
Chapter 4
The Discrete Fourier Transform

The DTFT of a discrete-time signal is a continuous function of the frequency (x),
and hence, the relation between X ejxð Þ and xðnÞ is not a computationally conve-
nient representation. However, it is possible to develop an alternative frequency
representation called the discrete Fourier transform (DFT) for finite duration
sequences. The DFT is a discrete-time sequence with equal spacing in frequency.
We first obtain the discrete-time Fourier series (DTFS) expansion of a periodic
sequence. Next, we define the DFT of a finite length sequence and consider its
properties in detail. We also show that the DTFS represents the DFT of a finite
length sequence. Further, evaluation of linear convolution using the DFT is dis-
cussed. Finally, some fast Fourier transform (FFT) algorithms for efficient com-
putation of DFT are described.

4.1 The Discrete-Time Fourier Series

If a sequence x(n) is periodic with period N, then x nð Þ ¼ x nþNð Þ for all
n. In analogy with the Fourier series representation of a continuous periodic signal,
we can look for a representation of x(n) in terms of the harmonics corresponding to
the fundamental frequency of 2p=Nð Þ: Hence, we may write x(n) in the form

x nð Þ ¼
X
k

bkej2pkn=N ð4:1aÞ

It can easily be verified from Eq. (4.1a) that x(n) = x(n + N). Also, we know that
there are only N distinct values for ej2pkn=N corresponding to k = 0, 1, …, N − 1,
these being 1, ej2pn=N ; . . .; ej2pk N�1ð Þ=N : Hence, we may rewrite Eq. (4.1a) as
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x nð Þ ¼
XN�1

k¼0

akej2pkn=N ð4:1bÞ

It should be noted that the summation could be taken over any N consecutive
values of k. Equation (4.1b) is called the discrete-time Fourier series (DTFS) of the
periodic sequence x nð Þ and ak as the Fourier coefficients. We will now obtain the
expression for the Fourier coefficients ak. It can easily be shown that ej2pkn=N

� �
is

an orthogonal sequence satisfying the relation

XN�1

n¼0

ej2pkn=Ne�j2pln=N ¼ 0 k 6¼ l
N k ¼ l

�
ð0� k; l� N � 1ð Þ ð4:2Þ

Now, multiplying both sides of Eq. (4.1b) by e�j2pln=N and summing over
n between 0 and (N − 1), we get

XN�1

n¼0

x nð Þe�j2pln=N ¼
XN�1

n¼0

XN�1

k¼0

akej2pkn=Ne�j2pln=N

¼
XN�1

k¼0

ak
XN�1

n¼0

ej2pkn=Ne�j2pln=N

¼ alN; using ð4:2Þ:

Hence,

ak ¼ 1
N

XN�1

n¼0

x nð Þe�j2pkn=N ; k ¼ 0; 1; 2; . . .; N � 1 ð4:3Þ

It is common to associate the factor (1/N) with x nð Þ rather than ak. This can be
done by denoting Nak by X kð Þ; in such a case, we have

x nð Þ ¼ 1
N

XN�1

k¼0

X kð Þej2pkn=N ð4:4Þ

where the Fourier coefficients X kð Þ are given by

X kð Þ ¼
XN�1

n¼0

x nð Þe�j2pkn=N ; k ¼ 0; 1; 2; . . .; N � 1 ð4:5Þ

It is easily seen that X kþNð Þ ¼ X kð Þ that is, the Fourier coefficient sequence
X kð Þ, is also periodic of period N. Hence, the spectrum of a signal x(n) that is
periodic with period N is also a periodic sequence with the same period. It is also
noted that since the Fourier series of a discrete periodic signal is a finite sequence,
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the series always converges and the Fourier series gives an exact alternate repre-
sentation of the discrete sequence x nð Þ:

4.1.1 Periodic Convolution

In the case of two periodic sequences x1 nð Þ and x2 nð Þ having the same period N,
linear convolution as defined by Eq. (2.38) does not converge. Hence, we define a
different form of convolution for periodic signals by the relation

y nð Þ ¼
XN�1

m¼0

x1 mð Þx2 n� mð Þ ¼
XN�1

m¼0

x1 n� mð Þx2 mð Þ ð4:6Þ

The above convolution is called periodic convolution. It may be observed that
y nð Þ ¼ y nþNð Þ, that is, the periodic convolution is itself periodic of period N.

Some important properties of the DTFS are given in Table 4.1. In this table, it is
assumed that x1 nð Þ and x2 nð Þ are periodic sequences having the same period N.
The proofs are omitted here, since they are similar to the ones that will be given in
Sect. 4.3 for the corresponding properties of the DFT.

Example 4.1 Obtain the DTFS representation of the periodic sequence shown in
Fig. 4.1.

Table 4.1 Some important properties of DTFS

Property Periodic sequence DTFS coefficients

Linearity ax1 nð Þþ bx2 nð Þ
a and b are constants

aX1ðkÞþ bX2ðkÞ

Time shifting x n� mð Þ e�j 2p
Nð ÞkmX kð Þ

Frequency shifting ej
2p
Nð Þlnx nð Þ Xðk � lÞ

Periodic convolution PN�1
m¼0 x1 mð Þx2 n� mð Þ X1ðkÞX2ðkÞ

Multiplication x1 nð Þx2 nð Þ 1
N

PN�1
l¼0 X1ðlÞX2ðk � lÞ

Symmetry properties x� nð Þ X�ð�kÞ
x� �nð Þ X�ðkÞ
Re x nð Þf g
jIm x nð Þf g

XeðkÞ ¼ 1
2 XðkÞþX�ð�kÞð Þ

Xo kð Þ ¼ 1
2j X kð Þ � X� kð Þð Þ

xe nð Þ ¼ 1
2 x nð Þþ x� �nð Þ½ �

xo nð Þ ¼ 1
2 x nð Þ � x� �nð Þ½ �

Re XðkÞf g
jIm XðkÞf g

If x(n) is real
xe nð Þ ¼ 1

2 x nð Þþ x �nð Þ½ �
xo nð Þ ¼ 1

2 x nð Þ � x �nð Þ½ �

Re XðkÞf g
jIm XðkÞf g

4.1 The Discrete-Time Fourier Series 165



Solution The sequence is periodic with period N = 5. Using Eq. (4.5), the DTFS
coefficients are computed as

Xð0Þ ¼
XN�1

n¼0

xðnÞe0 ¼ 0þ 1þ 2þ 3þ 4 ¼ 10

Xð1Þ ¼
X4
n¼0

xðnÞe�j2pn=5 ¼ 0þ e�j2p=5 þ 2e�j4p=5 þ 3e�j6p=5 þ 4e�j8p=5

¼ �2:5000þ j3:4410

Xð2Þ ¼
X4
n¼0

xðnÞe�j4pn=5 ¼ 0þ e�j4p=5 þ 2e�j8p=5 þ 3e�j12p=5 þ 4e�j16p=5

¼ �2:5000þ j0:8123

Xð3Þ ¼
X4
n¼0

xðnÞe�j6pn=5 ¼ 0þ e�j6p=5 þ 2e�j12p=5 þ 3e�j18p=5 þ 4e�j24p=5

¼ �2:5000 � j0:8123

Xð4Þ ¼
X4
n¼0

xðnÞe�j8pn=5 ¼ 0þ e�j8p=5 þ 2e�j16p=5 þ 3e�j24p=5 þ 4e�j32p=5

¼ �2:5000 � j3:4410

Hence, from Eq. (4.4), the DTFS for x(n) is given by

xðnÞ ¼ 2þðð�2:5000þ j3:4410Þ=5Þej�2pn=5 þðð�2:5000þ j0:8123ÞÞ=5ej�4pn=5

þðð�2:5000� j0:8123ÞÞ=5ej�6pn=5 þðð�2:5000� j3:4410ÞÞ=5ej�8pn=5

x(n) 

2 

3 

4

1

3 

4

2 

n 

1

0     1     2     3      4    5     6    7      8      9  

……. 

Fig. 4.1 Periodic sequence
with period N = 5
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Example 4.2 Find the Fourier coefficients in DTFS representation of the sequence
x nð Þ ¼ sin 5p

4

� �
n.

Solution It is clear that the sequence is periodic with period N = 8. We may rewrite
x nð Þ in exponential form as

x nð Þ ¼ 1
2j
e
j2p5n
8 � 1

2j
e�

j2p5n
8 ¼ 1

2j
e
j2p5n
8 � 1

2j
e
j2p3n
8

Hence, the Fourier coefficients are

X 0ð Þ ¼ X 1ð Þ ¼ X 2ð Þ ¼ 0; X 3ð Þ ¼ � 1
2j
; X 4ð Þ ¼ 1

2j
; X 5ð Þ ¼ X 6ð Þ ¼ X 7ð Þ ¼ 0

4.2 The Discrete Fourier Transform

Consider a finite discrete sequence x nð Þ; 0� n�N � 1. It is known from Eq. (2.69)
that the DTFT of the sequence x nð Þ is given by

X xð Þ ¼
XN�1

n¼0

x nð Þe�jxn

where X xð Þ is a continuous function of x in the range �p to p or 0–2 p: When
X (x) is computed at a finite number of values xk that are uniformly spaced, we have

X xkð Þ ¼
XN�1

n¼0

x nð Þe�jxkn; k ¼ 0; 1; 2; . . .; M � 1

where xk ¼ 2pk=Mð Þ. The number of frequency samples may take any value;
however, it is chosen as equal N, the length of the discrete sequence x nð Þ. Rewriting
X xkð Þ as X kð Þ, the above equation can be written as

X kð Þ ¼
XN�1

n¼0

x nð Þe�j2pnk=N ; k ¼ 0; 1; 2; . . .; N � 1 ð4:7Þ

Equation (4.7) is called the discrete Fourier transform of the N-point sequence
x nð Þ. One of the main reasons as to why DFT is used to such a great extent is in
view of the existence of fast and efficient algorithms for its computation. These
algorithms are called fast Fourier transforms (FFTs). Later, in this chapter we
consider two of the FFTs.

Given X kð Þ, we now find an expression for x nð Þ in terms of X kð Þ. For this
purpose, we multiply both sides of Eq. (4.7) by ej2plk=N to get
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X kð Þej2plk=N ¼
XN�1

n¼0

x nð Þej2plk=Ne�j2pnk=N

Hence, XN�1

k¼0

X kð Þej2plk=N ¼
XN�1

n¼0

XN�1

k¼0

x nð Þej2plk=Ne�j2pnk=N ð4:8Þ

Using Eq. (4.2), we have

XN�1

k¼0

x nð Þej2plk=Ne�j2pnk=N ¼ 0 n 6¼ l
N n ¼ l

�

Substituting the above in Eq. (4.8), we get

XN�1

k¼0

X kð Þej2plk=N ¼ Nx lð Þ

or

x nð Þ ¼ 1
N

XN�1

k¼0

X kð Þej2pnk=N ; n ¼ 0; 1; 2; . . .; N � 1 ð4:9Þ

The above equation is called the inverse discrete Fourier transform (IDFT). It is
seen that X kð Þ as defined by Eq. (4.7) is periodic with a period N, since
X kð Þ ¼ X kþNð Þ; that is, the IDFT operation results in a periodic sequence of
which only the first N values corresponding to one period are evaluated. Also, from
Eq. (4.9), we see that x nð Þ ¼ x nþNð Þ. In other words, we are replacing in effect
the finite sequence x nð Þ by its periodic extension in all the operations that involve
DFT and IDFT. In fact, if we now compare Eqs. (4.4) and (4.5) with Eqs. (4.9) and
(4.7), we see that the DFT X kð Þ of a finite sequence of length N can be interpreted
as the Fourier coefficient in the DFS expansion of its periodic extension ex nð Þ.

If we now define

WN ¼ e�j2p=N ð4:10Þ

then the DFT and IDFT defined in Eqs. (4.7) and (4.9) can be rewritten as
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X kð Þ ¼
XN�1

n¼0

x nð ÞWnk
N ; k ¼ 0; 1; 2; . . .; N � 1 ð4:11Þ

and

x nð Þ ¼ 1
N

XN�1

k¼0

X kð ÞW�nk
N ; n ¼ 0; 1; 2; . . .; N � 1 ð4:12Þ

For notational convenience, the above DFT and IDFT equations are denoted as

X kð Þ ¼ DFT x nð Þf g
x nð Þ ¼ IDFT X kð Þf g

In the DFT expression, Wnk
N for 0� n; k�N � 1, are called the twiddle factors

of the DFT. The twiddle factors are periodic and define points on the unit circle in
the complex plane. Also, they possess some interesting symmetry properties. Some
basic properties of WN are given below.

1. Wk
N ¼ W kþNð Þ

N

2. WN=4
N ¼ j

3. WN=2
N ¼ �1

4. W3N=4
N ¼ j

5. WN=N
N ¼ 1

6. WkN
N ¼ 1

7. WkNþ r
N ¼ Wr

N

8. WkþN=2
N ¼ �Wk

N

9. W2k
N ¼ Wk

N=2

10. W�
N ¼ W�1

N

Example 4.3 Find the twiddle factors for an eight-point DFT.
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Solution For N = 8, Wk
8 ¼ e�j2pk=8. Hence, the twiddle factors are:

W0
8 ¼ 1;W1

8 ¼ 0:707� j0:707;W2
8 ¼ j;W3

8 ¼ �0:707� j0:707

W4
8 ¼ �1;W5

8 ¼ �W1
8 ;W

6
8 ¼ �W2

8 ;W
7
8 ¼ �W3

8 ; and

WkþN
8 ¼ Wk

8 :

Example 4.4 Find the DFT of the sequence xðnÞ ¼ f1; 0; 1; 0g.
Solution

XðkÞ ¼
XN�1

n¼0

xðnÞWnk
N k ¼ 0; 1; . . .; N � 1

¼
X3
n¼0

xðnÞWkn
4 k ¼ 0; 1; . . .; 3;

Xð0Þ ¼
X3
n¼0

xðnÞ ¼ 1þ 0þ 1þ 0f g ¼ 2;

Xð1Þ ¼
X3
n¼0

xðnÞWn
4 ¼ 1þ 0� 1þ 0f g ¼ 0;

Xð2Þ ¼
X3
n¼0

xðnÞW2n
4 ¼ 1þ 0þ 1þ 0f g ¼ 2;

Xð3Þ ¼
X3
n¼0

xðnÞW3n
4 ¼ 1þ 0� 1þ 0f g ¼ 0;

Example 4.5 Determine the eight-point DFT of the sequence
xðnÞ ¼ 1; 1; 1; 1; 0; 0; 1; 1f g.

