improve the perceived quality
of synthesized speech [11]. The HMM-based statistical parametric speech syn-
thesis can use interpolation [12], emotion vector multiple regression [13] and
adaptive techniques [14] to easily transform or modify the speaker’s style or
emotion. [1,15] proposed a HMM-based emotion transplantation method using
an adaptive algorithm based on constrained structural maximum a posterior
linear regression (CSMAPLR) to modify the parameters of the acoustic model
for achieving cross-lingual prosody conversion of different emotions. [16] uses
cross-lingual adaptation to obtain a set of lingual-independent acoustic models
to synthesize the speech of a new language to overcome the problem of speech
quality degradation caused by different language resources. According to these
characteristic of both cross-lingual prosody conversion and cross-lingual adap-
tation in the HMM-based speech synthesis, there is still room for synthesizing
emotional speech for languages lacking of speech resources.

One of the biggest problems for emotional speech synthesis is data acquisition
especially for minority languages such as Tibetan. Since Tibetan and Mandarin
all belong to the Sino-Tibetan family, these two languages have many similarities
on phonetics and linguistics. [17] has realized a Mandarin-Tibetan cross-lingual
speech synthesis using a large Mandarin corpus and a small Tibetan corpus.
Because different languages have similar emotion expression [18], our research is
focusing on the emotional cross-lingual speech synthesis by extending the work
in [17] to realize a Mandarin-Tibetan cross-lingual emotional speech synthesis.
Because of lacking emotional Tibetan corpus, we use a neutral Mandarin speech
corpus, a neutral Tibetan speech corpus, and an emotional Mandarin speech
corpus to realize emotional speech synthesis for both Mandarin and Tibetan.

2 Framework of Mandarin-Tibetan Cross-Lingual
Emotional Speech Synthesis

The framework of our work is shown in Fig. 1. We firstly use a multi-speaker
neutral Mandarin speech corpus and a one-speaker neutral Tibetan speech cor-
pus to train a set of mixed language average acoustic models by speaker adaptive
training (SAT). Then the speaker adaptation is applied to the average acous-
tic models with the multi-speaker emotional Mandarin speech corpus of target
emotion to train a set of speaker dependent average acoustic models of target
emotion for synthesizing Mandarin and Tibetan speech of target emotion.

During the training of the mixed language average acoustic models, the semi-
hidden Markov model (HSMM)-based SAT algorithm [14] is used to improve
the quality of the synthesized speech and reduce the influence of the differences
between languages and speakers. The linear regression equations of the duration
distribution and state outputs are shown in Eqs. 1 and 2,

�

d
s

i (t) = αsdi (t) + βs = Xi
s (t) ξi(t), ξ = [di, 1] (1)

�

o
s

i (t) = Asoi (t) + bs = Wi
s (t) ξi(t), ξ = [oi, 1] (2)
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Fig. 1. Framework of Mandarin-Tibetan cross-lingual emotional speech synthesis.

where,
�

d
s

i (t) is the speaker s’s mean vector of duration distribution,
�

o
s

i (t) is the
speaker’s mean vector of state output. X = [α, β], W = [A, b] is the duration
distribution and state outputs transformation matrices of the model. di is average
duration vector, oi is average observation vector.

In the paper, we use the constrained maximum Likelihood Linear Regres-
sion (CMLLR) [14] to train the context-dependent multi-space distribution hid-
den semi-Markov models (MSD-HSMM) for the average acoustics models. After
training the mixed language average acoustic models, the MSD-HSMM-based
CMLLR adaptation algorithm is applied to the multi-speaker emotional Man-
darin speech corpus to obtain a set of speaker dependent (SD) target emotional
acoustic models of mixed language for synthesizing emotional Mandarin and
Tibetan speech. The transformation equations of the state d and the feature
vector o under the state are shown in Eqs. 3 and 4,

pi(d) = N(d;αmi − β, ασi
2α) =

∣
∣α−1

∣
∣ N(αψ;mi, σi

2) (3)

bi(o) = N(o;Aui − b, A
∑

iA
T ) =

∣
∣A−1

∣
∣ N(Wξ;ui,

∑

i) (4)

where, ψ = [d, 1]T , ξ = [oT , 1], mi is mean duration distribution, ui is mean state
outputs,

∑

i is diagonal covariance matrix, X = [α−1, β−1] is transformation
matrix of the duration distribution probability density, W = [A−1, b−1] is linear
transformation matrix of the state outputs probability density.

The fundamental frequency, spectrum and duration parameters of speech
data can be transformed and normalized by HSMM-based adaptation algorithm.
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For adaptive data O of length T , the maximum likelihood estimation of Λ =
(W,X) can be transformed as shown in Eq. 5,

Λ̃ = (W̃ , X̃) = arg max
Λ

P (O |λ,Λ ) (5)

where, λ is the parameter set of HSMM.
Finally, the SD models are updated and modified by using the maximum a-

posteriori (MAP) algorithm [13]. For a given model λ, if the forward probability
and the backward probability are: αt(i) and βt(i), under the state i, the probabil-
ity kd

t (i) of its continuous observation sequence ot−d+1...ot is shown in Eq. 6,

kd
t (i) =

1
P (O |λ )

N∑

j=1
j �=i

αt−d(j)p(d)
t∏

s=t−d+1

bi(os)βt(i) (6)

MAP estimation is shown in Eqs. 7 and 8,

�

mi =
τm̄i +

∑T
t=1

∑t
d=1 Kd

t (i)d

τ +
∑T

t=1

∑t
d=1 Kd

t (i)d
(7)

�

ui =
ωūi +

∑T
t=1

∑t
d=1 Kd

t (i)
∑t

s=t−d+1 os

ω +
∑T

t=1

∑t
d=1 Kd

t (i)d
(8)

where, m̄i and ūi is mean vector after linear regression, τ and ω is the MAP
estimate parameter of the duration distribution and state outputs,

�

mi and
�

ui is
the weighted average MAP estimate value of adaptive vector m̄i and ūi.

3 Context-Dependent Labels

Mandarin and Tibetan have many similarities on linguistics and phonetics. Man-
darin and Tibetan are syllabically paced tonal languages. Each script can be
regarded as a syllable that is a composition of an initial followed by a final. Each
syllable carries its own tone to differentiate lexical or grammatical meaning.
Tibetan and Mandarin have same part-of-speech and prosodic structure. Man-
darin has 22 initials and 39 finals while Tibetan Lhasa dialect has 36 initials and
45 finals. Two languages can share 20 initials and 13 finals. We use all initials
and finals (a total of 38 initials and 71 finals) of Mandarin and Tibetan including
silence and pause as the synthesis unit of the context-dependent MSD-HSMMs.
We design a set of speech assessment methods phonetic alphabet (SAMPA) to
label initials and finals of both Mandarin and Tibetan. We also design a six level
context-dependent label format [17] for decision tree clustering by taking into
account the contextual features of unit, syllable, word, prosodic word, phrase,
and utterance as show in follows. We extend a question set (more than 3000
questions) designed for the HMM-based Mandarin speech synthesis by adding
the language-specific questions to cover all features of the Mandarin and Tibetan
cross-lingual full context-dependent labels.
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– unit level: the {pre-preceding, preceding, current, succeeding, suc-
succeeding} unit identity, position of the current unit in the current syllable.

– syllable level: the {initial, final, tone type, number of units} of the
{preceding, current, succeeding} syllable, position of the current syllable in
the current {word, prosodic word, phrase}.

– word level: the {POS, number of syllable} of the {preceding, current, suc-
ceeding} word, position of the current word in the current {prosodic word,
phrase}.

– prosodic word level: the number of {syllable, word} in the {preceding,
current, succeeding} prosodic word, position of the current prosodic word in
current phrase.

– phrase level: the intonation type of the current phrase, the number of the
{syllable, word, prosodic word} in the {preceding, current, succeeding} phrase.

– utterance level: whether the utterance has question intonation or not, the
number of {syllable, word, prosodic word, phrase} in this utterance.

4 Experiments

4.1 Experimental Conditions

We use 7 female speaker’s EMIME Mandarin speech database [19] as the neutral
Mandarin speech corpus in which each speaker records 169 training sentences.
A native female Tibetan Lhasa dialect speaker is invited to record 800 utter-
ances to build up a neutral Tibetan speech corpus in which 100 sentences are
randomly selected as the Tibetan testing set. We also use psychological methods
to stimulate the emotional speech by an inner stimulated situation. 9 female
Mandarin speakers who are not a professional actress are selected to record the
emotional speech in a sound proof studio. There are 11 kinds of emotions includ-
ing sadness, relax, anger, anxiety, surprise, fear, contempt, docile, joy, disgust
and neutral. Each speaker records 100 Mandarin sentences of one emotion. The
neutral speech is recorded firstly, and then the emotional speech. We select all
speaker’s utterances as the emotional training corpus, in which 100 utterances
are randomly selected as the testing sentences. All recordings are saved in the
Microsoft Windows WAV format as sound files (mono-channel, signed 16 bits,
sampled at 16 kHz). We use 5-state left-to-right context-dependent multi-stream
MSD-HSMMs.

To evaluate the influence of different training corpus on the synthesized
speech, the synthesized emotional Mandarin utterances and synthesized emo-
tional Tibetan utterances are marked as follows.

– MA1: the emotional Mandarin utterances that are synthesized from the
models trained with the multi-speaker neutral Mandarin speech corpus, one-
speaker neutral Tibetan speech corpus and 1 speaker emotional Mandarin
speech corpus.
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– MA9: the emotional Mandarin utterances that are synthesized from the
models trained with the multi-speaker neutral Mandarin speech corpus, one-
speaker neutral Tibetan speech corpus and 9 speakers emotional Mandarin
speech corpus.

– TA1: the emotional Tibetan utterances that are synthesized from the mod-
els trained with the multi-speaker neutral Mandarin speech corpus, one-
speaker neutral Tibetan speech corpus and 1 speaker emotional Mandarin
speech corpus.

– TA9: the emotional Tibetan utterances that are synthesized from the models
trained with the multi-speaker neutral Mandarin speech corpus, one-speaker
neutral Tibetan speech corpus and 9 speakers emotional Mandarin speech
corpus.

– TN9: the emotional Tibetan utterances that are synthesized from the mod-
els trained only with the one-speaker neutral Tibetan speech corpus and 9
speakers emotional Mandarin speech corpus.

Each category has 11 kinds of emotional speech. In each category, 100 sen-
tences are synthesized for each emotion. We synthesize a total of 5500 sentences
(100 sentences ∗ 11 emotions ∗ 5 categories). For one emotion, we randomly select
10 utterances from each category to consist of an evaluation set that includes
a total of 550 sentences (10 sentences ∗ 11 emotions ∗ 5 categories). We invite
9 Tibetan speakers and 9 Mandarin speakers as the subjects to evaluate the
emotional expression of synthesized Mandarin speech and Tibetan speech.

4.2 Language Similarity

We use the degradation mean opinion score (DMOS) test to evaluate the language
similarity of synthesized emotional speech. In the DMOS evaluation for Tibetan,
all the synthesized Tibetan emotional speech of evaluation set for each category
from each kind of emotion alone with its original neutral speech are used as a test-
ing group, which are a total of 660 utterances (330 original utterances + 10 utter-
ances ∗ 11 emotions ∗ 3 categories). In the DMOS evaluation for Mandarin, all the
synthesized Mandarin emotional speech of evaluation set for each category from
each kind of emotion alone with its original speech are used as a testing group,
which are a total of 440 utterances (220 original utterances + 10 utterances ∗ 11
emotions ∗ 2 categories). We randomly play 33 sets (11 emotions ∗ 3 categories) of
Tibetan testing files to the 9 Tibetan speaker subjects and randomly play 22 sets
(11 emotions ∗ 2 categories) of Mandarin testing files to the 9 Mandarin speaker
subjects in which the original speech is played firstly, and then the synthesized
emotional speech. Subjects need to score the speech files according to a 5-point
scale that uses the DMOS scoring standard in [20] by carefully comparing the lan-
guage similarity of the two speech files. The average DMOS scores of synthesized
Tibetan speech and Mandarin speech of 5 categories for all emotions are compared
in Table 1.

It can be seen from the Table 1 that the synthesized emotional speech is nearly
similar to the original languages. The average DMOS score of TA9 is high than
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Table 1. The average DMOS scores of synthesized Tibetan speech and Mandarin
speech of 5 categories for all emotions.

Synthesized speech DMOS

MA1 MA9 TA1 TA9 TN9

Sadness 4.1 4.3 4.1 4.1 3.9

Relax 4.5 4.5 4.3 4.4 4.3

Anger 4.2 4.3 3.9 4.1 3.9

Anxiety 3.7 4.1 3.8 4.2 3.4

Surprise 4.3 4.2 4.0 3.9 3.6

Fear 4.1 3.8 4.0 3.7 3.8

Contempt 4.0 4.1 4.4 4.2 3.9

Docile 4.6 4.6 4.7 4.6 4.2

Joy 3.9 4.0 4.1 4.2 3.7

Disgust 4.0 4.1 4.0 4.1 3.8

Neutral 4.6 4.7 4.7 4.7 4.3

Average 4.2 4.3 4.2 4.2 3.9

that of TN9, therefore the language similarity of synthesized emotional Tibetan
speech can be improved by mixing the neutral Mandarin training corpus. The
average DMOS scores for MA9 and TA9 did not change much compared to MA1
and TA1, therefore the language similarity of synthesized emotional Mandarin
speech and Tibetan speech has little affect with the increasing of the emotional
Mandarin training corpus.

4.3 Speech Quality

We use the mean opinion score (MOS) test to evaluate the speech quality of syn-
thesized emotional speech. In the MOS evaluation, we randomly play 33 sets (11
emotions ∗ 3 categories) of the synthesized Tibetan emotional speech evaluation
set to the 9 Tibetan speaker subjects and randomly play 22 sets (11 emotions ∗ 2
categories) of the synthesized Mandarin emotional speech evaluation set to the 9
Mandarin speaker subjects, which are a total of 550 utterances (10 utterances ∗ 11
emotions ∗ 5 categories). We require the subjects to carefully evaluate the qual-
ity of synthesized speech by scoring the naturalness of each synthesized emotional
speech according to a 5-point scale that uses the MOS scoring standard in [20].
After the completion of the MOS evaluation, also requires the subjects to make
an emotional description of the synthesized emotional speech. The average MOS
scores of each emotion of synthesized Tibetan and Mandarin speech from 5 cate-
gories are shown in Table 2.