Solution

XðkÞ ¼
XN�1

n¼0

xðnÞWnk
N k ¼ 0; 1; . . .; N � 1:

¼
X8
n¼0

xðnÞWkn
8 k ¼ 0; 1; . . .; 7:
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Xð0Þ ¼
X7
n¼0

xðnÞ ¼ 1þ 1þ 1þ 1þ 0þ 0þ 1þ 1f g ¼ 6;

Xð1Þ ¼
X7
n¼0

xðnÞWn
8 ¼ 1þ 0:707� j0:707� j� 0:707� j0:707f

þ 0þ 0þ jþ 0:707þ j0:707g ¼ 1:707� j0:707;

Xð2Þ ¼
X7
n¼0

xðnÞW2n
8 ¼ 1� j� 1þ jþ 0þ 0� 1þ jf g ¼ �1þ j;

Xð3Þ ¼
X7
n¼0

xðnÞW3n
8 ¼ 1� 0:707� j0:707þ jþ 0:707� j0:707f

þ 0þ 0� j� 0:707þ j0:707g ¼ 0:293� j0:707;

Xð4Þ ¼
X7
n¼0

xðnÞW4n
8 ¼ 1� 1þ 1� 1þ 0þ 0þ 1� 1f g ¼ 0;

Xð5Þ ¼
X7
n¼0

xðnÞW5n
8 ¼ 1� 0:707þ j0:707� jþ 0:707þ j0:707þ 0f

þ 0þ j� 0:707� j0:707g ¼ 0:293þ j0:707;

Xð6Þ ¼
X7
n¼0

xðnÞW6n
8 ¼ 1þ j� 1� jþ 0þ 0� 1� jf g ¼ �1� j;

Xð7Þ ¼
X7
n¼0

xðnÞW7n
8 ¼ 1þ 0:707þ j0:707þ j� 0:707þ j0:707þ 0f

þ 0� jþ 0:707� j0:707g ¼ 1:707þ j0:707;

Example 4.6 Find the N-point DFT of the signal xðnÞ ¼ bn.

Solution

XðkÞ ¼
XN�1

n¼0

bne�j2pnk=N

¼
XN�1

n¼0

be�j2pk=N
� �n

Hence,

XðkÞ ¼ 1� bNe�j2pk

1� be�j2pk=N
:
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Example 4.7 A finite duration sequence of length N is given as

xðnÞ ¼ 1 0� n�M � 1
0 otherwise

�
Determine the N-point DFT of this sequence.

Solution

X kð Þ ¼
XM�1

n¼0

e�j2pkn=N

¼ 1� e�j2pkM=N

1� e�j2pk=N
¼ sin pkM=Nð Þ

sin pk=Nð Þ e�j2pk M�1ð Þ=N ; k ¼ 0; 1; . . .; N � 1

Example 4.8 A finite duration sequence x nð Þ of length eight has the DFT X kð Þ as
shown in Fig. 4.2. A new sequence y nð Þ of length 16 is defined by

y nð Þ ¼ x
n
2

� �
for n even

¼ 0 for n odd:

Sketch the DFT Y kð Þ as a function of k.

Solution The 16-point DFT of y(n) is

Y kð Þ ¼
X15
n¼0

x nð ÞWnk
16 ; 0� k� 15

¼
X7
n¼0

x nð ÞW2nk
16

Fig. 4.2 DFT X kð Þ of x nð Þ of
Example 4.8

172 4 The Discrete Fourier Transform



Since W2k
N ¼ Wk

N=2, the above reduces to

Y kð Þ ¼
X7
n¼0

x nð ÞWnk
8 ; 0� k� 15

Thus, the 16-point DFT Y kð Þ contains two copies of the eight-point DFT of x nð Þ,
and Y kð Þ has a period of 8. The DFT Y kð Þ as a function of k is shown in Fig. 4.3.

4.2.1 Circular Operations on a Finite Length Sequence

Circular Shift

Consider a sequence x(n) of length N, 0� n�N � 1. For such a sequence x nð Þ ¼ 0
for n\0 and n[N � 1. In such a case, if we shift the sequence by an arbitrary
integer m, then the shifted sequence is no longer be defined in the range
0� n�N � 1. In order to make sure that the shifted sequence always stays in the
range 0� n�N � 1, we define what is known as the circular shift, by the relation

xc nð Þ ¼ x n� mð ÞN ð4:13aÞ

where

n� mð ÞN ¼ n� mð Þ modulo N ð4:13bÞ

This way, any integer n is related to the moduloN as

n ¼ nð ÞN þ cN ð4:14Þ

Fig. 4.3 DFT Y kð Þ of y nð Þ of Example 4.8
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where c is an integer and nð ÞN is always such that 0� n�N � 1. Consequently,

x n� mð ÞN¼
x n� mð Þ if 0� n� mð Þ�N � 1
x �Nþ n� mð Þ otherwise

�
ð4:15Þ

where þN is used if m[ 0, and �N is used if m\0.
The circular shift for m = 2 is illustrated in Fig. 4.4.
The sequence xc nð Þ is related to x nð Þ by a circular shift of two samples. The

samples of xc nð Þ can be evaluated using xc nð Þ ¼ x n� mð Þ4. Hence,

xcð0Þ ¼ xð�2Þ4 ¼ xð2Þ; xcð1Þ ¼ xð�1Þ4 ¼ xð3Þ;
xcð2Þ ¼ xð0Þ4 ¼ xð0Þ; xcð3Þ ¼ xð1Þ4 ¼ xð1Þ;

Circular Time Reversal

For a length-N sequence x(n), 0� n�N � 1, the circular time-reversal sequence is
also of length-N sequence given by

x �nð ÞN¼ x N � nð ÞN ð4:16Þ

Circular Convolution

Consider two sequences x(n) and h(n), each of length N. Then, the circular con-
volution of x(n) and h(n) is defined as the length-N sequence yc nð Þ given by

Fig. 4.4 Illustration of circular shift
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yc nð Þ ¼
XN�1

m¼0

x mð Þh n� mð ÞN ð4:17Þ

It is often called as the N-point circular convolution and is denoted by

x(n) h(n)N ð4:18Þ

The circular convolution is also commutative like the linear convolution; that is,

h xN(n) (n)x(n) h(n)=N ð4:19Þ

Example 4.9 Find the circular convolution of the three-point sequences x nð Þ ¼
1; 3;�4f g and h nð Þ ¼ �2; 1; 2f g.

Solution From Eq. (4.17), yc nð Þ ¼ P2
m¼0 x mð Þh n� mð Þ3.

Hence,

yc 0ð Þ ¼ x 0ð Þh 0ð Þþ x 1ð Þh �1ð Þ3 þ x 2ð Þh �2ð Þ3
¼ �2þ 3h 2ð Þ � 4h 1ð Þ ¼ �2þ 6� 4 ¼ 0

yc 1ð Þ ¼ x 0ð Þh 1ð Þþ x 1ð Þh 0ð Þþ x 2ð Þh �1ð Þ3
¼ 1þ 3h 0ð Þ � 4h 2ð Þ ¼ 1� 6� 8 ¼ �13

yc 2ð Þ ¼ x 0ð Þh 2ð Þþ x 1ð Þh 1ð Þþ x 2ð Þh 0ð Þ
¼ 2þ 3� 8 ¼ �3

Thus, yc nð Þ ¼ 0;�13;�3ð Þ.
It can also be verified that

P2
m¼0 h mð Þx n� mð Þ3 leads to the same result,

showing that the circular convolution operation is commutative.

Circular Correlation:

Consider two complex-valued sequences x1 nð Þ and x2 nð Þ, each of length N. Then,
the circular correlation of x1 nð Þ and x2 nð Þ is defined as the N-point sequence

rx1x2 mð Þ ¼
XN�1

n¼0

x1 nð Þx�2 n� mð ÞN ð4:20Þ

where x�2 nð Þ is the complex conjugate of x2 nð Þ:
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4.3 Basic Properties of the Discrete Fourier Transform

In this section, we state and prove some properties of the DFT, which play an
important role in digital signal processing applications. We will denote an N-point
DFT pair x(n) and X(k) by the following notation

xðnÞ $DFT
N

XðkÞ

Linearity:

Consider a sequence a1x1 nð Þþ a2x2 nð Þ that is a linear combination of x1 nð Þ and
x2 nð Þ, each sequence being of length N, where a1 and a2 are arbitrary constants.
If the sequences are not of the same length, then the sequence with the lower length
is augmented by zeros so that its length is now equal to that of the other sequence.
In such a case,

a1x1ðnÞþ a2x2ðnÞ $DFT
N

a1X1ðkÞþ a2X2ðkÞ ð4:21Þ

Proof By the definition of the DFT,

DFTða1x1ðnÞþ a2x2ðnÞÞ ¼
XN�1

n¼0

a1x1ðnÞþ a2x2ðnÞ½ �Wkn
N

¼
XN�1

n¼0

a1x1ðnÞ½ �Wkn
N þ

XN�1

n¼0

a2x2ðnÞ½ �Wkn
N

¼ a1
XN�1

n¼0

x1ðnÞWkn
N þ a2

XN�1

n¼0

x2ðnÞWkn
N

¼ a1X1ðkÞþ a2X2ðkÞ
Hence, we can write

a1x1ðnÞþ a2x2ðnÞ $DFT
N

a1X1ðkÞþ a2X2ðkÞ

Time Reversal of a Sequence:

If x(n) and X(k) are an N-point DFT pair, then

xðN � nÞ $DFT
N

XðN � kÞ ð4:22Þ
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Proof

DFTfxðN � nÞg ¼
XN�1

n¼0

xðN � nÞe�j2pkn=N

Changing the index from n to m = N − n in the RHS of the above equation, we
can rewrite it as

DFTfxðN � nÞg ¼
XN�1

m¼0

xðmÞe�j2pkðN�mÞ=N

¼
XN�1

m¼0

xðmÞej2pkm=N ¼
XN�1

m¼0

xðmÞe�j2pmðN�kÞ=N ¼ XðN � kÞ

Circular Time Shifting:

The DFT of a circularly time-shifted sequence x n� mð ÞN is given byWkm
N X kð Þ, that

is,

x ðn�mÞN
	 
 $DFT

N
Wkm

N XðkÞ ð4:23Þ

Proof By the definition of DFT,

DFT x n� mð ÞN
� � ¼

XN�1

n¼0

x n� mð ÞNWkm
N

¼
Xm�1

n¼0

x n� mð ÞNWkm
N þ

XN�1

n¼m

x n� mð ÞWkm
N

Since x n� mð ÞN ¼ x N � mþ nð Þ; we can write the above equation as

DFT x n� mð ÞN
� � ¼

Xm�1

n¼0

x N � mþ nð Þe�j2pkn=N þ
XN�1�m

l¼0

x lð Þe�j2pk lþmð Þ=N

¼
XN�1

l¼N�m

x lð Þe�j2pk lþmþNð Þ=N þ
XN�1�m

l¼0

x lð Þe�j2pk lþmð Þ=N

¼
XN�1

l¼N�m

x lð Þe�j2pk lþmð Þ=N þ
XN�1�m

l¼0

x lð Þe�j2pk lþmð Þ=N

¼
XN�1

l¼0

x lð Þe�j2pk lþmð Þ=N ¼ e�j2pkm=N
XN�1

l¼0

x lð Þe�j2pkl=N

¼ Wkm
N X kð Þ
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Circular Frequency Shifting:

If x(n) and X(k) are an N-point DFT pair, then

W�mn
N xðnÞ $DFT

N
X ðk�mÞN
	 
 ð4:24Þ

where X k � mð ÞN
	 


is a circularly frequency-shifted version of X(k).

Proof

DFTfW�mn
N x nð Þg ¼

XN�1

n¼0

W�mn
N x nð ÞWkn

N

¼
XN�1

n¼0

x nð ÞWn k�mð Þ
N ¼

XN�1

n¼0

x nð ÞWn Nþ k�mð Þ
N

Circular Convolution:

The DFT of the circular convolution of two length-N sequences is the product of
their N-point DFTs, i.e.,

1 2( ) ( )↔
DFT

N
X k X kx1(n) x2(n) N ð4:25Þ

Proof Let yc nð Þ represent the circular convolution of the sequences x1(n) and x2(n),
i.e.,

yc nð Þ ¼
XN�1

l¼0

x1 lð Þx2 n� lð ÞN

Then, the DFT of yc nð Þ is

Yc kð Þ ¼
XN�1

n¼0

yc nð ÞWkn
N ¼

XN�1

n¼0

XN�1

l¼0

x1 lð Þx2 n� lð ÞN
" #

Wkn
N

By interchanging the order of the summation, we obtain

Yc kð Þ ¼
XN�1

l¼0

x1 lð Þ
XN�1

n¼0

x2 n� lð ÞN
" #

Wkn
N
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Substituting n� lð Þ ¼ m, where m is integer with 0�m�N � 1; we get

Yc kð Þ ¼
XN�1

l¼0

x1 lð Þ
XN�1

m¼0

x2 mð Þ
" #

Wk lþmð Þ
N ¼

XN�1

l¼0

x1 lð Þ
XN�1

m¼0

x2 mð ÞWkm
N

" #
Wkl

N

¼
XN�1

l¼0

x1 lð Þ X2 kð Þ½ �Wkl
N ¼

XN�1

l¼0

x1 lð ÞWkl
N

" #
X2 kð Þ½ �

¼ X1 kð ÞX2 kð Þ

Circular Correlation:

The DFT of the circular correlation of two complex-valued N-point sequences x1 nð Þ
and x2 nð Þ is given by X1 kð ÞX�

2 kð Þ; i.e.,

rx1x2ðmÞ ¼
XN�1

n¼0

x1ðnÞx�2 ðn�mÞ½ �N $DFT
N

X1ðkÞX�
2ðkÞ ð4:26Þ

Proof From Eq. (4.20), we know that

rx1x2 mð Þ ¼
XN�1

n¼0

x1 nð Þx�2 n� mð ÞN¼
XN�1

n¼0

x1 nð Þx�2ð� m� nð ÞNÞ ð4:27aÞ

Also, the circular convolution of two sequences x1 mð Þ and x2 mð Þ is given by

yc mð Þ ¼
XN�1

l¼0

x1 lð Þx2 m� lð ÞN¼
XN�1

n¼0

x1 nð Þx2 m� nð ÞN ð4:27bÞ

Comparing Eqs. (4.27a) and (4.27b), we see that rx1x2 mð Þ can be considered as
the circular convolution of x1 mð Þ and x�2 �mð ÞN . Hence, DFT rx1x2 mð Þ½ � ¼
DFT x1 mð Þf g½ � DFT x�2 �mð ÞN

� �	 

. It can be shown that (see Eq. (4.41))

DFTfx�2 �mð ÞNg ¼ X�
2 kð Þ. Thus,

DFT rx1x2 mð Þ½ � ¼ Rx1x2 kð Þ ¼ X1 kð ÞX�
2 kð Þ ð4:28Þ

If x1 nð Þ ¼ x2 nð Þ ¼ x nð Þ, then

Rx1x2 kð Þ ¼ X kð Þj j2 ð4:29Þ
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Parseval’s Theorem:

If x1 nð Þ and x2 nð Þ are two complex-valued N-point sequences with DFTs X1 kð Þ and
X2 kð Þ, then

XN�1

n¼0

x1ðnÞx�2ðnÞ ¼
1
N

XN�1

k¼0

X1ðkÞX�
2ðkÞ ð4:30Þ

Proof From Eq. (4.28), we have Rx1x2 kð Þ ¼ X1 kð ÞX�
2 kð Þ. Hence,

rx1x2 mð Þ ¼ 1
N

XN�1

k¼0

X1 kð ÞX�
2 kð ÞW�km

N

Evaluating the above at m ¼ 0 gives

rx1x2 0ð Þ ¼ 1
N

XN�1

k¼0

X1 kð ÞX�
2 kð Þ

Hence,

XN�1

n¼0

x1 nð Þx�2 nð Þ ¼ 1
N

XN�1

k¼0

X1 kð ÞX�
2 kð Þ

If x1 nð Þ ¼ x2 nð Þ ¼ x nð Þ, then we have

XN�1

n¼0

x nð Þj j2¼ 1
N

XN�1

k¼0

X kð Þj j2 ð4:31Þ

The above expression gives a relationship between the energy in a finite duration
sequence to the power in the frequency components.