We can see from Table 2 that the synthesized emotional speech has high
naturalness. The MOS score can be improved when we mixed the neutral training
corpus by comparing TA9 and TN9. When comparing MA1, TA1 and MA9, TA9,
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Table 2. The average MOS scores of synthesized Tibetan speech and Mandarin speech
of 5 categories for all emotions.

Synthesized speech MOS

MA1 MA9 TA1 TA9 TN9

Sadness 4.0 4.1 3.8 3.9 3.5

Relax 4.3 4.5 4.1 4.2 3.8

Anger 4.1 4.1 4.0 4.0 3.7

Anxiety 3.8 3.6 3.7 3.8 3.5

Surprise 3.7 3.9 4.2 4.1 3.7

Fear 3.9 4.0 3.6 3.6 3.5

Contempt 4.0 4.1 3.9 4.0 3.6

Docile 4.6 4.5 4.3 4.4 3.9

Joy 3.9 4.2 4.1 4.1 3.8

Disgust 4.1 4.0 3.8 4.0 3.7

Neutral 4.4 4.7 4.6 4.6 4.2

Average 4.1 4.2 4.0 4.1 3.7

we also found that the naturalness of synthesized emotional Mandarin speech
and Tibetan speech has little effect with increasing of the emotional Mandarin
training corpus.

4.4 Emotion Similarity

We use the emotional DMOS (EMOS) test to evaluate the emotional expression
of synthesized emotional speech. In the EMOS evaluation for Mandarin, all the
synthesized Mandarin emotional speech of evaluation set for each category from
each kind of emotion alone with its original emotional speech are used as a testing
group, which are a total of 440 utterances (220 original utterances + 10 utter-
ances ∗ 11 emotions ∗ 2 categories). We randomly play 22 sets (11 emotions ∗ 2
categories) of Mandarin testing files to the 9 Mandarin speaker subjects in which
the original emotional speech is played firstly, and then the synthesized emotional
speech. 9 Mandarin speaker subjects are asked to score the emotional expression
of speech according to a 5-point scale that uses the EMOS scoring standard in
Table 3 by comparing the emotional similarity between original emotional speech
and synthesized emotional speech. In the EMOS evaluation for Tibetan, because
we do not have the original Tibetan emotional speech, we only randomly play 33
sets (11 emotions ∗ 3 categories) of Tibetan evaluation set to the 9 Tibetan speaker
subjects, which are a total of 330 utterances (10 utterances ∗ 11 emotions ∗ 3 cat-
egories). 9 Tibetan speaker subjects are asked to score the emotional expression
of speech according to a 5-point scale that uses the EMOS scoring standard in
Table 3 by comparing the emotional similarity between the synthesized emotional
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Table 3. The evaluation standard of EMOS

Score Evaluation criteria

0–1 Emotional similarity is unknown, Bad

1–2 Emotional similarity is indistinct, Poor

2–3 Emotional similarity can be accepted, Medium

3–4 Emotional similarity is willing to accept, Good

4–5 Emotional similarity is very well, Excellent

Table 4. The average EMOS scores of synthesized Tibetan speech and Mandarin
speech of 5 categories for all emotions.

Synthesized speech EMOS

MA1 MA9 TA1 TA9 TN9

Sadness 3.4 4.5 3.7 4.3 4.3

Relax 3.8 4.4 3.9 4.1 4.1

Anger 3.3 3.7 3.5 3.5 3.4

Anxiety 3.1 3.6 3.4 3.3 3.1

Surprise 3.2 3.9 3.3 3.5 3.6

Fear 3.5 4.4 3.2 4.1 3.8

Contempt 3.0 4.2 2.8 3.9 3.7

Docile 4.4 4.6 4.3 4.5 4.3

Joy 3.4 4.1 3.0 3.7 3.8

Disgust 3.3 4.0 2.6 3.7 3.6

Neutral 4.5 4.7 4.6 4.5 4.4

Average 3.5 4.2 3.5 3.9 3.8

speech and the experience of emotional expression in their real life. The average
EMOS scores are shown in Table 4.

We can see from Table 4 that the emotional expression of synthesized speech
is nearly similar with the original languages’ emotion. The average EMOS score
of MA9 and TA9 are high than that of MA1 and TA1. Therefore, the emotion
similarity of synthesized emotional Mandarin speech and Tibetan speech can be
improved by increasing the emotional Mandarin training corpus. By comparing
TA9 and TN9, we can see that there is a little change in the emotion similarity
between the synthesized emotional Tibetan speech and Mandarin speech when
we mixed the neutral training corpus. This suggests that mixed neutral corpus
has little effect on the emotional expression.
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4.5 Objective Evaluation

Because we have only the emotional Mandarin corpus, we only analyze the root
mean square error (RMSE) of duration, fundamental frequency and spectral cen-
troid for the synthesized Mandarin emotional speech as shown in Table 5. From
the Table 5, we can see that the RMSE of duration, fundamental frequency and
spectral centroid for the category MA9 are lower than that of MA1. This indi-
cates that the duration, fundamental frequency and spectral centroid of the syn-
thesized emotional Mandarin speech is closer to the original emotional Mandarin
speech with the increasing of the Mandarin emotional training corpus. From the
average RMSE of duration, fundamental frequency and spectral centroid we can
see that the proposed Mandarin-Tibetan cross-lingual emotional speech synthe-
sis can also synthesize better emotional Mandarin speech by mixed-language
training corpus. From the Table 5, we can see that the RMSE of duration, fun-
damental frequency and spectral centroid are quite diversion for the synthesized
Mandarin emotional speech of different emotions. The RMSE of duration, fun-
damental frequency and spectral centroid for all emotions are not the same. The
RMSEs for neutral is the smallest. This is because we use the speaker adap-
tation with a emotional Mandarin speech corpus of target emotion to modify
the neutral mixed-lingual average acoustic models for obtaining a set of speaker
dependent mixed-lingual average acoustic models of target emotion.

Because there is no original Tibetan emotional corpus, we can’t analyze the
RMSEs of duration, fundamental frequency and spectral centroid for the synthe-
sized Tibetan emotional speech. We compare the pitch contours of all emotional

Table 5. The RMSE of duration (marked as durRMSE), the RMSE of fundamen-
tal frequency (marked as f0RMSE) and the RMSE of spectral centroid (marked as
scRMSE) for the synthesized emotional Mandarin speech.