Multiplication of two Sequences:

The DFT of the product of two sequences x1 nð Þ and x2 nð Þ, each of length N, is
given by the circular convolution of their DFTs X1 kð Þ and X2 kð Þ divided by N, i.e.,

1 2 1
1( ) ( ) ( )↔

DFT

N
x n x n X k

N
2 ( )X kN ð4:32Þ

This property is dual of the circular convolution property and is left as an
exercise for the student.

The above properties are summarized in Table 4.2.
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4.4 Symmetry Relations of DFT

4.4.1 Symmetry Relations of DFT of Complex-Valued
Sequences

Consider a complex-valued sequence x(n), which is expressed as

x nð Þ ¼ xR nð Þþ jxI nð Þ; 0� n�N � 1 ð4:33Þ

The DFT of x(n) is given by

X kð Þ ¼
XN�1

n¼0

x nð ÞWkn
N ¼

XN�1

n¼0

½xR nð Þþ jxI nð Þ� cos
2pkn
N

� j sin
2pkn
N

� �

¼
XN�1

n¼0

xR nð Þ cos 2pkn
N

þ xI nð Þ sin 2pkn
N

� �
� j

XN�1

n¼0

xR nð Þ sin 2pkn
N

þ xI nð Þ cos 2pkn
N

� �
ð4:34Þ

If

X kð Þ ¼ XR kð Þþ jXI kð Þ ð4:35Þ

then

XR kð Þ ¼
XN�1

n¼0

xR nð Þ cos 2pkn
N

þ xI nð Þ sin 2pkn
N

� �
ð4:36aÞ

Table 4.2 Basic properties of the discrete Fourier transform

Property Sequence DFT

Linearity a1x1 nð Þþ a2x2 nð Þ a1X1ðkÞþ a2X2ðkÞ
Periodicity xðnþNÞ ¼ xðnÞ XðkþNÞ ¼ XðkÞ.
Time reversal xðN � nÞ XðN � kÞ
Circular time shifting x ðn�mÞN

	 

Wkm

N XðkÞ
Circular frequency shifting W�mn

N xðnÞ X ðk�mÞN
	 


N-point circular convolution x1(n) x2(n)N
X1ðkÞX2ðkÞ

Circular correlation x1(n) x2
*(-n)N X1ðkÞX�

2ðkÞ

Multiplication of two sequences x1ðnÞx2ðnÞ
2 ( )X kN1

1 ( )X k
N

Parseval’s theorem
PN�1

n¼0 xðnÞj j2 ¼ 1
N

PN�1
k¼0 XðkÞj j2
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and

XI kð Þ ¼ �
XN�1

n¼0

xR nð Þ sin 2pkn
N

þ xI nð Þ cos 2pkn
N

� �
ð4:36bÞ

Similarly, we can show that

xR nð Þ ¼ 1
N

XN�1

k¼0

XR kð Þ cos 2pkn
N

� XI nkð Þ sin 2pkn
N

� �
ð4:37aÞ

and

xI nð Þ ¼ 1
N

XN�1

k¼0

XR kð Þ sin 2pkn
N

þXI kð Þ cos 2pkn
N

� �
ð4:37bÞ

Let us now consider a length-N complex conjugate sequence x*(n). Taking the
complex conjugate on both sides of Eq. (4.11), we get

X� kð Þ ¼
XN�1

n¼0

x nð Þe�j2pnk=N

" #�

which can be rewritten as

X� kð Þ ¼
XN�1

n¼0

x� nð Þej2pnk=N ð4:38Þ

Hence,

X� �kð ÞN
� � ¼ X� N � kð Þ ¼

XN�1

n¼0

x� nð Þej2pn N�kð Þ=N

¼
XN�1

n¼0

x� nð Þe�j2pnk=N ¼ DFTfx� nð Þg

Therefore,

DFTfx� nð Þg ¼ X� �kð ÞN
� � ð4:39Þ
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Now, we find the DFT of x� �nð ÞN
� �

as follows:

DFT x� �nð ÞN
� �� � ¼

XN�1

n¼0

x�ð �nð ÞNÞe�j2pnk=N

¼
XN�1

n¼0

x� N � nð Þe�j2pnk=N

ð4:40aÞ

Replacing n by (N − n) in Eq. (4.38), we have

X� kð Þ ¼
XN�1

n¼0

x� N � nð Þej2p N�nð Þk=N ¼
XN�1

n¼0

x� N � nð Þe�j2pnk=N ð4:40bÞ

It is seen from Eq. (4.40a) and Eq. (4.40b) that

DFT x� �nð ÞN
� �� � ¼ X� kð Þ ð4:41Þ

Since a complex sequence x nð Þ can be decomposed into a sum of its real and
imaginary parts as

x nð Þ ¼ xR nð Þþ jxI nð Þ ð4:42Þ

where

xR nð Þ ¼ 1
2
x nð Þþ x� nð Þ½ � ð4:43aÞ

and

jxI nð Þ ¼ 1
2
x nð Þ � x� nð Þ½ � ð4:43bÞ

it can be easily shown that the DFTs of the real and imaginary parts of complex
sequence are given by

DFT xR nð Þf g ¼ 1
2

X kð ÞþX� �kð ÞN
� �	 
 ¼ 1

2
X kð ÞþX� N � kð Þ½ � ð4:44aÞ

and

DFT jxI nð Þf g ¼ 1
2

X kð Þ � X� �kð ÞN
� �	 
 ¼ 1

2
X kð Þ � X� N � kð Þ½ � ð4:44bÞ

A complex sequence x nð Þ can be represented as the sum of a circular conjugate
symmetric sequence xe nð Þ and a circular conjugate antisymmetric sequence xo nð Þ:
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x nð Þ ¼ xe nð Þþ xo nð Þ ð4:45Þ

where

xe nð Þ ¼ 1
2

x nð Þþ x� �nð ÞN
	 
 ð4:46aÞ

and

x0 nð Þ ¼ 1
2

x nð Þ � x� �nð ÞN
	 
 ð4:46bÞ

Then, the DFTs of xe nð Þ and x0 nð Þ can be easily obtained, using Eq. (4.39), as

DFT xe nð Þf g ¼ 1
2
X kð ÞþX� kð Þ½ � ¼ XR kð Þ ð4:47aÞ

and

DFT x0 nð Þf g ¼ 1
2
X kð Þ � X� kð Þ½ � ¼ jXI kð Þ ð4:47bÞ

The symmetry properties of the DFT of a complex sequence are summarized in
Table 4.3.

4.4.2 Symmetry Relations of DFT of Real-Valued
Sequences

For a real-valued sequence x nð Þ, xI nð Þ ¼ 0. Hence, from Eq. (4.34), we get

X kð Þ ¼
XN�1

n¼0

x nð Þ cos 2pkn
N

� jx nð Þ sin 2pkn
N

� �

Table 4.3 Symmetry
properties of DFT of a
complex sequence

Sequence DFT

x� nð Þ X� �kð ÞN
� � ¼ X� N � kð Þ

x� �nð ÞN
� �

X� kð Þ
xR nð Þ 1

2 X kð ÞþX� N � kð Þ½ �
jxI nð Þ 1

2 X kð Þ � X� N � kð Þ½ �
xe nð Þ XR kð Þ
x0 nð Þ jXI kð Þ
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From symmetry,

X �kð ÞN
� � ¼ X n� kð Þ ¼

XN�1

n¼0

x nð Þ cos 2p n� kð Þn
N

� jx nð Þ sin 2p n� kð Þn
N

� �

¼
XN�1

n¼0

x nð Þ cos 2pkn
N

þ jx nð Þ sin 2pkn
N

� �
¼ X� kð Þ

Hence, we have the symmetry relation

X n� kð Þ ¼ X �kð ÞN
� � ¼ X� kð Þ ð4:48Þ

Also, from Eqs. (4.36a), we have

XR kð Þ ¼
XN�1

n¼0

x nð Þ cos 2pkn
N

� �

Hence,

XR �kð ÞN
� � ¼ XR N � kð Þ ¼

XN�1

n¼0

x nð Þ cos 2p N � kð Þn
N

� �
¼ XR kð Þ

Thus,

XR kð Þ ¼ XR �kð ÞN
� � ¼ XR N � kð Þ ð4:49aÞ

Similarly, starting with Eqs. (4.36b), we can show that

XI kð Þ ¼ �XI �kð ÞN
� � ¼ �XI N � kð Þ ð4:49bÞ

From the above relations, we see that the magnitude of X kð Þ and X �kð ÞN
� �

is
equal and that the phase angle of X kð Þ is negative of that of the phase angle of
X �kð ÞN
� �

, i.e.,

XðkÞj j ¼ Xðð�kÞNÞ
  ð4:50aÞ

and

\XðkÞ ¼ �\Xðð�kÞNÞ ð4:50bÞ
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If x nð Þ is real and even, that is,

x nð Þ ¼ x N � nð Þ 0� n�N � 1 ð4:51Þ

then, from Eq. (4.36a) and Eq. (4.36b), we see that XI kð Þ ¼ 0 and that the N-point
DFT reduces to

X kð Þ ¼
XN�1

n¼0

x nð Þ cos 2pkn
N

� �
¼ XR kð Þ 0� k�N � 1 ð4:52aÞ

Hence, the DFT of a real finite even sequence is itself real and even.
Furthermore, the IDFT reduces to

x nð Þ ¼ 1
N

XN�1

k¼0

X kð Þ cos 2pkn
N

� �
0� n�N � 1 ð4:52bÞ

If x nð Þ is real and odd, that is,

x nð Þ ¼ �x N � nð Þ 0� n�N � 1 ð4:53Þ

then, from Eq. (4.35a) and (4.35b), we see that XR kð Þ ¼ 0 and that the N-point DFT
reduces to

X kð Þ ¼ �j
XN�1

n¼0

x nð Þ sin 2pkn
N

� �
¼ jXj kð Þ 0� k�N � 1 ð4:54aÞ

Hence, the DFT of a real finite odd sequence is purely imaginary and odd.
Furthermore, the IDFT reduces to

x nð Þ ¼ j
1
N

XN�1

k¼0

X kð Þ sin 2pkn
N

� �
0� n�N � 1 ð4:54bÞ

The symmetry relations of DFT of a real-valued sequence are summarized in
Table 4.4.

Table 4.4 Symmetry relations of DFT of a real-valued sequence

Sequence DFT

Real x nð Þ X n� kð Þ ¼ X �kð ÞN
� � ¼ X� kð Þ

Real x nð Þ XR kð Þ ¼ XRð �kð ÞNÞ ¼ XR N � kð Þ
Real x nð Þ XI kð Þ ¼ �XIð �kð ÞNÞ ¼ �XI N � kð Þ
x nð Þ real and even XR kð Þ
x nð Þ real and odd jXI kð Þ
Real x nð Þ XðkÞj j ¼ Xðð�kÞNÞ

 , \XðkÞ ¼ �\Xðð�kÞNÞ
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4.4.3 DFTs of Two Real Sequences from a Single
N-Point DFT

Equations (4.44a) and (4.44b) can be used to advantage in finding the DFTs of two
real sequences of length N. Suppose x1 nð Þ and x2 nð Þ are two real N-point sequences
with DFTs X1 kð Þ and X2 kð Þ: Let us define a complex sequence x nð Þ by

x nð Þ ¼ x1 nð Þþ jx2 nð Þ ð4:55Þ

Using Eqs. (4.44a) and (4.44b), we may write the DFTs of the two real
sequences as

X1 kð Þ ¼ 1
2

X kð ÞþX� �kð ÞN
� �	 
 ¼ 1

2
X kð ÞþX� N � kð Þ½ � ð4:56aÞ

X2 kð Þ ¼ 1
2j

X kð Þ � X� �kð ÞN
� �	 
 ¼ 1

2j
X kð Þ � X� N � kð Þ½ � ð4:56bÞ

Example 4.10 Find the DFTs of the sequences x1 nð Þ ¼ 1; 2; 0; 1ð Þ and x2 nð Þ ¼
1; 0; 1; 0ð Þ using a single four-point DFT.

Solution

x nð Þ ¼ x1 nð Þþ jx2 nð Þ ¼ 1þ j; 2; j; 1ð Þ
Hence,

X kð Þ ¼ x 0ð Þþ x 1ð ÞWk
4 þ x 2ð ÞW2k

4 þ x 3ð ÞW3k
4 ; k ¼ 0; 1; 2; 3

Thus,

X kð Þ ¼ 4þ 2j; 1� j;�2þ 2j; 1þ jð Þ

Hence,

X� N � kð Þ ¼ 4� 2j; 1� j;�2� 2j; 1þ jð Þ

Substituting the values of X kð Þ and X� N � kð Þ in Eqs. (4.56a) and (4.56b), we
get

X1 kð Þ ¼ 4; 1� j;�2; 1þ jð Þ and X2 kð Þ ¼ 2; 0; 2; 0ð Þ
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4.5 Computation of Circular Convolution

4.5.1 Circulant Matrix Method

The circular convolution defined by Eq. (4.17) can be written in a matrix form as

ycð0Þ
ycð1Þ
ycð2Þ
..
.

ycðN � 1Þ

2666664

3777775 ¼

xð0Þ xðN � 1Þ xðN � 2Þ . . . xð1Þ
xð1Þ xð0Þ xðN � 1Þ . . . xð2Þ
xð2Þ xð1Þ xð0Þ . . . xð3Þ
..
. ..