Synthesized speech durRMSE (s) f0RMSE (Hz) scRMSE (Hz)

MA1 MA9 MA1 MA9 MA1 MA9

Sadness 1.03 0.86 20.64 17.73 28.95 21.28

Relax 0.41 0.34 35.47 31.32 41.29 38.89

Anger 0.82 0.73 58.53 55.46 118.67 100.41

Anxiety 0.44 0.24 79.58 74.71 94.78 85.88

Surprise 0.71 0.46 43.27 42.25 102.31 79.81

Fear 0.87 0.67 38.42 35.67 91.32 48.49

Contempt 0.55 0.38 37.25 34.42 23.77 14.75

Docile 0.49 0.39 23.76 18.95 35.34 29.59

Joy 0.65 0.43 48.71 48.43 107.15 94.74

Disgust 0.78 0.57 49.17 47.91 125.57 87.82

Neutral 0.27 0.22 17.84 17.25 26.23 20.46

Average 0.64 0.48 41.15 38.55 72.31 56.56
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Fig. 2. The pitch contour of the synthesized emotional Tibetan speech.

utterances that is synthesized with a same Tibetan sentence from the category
TA9 as shown in Fig. 2. We can see that the pitch contours of the synthesized
emotional Tibetan speech are all different from that of the neutral speech. This
indicates that the proposed Mandarin-Tibetan cross-lingual emotional speech
synthesis can affect the fundamental frequency of the synthesized Tibetan speech
by the emotional Mandarin training corpus.

5 Conclusions

This paper presented a method of HMM-based Mandarin-Tibetan bilingual emo-
tional speech synthesis that uses Mandarin emotional training corpus to synthe-
size both Mandarin and Tibetan emotional speech synthesis only using emotional
Mandarin training corpus. We have realized a Mandarin-Tibetan bilingual speech
synthesis to obtain a set of neutral acoustic models of target language. We train
a set of Mandarin speaker dependent acoustic models of target emotion with
a multi-speaker emotional Mandarin training corpus by speaker adaptation to
synthesize emotional Tibetan or Mandarin speech. Subjective evaluations show
that synthesized speech not only is natural and similar with target language, but
also has high emotional expression. Further works will focus on improving the
speech quality of the synthesized speech by deep learning method and conduct-
ing more objective evaluations. We have already realized a deep neural network
(DNN)-based Mandarin-Tibetan bilingual speech synthesis that uses DNN as
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the acoustic models to instead of HMM. We will study the DNN-based speaker
adaptation on Mandarin-Tibetan bilingual emotional speech synthesis.
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Abstract. Emotion recognition from voice has recently attracted con-
siderable interest in the fields of human-machine communication. In this
paper, we propose an emotion recognition system which is a combina-
tion of three subsystems. The first and second subsystems utilize sup-
port vector machines (SVM) and deep neural networks (DNN) respec-
tively to classify the features directly. In the third subsystem, we uti-
lize DNN to extract segment-level features from raw data and show
that they are effective for speech emotion recognition. The extracted
segment-level features are emotion state probability distribution. Then
we construct utterance-level features from segment-level probability dis-
tributions. Finally, utterance-level features are fed into a SVM to identify
the emotions for each utterance. The experimental results show that all
the subsystems outperform the hidden markov model (HMM) baseline,
and the combined system get the best performance on F-score.

Keywords: Emotion recognition · Deep neural networks
Support vector machine

1 Introduction

Despite the remarkable progress made in artificial intelligence recently, the
human-machine interaction remains a challenging field. A speech message in
which people express ideas or communicate has a lot of information that is
interpreted implicitly. Much of the implied information can be acquired by rec-
ognizing the emotion of speech. Thus, speech emotion recognition, which plays
an important role in human-machine interaction, has been widely studied.

Speech emotion recognition can be treated as a classification problem on
sequences. It aims to first extract the effective features from speech and then
determine the emotion status given global statistical features or sequential local
features. Lots of work has been done on speech emotion recognition. Some used
gaussian mixture models (GMM) and hidden markov models (HMM) to learn
the distribution of low-level acoustic features [1,2], such as pitch-related fea-
tures, energy-related features, Mel frequency cepstrum coefficients (MFCC), etc.
c© Springer Nature Singapore Pte Ltd. 2018
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Some studies took low-level features as input and used support vector machines
(SVM) [3], deep neural networks (DNN) or other machine learning methods
[4] for classification. Some other works utilized convolutional neural networks
(CNN) and recurrent neural networks (RNN) to perform end-to-end speech emo-
tion recognition [5,6].

The support vector machine (SVM) classifies data through determination of
a set of support vectors by minimizing the structural risk which reduces the
average error of the inputs and their target vectors. These support vectors are
members of the set of training inputs and outline a hyperplane in feature space
which defines the boundary between the different classes. This technique has
been successfully applied to many standard classification tasks, such as text
classification and medical diagnosis.

A deep neural network (DNN) is a feed-forward neural network which has
multiple hidden layers between its input and output layers. It is capable of learn-
ing high-level representation from the low-level features and classifying data
effectively. With sufficient training data and appropriate training strategies,
DNN performs very well in many machine learning tasks (e.g., speech recog-
nition [7]). Moreover, it can be seen as a high-level feature extraction method
[8,9] and also a great classifier.

In this paper, we introduce three subsystems with different level features and
different classification methods and combine them into a fusion system by the
voting mechanism. The first subsystem takes low-level descriptors (LLD) as fea-
tures and uses support vector machine for classification, referred as LLD-SVM.
The second subsystem uses LLD features as well but utilizes deep neural network
as emotion recognizer, referred as LLD-DNN. In experiments we found that the
performances of those two subsystems are complementary, thus we want to build
a system that taking the advantage of both LLD-SVM and LLD-DNN subsys-
tems. To this end, utilizing the method proposed by [10], we build the third
subsystem, referred as DNN-SVM. DNN-SVM subsystem extracts segment-level
features to train a DNN, which then predicts the segment-level probabilities of
each emotion state. The utterance-level features are generated from the statistics
of segment-level probabilities and fed into a SVM classifier for final utterance-
level emotion recognition. The three subsystems are combined together using
voting mechanism to achieve better performance. In this paper, we use the
INTERSPEECH 2009 Emotion Challenge Dataset [11] to evaluate the proposed
methods.

In the next section, we describe our methods for emotion recognition. The
experimental results are shown in Sect. 3. Section 4 presents our conclusion.

2 Methods

In this emotion recognition task, we get our best performance by combining
three subsystems: LLD-DNN subsystem, LLD-SVM subsystem and DNN-SVM
subsystem.
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2.1 LLD-DNN Subsystem

The LLD-DNN subsystem utilizes deep neural network (DNN) as the classifier
for emotion recognition at utterance level. The input features are the utterance-
level supra-segmental low-level descriptors (LLD) features.

DNN is a method to approximate a parametric function via a neural network
with many hidden layers, and it is the basis of deep learning models. A neural
network can be represented as a function f(x; θ) where x is the input vector
and θ is the set of parameters. Each neuron, which is the smallest unit of a
DNN, maps the weighted sum of input values to an activation value via an
activation function fact(xTw+ b), where x is the vector of inputs for the neuron
and w and b are the parameters denoted as weights and bias, respectively. The
neurons in the same layer usually use the same activation function. Commonly
used activation functions are sigmoid, hyperbolic tangent and rectified linear
unit (ReLU). The output of a layer is the input of the next layer. This can be
considered as the forward propagation of the input through the network. And
we can use back-propagation (BP) algorithm to train it.

One main drawback of deep neural network (DNN) is that it needs lots of
data in training phase to get better generalization ability. That is to say, the
performances of minority classes are worse than majority classes in DNN. Hence
the LLD-DNN subsystem is more focus on majority classes.