. ..
. ..

. ..
.

xðN � 1Þ xðN � 2Þ xðN � 3Þ . . . xð0Þ

2666664

3777775
hð0Þ
hð1Þ
hð2Þ
..
.

hðN � 1Þ

2666664

3777775
ð4:57Þ

The (N � N) matrix on the RHS of Eq. (4.57) is called the circular convolution
matrix or circulant matrix and denoted by Cx. It may be observed that the first
column corresponds to the elements of the sequence x nð Þ, and the rest of the
columns are derived from the previous ones in a very simple way.

Example 4.11 Find the circular convolution of the sequences considered in
Example 4.9, namely x nð Þ ¼ 1; 3;�4;ð Þ and h nð Þ ¼ �2; 1; 2ð Þ:
Solution The circular convolution matrix Cx is given by

1 �4 3
3 1 �4
�4 3 1

24 35
Then, the circular convolution of x nð Þ and h nð Þ is given by

yc 0ð Þ
yc 1ð Þ
yc 2ð Þ

24 35 ¼
1 �4 3
3 1 �4
�4 3 1

24 35 �2
1
2

24 35 ¼
0

�13
13

24 35
Hence, yc nð Þ ¼ 0;�13; 13ð Þ:

4.5.2 Graphical Method

Evaluation of the circular convolution sum at any sample n consists of the following
operations:

(i) The sequences x nð Þ and h nð Þ are marked on two concentric circles with one
sequence on the inner circle in the clockwise direction and the other on the
outer circle in a counter clockwise direction as various points, with equal
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spacing. For n ¼ 0, yc 0ð Þ is obtained by multiplying the two sequences point
by point and summing the products.

(ii) Keeping the outer circle stationary, rotate the inner in counterclockwise
direction by one sample, multiply the two sequences point by point, and sum
the products. This gives yc 1ð Þ.

(iii) The procedure is continued to find yc nð Þ for other values of n.
The following example illustrates the above procedure:

Example 4.12 Find the circular convolution of the three-point sequences of
Example 4.11 with x nð Þ ¼ 1; 3;�4ð Þ and h nð Þ ¼ �2; 1; 2ð Þ.
Solution

-4

1-2
1

23

11

-4

2

-23
2 13 1

-4

-2

yc 0ð Þ ¼ �2:1þ 2:3þ 1 �4ð Þ ¼ 0

yc 1ð Þ ¼ 1:1þ �2ð Þ3þ 2 �4ð Þ ¼ �13

yc 2ð Þ ¼ 2:1þ 1:3þ �2ð Þ �4ð Þ ¼ 13

Hence, ( ) ℎ( )N( ) = = (0, 13,13)–

4.5.3 DFT Approach

We may obtain the circular convolution yc nð Þ of two N-point sequences using the
relation given by Eq. (4.25). We first compute the DFTs X1 kð Þ and X2 kð Þ of the two
sequences and then multiply them to get Yc kð Þ ¼ X1 kð ÞX2 kð Þ, the DFT of the
circular convolution. We then perform the IDFT on Yc kð Þ to obtain the circular
convolution yc nð Þ. In the next section, we will see how this approach can be used to
evaluate linear convolution of two sequences.

Example 4.13 Obtain the circular convolution of the sequences x1 nð Þ ¼ 1; 2; 0; 1ð Þ
and x2 nð Þ ¼ 1; 0; 1; 0ð Þ using the DFT approach.

Solution We have already found the DFTs for these two sequences in Example
4.10. These are given by
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X1 kð Þ ¼ 4; 1� j;�2; 1þ jð Þ and X2 kð Þ ¼ 2; 0; 2; 0ð Þ:
Hence,

Yc kð Þ ¼ 8; 0;�4; 0ð Þ:

Using Eq. (4.12), we now compute the IDFT of the above to obtain the circular
convolution yc nð Þ.

yc nð Þ ¼ 1
N

Yc 0ð Þþ Yc 2ð ÞW�2n
4 þ Yc 3ð ÞW�3n

4

	 

¼ 1

N
8� 4W�2n

4

	 

which gives

yc nð Þ ¼ 1; 3; 1; 3ð Þ

4.6 Linear Convolution Using DFT

Linear convolution is an important operation in signal processing applications since
it can be used to obtain the response of a linear filter for arbitrary input, once the
impulse response of the filter is known. There are efficient algorithms called fast
Fourier transforms, two of which will be discussed in the next section, for practical
implementation of an N-point DFT. Hence, it is of importance to find methods to
implement the linear convolution using the DFT.

4.6.1 Linear Convolution of Two Finite Length Sequences

Consider two sequences x nð Þ and h nð Þ of lengths L1 and L2, respectively. The linear
convolution of these two sequences is a sequence of length L1 + L2−1. Circular
convolution cannot be directly used on these two sequences to achieve linear
convolution. Now, to obtain linear convolution using circular convolution, we
generate two new sequences x0 nð Þ and h0 nð Þ, each of length L1 + L2−1 = L by
padding x nð Þ with (L2 − 1) zeros and h nð Þ with (L1 − 1) zeros. Thus,

x0ðn) ¼ ½xð0Þ; xð1Þ; . . .; xðL1 � 1Þ; 0; . . .; 0|fflfflffl{zfflfflffl}
L2�1

� ð4:58Þ

h0ðnÞ ¼ ½hð0Þ; hð1Þ; . . .; hðL2 � 1Þ; 0; . . .; 0|fflfflffl{zfflfflffl}
L1�1

� ð4:59Þ
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The linear convolution of x0 nð Þ and h0 nð Þ is given by

x0 nð Þ � h0 nð Þ ¼
XL
m¼

x0 mð Þh0 n� mð Þ; 0� n� L� 1 ð4:60Þ

The above expression can be thought of as a circular convolution of the two
padded sequences x0 nð Þ and h0 nð Þ; hence, we can use any of the methods described
in Sect. 4.5 to evaluate it.

Example 4.14 Find the linear convolution of the sequences x nð Þ ¼ 1; 2; 3; 1ð Þ and
x nð Þ ¼ 1; 1; 1ð Þ:
Solution The two sequences x nð Þ and h nð Þ are of lengths 4 and 3, respectively. By
appropriately padding the two sequences by zeros, we obtain the padded sequences
x0 nð Þ ¼ 1; 2; 3; 1; 0; 0ð Þ and h0 nð Þ ¼ ð1; 1; 1; 0; 0; 0Þ; each of length L = 6. We may
now calculate the circular convolution yc nð Þ of x0 nð Þ and h0 nð Þ using the circulant
matrix Eq. (4.57)

ycð0Þ
ycð1Þ
ycð2Þ
ycð3Þ
ycð4Þ
ycð5Þ

26666666664

37777777775
¼

1 0 0 1 3 2
2 1 0 0 1 3
3 2 1 0 0 1
1 3 2 1 0 0
0 1 3 2 1 0
0 0 1 3 2 1

26666664

37777775

1

1

1

0

0

0

26666666664

37777777775
¼

1

3

6

6

4

1

26666666664

37777777775
Thus, yc nð Þ ¼ 1; 3; 6; 6; 4; 1ð Þ, and therefore, the linear convolution

yl nð Þ ¼ x nð Þ � h nð Þ ¼ 1; 3; 6; 6; 4; 1ð Þ:

Instead of using the circulant matrix, we could have used the DFT approach to
find the circular convolution. In this case, we would first find the L = (L1 + L2−1)-
point DFTs X 0 kð Þ and H0 kð Þ of x0 nð Þ and h0 nð Þ. Then, the L-point IDFT of the
product X 0 kð ÞH0 kð Þ would yield the linear convolution of xðnÞ and hðnÞ.

The following MATLAB fragments illustrate as to how to obtain the linear
convolution using the DFT:

For the above example,

x=[1 2 3 1 0 0]; % sequence xðnÞ
h=[1 1 1 0 0 0];% sequence hðnÞ
L=length(x)+length(h)-1;%length of convolution sequence
XE=fft(x,L); % DFT of sequence xðnÞ with zero padding
HE=fft(h,L); % DFT of sequence hðnÞ with zero padding
yl=ifft(XE.*HE); % linear convolution of sequences xðnÞ and hðnÞ
After execution of the above MATLAB commands, the linear convolution of xðnÞ
and hðnÞ is given by
ylðnÞ ¼ xðnÞ � hðnÞ={1, 3, 6, 6, 4, 1}.

4.6 Linear Convolution Using DFT 191



4.6.2 Linear Convolution of a Finite Length Sequence
with a Long Duration Sequence

There are two methods for the evaluation of the linear convolution using the DFT,
called the overlap-add and the overlap-save, when one sequence is of finite length
and the other is of infinite length or much greater than the length of the finite length
sequence.

(a) Overlap-Add Method

Let x nð Þ be a sequence of long duration and h nð Þ of finite length L2. Let the
sequence x nð Þ be divided into a set of subsequences, each having a finite length L,
and let each subsequence be padded with L2−1 zeros to make its length equal to
L + L2−1. Then, we have

x1ðnÞ ¼ ½xð0Þ; xð1Þ; . . .; xðL� 1Þ; 0; . . .; 0|fflfflffl{zfflfflffl}
L2�1

�

x2ðnÞ ¼ ½xðLÞ; xðLþ 1Þ; . . .; xð2L� 1Þ; 0; . . .; 0|fflfflffl{zfflfflffl}
L2�1

�

x3ðnÞ ¼ ½xð2LÞ; xð2Lþ 1Þ; . . .; xð3L� 1Þ; 0; . . .; 0|fflfflffl{zfflfflffl}
L2�1

�

�
�
xmðnÞ ¼ ½ðxððm� 1ÞLÞ; xððm� 1ÞLþ 1Þ; . . .; xðmL� 1Þ; 0; . . .; 0|fflfflffl{zfflfflffl}

L2�1

�

ð4:61Þ

Also, the sequence h nð Þ is padded with L − 1 zeros to form the sequence
h0 nð Þ. Each of the subsequences is now convolved with h0 nð Þ of length L + L2−1.
Since each subsequence is terminated with L2 − 1 zeros, the last L2 − 1 points
from each subsequence convolution output are to be overlapped and added to the
first L2 − 1 points of the succeeding subsequence convolution output. Hence, this
procedure is called the overlap-add method. The following example illustrates
this method.

Example 4.15 If the impulse response of a filter is hðnÞ ¼ 1; 0; 1f g, find its output
yðnÞ ¼ xðnÞ � hðnÞ for the input sequence xðnÞ ¼ 3;�1; 0; 1; 2; 1; 0; 1; 2f g, by
using overlap-add method.
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Solution Let each subblock of the data be of length 3. Since L2 = 3, two zeros are
added to bring the length of each subblock to 5. Two zeros are added to h nð Þ so that
h0 nð Þ is also of length 5. Hence, the sub sequences are

x1ðnÞ ¼ 3;�1; 0; 0; 0f g; x2ðnÞ ¼ 1; 2; 1; 0; 0f g; x3ðnÞ ¼ 0; 1; 2; 0; 0f g:
and

h0 nð Þ ¼ 1; 0; 1; 0; 0f g

Then, the circular convolutions of the subsequences with h0 nð Þ are given by

1 ( )y n =  = {3, 1, 3, 1, 0}x1(n) N – –

2 ( )y n =  = {1, 2, 2, 2, 1}x2(n) N

3 ( )y n =  = {0, 1, 2, 1, 2}x3(n) N

Hence, the linear convolution of x nð Þ and h nð Þ is given by

yl nð Þ ¼ x nð Þ � h nð Þ ¼ 3;�1; 3; 0; 2; 2; 2; 2; 2; 1; 2ð Þ

The above process is illustrated in Fig. 4.5.
The above procedure can be implemented by using the MATLAB command

fftfilt.

h ¼ 1 0 1 0 0½ �;

x ¼ 3 � 1 0 1 2 1 0 1 2 0 0½ �;

y ¼ fftfilt h; xð Þ;
Thus after the execution of the above MATLAB statements, we get ylðnÞ as

ylðnÞ ¼ 3;�1; 3; 0; 2; 2; 2; 2; 2; 1; 2f g:

(b) Overlap-Save Method

In this method, the sequence x nð Þ is divided into a set of overlapping subse-
quences, each having a finite length L + L2−1. Each subsequence contains the last
L2 − 1 samples of the previous subsequence, followed by the next L samples of
x nð Þ. The first L2 − 1 samples of the first subsequence are set to zero. Hence, the
subsequences are
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(a)

(b)

(c)

(d)

Fig. 4.5 a Original signal x nð Þ, b subblocks of x nð Þ, c circular convolution of the subblocks of
x nð Þ and h0 nð Þ, and d linear convolution of x nð Þ and h nð Þ
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x1ðnÞ ¼ ½0; . . .; 0|fflfflffl{zfflfflffl}
L2�1

; xð0Þ; xð1Þ; . . .; xðL� 1Þ�

x2ðnÞ ¼ ½xðLþ 1� L2Þ; . . .; xðL� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L2 �1samplesfromx1ðnÞ

; xðLþ 1Þ; . . .; xð2L� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L new samples

�

x3ðnÞ ¼ ½xð2Lþ 1� L2Þ; . . .; xð2L� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L2�1samplesfromx2ðnÞ

; xð2LÞ; . . .; xð3L� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L new samples

�

and so on. Now, the length of the sequence h nð Þ is increased to L + L2 − 1 by
padding it with L − 1 zeros to form the sequence h0 nð Þ. Then, each of the subse-
quences is convolved with h0 nð Þ. The first L2 − 1 points of the circular convolution
of each of the subsequences with h0 nð Þ do not agree with the linear convolution
output of each subsequence with h0 nð Þ due to aliasing, and the remaining L points
are in agreement with the linear convolution output. Hence, the first L2 − 1 points
of the circular convolution of each subsequence with h0 nð Þ output are to be dis-
carded and the remaining L points from each subsequence convolution output are to
be abutted to obtain the linear convolution output of x nð Þ and h nð Þ. The following
example illustrates this method:

Example 4.16 Find the filter output yðnÞ ¼ xðnÞ � hðnÞ for the input x nð Þ and the
impulse response h nð Þ of Example 4.15.