2.2 LLD-SVM Subsystem

The LLD-SVM subsystem utilizes support vector machines (SVM) as the classi-
fier for emotion recognition which also takes the utterance-level supra-segmental
LLD features as inputs.

Support vector machine (SVM) views the classification problem as a
quadratic optimization problem. SVM plots the training vectors in high-
dimensional feature space and labels each vector with its class. A hyperplane
is drawn between the training vectors that maximizes the distance between
different classes. Those used training vectors are called support vectors. The
hyperplane is determined through a kernel function, which is given as input
to the classification software. The kernel function may be linear, polynomial,
radial basis, or sigmoid. The shape of the hyperplane is generated by the kernel
function, though many experiments select the polynomial kernel as optimal.

SVM can avoid the curse of dimensionality problem by placing an upper
bound on the margin between the different classes, making it a practical tool
for large, dynamic datasets. The feature space may even be reduced further by
selecting the most distinguishing features through minimization of the feature set
size. Moreover, the data imbalance problem can be relieved in SVM by assigning
greater weights to minority classes. In the LLD-SVM system, we set the weight
of each class to 1

|C| , where |C| is the class size.
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Fig. 1. DNN-SVM subsystem overview.

2.3 DNN-SVM Subsystem

A deep neural network has multiple hidden layers which can be seen as different
level feature extractors. The raw features fed to the first layer can be seen as
low-level features. Each higher layer could extract slightly higher-level features.
By leveraging this approach, in the third subsystem, we firstly utilize a DNN
as a high-level feature extractor to obtain utterance-level features which are
later fed into SVM for further classifications. Figure 1 shows the overview of the
DNN-SVM subsystem. We first divide the signal into segments and then extract
the segment-level features to train a DNN. The trained DNN computes the
emotion state distribution for each segment. From these segment-level emotion
state distributions, we constructed utterance-level features and fed them into a
SVM to determine the emotional state of the whole utterance.

Segment-Level Feature. Since DNN training needs sufficient training data,
the input utterance signals are firstly converted into frames with overlapping
windows, instead of utterance-level LLD features. The frame-level feature vector
z(m) for each frame m consists of MFCC, pitch period τ0(m), the harmonics-
to-noise ratio (HNR), and their delta feature across time frames. Then we form
the segment-level feature vector by stacking features in the neighboring frames.

x(m) = [z(m − w), . . . , z(m), . . . , z(m + w)] (1)

where w is the window size on each side.
It is reasonable to assume that segments with the highest energy contain

most important emotional information because not all segments in an utterance
contain emotional information. Hence, we only choose segments with high energy
in an utterance as the training samples which depend on a threshold parameter.
In the test phase, we also use those segments with high energy with the same
threshold to be consistent with the training phase.

DNN Training. For the segment-level emotion recognition, we train a DNN
to predict the probabilities of each emotion state. The DNN can be treated as a
segment-level emotion recognizer. The inputs of the recognizer are the segment-
level features and the targets are the label of the utterances, which means we
assign the same label to all the segments in one utterance.
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The number of input units of the DNN is consistent with the segment-level
feature vector size. It uses a softmax output layer whose size is set to the num-
ber of possible emotions K. The trained DNN aims to produce a probability
distribution t over all the emotion states for each segment:

t = [P (E1), . . . , P (Ek)]T (2)

Utterance-Level Features. Since it is not necessary true that the emotion
states in all segments are identical to that of the whole utterance, we need
a higher level classifier to guarantee our classification result. From DNN, we
have obtained high-level abstraction of the segment information. We can form
the emotion recognition problem as a sequence classification problem, given the
segment information, we need to make the decision for the whole utterance. Thus
we utilize the statistics of segment information to form whole utterance features.

The features in the utterance-level classification are computed from statistics
of the segment-level probabilities. Specifically, let Ps(Ek) denote the probability
of the kth emotion for the segment s. We compute the feature for the utterance
i for all k = 1, . . . ,K

fk
1 = max

s∈U
Ps(Ek), (3)

fk
2 = min

s∈U
Ps(Ek), (4)

fk
3 =

1
|U |

∑

s∈U

Ps(Ek), (5)

fk
4 =

|Ps(Ek) > θ|
|U | (6)

where U denotes the set of all segments used in the segment-level classifica-
tion. The features fk

1 , fk
2 , fk

3 correspond to the maximal, minimal and mean
of segment-level probability of the kth emotion over the utterance, respectively.
The feature fk

4 is the percentage of segments which have high probability of emo-
tion k. This feature is not sensitive to the threshold θ, which can be empirically
chosen from a development set.

SVM for Utterance-Level Classification. Finally, the utterance-level sta-
tistical features computed from statistics of the segment-level probabilities are
fed into a classifier for emotion recognition of the utterance. In this paper, we
use a SVM as the utterance-level classifier because of its remarkable ability to
classify global features. Different from the LLD-SVM subsystem, we treat each
class with the same weight in this SVM.

2.4 Combining Subsystems

The motivation of subsystems combination is that different subsystems perform
different and complementary in this task. As mentioned in Sect. 2.1, the LLD-
DNN subsystem focuses on majority classes. In contrast, the LLD-SVM pay
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more attention to minority classes by assigning greater weights to them. In
the DNN-SVM subsystem, utterances are split into segments which relieves the
data insufficient problem of minority classes. Finally, the three subsystems are
combined together using voting mechanism: each utterance is classified by the
three subsystems independently and the majority result is chosen to be the
final classification result (We randomly choose one class if three subsystems give
different results).

3 Experiments

3.1 Experiment Settings

Dataset. We use FAU Aibo Emotion Corpus as our evaluation dataset, which
has 5 h utterance for training and 4 h utterance for test. The utterances are
categorized into 5 classes: Anger, Emphatic, Neutral, Positive and Rest. The
frequencies for the five classes are given in Table 1.

Table 1. Number of instances for the 5-class problem

# A E N P R Sum

train 794 1881 5537 612 667 9491

dev 87 212 53 62 74 488

test 661 1508 5377 215 546 8257

Feature Extraction. The FAU Aibo Emotion Corpus offer the LLD features
for classification. In detail, the chosen 16 low-level descriptors are:

ZCR zero-crossing-rate, 1 dimension.
RMS root mean square, 1 dimension.
HNR harmonics-to-noise ratio, 1 dimension.
F0 1 dimension.
MFCC 12 dimension.

To each of these, the delta coefficients are additionally computed with 12
functionals. Thus, the total feature vector per utterance contains 16 ∗ 2 ∗ 12 =
384 attributes.

In the DNN-SVM subsystem, we use the same settings as [10]. Firstly, we
extract the frame-level MFCC feature, using a 25-ms window sliding at 10-ms
each time. The size of the segment level feature is set to 25 frames, including
12 frames each side. In addition, 10% segments with the highest energy in an
utterance are used in the training and test phase. The threshold in Eq. (6) is set
to 0.2.
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Feature Preprocessing. Although the FAU Aibo Emotion Corpus offer the
LLD feature for classification, we do the following preprocessing for better per-
formance:

1. Rescaling: we find that the scale of each dimension is totally different, hence
it is important to rescale all the dimensions into the same range [0, 1].