Solution The subsequences of x nð Þ are

x1 nð Þ ¼ 0; 0; 3;�1; 0f g; x2 nð Þ ¼ �1; 0; 1; 2; 1f g;
x3 nð Þ ¼ 2; 1; 0; 1; 2f g; x4 nð Þ ¼ 1; 2; 0; 0; 0f g

and

h0 nð Þ ¼ 1; 0; 1; 0; 0f g

Then, the circular convolution of the subsequences with h(n) is given by

1 ( )y n =   = {0, 0, 3, 1, 3} x1(n) N –

2 ( )y n 1, 0, 0, 2, 2}x2 N(n)=  = {–

3 ( )y n x3 N(n)=  = {2, 1, 2, 2, 2}

4 ( )y n =                     1, 2, 1, 2, 0} x4(n) = {N
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Hence, the linear convolution of x(n) and h(n) is given by

ylðnÞ ¼ 3;�1; 3; 0; 2; 2; 2; 2; 2; 1; 2f g

This process is illustrated in Fig. 4.6a, b.

( )x n
1

2 2 
11

3

-1 

Overlap

1 ( )x n
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-12 1L −

2 1L −

Overlap
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2 1L −

-1 

2
1 1

3 ( )x n
1

2 2
1

2 1L −

4 ( )x n
1

2 

Overlap

(a)

Fig. 4.6 a Original input x nð Þ and subsections of x nð Þ and b circular convolution of subsections
of x nð Þ and h0 nð Þ; and the linear convolution of x nð Þ and h nð Þ
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4.7 Fast Fourier Transform

It is evident from Eqs. (4.11) that a direct evaluation of each value of X kð Þ requires
N complex multiplications and N � 1ð Þ complex additions. As such, N2 complex
multiplications and N N � 1ð Þ complex additions are necessary for the computation
of an N-point DFT. Consequently, for large N, the computational complexity in
terms of the arithmetic operations is high in direct evaluation of the DFT. Therefore,
a number of efficient algorithms have been developed for the computation of the
DFT. These efficient algorithms collectively have become known fast Fourier
transforms. The FFT algorithms decompose successively the computation of the
discrete Fourier transform of a sequence of length N into smaller and smaller
discrete Fourier transforms. The two most basic FFT algorithms are the

4 ( )y n
1

2
1

2

2 1L −

2 1L −

2 1L −
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2 2 

1 ( )y n

3

-1

3

3 ( )y n

2 1L −

1
2 2 2 2 

( )ly n
1

3
2

3
2 2 2 22

(b)

Fig. 4.6 (continued)
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decimation-in-time and decimation-in frequency [1, 2], and these are considered in
the following sections.

4.7.1 Decimation-in-Time FFT Algorithm with Radix-2

The decimation-in-time (DIT) is the process that decomposes the input sequence
successively into smaller and smaller subsequences. Here, the radix-2 means the
number of output points N can be expressed as a power of 2; that is, N ¼ 2m, where
m is an integer. Let the input sequence be decomposed into an even sequence g1 nð Þ
and an odd sequence g2 nð Þ as

g1 nð Þ ¼ x 2nð Þ; n ¼ 0; 1; . . .;
N
2
� 1 ð4:62Þ

g2 nð Þ ¼ x 2nð Þ; n ¼ 0; 1; . . .;
N
2
� 1 ð4:63Þ

We know from Eq. (4.11) that

XðkÞ ¼
XN�1

n¼0

xðnÞWnk
N ; k ¼ 0; 1; . . .;N � 1 ð4:64Þ

Substituting Eqs. (4.62) and (4.63) in (4.64), we get

XðkÞ ¼
XðN=2Þ�1

n¼0

xð2nÞW2nk
N þ

XðN=2Þ�1

n¼0

xð2nþ 1ÞW ð2nþ 1Þk
N ð4:65Þ

Using W2
N ¼ WN=2 in Eq. (4.65) yields

XðkÞ ¼
XðN=2Þ�1

n¼0

xð2nÞWnk
N=2 þWk

N

XðN=2Þ�1

n¼0

xð2nþ 1ÞWnk
N=2 ð4:66Þ

The RHS may be identified as the sum of two (N/2)-point DFTs, G1 kð Þ and
G2 kð Þ of the even and odd sequences g1 nð Þ and g2 nð Þ:

G1ðkÞ ¼
XðN=2Þ�1

n¼0

g1ðnÞWnk
N=2 ð4:67Þ

G2ðkÞ ¼
XðN=2Þ�1

n¼0

g2ðnÞWnk
N=2 ð4:68Þ
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Hence, X kð Þ in Eq. (4.66) can be written as

XðkÞ ¼ G1ðkÞþWk
NG2ðkÞ k ¼ 0; 1; . . .;N � 1 ð4:69Þ

Also, since G1 kð Þ and G2 kð Þ are periodic with a period of (N=2Þ, G1 kþN=2ð Þ ¼
G1 kð Þ and G2 kþN=2ð Þ ¼ G2 kð Þ, and the twiddle constant WkþN=2

N ¼ �Wk
N .

Hence, Eq. (4.69) can be written as

XðkÞ ¼ G1ðkÞþWk
NG2ðkÞ k ¼ 0; 1; . . .; ðN=2Þ � 1 ð4:70aÞ

XðkþN=2Þ ¼ G1ðkÞ �Wk
NG2ðkÞ k ¼ 0; 1; . . .; ðN=2Þ � 1 ð4:70bÞ

Repeating the process for each of the sequences g1ðnÞ and g2ðnÞ, g1ðnÞ yields
two N=4ð Þ-point sequences

g11ðnÞ ¼ g1ð2nÞ n ¼ 0; 1; . . .; ðN=4Þ � 1

g12ðnÞ ¼ g1ð2nþ 1Þ n ¼ 0; 1; . . .; ðN=4Þ � 1
ð4:71aÞ

and g2ðnÞ yields

g21ðnÞ ¼ g2ð2nÞ n ¼ 0; 1; . . .; ðN=4Þ � 1

g22ðnÞ ¼ g2ð2nþ 1Þ n ¼ 0; 1; . . .; ðN=4Þ � 1
ð4:71bÞ

and their DFTs satisfy

G1ðkÞ ¼ G11ðkÞþWk
N=2G12ðkÞ k ¼ 0; 1; . . .; ðN=4Þ � 1

G1 kþ N
4

� �
¼ G11ðkÞ �Wk

N=2G12ðkÞ k ¼ 0; 1; . . .; ðN=4Þ � 1
ð4:72aÞ

G2ðkÞ ¼ G21ðkÞþWk
N=2G22ðkÞ k ¼ 0; 1; . . .; ðN=4Þ � 1

G2 kþ N
4

� �
¼ G21ðkÞ �Wk

N=2G22ðkÞ k ¼ 0; 1; . . .; ðN=4Þ � 1
ð4:72bÞ

This process can be continued until we are left with only two-point transforms.
For example, for N = 4, Eqs. (4.70a) and (4.70b) become

XðkÞ ¼ G1ðkÞþWk
NG2ðkÞ k ¼ 0; 1

Xðkþ 2Þ ¼ G1ðkÞ �Wk
NG2ðkÞ k ¼ 0; 1

ð4:73Þ

Equation (4.73) can be represented by the flow graph as shown in Fig. 4.7. This
is usually referred to as the butterfly diagram for four-point DFT. In the first stage,
two 2-point DFTs and, in the second stage, one 4-point DFT are computed.
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For N = 8, Eqs. (4.70a) and (4.70b) become

XðkÞ ¼ G1ðkÞþWk
N G2ðkÞ k ¼ 0; 1; 2; 3

Xðkþ 2Þ ¼ G1ðkÞ �Wk
NG2ðkÞ k ¼ 0; 1; 2; 3

ð4:74Þ

The computation of an eight-point DFT is performed in three stages as shown in
Fig. 4.8.

It is observed from the flow graph that in the first stage, four 2-point DFTs, in the
second stage, two 4-point DFTs, and finally, in the third stage, one 8-point DFT are
computed. Also, the number of complex multiplications carried out at each stage is
equal to 4 = N/2, and the number of additions performed is N. Hence, the total
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Fig. 4.7 Decomposition of a four-point DFT using DIT
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number of complex multiplications and additions in computing all the 8 samples is
12 and 24, respectively. Following the same argument, it can be observed that in the
general case of N ¼ 2m, the number of stages of computation will be m ¼ log2 N;
hence, the total number of complex multiplications and additions needed in com-
puting all the N DFT samples is N=2ð Þ log2 N, and the number of complex additions
is N log2 N.

Example 4.17 Find the four-point FFT of xðnÞ ¼ 1; 0; 1; 1f g using the
decimation-in-time algorithm.

Solution With N = 4, the two twiddle factors are

W0
4 ¼ 1 and W1

4 ¼ e�j2p=4 ¼ cosðp=2Þ � j sinðp=2Þ ¼ �j:

Since it is a four-point DFT, the DIT flow graph consists of two stages as shown
in Fig. 4.9. The outputs of the first and second stages are computed as follows:

Stage 1

x1ð0Þ ¼ xð0ÞþW0
4 xð2Þ ¼ 1þ 1 ¼ 2;

x1ð2Þ ¼ xð0Þ �W0
4 xð2Þ ¼ 1� 1 ¼ 0;

x1ð1Þ ¼ xð1ÞþW0
4 xð3Þ ¼ 0þ 1 ¼ 1;

x1ð3Þ ¼ xð1Þ �W0
4 xð3Þ ¼ 0� 1 ¼ �1;

where the sequence x1 nð Þ represents the intermediate output after the first stage and
becomes the input to the second (final) stage.

Stage 2

Xð0Þ ¼ x1ð0ÞþW0
4 x1ð1Þ ¼ 2þ 1 ¼ 3;

Xð2Þ ¼ x1ð0Þ �W0
4 x1ð1Þ ¼ 2� 1 ¼ 1;
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Fig. 4.9 Decomposition of the four-point DFT of Example 4.17 using the DIT algorithm
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Xð1Þ ¼ x1ð2ÞþW1
4 x1ð3Þ ¼ 1þð�jÞð�1Þ ¼ j;

Xð3Þ ¼ x1ð2Þ �W1
4 x1ð3Þ ¼ 0� ð�jÞð�1Þ ¼ �j;

Example 4.18 Consider an input data string of x nð Þ ¼ 0; 1; 2; 3ð Þ. Draw the but-
terfly diagram of the FFT showing the input, intermediate outputs, and the final
output to compute the DFT of x nð Þ.
Solution By computing the outputs of the first and second stages as was done in
the previous example, the required butterfly diagram is shown in Fig. 4.10.

Example 4.19 Find the eight-point FFT of xðnÞ ¼ 1; 0; 1; 1; 1; 1; 1; 0f g using the
DIT algorithm.

Solution With N = 8, the four twiddle factors are

W0
8 ¼ 1;

W1
8 ¼ e�j2p=8 ¼ cosðp=4Þ � j sinðp=4Þ ¼ 0:707� j0:707;

W2
8 ¼ e�j4p=8 ¼ �j;

W3
8 ¼ e�j6p=8 ¼ �0:707� j0:707;

Since it is an eight-point DFT with radix-2, the DIT flow graph consists of three
stages as shown in Fig. 4.11. The outputs of the three stages are computed as
follows:

1 -1 -1

2 

3 

1

2 

4

0

Stage 1 Stage 2

1 -1

•

•

•

•

-1 

 -1

1

Fig. 4.10 Decomposition of the four-point DFT of Example 4.18 using the DIT algorithm
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Stage 1

x1ð0Þ ¼ xð0ÞþW0
8 xð4Þ ¼ 1þ 1 ¼ 2;

x1ð4Þ ¼ xð0Þ �W0
8 xð4Þ ¼ 1� 1 ¼ 0;

x1ð2Þ ¼ xð2ÞþW0
8 xð6Þ ¼ 1þ 1 ¼ 2;

x1ð6Þ ¼ xð2Þ �W0
8 xð6Þ ¼ 1� 1 ¼ 0;

x1ð1Þ ¼ xð1ÞþW0
8 xð5Þ ¼ 0þ 1 ¼ 1;

x1ð5Þ ¼ xð1Þ �W0
8 xð5Þ ¼ 0� 1 ¼ �1;

x1ð3Þ ¼ xð3ÞþW0
8 xð7Þ ¼ 1þ 0 ¼ 1;

x1ð7Þ ¼ xð3Þ �W0
8 xð7Þ ¼ 1� 0 ¼ 1;

where the sequence x1 nð Þ represents the intermediate output after the first stage and
becomes the input to the second stage.

Fig. 4.11 Decomposition of the eight-point DFT of Example 4.19 using the DIT algorithm
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Stage 2

x2ð0Þ ¼ x1ð0ÞþW0
8 x1ð2Þ ¼ 2þ 2 ¼ 4;

x2ð4Þ ¼ x1ð4ÞþW2
8 x1ð6Þ ¼ 0þð�jÞ0 ¼ 0;

x2ð2Þ ¼ x1ð0Þ �W0
8 x1ð2Þ ¼ 2� 2 ¼ 0;

x2ð6Þ ¼ x1ð4Þ �W2
8 x1ð6Þ ¼ 0þð�jÞ0 ¼ 0;

x2ð1Þ ¼ x1ð1ÞþW0
8 x1ð3Þ ¼ 1þ 1 ¼ 2;

x2ð5Þ ¼ x1ð5ÞþW2
8 x1ð7Þ ¼ �1þð�jÞ ¼ �1� j;

x2ð3Þ ¼ x1ð1Þ �W0
8 x1ð3Þ ¼ 1� 1 ¼ 0;

x2ð7Þ ¼ x1ð5Þ �W2
8 x1ð7Þ ¼ �1� ð�jÞ ¼ �1þ j;

where the second-stage output sequence x2 nð Þ becomes the input sequence to the
final stage.

Stage 3

Xð0Þ ¼ x2ð0ÞþW0
8 x2ð1Þ ¼ 4þ 2 ¼ 6;

Xð1Þ ¼ x2ð4ÞþW1
8 x2ð5Þ ¼ 0þð0:707� j0:707Þð�1� jÞ ¼ �1:414;

Xð2Þ ¼ x2ð2ÞþW2
8 x2ð3Þ ¼ 0þð�jÞ0 ¼ 0;

Xð3Þ ¼ x2ð6ÞþW3
8 x2ð7Þ ¼ 0þð�0:707� j0:707Þð�1þ jÞ ¼ 1:414;

Xð4Þ ¼ x2ð0Þ �W0
8 x2ð1Þ ¼ 4� 2 ¼ 2;

Xð5Þ ¼ x2ð4Þ �W1
8 x2ð5Þ ¼ 0� ð0:707� j0:707Þð�1� jÞ ¼ 1:414;

Xð6Þ ¼ x2ð2Þ �W2
8 x2ð3Þ ¼ 0� ð�jÞð0Þ ¼ 0;

Xð7Þ ¼ x2ð6Þ �W3
8 x2ð7Þ ¼ 0� ð�0:707� j0:707Þð�1þ jÞ ¼ �1:414;

Example 4.20 Find the 16-point FFT of the sequence xðnÞ ¼
1; 0; 1; 1; 0; 1; 1; 0; 1; 0; 0; 1; 1; 1; 1; 0f g using the DIT algorithm.
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Solution With N = 16, eight twiddle factors need to be calculated; these are

W0
16 ¼ 1;W1

16 ¼ e�j2p=16 ¼ 0:9238� j0:3826;

W2
16 ¼ e�j4p=16 ¼ 0:707� j0:707;

W3
16 ¼ e�j6p=16 ¼ 0:3826� j0:9238;

W4
16 ¼ e�j8p=16 ¼ 0� j;

W5
16 ¼ e�j10p=16 ¼ �0:3826� j0:9238;

W6
16 ¼ e�j12p=16 ¼ �0:707� j0:707;

W7
16 ¼ e�j14p=16 ¼ �0:9238� j0:3826:

Since it is a 16-point DFT with radix-2, the DIT flow graph consists of four
stages as shown in Fig. 4.12. The outputs of the four stages are computed as
follows:

Stage 1
x1ð0Þ ¼ xð0ÞþW0

16xð8Þ ¼ 1þ 1 ¼ 2;

x1ð8Þ ¼ xð0Þ �W0
16xð8Þ ¼ 1� 1 ¼ 0;

x1ð4Þ ¼ xð4ÞþW0
16xð12Þ ¼ 0þ 1 ¼ 1;

x1ð12Þ ¼ xð4Þ �W0
16xð12Þ ¼ 0� 1 ¼ �1;

x1ð2Þ ¼ xð2ÞþW0
16xð10Þ ¼ 1þ 0 ¼ 1;

x1ð10Þ ¼ xð2Þ �W0
16xð10Þ ¼ 1� 0 ¼ 1;

x1ð6Þ ¼ xð6ÞþW0
16xð14Þ ¼ 1þ 1 ¼ 2;

x1ð14Þ ¼ xð6Þ �W0
16xð14Þ ¼ 1� 1 ¼ 0;

x1ð1Þ ¼ xð1ÞþW0
16xð9Þ ¼ 0þ 0 ¼ 0;

x1ð9Þ ¼ xð1Þ �W0
16xð9Þ ¼ 0� 0 ¼ 0;

x1ð5Þ ¼ xð5ÞþW0
16xð13Þ ¼ 1þ 1 ¼ 2;

x1ð13Þ ¼ xð5Þ �W0
16xð13Þ ¼ 1� 1 ¼ 0;

x1ð3Þ ¼ xð3ÞþW0
16xð11Þ ¼ 1þ 1 ¼ 2;

x1ð11Þ ¼ xð3Þ �W0
16xð11Þ ¼ 1� 1 ¼ 0;

x1ð7Þ ¼ xð7ÞþW0
16xð15Þ ¼ 0þ 0 ¼ 0;

x1ð15Þ ¼ xð7Þ �W0
16xð15Þ ¼ 0� 0 ¼ 0;

where the sequence x1 nð Þ represents the intermediate output after the first iteration
and becomes the input to the second stage.
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Fig. 4.12 Decomposition of the 16-point DFT of Example 4.20 using the DIT algorithm
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Stage 2

x2ð0Þ ¼ x1ð0ÞþW0
16x1ð4Þ ¼ 2þ 1 ¼ 3;

x2ð8Þ ¼ x1ð8ÞþW4
16x1ð12Þ ¼ 0þð�jÞð�1Þ ¼ j;

x2ð4Þ ¼ x1ð0Þ �W0
16x1ð4Þ ¼ 2� 1 ¼ 1;

x2ð12Þ ¼ x1ð8Þ �W4
16x1ð12Þ ¼ 0� ð�jÞð�1Þ ¼ �j;

x2ð2Þ ¼ x1ð2ÞþW0
16x1ð6Þ ¼ 1þ 2 ¼ 3;

x2ð10Þ ¼ x1ð10ÞþW4
16x1ð14Þ ¼ 1� ð�jÞ0 ¼ 1;

x2ð6Þ ¼ x1ð2Þ �W0
16x1ð6Þ ¼ 1� 2 ¼ �1;

x2ð14Þ ¼ x1ð10Þ �W4
16x1ð14Þ ¼ 1� ð�jÞ0 ¼ 1;

x2ð1Þ ¼ x1ð1ÞþW0
16x1ð5Þ ¼ 0þ 2 ¼ 2;

x2ð9Þ ¼ x1ð9ÞþW4
16x1ð13Þ ¼ 0þð�jÞ0 ¼ 0;

x2ð5Þ ¼ x1ð1Þ �W0
16x1ð5Þ ¼ 0� 2 ¼ �2;

x2ð13Þ ¼ x1ð9Þ �W4
16x1ð13Þ ¼ 0� ð�jÞ0 ¼ 0;

x2ð3Þ ¼ x1ð3ÞþW0
16x1ð7Þ ¼ 2þ 0 ¼ 2;

x2ð11Þ ¼ x1ð11ÞþW4
16x1ð15Þ ¼ 0þð�jÞ0 ¼ 0;

x2ð7Þ ¼ x1ð3Þ �W0
16x1ð7Þ ¼ 2� 0 ¼ 2;

x2ð15Þ ¼ x1ð11Þ �W4
16x1ð15Þ ¼ 0� ð�jÞ0 ¼ 0;

where the intermediate second-stage output sequence x2 nð Þ becomes the input
sequence to the next one.
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Stage 3

x3ð0Þ ¼ x2ð0ÞþW0
16x2ð2Þ ¼ 3þ 3 ¼ 6;

x3ð8Þ ¼ x2ð8ÞþW2
16x2ð10Þ ¼ jþð0:707� j0:707Þð1Þ ¼ 0:707þ j0:2929;

x3ð4Þ ¼ x2ð4ÞþW4
16x2ð6Þ ¼ 1þð�jÞð�1Þ ¼ 1þ j;

x3ð12Þ ¼ x2ð12ÞþW6
16x2ð14Þ ¼ ð�jÞþ ð�0:707� j0:707Þð1Þ ¼ �0:707� j1:707;

x3ð2Þ ¼ x2ð0Þ �W0
16x2ð2Þ ¼ 3� 3 ¼ 0;

x3ð10Þ ¼ x2ð8Þ �W2
16x2ð10Þ ¼ j� ð0:707� j0:707Þð1Þ ¼ �0:707þ j1:707;

x3ð6Þ ¼ x2ð4Þ �W4
16x2ð6Þ ¼ 1� ð�jÞð�1Þ ¼ 1� j;

x3ð14Þ ¼ x2ð12Þ �W6
16x2ð14Þ ¼ ð�jÞ � ð�0:707� j0:707Þð1Þ ¼ 0:707� j0:2929;

x3ð1Þ ¼ x2ð1ÞþW0
16x2ð3Þ ¼ 2þ 2 ¼ 4;

x3ð9Þ ¼ x2ð9ÞþW2
16x2ð11Þ ¼ 0þð0:707� j0:707Þ0 ¼ 0;

x3ð5Þ ¼ x2ð5ÞþW4
16x2ð7Þ ¼ �2þð�jÞ2 ¼ �2� 2j;

x3ð13Þ ¼ x2ð13ÞþW6
16x2ð15Þ ¼ 0� ð�0:707� j0:707Þ0 ¼ 0;

x3ð3Þ ¼ x2ð1Þ �W0
16x2ð3Þ ¼ 2� 2 ¼ 0;

x3ð11Þ ¼ x2ð9Þ �W2
16x2ð11Þ ¼ 0� ð0:707� j0:707Þ0 ¼ 0;

x3ð7Þ ¼ x2ð5Þ �W4
16x2ð7Þ ¼ �2� 0 ¼ �2;

x3ð15Þ ¼ x2ð13Þ �W6
16x2ð15Þ ¼ 0� ð�jÞ0 ¼ 0;

where the intermediate third-stage output sequence x3 nð Þ becomes the input
sequence to the final stage.
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Stage 4

Xð0Þ ¼ x3ð0ÞþW0
16x3ð1Þ ¼ 6þ 4 ¼ 10;

Xð1Þ ¼ x3ð8ÞþW1
16x3ð9Þ ¼ 0:707þ j0:2929;

Xð2Þ ¼ x3ð4ÞþW2
16x3ð5Þ ¼ �1:8284þ j;

Xð3Þ ¼ x3ð12ÞþW3
16x3ð13Þ ¼ �0:707� j1:707;

Xð4Þ ¼ x3ð2ÞþW4
16x3ð3Þ ¼ 0;

Xð5Þ ¼ x3ð10ÞþW5
16x3ð11Þ ¼ �0:707þ j1:707;

Xð6Þ ¼ x3ð6ÞþW6
16x3ð7Þ ¼ 3:8284� j;

Xð7Þ ¼ x3ð14ÞþW7
16x3ð15Þ ¼ 0:707� j0:2929;

Xð8Þ ¼ x3ð0Þ �W0
16x3ð1Þ ¼ 2;

Xð9Þ ¼ x3ð8Þ �W1
16x3ð9Þ ¼ 0:7071þ j0:2929;

Xð10Þ ¼ x3ð4Þ �W2
16x3ð5Þ ¼ 3:8284þ j;

Xð11Þ ¼ x3ð12Þ �W3
16x3ð13Þ ¼ �0:707� j1:707;

Xð12Þ ¼ x3ð2Þ �W4
16x3ð3Þ ¼ 0;

Xð13Þ ¼ x3ð10Þ �W5
16x3ð11Þ ¼ �0:707þ j1:707;

Xð14Þ ¼ x3ð6Þ �W6
16x3ð7Þ ¼ �1:8284� j;

Xð15Þ ¼ x3ð14Þ �W7
16x3ð15Þ ¼ 0:707� j0:2929;

4.7.2 In-Place Computation

In the implementation of the DIT FFT algorithm, only one complex array of
N storage registers is physically necessary, since the complex numbers resulting
from the mth stage can be stored in the same registers that had stored the complex
numbers resulting from the (m − 1)th stage, once the output variables of the mth
stage have been determined from the output numbers of the (m − 1)th stage. This
type of computation is referred to as in-place computation. Thus, for in-place
computation in the DIT algorithm in which the DFT samples appear in the natural
order (i.e., X kð Þ, k = 0, 1,…, N − 1), the input sequence samples are to be stored in
index bit-reversed order. If x b2b1b0ð Þ represents the sample x nð Þ in the index
bit-reversed binary form, then the sample x b2b1b0ð Þ would appear in the location of
the sample x b0b1b2ð Þ of the input sequence to the DIT algorithm. For an eight-point
DFT, the bit-reversal process is shown in Table 4.5.
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4.7.3 Decimation-in-Frequency FFT Algorithm
with Radix-2

The basic idea in the decimation-in-time (DIT) algorithm was to decompose the
input sequence successively into smaller and smaller subsequences. In the case of
decimation-in-frequency (DIF) algorithm, we decompose the N-point DFT
sequence X kð Þ successively into smaller and smaller subsequences. Consider an
input sequence x(n), and divide it into two halves. Then, the DFT of x(n) can be
written as

X kð Þ ¼
XN=2ð Þ�1

n¼0

x nð ÞWnk
N þ

XN=2ð Þ�1

n¼N=2

x nð ÞWnk
N ð4:75aÞ

The above equation can be rewritten as

X kð Þ ¼
XN=2ð Þ�1

n¼0

x nð ÞWnk
N þWkN=2

N

XN=2ð Þ�1

n¼N=2

x nþ N
2

� �
Wnk

N ð4:75bÞ

Since WNk=2
N ¼ �1ð Þk , Eq. (4.75b) becomes

X kð Þ ¼
XN=2ð Þ�1

n¼0

x nð Þþ �1ð Þkx nþ N
2

� �� �
Wnk

N ð4:75cÞ

Now, splitting X kð Þ into even-indexed and odd-indexed samples, Eq. (4.75c)
can be written as consisting of two (N/2)-point DFTs for k = 0,1, …, (N/2)−1.