2. Clipping: after rescaling, there is another issue that some dimensions have
outliers. For example, in the 182th dimension, the mean value of this dimen-
sion is 0.0008, but the max value of this dimension is 1, which means most of
the value in this dimension is really small but there are some points take big
value. Hence we do data clip on all dimension to remove those outliers.

3. Normalization: finally, we do normalization on all dimension.

Model Parameters. The DNN in LLD-DNN subsystem have 3 hidden layers,
the size of each hidden layer is 512. The DNN in DNN-SVM subsystem have 5
hidden layers, the size of each hidden layer is 1024. The training algorithm for
DNN is mini-batch stochastic gradient descent (SGD), the size of mini-batch is
set to 128, learning rate is 0.1, momentum is 0.9, clip gradient is 3, weight decay
is 0.0001. The activation function is ReLU, we also add batch normalization
layer and dropout layer to those DNN. The dropout ratio is set to 0.5. All those
parameters are chosen from develop set. The SVM in DNN-SVM and LLD-SVM
subsystems using the same settings, in which using RBF kernel and the kernel
coefficient γ is set to 1

n features
, where n features is the dim of feature vectors.

3.2 Results

Since the dataset has 5 classes, the final result is based on the unweighted aver-
age recall and average precision. The association also provide a hidden markov
model (HMM) baseline for this task. The final results is in Table 2. Raw means
using raw LLD feature, without any preprocessing. The experimental results
show that, there are significant improvements for both LLD-SVM and LLD-
DNN subsystems by applying feature preprocessing.

Table 2. Experiment results

Models Ave-precision Ave-recall Ave-fscore

HMM (baseline) 0.296 0.355 -

LLD-SVM (raw) 0.264 0.201 0.161

LLD-DNN (raw) 0.004 0.200 0.062

LLD-SVM 0.340 0.427 0.354

LLD-DNN 0.420 0.356 0.356

DNN-SVM 0.314 0.363 0.316

Combine 0.366 0.386 0.370
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Fig. 2. Precision on all labels

Fig. 3. Recall on all labels

Comparing to the LLD-DNN subsystem, LLD-SVM subsystem has a better
performance in recall but poorer precision rate; On the contrary, the LLD-DNN
subsystem has a higher precision rate but lower recall rate.

In details, the performance of each subsystem on each label is shown on Figs. 2
and 3. In Fig. 3, the LLD-DNN subsystem has the best recall rate on label ‘N’
which is the majority label, but have the lower recall rate on other minority labels
than the LLD-SVM subsystem. In contrast, the recall rate of LLD-SVM subsys-
tem is higher than the LLD-DNN subsystem on all labels except the majority
label ‘N’. In the Fig. 2, we can observe the symmetric phenomenon that, the
LLD-DNN subsystem has the higher precision rate on minority labels but LLD-
SVM subsystem has the higher precision rate on majority label. That is to say,
the two subsystems are complementary, hence we want to build a system to take
the advantage from both LLD-DNN and LLD-SVM system. To this end, we
build the third DNN-SVM subsystem. Although the performance of DNN-SVM
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subsystem is poorer than those two, we combine all the 3 system by voting mech-
anism. The combined system has a promising performance on both precision and
recall, and take the best performance in F-score.

4 Conclusion

Emotion recognition is becoming more and more popular in many of the research
fields recently. It is important for a human-machine interaction system to track
the emotion state of users.

In this work, we propose a combined system for emotion recognition. Firstly
we trained 3 subsystems, all of those three subsystems are outperform the HMM
baseline. The experimental results indicate that the performance of LLD-SVM
subsystem and LLD-DNN subsystem are complementary. We utilize the advan-
tages of those subsystems by combining them using voting mechanism. The
combined system has a promising performance on both precision and recall, and
take the best performance in F-score.
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Abstract. Spherical harmonic (SH)-based methods have been proposed
for modeling head-related transfer functions (HRTFs) and yielded an
encouraging performance level in terms of log-spectral distortion (LSD).
However, most of these techniques model HRTFs on a sphere, and rarely
exploit the correlation relationship of HRTFs from different distances,
and as a consequence HRTF extrapolation on unmeasured distances
becomes a great challenge. Motivated by this, this paper proposes a
distance-dependent SH-based model termed DSHM for HRTF represen-
tation. DSHM extends the SH-based model by adding a radial part of
spherical Fourier-Bessel transform (SFBT). By utilizing a radial corre-
lation between distances, the proposed model has capable of efficient
representation for HRTFs over the whole space. As a result, it is feasi-
ble to interpolate or extrapolate an HRTF on an unmeasured position.
The experimental results show that DSHM achieves a lower LSD when
comparing with the conventional SH-based method.

1 Introduction

With virtual reality making a great revolution in society, virtual auditory dis-
plays (VAD), which can give us quite immersive auditory perception in three-
dimensional (3D) space, have attracted more and more attention. In order to
generate VAD, head-related transfer functions (HRTFs) are necessary because
they carry all of spatial information used in localization [1]. However, HRTFs
are usually measured on a sphere and are discrete, while human can move to
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any position in the full space. Therefore, it is necessary to make discrete HRTFs
continuous over the three-dimensional (3D) space. The accurate interpolation
or extrapolation is a great challenge for spatial audio rendering. One promising
solution is to model HRTFs in lower dimensional spaces [2], and then interpolate
or extrapolate [3,4].

Many methods have been proposed for HRTFs modeling. One approach is
based on principal components analysis (PCA) [5,6] or the spatial feature extrac-
tion method, such as spatial PCA [7]. The spatial variation is modeled by the
combination of a small number of principal components. However, besides the
principal components coefficients, the basis matrix of these methods should be
saved since it is calculated from the database and changed with the subject,
resulting in less efficiency. In order to interpolate in 3D space, [8] proposes a
tensor modeling for distance-dependent HRTFs by adopting multilinear princi-
pal component analysis (MPCA), and then using a linear interpolation of two
adjacent core tensors to interpolate HRTFs on a new distance. The two steps
for interpolation makes PCA-based modeling not flexible in the applications of
human movement in VAD.

Another approach for HRTFs modeling is surface spherical harmonics-based
modeling (SHM) [9]. Spherical harmonics (SH) are a complete set of continuous
orthonormal basis functions on the sphere. By using SH, the model extracts the
directional cues from HRTFs, and achieves an encouraging level in terms of log-
spectral distortion (LSD). The main advantage of SHM is that the HRTFs can
be modeled with a linear combination of relatively small set of SH expansion
coefficients over the full space. Furthermore, its basis is universal for all sub-
jects, and thus only the SH coefficients are required to store. However, SH-based
models always operate on a sphere, and do not exploit the correlation relation-
ship of HRTFs from different radiuses. Thus, it is inefficient and difficult for
updating HRTFs on unmeasured radiuses during head tracking. One method for
interpolation on a new radius is to linear interpolate using neighbors’ HRTFs in
azimuth, elevation, and distance [10]. [11] utilizes virtual loudspeaker array to
achieve range extrapolation. A general model of HRTFs in frequency-range-angle
domains is proposed in [12], which combines spherical harmonics and spherical
Hankle functions to model HRTFs.