Table 4.5 Bit-reversal process for N = 8

Input
sequence
samples

Input sequence samples with
index binary representation

Input sequence samples
with bit-reversed binary
index

Index
bit-reversed
samples

x(0) x(000) x(000) x(0)

x(1) x(001) x(100) x(4)

x(2) x(010) x(010) x(2)

x(3) x(011) x(110) x(6)

x(4) x(100) x(001) x(1)

x(5) x(101) x(101) x(5)

x(6) x(110) x(011) x(3)

x(7) x(111) x(111) x(7)
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X 2kð Þ ¼
XN=2ð Þ�1

n¼0

x nð Þþ x nþ N
2

� �� �
Wnk

N=2 ð4:76aÞ

X 2kþ 1ð Þ ¼
XN=2ð Þ�1

n¼0

x nð Þ � x nþ N
2

� �� �
Wn

NW
nk
N=2 ð4:76bÞ

Let

x1 nð Þ ¼ x nð Þþ x nþ N
2

� �
n ¼ 0; 1; 2; . . .;

N
2

� �
� 1 ð4:77aÞ

x2 nð Þ ¼ x nð Þ � x nþ N
2

� �
Wn

N n ¼ 0; 1; 2; . . .;
N
2

� �
� 1 ð4:77bÞ

Then, the even- and odd-indexed X kð Þ’s are found from the (N/2)-point trans-
forms of x1 nð Þ and x2 nð Þ as

X 2kð Þ ¼
XN=2ð Þ�1

n¼0

x1 nð ÞWnk
N=2 ð4:78aÞ

and

X 2kþ 1ð Þ ¼
XN=2ð Þ�1

n¼0

x2 nð ÞWnk
N=2 ð4:78bÞ

Repeating the process for each of the sequences x1 nð Þ and x2 nð Þ yields the two
(N/4)-point sequences

x11ðnÞ ¼ x1ðnÞþ x1ðnþ N
4
Þ n ¼ 0; 1; . . .; ðN=4Þ � 1

x12 nð Þ ¼ x1 nð Þ � x1 nþ N
4

� �� �
W2n

N n ¼ 0; 1; . . .; ðN=4Þ � 1
ð4:79aÞ

and x2ðnÞ yields

x21ðnÞ ¼ x2ðnÞþ x2ðnþ N
4
Þ n ¼ 0; 1; . . .; ðN=4Þ � 1

x22ðnÞ ¼ x2ðnÞ � x2 nþ N
4

� �� �
W2n

N n ¼ 0; 1; . . .; ðN=4Þ � 1
ð4:79bÞ

Then, the even- and odd-indexed X kð Þ’s are found from the (N/4)-point trans-
forms of x11 nð Þ; x12 nð Þ; x21 nð Þ and x22 nð Þ as
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X 4kð Þ ¼
XN=4ð Þ�1

n¼0

x11 nð ÞWnk
N=4

X 4kþ 2ð Þ ¼
XN=4ð Þ�1

n¼0

x12 nð ÞWnk
N=4

X 4kþ 1ð Þ ¼
XN=4ð Þ�1

n¼0

x21 nð ÞWnk
N=4

X 4kþ 3ð Þ ¼
XN=4ð Þ�1

n¼0

x22 nð ÞWnk
N=4

ð4:80Þ

The process is to be continued until they reduce to two-point transforms.
For example, for N = 4, the two twiddle factors needed are W0

4 ¼ 1 and
W1

4 ¼ �j. The DIF flow graph for a four-point DFT contains two stages as shown
in Fig. 4.13. The outputs of the two stages are computed as follows:

Stage 1

x1 0ð Þ ¼ x 0ð Þþ x 2ð Þ
x1 1ð Þ ¼ x 1ð Þþ x 3ð Þ
x1 2ð Þ ¼ x 0ð Þ � x 2ð Þ½ �w0

4

x1 3ð Þ ¼ x 1ð Þ � x 3ð Þ½ �w1
4

where x1 0ð Þ; x1 1ð Þ; x1 2ð Þ and x1 3ð Þ represent the intermediate output sequence
after the first stage, which become the input to the second stage.
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Fig. 4.13 Decomposition of a four-point DFT using the DIF algorithm
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Stage 2

X 0ð Þ ¼ x1 0ð Þþ x1 1ð Þ
X 1ð Þ ¼ x1 2ð Þþ x1 3ð Þ
X 2ð Þ ¼ x1 0ð Þ � x1 1ð Þ
X 3ð Þ ¼ x1 2ð Þ � x1 3ð Þ

For N = 8, the decomposition of an 8-point DFT into two 4-point DFTS with
DIF algorithm is shown in Fig. 4.14.

Example 4.21 Find the DFT of the sequence x nð Þ ¼ 1; 2; 3; 4ð Þ using the DIF
algorithm.

Solution The two twiddle factors needed are W0
4 ¼ 1 and W1

4 ¼ �j.
The DIF flow graph for four-point DFT consists of two stages as shown in

Fig. 4.15. The outputs of the two stages are computed as follows:
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Fig. 4.14 Decomposition of an eight-point DFT using the DIF algorithm decimation-in-frequency
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Stage 1

x1ð0Þ ¼ xð0Þþ xð2Þ ¼ 4

x1ð1Þ ¼ xð1Þþ xð3Þ ¼ 6

x1ð2Þ ¼ xð0Þ � xð2Þ½ �W0
4 ¼ �2

x1ð3Þ ¼ xð1Þ � xð3Þ½ �W1
4 ¼ 2j

where x1 0ð Þ; x1 1ð Þ; x1 2ð Þ and x1 3ð Þ represent the intermediate output sequence
after the first stage, which become the input to the second stage.

Stage 2

Xð0Þ ¼ x1ð0Þþ x1ð1Þ ¼ 10

Xð2Þ ¼ x1ð0Þ � x1ð1Þ ¼ �2

Xð1Þ ¼ x1ð2Þþ x1ð3Þ ¼ �2þ 2j

Xð3Þ ¼ x1ð2Þ � x1ð3Þ ¼ �2� 2j

Example 4.22 Find the DFT of a sequence x nð Þ ¼ 1; 1; 1; 1; 1; 1; 0; 0ð Þ using the
DIF algorithm.
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1(0)x
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Fig. 4.15 Flow graph for the four-point FFT of Example 4.21 using the DIF algorithm
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Solution With N = 8, the four twiddle factors needed are

W0
8 ¼ 1;

W1
8 ¼ e�j2p=8 ¼ e�jp=4 ¼ 0:707� j0:707;

W2
8 ¼ e�j4p=8 ¼ e�jp=2 ¼ �j;

W3
8 ¼ e�j6p=8 ¼ e�j3p=4 ¼ �0:707� j0:707;

Stage 1
x1ð0Þ ¼ xð0Þþ xð4Þ ¼ 2;

x1ð1Þ ¼ xð1Þþ xð5Þ ¼ 2;

x1ð2Þ ¼ xð2Þþ xð6Þ ¼ 1;

x1ð3Þ ¼ xð3Þþ xð7Þ ¼ 1;

x1ð4Þ ¼ ½xð0Þ � xð4Þ�W0
8 ¼ 0;

x1ð5Þ ¼ ½xð1Þ � xð5Þ�W1
8 ¼ 0;

x1ð6Þ ¼ ½xð2Þ � xð6Þ�W2
8 ¼ �j;

x1ð7Þ ¼ ½xð3Þ � xð7Þ�W3
8 ¼ �0:707� j0:707;

where x1 0ð Þ; x1 1ð Þ; . . .; x1 7ð Þ represent the intermediate output sequence after the
first stage, which become the input to the second stage.

Stage 2

x2ð0Þ ¼ x1ð0Þþ x1ð2Þ ¼ 3;

x2ð1Þ ¼ x1ð1Þþ x1ð3Þ ¼ 3;

x2ð2Þ ¼ ½x1ð0Þ � x1ð2Þ�W0
8 ¼ 1;

x2ð3Þ ¼ ½x1ð1Þ � x1ð3Þ�W2
8 ¼ �j;

x2ð4Þ ¼ x1ð4Þþ x1ð6Þ ¼ �j;

x2ð5Þ ¼ x1ð5Þþ x1ð7Þ ¼ �0:707� j0:707;

x2ð6Þ ¼ ½x1ð4Þ � x1ð6Þ�W0
8 ¼ j;

x2ð7Þ ¼ ½x1ð5Þ � x1ð7Þ�W2
8 ¼ 0:707� j0:707;

where x2 0ð Þ; x2 1ð Þ; . . .; x2 7ð Þ represent the intermediate output sequence after the
second stage, which become the input to the final stage.

Stage 3

We now use the notation of X’s to represent the final output sequence. The values
X 0ð Þ; X 1ð Þ; . . .; X 7ð Þ form the output sequence.
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Xð0Þ ¼ x2ð0Þþ x2ð1Þ ¼ 6;

Xð4Þ ¼ x2ð0Þ � x2ð1Þ ¼ 0;

Xð2Þ ¼ x2ð2Þþ x2ð3Þ ¼ 1� j1;

Xð6Þ ¼ x2ð2Þ � x2ð3Þ ¼ 1þ j1;

Xð1Þ ¼ x2ð4Þþ x2ð5Þ ¼ �0:707� j1:707;

Xð5Þ ¼ x2ð4Þ � x2ð5Þ ¼ 0:707� j0:2929;

Xð3Þ ¼ x2ð6Þþ x2ð7Þ ¼ 0:707þ j0:2929;

Xð7Þ ¼ x2ð6Þ � x2ð7Þ ¼ �0:707þ j1:707;

The DIF flow graph for eight-point DFT consists of three stages as shown in
Fig. 4.16. The outputs of the three stages are computed in Fig. 4.16.

It should be noted that flow graph representing the DIF FFT may be considered
as an in-place computation, just as in the case of the DIT FFT. Further, it should be
noted that the input sequence x nð Þ is in order, while the output sequence X kð Þ is in
bit-reversed order. The number of multiplications and additions for computing an
N-point by DIF FFT is the same as in the case of the DIT FFT, namely
N=2ð Þ log2 N and N log2 N, respectively.
It is worth pointing out that the flow graphs of DIT FFT and DIF FFT algorithms

are transposes of one another.
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Fig. 4.16 Flow graph of the eight-point FFT for the Example 4.22 using DIF algorithm
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4.7.4 Radix-4 DIF FFT Algorithm

If N ¼ 22m, then we can use radix-4 algorithms rather than radix-2 algorithms, and
this gives us a reduction in the number of multiplications to be performed. Here, we
will consider the radix-4 DIF algorithm. Radix-4 DIT algorithm can be developed
in a way similar to that of the radix-2 DIT algorithm.

Consider a sequence x nð Þ, and divide it into four parts so that the DFT of x nð Þ
can be written as

XðkÞ ¼
XðN=4Þ�1

n¼0

xðnÞWnk
N þ

XðN=2Þ�1

n¼N=4

xðnÞWnk
N þ

Xð3N=4Þ�1

n¼N=2

xðnÞWnk
N þ

XN�1

n¼3N=4

xðnÞWnk
N

ð4:81Þ

The above equation can be rewritten as

XðkÞ ¼
XðN=4Þ�1

n¼0

xðnÞWnk
N þWkN=4

XðN=4Þ�1

n¼0

xðnþN=4ÞWnk
N

þWkN=2
XðN=4Þ�1

n¼0

xðnþN=2ÞWnk
N þWk3N=4

XðN=4Þ�1

n¼0

xðnþ 3N=4ÞWnk
N

ð4:82Þ

Substituting

WkN=4
N ¼ e�jkp=2 ¼ ð�jÞk;WkN=2

N ¼ e�jkp ¼ ð�1Þk;W3kN=4
N ¼ ðjÞk

in the above equation, we get

X kð Þ ¼
XN4�1

n¼0

x nð Þþ �jð Þkx nþ N
4

� �
þ �1ð Þkx nþ N

2

� �
þ jð Þkx nþ 3N

4

� �� �
Wnk

N

ð4:83Þ

Since the twiddle factor depends on N, the above relation is not N/4-point DFT.
To represent it as an N/4-point DFT, the DFT sequence is divided into four
N/4-point subsequences, X 4kð Þ, X 4kþ 1ð Þ, X 4kþ 2ð Þ and X 4kþ 3ð Þ for
k ¼ 0; 1; . . . N

4 � 1
� �

. Thus, the DIF FFT with radix-4 can be represented as

Xð4kÞ ¼
XðN=4Þ�1

n¼0

xðnÞþ xðnþN=4Þþ xðnþN=2Þþ xðnþ 3N=4Þ½ �Wnk
N=4 ð4:84Þ
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Xð4kþ 1Þ ¼
XðN=4Þ�1

n¼0

xðnÞ � jxðnþN=4Þ � xðnþN=2Þþ jxðnþ 3N=4Þ½ �Wn
NW

nk
N=4

ð4:85Þ

Xð4kþ 2Þ ¼
XðN=4Þ�1

n¼0

xðnÞ � xðnþN=4Þþ xðnþN=2Þ � xðnþ 3N=4Þ½ �W2n
N Wnk

N=4

ð4:86Þ

Xð4kþ 3Þ ¼
XðN=4Þ�1

n¼0

xðnÞþ jxðnþN=4Þ � xðnþN=2Þ � jxðnþ 3N=4Þ½ �W3n
N Wnk

N=4

ð4:87Þ

The following example illustrates a 16-point radix-4 FFT using the DIF
procedure.

Example 4.23 Find the DFT of a sequence x nð Þ ¼ 1; 1; 0; 1; 1; 0; 1; 1; 0; 1; 1; 1;f
1; 1; 1; 1g using the radix-4 DIF algorithm.

Solution The twiddle factors for 16-point radix-4 FFT are

W0
16 ¼ 1;W1

16 ¼ 0:9238� j0:3826;W2
16 ¼ 0:707� j0:707;

W3
16 ¼ 0:3826� j0:9238;W4

16 ¼ 0� j;W5
16 ¼ �0:3826� j0:9238;

W6
16 ¼ �0:707� j0:707;W7

16 ¼ �0:9238� j0:3826:

W0
4 ¼ 1;W1

4 ¼ �j;W2
4 ¼ �1;W3

4 ¼ þ j;W4
4 ¼ 1;W5

4 ¼ �j;

W6
4 ¼ �1;W7

4 ¼ þ j;

The outputs of the two stages are computed as follows:
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Stage 1

x1ð0Þ ¼ xð0Þþ xð4Þþ xð8Þþ xð12Þ½ �W0
16 ¼ 1þ 1þ 0þ 1 ¼ 3;

x1ð1Þ ¼ xð1Þþ xð5Þþ xð9Þþ xð13Þ½ �W0
16 ¼ 1þ 0þ 1þ 1 ¼ 3;

x1ð2Þ ¼ xð2Þþ xð6Þþ xð10Þþ xð14Þ½ �W0
16 ¼ 0þ 1þ 1þ 1 ¼ 3;

x1ð3Þ ¼ xð3Þþ xð7Þþ xð11Þþ xð15Þ½ �W0
16 ¼ 1þ 1þ 1þ 1 ¼ 4;

x1ð4Þ ¼ xð0Þ � jxð4Þ � xð8Þþ jxð12Þ½ �W0
16 ¼ 1� j� 0þ j ¼ 1;

x1ð5Þ ¼ xð1Þ � jxð5Þ � xð9Þþ jxð13Þ½ �W1
16 ¼ ð1� 0� 1þ jÞW1

16 ¼ 0:3826þ j0:9238;

x1ð6Þ ¼ xð2Þ � jxð6Þ � xð10Þþ jxð14Þ½ �W2
16 ¼ ð0� j� 1þ jÞW2

16 ¼ �0:707þ j0:707;

x1ð7Þ ¼ xð3Þ � jxð7Þ � xð11Þþ jxð15Þ½ �W3
16 ¼ ð1� j� 1þ jÞW3

16 ¼ 0;

x1ð8Þ ¼ xð0Þ � xð4Þþ xð8Þ � xð12Þ½ �W0
16 ¼ 1� 1þ 0� 1 ¼ �1;

x1ð9Þ ¼ xð1Þ � xð5Þþ xð9Þ � xð13Þ½ �W2
16 ¼ ð1� 0þ 1� 1ÞW2

16 ¼ 0:707� j0:707;

x1ð10Þ ¼ xð2Þ � xð6Þþ xð10Þ � xð14Þ½ �W4
16 ¼ ð0� 1þ 1� 1ÞW4

16 ¼ j;

x1ð11Þ ¼ xð3Þ � xð7Þþ xð11Þ � xð15Þ½ �W6
16 ¼ ð1� 1þ 1� 1ÞW6

16 ¼ 0;

x1ð12Þ ¼ xð0Þþ jxð4Þ � xð8Þ � jxð12Þ½ �W0
16 ¼ ð1þ j� 0� jÞW0

16 ¼ 1;

x1ð13Þ ¼ xð1Þþ jxð5Þ � xð9Þ � jxð13Þ½ �W3
16 ¼ ð1� 0� 1� jÞW3

16 ¼ �0:9238� j0:3826;

x1ð14Þ ¼ xð2Þþ jxð6Þ � xð10Þ � jxð14Þ½ �W6
16 ¼ ð0þ j� 1� jÞW6

16 ¼ 0:707þ j0:707;

x1ð15Þ ¼ xð3Þþ jxð7Þ � xð11Þ � jxð15Þ½ �W9
16 ¼ ð1þ j� 1� jÞW9

16 ¼ ð1þ j� 1� jÞW�1
16 ¼ 0;