Motivated by this, we propose a distance-dependent SH-based modeling
method termed DSHM. DSHM models HRTFs over 3D space using a spherical
Fourier-Bessel (SFB) basis, which comprises of the angular part with SH basis
and the radial part with spherical Bessel basis. This method is derived from the
work by Polotis [13], which uses SFB transform and spherical harmonic oscillator
transform to personalize the interaural time difference (ITD). Our contribution
is to introduce the 3D spherical basis into HRTFs modeling over the 3D space,
resulting in rapid and accurate HRTFs update following head tracking.

The remainder of this paper is organized as follows. Section 2 presents an
overview of spherical harmonic-based model. Section 3 describes the proposed
distant-dependent spherical harmonic-based model. The performance evaluation
results are shown in Sect. 4. Finally, Sect. 5 gives the conclusions.
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2 Spherical Harmonic-Based Model

The spherical harmonic-based model (SHM) has been successfully used in mod-
eling and interpolation on a sphere. Spherical harmonic function is a function of
elevation θ and azimuth φ [14,15], which can be expressed as

Y m
l (θ, φ) =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)ejmφ, (1)

where l = 0, 1, 2, ..., and |m| ≤ l. P
|m|
l (·) is associated Legendre function of

degree l and order m.
At the direction (θ, φ) on a sphere, SHM extends the HRTFs on the SH

basis as

H(θ, φ, f) =
∞∑

l=0

l∑
m=−l

Cm
l (f)Y m

l (θ, φ), (2)

where f is the frequency bin. Cm
l (f) is the complex coefficient for degree l and

order m at the frequency f , which can be estimated by using least square fitting.
Then, given an arbitrary direction, HRTFs can be obtained by (2). However,
SHM could not directly generate HRTFs from an unmeasured radius. In practice,
this representation of (2) is truncated by using a degree of N for the frequency
bin f , which is expressed as

H(θ, φ, f) =
N∑

n=0

n∑
m=−n

Cm
n (f)Y m

n (θ, φ). (3)

Therefore, Cm
n (k) can be approximated by using a limited number of samples S

over the 3D space, which is expressed as

Cm
n (f) =

S∑
s=1

H(θs, φs, f)Y m∗
n (θs, φs) sin θs, (4)

where ∗ denotes the conjugate operator.
By using least-squares fitting, the coefficients are first estimated as C = Y†H

with all the measured samples, where (·)† is the Moore-Penrose pseudo-inverse
operator. Then, given an arbitrary direction (θs, φs) on a sphere, HRTFs can be
estimated as Hs = YsC.

3 Proposed DSHM

SHM is an angular model on a sphere in nature, and thus difficult to directly
generate continuous HRTFs for a position with an unmeasured radius. When
the HRTFs are measured on different radiuses or the extrapolation is required
in VAD, though we can linearly interpolate using neighbors’ HRTFs in azimuth,
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elevation, and distance, this method is not scalable and slowly. Therefore, a
model over 3D space is necessary by utilizing the correlation of HRTFs from
different radiuses. Motivated by this, we propose a distance-dependent spherical
harmonic-based model termed DSHM. With adding the modeling of the radial
part to SHM, DSHM can model HRTFs from different radiuses, and easily gen-
erate HRTFs in the whole 3D space.

3.1 HRTFs Preprocessing

Firstly, the preprocessing of HRTFs prior to modeling is presented. Because of
human’s insensitivity to the fine details of the phase spectrum of HRTFs in
localization and discrimination perception [16], the minimum phase HRTFs and
interaural time delay (ITD) can well approximate HRTFs. The phase part of
the minimum-phase HRTFs can be calculated by using Hilbert transform to its
magnitude, which is expressed as

|Hmin(dj , f)| = |H(dj , f)|, (5)

ϕmin(dj , f) = − 1
π

∫ +∞

−∞

ln |Hmin(dj , f)|
f − ξ

dξ. (6)

where dj = (rj , θj , φj) ∈ D denotes the j-th measured point in the position set
D with the total number of the measured points of S. Therefore, the magnitude
of the minimum-phase HRTFs and ITD are sufficient to model HRTFs.

In DSHM, we use the logarithmic magnitude of HRTFs because it more
matches with human’s auditory perception, which is experimentally verified
in [17] by comparing with the complex HRTFs, and HRTF magnitudes. Prior
to DSHM, the average logarithmic magnitude spectrum across all locations is
calculated and subtracted from each sample for each frequency bin to create
directional spectra, which is expressed as

Havg(fi) =
∑S

j=1
20 log10 |Hmin(dj , fi)|, (7)

Hp(ds, fi) = 20 log10 |Hmin(ds, fi)| − Havg(fi). (8)

where Hp(ds, fi) is the minimum-phase magnitude of HRTF on the position
ds and the ith frequency band with the number of the frequency bands of B.
Since the averages include spatial features shared by all HRTFs, the resulting
logarithmic magnitudes represent primarily frequency-dependent spatial effects.
Along with ITD, they are used to model HRTFs over the full space by the
proposed DSHM method.

3.2 Spherical Fourier-Bessel-Based Transform

In spherical coordinates, the normalized basis function for spherical Fourier-
Bessel transform (SFBT) includes the angular part as well as the radial part,
which is an extension of the normal Fourier analysis [18]. We exploit a spherical



136 X. Qi and J. Tao

harmonic function Y m
l (θ, φ) as the basis function of the angular part, and a

spherical Bessel function Φnl(r) on a solid sphere of radius r as the basis function
of the radial part, which can be expressed as [19]

Φnl(r) =
1√
Nnl

jl(knlr), (9)

where jl(x) is the spherical Bessel function of order l and jl(x) =√
π/2xJl+1/2(x) with Jl′ (x) be the Bessel function. Under the zero-value bound-

ary condition, knl = xnl/rm with the maximum radius of rm, and Nnl =
r3mj2l+1(xln)/2 with xln denoting the nth positive solution to jl(x) = 0 in an
ascent order.

For the position ds = (rs, θs, φs), the basis of DSHM is defined by combining
the angular part and the radial part as

Ψm
nl (ds) = Φnl(rs)Y m

l (θs, φs), (10)

where n = 0, 1, ..., N and l = 0, 1, ..., L, and m = −l, ..., l. N is the number of the
roots for Bessel function, and L is the maximum degree. For SFBT, the order of
spherical Bessel function is equal to the degree of SH function.

3.3 Least Square Modeling

After calculating SFBT according to the position, DSHM expands the minimum-
phase magnitude of HRTF Hp(ds, fi) on the basis as

Hp(ds, fi) =
N∑

n=0

L∑
l=0

l∑
m=−l

Cm
nl(fi)Ψm

nl (ds), (11)

where Cm
nl(fi) denotes the model coefficient for degree l and order m of the

radial basis and the nth solution of the angular basis at the frequency fi. L is
the allowable maximum degree.

Define A[M1:N1],[M2:N2](x[M3:N3]) with the dimensions of (N1 −M1 +1)(N2 −
M2 + 1)2 × (N3 − M3 + 1) as

A[M1:N1],[M2:N2](x[M3:N3]) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AM1M2(xM3) AM1M2(xM3+1) ... AM1M2(xN3)
...

...
. . .

...
AM1N2(xM3) AM1N2(xM3+1) ... AM1N2(xN3)

A(M1+1)M2(xM3) A(M1+1)M2(xM3+1) ... A(M1+1)M2(xN3)
...

...
. . .

...
A(M1+1)N2(xM3) A(M1+1)N2(xM3+1) ... A(M1+1)N2(xN3)

...
...

. . .
...

AN1M2(xM3) AN1M2(xM3+1) ... AN1M2(xN3)
...

...
. . .

...
AN1N2(xM3) AN1N2(xM3+1) ... AN1N2(xN3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)
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with Anl(xi) =
[
A−l

nl (xi), ..., A0
nl(xi), ..., Al

nl(xi)
]T

. Where M1, N1,M2, N2,M3,
N3 ∈ N. [a : b] denotes a set of continuous integers from a to b. If a = b, then
[a : b] can be expressed as [a].

By using the above matrix definition, (11) can be expressed as

H = Ψ[1:N ],[0:L](d[1:S])C[1:N ],[0:L](f[0:2B]), (13)

where H ∈ R
S×(2B+1) comprises of the ITDs and the minimum-phase magni-

tudes derived from HRTFs of S measured points, whose entries of the ith row
are [T (di),Hp

L(di),Hp
R(di)] with Hp

L(di) = [HL
p (di, f1), ...,HL

p (di, fB)] for
the left ear, and Hp

R(di) = [HR
p (di, f1), ...,HR

p (di, fB)] for the right ear. T (di)
is ITD for the ith measured point, which is defined as the arrival time difference
from the source to the left ear and to the right ear. B is the total number of
frequency bands for the left ear or the right ear. C[1:N ],[0:L](f[0:2B]) is the model
coefficients matrix of N(L+1)2 × (2B +1). Ψ[1:N ],[0:L](d[1:S]) is the basis matrix
of N(L + 1)2 × S. S is the number of the measured positions.

Therefore, the coefficients are obtained by using least square fitting as

C[1:N ],[0:L](f[0:2B]) = Ψ[1:N ],[0:L](d[1:S])†H, (14)

where Ψ† = (ΨT Ψ)−1ΨT denotes the pseudo-inverse transform for the matrix Ψ.

3.4 Continuous Construction of HRTFs

With DSHM, we can directly generate HRTFs by using the model coefficients
and the basis given an arbitrary point over the full space.

For a position dt = (rt, θt, φt), measured or unmeasured, the ITD and
the minimum-phase magnitudes of HRTFs can be estimated after the basis
Ψ[1:N ],[0:L](d[t]) is constructed, which is expressed as

Ĥt = Ψ[1:N ],[0:L](d[t])C[1:N ],[0:L](f[1:B]). (15)

where Ĥt = [T̂ (dt), ĤL
p(dt), ĤR

p (dt)]. ĤL
p(dt) and ĤR

p (dt) will then be used
to generate the minimum-phase HRTFs ĤL

min(dt, fi) and ĤR
min(dt, fi) by using

(5)–(8). Finally, the HRTFs for the two ears are approximated as

ĤL(dt, fi) = ĤL
min(dt, fi)e−j2πfi(T0+T̂ (dt)), (16)

ĤR(dt, fi) = ĤR
min(dt, fi)e−j2πfiT0 , (17)

where i = 1, ..., B, and T0 is the propagation delay from the sound source to the
right ear, which can be estimated by r/c with the path distance of r and the
sound speed in air of c.
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4 Performance Evaluation

In this section, the performance of the proposed DSHM is evaluated. PKU&IOA
database is used for this purpose [20]. The database contains a total of 6344
HRTFs measured from the KEMAR mannequin at eight distances (20, 30, 40, 50,
75, 100, 130 and 160 cm). Each head-related impulse response (HRIR) has been
windowed in about 15.625 ms (1024 points) with the sampling rate of 65.536 kHz.

Prior to DSHM, all the HRIRs first are converted to the HRTFs by using
1024-DFT, and the minimum-phase HRTFs after subtracting the average are
then calculated by (5)–(8). The frequency band is evaluated between 20 Hz and
20 kHz, and therefore there are the total of 623 parameters required to be mod-
eled for each position.

The LSD between the estimated and the measured HRTFs is used for objec-
tive evaluation, which is defined as

LSD =

√√√√ 1
SNf

∑
d∈D

k2∑
k=k1

(
20 log10

|H(d, fk)|
|Ĥ(d, fk)|

)2

, (18)

where k1 and k2 respectively denote the beginning and the end of the considered
frequency bins, and thus Nf = k2 − k1 + 1.

Firstly, we investigate the influence of the parameters choice on the perfor-
mance of DSHM, in terms of the number of roots N , the degree L and the
maximum radius rm. The results are shown in Fig. 1. In Fig. 1(a) and (b), we
respectively set HRTFs from the elevation of 0◦ and the distance of 100 cm as the
test samples. It can be seen from Fig. 1(a) that DSHM reduces with the increase
of N and L, and will converge at about rm = 200. However, in Fig. 1(b), as
the increase of L or N , the LSD first reduces and then increases at a large rm.
The possible reason is that the number of samples for the second situation is
less than the first one, resulting in overfitting. Based on these experiments, we
choose rm = 220 cm, N = 2 in the first test situation and N = 3 in the second
test case for the following experiments.

Table 1. LSD (dB) comparison of DSHM with SHMI for PKU&IOA database.

Degree (L) r = 100 cm φ = 0

SHMI DSHM SHMI DSHM

10 4.482 5.333 4.664 4.381

7 4.577 4.101 4.732 4.367

5 4.681 4.490 4.840 4.565

4 4.750 4.544 4.900 4.706

The performance of DSHM is evaluated by comparing with SHM on the
sphere following by 3D interpolation in [10] termed SHMI, under the condition
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Fig. 1. The performance of DSHM under different parameters of N , L and rm. (a)
HRTFs from the evaluation of 0◦ as the test data. (b) HRTFs from the radius of
100 cm as the test data.

of different degrees. First, we set HRTFs from the distance of 100 cm as the test
data, and from the remaining as the training data. Then, we set HRTFs from
the elevation of 0◦ as the test data. The results are shown in Table 1. From the
table, it can be seen that:
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(1) For a small degree, such as L ≤ 7, the LSD performance of DSHM reduces
with the degree, while at a degree of 10, the performance of DSHM becomes
worse. This is because the database is not enough for solving these coeffi-
cients, and the model becomes overfitting.

(2) It indicates that DSHM is better than SHMI for a small degree, because it
exploits the correlation of HRTFs from different distances.

Moreover, DSHM does not require to find the neighborhoods, and thus can
make a more rapid interpolation.

5 Conclusions

In this paper, a distant-dependent model for HRTFs based on spherical Fourier-
Bessel transform termed DSHM is proposed. DSHM exploits a spherical Fourier-
Bessel basis to model the HRTFs over the full space, which combines the radial
part by using spherical Bessel basis with the angular part by using SH basis.
Therefore, by exploiting the correlation relationship of HRTFs from different
distances, DSHM can rapidly update HRTFs when human moves or head rotates
in VAD, and achieve better performance.

To further develop DSHM, our future work includes the study on performance
improvment on a small database. For example, the sparse DSHM model can be
studied to reduce the number of model coefficients and thus DSHM can work in
the case of more parameters.
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