Stage 2

Xð0Þ ¼ x1ð0Þþ x1ð1Þþ x1ð2Þþ x1ð3Þ½ �W0
16 ¼ 3þ 3þ 3þ 4 ¼ 13;

Xð1Þ ¼ x1ð4Þþ x1ð5Þþ x1ð6Þþ x1ð7Þ½ �W0
16 ¼ 0:6756þ j1:6310;

Xð2Þ ¼ x1ð8Þþ x1ð9Þþ x1ð10Þþ x1ð11Þ½ �W0
16 ¼ �0:2929þ j0:2929;

Xð3Þ ¼ x1ð12Þþ x1ð13Þþ x1ð14Þþ x1ð15Þ½ �W0
16 ¼ 0:7832þ j0:3244;

Xð4Þ ¼ x1ð0Þþ jx1ð1Þ � x1ð2Þþ jx1ð3Þ ¼ j;

Xð6Þ ¼ x1ð8Þþ jx1ð9Þ � x1ð10Þþ jx1ð11Þ ¼ �1:7071� j1:7071;

Xð7Þ ¼ x1ð12Þþ jx1ð13Þ � x1ð14Þþ jx1ð15Þ ¼ �0:0898þ j0:2168;

Xð8Þ ¼ x1ð0Þþ x1ð1Þ � x1ð2Þ � x1ð3Þ ¼ �1;

Xð9Þ ¼ x1ð4Þþ x1ð5Þ � x1ð6Þ � x1ð7Þ ¼ �0:0898� j0:2168;

Xð10Þ ¼ x1ð8Þþ x1ð9Þ � x1ð10Þ � x1ð11Þ ¼ �1:7071þ j1:7071;

Xð11Þ ¼ x1ð12Þþ x1ð13Þ � x1ð14Þ � x1ð15Þ ¼ 2:6310þ j1:0898;

Xð12Þ ¼ x1ð0Þ � jx1ð1Þþ x1ð2Þ � jx1ð3Þ ¼ �j;

Xð13Þ ¼ x1ð4Þ � jx1ð5Þþ x1ð6Þ � jx1ð7Þ ¼ 0:7832� j0:3244;

Xð14Þ ¼ x1ð8Þ � jx1ð9Þþ x1ð10Þ � jx1ð11Þ ¼ �0:2929� j0:2929;

Xð15Þ ¼ x1ð12Þ � jx1ð13Þþ x1ð14Þ � jx1ð15Þ ¼ 0:6756� j1:6310;
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The flow graph for the 16-point radix-4 DIF FFT is shown in Fig. 4.17. The (±)
j and −1 are not shown in stage 2 for the four-point butterfly of the flow graph.

4.8 Comparison of Computational Complexity

As mentioned earlier, the number of complex multiplications required in the radix-2
FFT of an N-point sequence is N=2ð Þ log2 N while the number of complex additions
needed is N log2 N.

In the radix-4 FFT of an N-point sequence, there are log4 N ¼ 1=2ð Þ log2 N
stages and (N/4) butterflies per stage. Each radix-4 butterfly requires three complex
multiplications and eight complex additions. Thus, it requires 3N=4ð Þ 1=2ð Þ
log2 N ¼ 3N=8ð Þ log2 N complex multiplications and 8N=4ð Þ 1=2ð Þ log2 N ¼
N log2 N complex additions.

A comparison of the computational complexity in terms of the number of
complex multiplications needed to compute the DFT of an N-point sequence
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Fig. 4.17 Sixteen-point DFT of Example 4.23 using radix-4 DIF algorithm
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directly is compared to that required using radix-2 and radix-4 FFTs as given in
Table 4.6.

4.9 DFT Computation Using the Goertzel Algorithm
and the Chirp Transform

While the fast Fourier transform’s various incarnations have gained considerable
popularity, careful selection of an appropriate algorithm for computing the DFT in
practice need not be limited to choosing between these so-called fast implemen-
tations. In this section, it is focused on two other techniques, namely the Goertzel
algorithm and the chirp transform for computing the DFT.

4.9.1 The Goertzel Algorithm

The Goertzel algorithm [3] uses the periodicity of the sequence Wnk
N to reduce the

computational complexity. From the definition of DFT, it is known that

X kð Þ ¼
XN�1

n¼0

x nð ÞWnk
N ; WN ¼ e

�j2p
N ð4:88aÞ

Equation (4.88a) can be rewritten as

X kð Þ ¼
XN�1

n¼0

x nð ÞW�k N�nð Þ
N ; W�kN

N ¼ 1

Table 4.6 Comparison of the computational complexity for direct DFT and FFT

Number of points
N

Number of complex
multiplications

FFT speed
improvement factor

Direct DFT
N2

Radix-2 FFT
ðN2)log2 N

Radix-4 FFT
ð3N8 )log2 N

Radix-2 Radix-4

16 256 32 24 8 10.6667

64 4096 192 144 21.3333 28.4444

256 65536 1024 768 64 85.3333

1024 1,048,576 5120 3840 204.8 273.0667
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If a sequence yk nð Þ is defined as

yk nð Þ ¼
XN�1

r¼0

x rð ÞW�k n�rð Þ
N ð4:88bÞ

implying that passing a signal x nð Þ through an LTI filter with impulse response
h nð Þ ¼ W�nk

N u nð Þ and evaluating the result, yk nð Þ at n = N will give the corre-
sponding N-point DFT coefficient X kð Þ ¼ yk nð Þ.

Representing the filter by its z-transform, we obtain

Hk zð Þ ¼
X1
n¼0

W�nk
N z�n

¼ 1
1�W�k

N z�1

ð4:89Þ

having a pole on the unit circle at the frequency xk ¼ 2pk
N . Hence, the DFT can be

computed by passing the block of input data into a parallel bank of N filters each
filter having a pole at the frequency of the corresponding DFT. The DFT can be
computed by using the following difference equation corresponding to the filter
expressed by Eq. (4.89)

yk nð Þ ¼ W�k
N yk n� 1ð Þþ x nð Þyk �1ð Þ ¼ 0: ð4:90aÞ

The inherent complex multiplications and addition in Eq. (4.90a) can be avoided
by using the following two-pole filter having complex conjugate pole pairs
equivalent to the filtering operation represented by Eq. (4.89).

Hk zð Þ ¼ 1�Wk
Nz

�1

1�Wk
Nz�1

1
1�W�k

N z�1

¼ 1�Wk
Nz

�1

1� 2 cos 2pkN
� �

z�1 þ z�2

¼ Yk zð Þ
X zð Þ

ð4:90bÞ

where ¼ H1k zð ÞH2k zð Þ

H2k zð Þ ¼ Yk zð Þ
vk zð Þ ¼ 1�Wk

Nz
�1

H1k zð Þ ¼ vk zð Þ
X zð Þ ¼

1
1� 2 cos 2pkN

� �
z�1 þ z�2
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From H1k zð Þ and H2k zð Þ, we obtain the following difference equations

vk nð Þ ¼ 2 cos
2pk
N

vk n� 1ð Þ � vk n� 2ð Þþ x nð Þ ð4:91aÞ

yk nð Þ ¼ vk nð Þ �Wk
Nvk n� 1ð Þ ð4:91bÞ

with initial conditions vk �1ð Þ ¼ vk �2ð Þ ¼ 0.
The Goertzel algorithm evaluates X(k) at any M values of k instead of evaluating

at all N values of k. Hence, it is more efficient than FFT [4] for computing DFT,
when M� log2 Nð Þ.
Example 4.24 Considering the sequence x nð Þ ¼ 1; 2; 1; 1f g, compute DFT coeffi-
cient X(1) and the corresponding spectral amplitude at the frequency bin k = 1
using the Goertzel algorithm.

Solution We have k = 1, N = 4, x 0ð Þ ¼ 1; x 1ð Þ ¼ 2; x 2ð Þ ¼ 1; x 3ð Þ ¼ 1:

2 cos
2p
4

¼ 0;W1
4 ¼ e�

j2p
4 ¼ cos

p
2
� j sin

p
2
¼ �j

For n = 0, 1, …, 4

v1 nð Þ ¼ �v1 n� 2ð Þþ xðnÞ
y1 nð Þ ¼ v1 nð Þþ jv1 n� 1ð Þ

Then, X 1ð Þ ¼ y1 4ð Þ X 1ð Þj j2¼ v21 4ð Þþ v21 3ð Þ

X 1ð Þ ¼ y1 4ð Þ ¼ v1 4ð Þþ jv1 3ð Þ
v1 0ð Þ ¼ �v1 �2ð Þþ x 0ð Þ ¼ 1

y1 0ð Þ ¼ v1 0ð Þþ jv1 �1ð Þ ¼ 1

v1 1ð Þ ¼ �v1 �1ð Þþ x 1ð Þ ¼ 2

y1 1ð Þ ¼ v1 1ð Þþ jv1 0ð Þ ¼ 2þ j1

v1 2ð Þ ¼ �v1 0ð Þþ x 2ð Þ ¼ 0

y1 2ð Þ ¼ v1 2ð Þþ jv1 1ð Þ ¼ j2

v1 3ð Þ ¼ �v1 1ð Þþ x 3ð Þ ¼ �1

y1 3ð Þ ¼ v1 3ð Þþ jv1 2ð Þ ¼ �1

v1 4ð Þ ¼ �v1 2ð Þþ x 4ð Þ ¼ 0

y1 4ð Þ ¼ v1 4ð Þþ jv1 3ð Þ ¼ �j

X 1ð Þ ¼ y1 4ð Þ ¼ �j

X 1ð Þj j2 ¼ v21 4ð Þþ v21 3ð Þ ¼ 1
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4.9.2 The Chirp Transform Algorithm

The chirp transform algorithm [5] is also based on expressing DFT as a convolu-
tion. As it can be used to compute the Fourier transform of any set of equally
spaced samples on the unit circle, it is more flexible than the FFT.

If it is desired to compute the values of the z-transform of x(n) at a set of points
{zk}, then,

X zkð Þ ¼
XN�1

n¼0

x nð Þz�n
k k ¼ 0; 1; . . .;M � 1 ð4:92aÞ

Equation (4.92a) can be rewritten as

X ejxk
� � ¼ XN�1

n¼0

x nð Þe�jxkn k ¼ 0; 1; . . .;M � 1 ð4:92bÞ

where

xk ¼ x0 þ kDx k ¼ 0; 1; . . .;M � 1 ð4:92cÞ

Equation (4.92b) can be rewritten as,

X ejxk
� � ¼ XN�1

n¼0

x nð Þe�j x0 þ kDxð Þn k ¼ 0; 1; . . .;M � 1 ð4:92dÞ

For the DFT computation, x0 ¼ 0; Dx ¼ 2p
N and M = N.

Hence, Eq. (4.92d) becomes

X ejxk
� � ¼ XN�1

n¼0

x nð Þe�j2pN nk k ¼ 0; 1; . . .;M � 1 ð4:93aÞ

X ejxk
� � ¼ XN�1

n¼0

x nð ÞWnk
N k ¼ 0; 1; . . .;M � 1 ð4:93bÞ

Using the identity

nk ¼ 1
2

n2 þ k2 � k � nð Þ2
� �
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Equation (4.93b) can be written as

X zkð Þ ¼ W
k2
2
N

XN�1

n¼0

g nð ÞW
� k�nð Þ2

2
N k ¼ 0; 1; . . .;M � 1 ð4:93cÞ

where

g nð Þ ¼ x nð ÞWn2
2
N

For notation convenience, replacing n by k and k by n in Eq. (4.93c), it can be
rewritten as

X znð Þ ¼ W
n2
2
N

XN�1

n¼0

g kð ÞW
� n�kð Þ2

2
N n ¼ 0; 1; . . .;M � 1 ð4:94aÞ

Equation (4.94a) can also be expressed as

X ejxn
� � ¼ W

n2
2
N

XN�1

n¼0

g kð ÞW
� n�kð Þ2

2
N n ¼ 0; 1; . . .;M � 1 ð4:94bÞ

implying that X ejxnð Þ is the convolution of the sequence g(n) with the sequence

W
�n2
2

N , premultiplied by the sequence W
n2
2
N , and the chirp filter impulse response is

h nð Þ ¼ W
�n2
2

N ¼ cos
pn2

N
þ j sin

pn2

N
ð4:95Þ

Thus, the block diagram of chirp transform system for DFT computation is
shown in Fig. 4.18.

4.10 Decimation-in-Time FFT Algorithm for a Composite
Number

In the previous sections, we discussed FFT algorithms for radix-2 and radix-4 cases.
However, it may not be possible in all cases to choose N to be a power of 2 or 4.
We now consider the case where N is a composite number composed of a product

x(n) g(n) chirp filter
h(n)

Fig. 4.18 Block diagram of
chirp transform system for
DFT computation
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of two factors n1 and n2, i.e., N ¼ n1n2, so that we can divide the sequence x nð Þ
into n1 subsequences of length n2. Then, X Kð Þ can be written as

XðkÞ ¼
XN�1

n¼0

xðnÞWkn
N ð4:88Þ

¼
Xn2�1

i¼0

xðn1iÞWn1ik
N þ

Xn2�1

i¼0

xðn1iþ 1ÞWk
NW

n1ik
N þ � � �

þ
Xn2�1

i¼0

xðn1iþ n1 � 1ÞW ðn1�1Þk
N Wn1ik

N

ð4:89Þ

The above equation can be rewritten as

XðkÞ ¼
Xn1�1

j¼0

Wjk
N

Xn2�1

i¼0

xðn1iþ jÞWn1ik
N ð4:90Þ

Define

FjðkÞ ¼
Xn2�1

i¼0

xðn1iþ jÞWn1ik
N ð4:91Þ

Then, X kð Þ can be expressed in terms of n1 DFTs of sequences of length n2
samples as

XðkÞ ¼
Xn1�1

j¼0

FjðkÞWjk
N ð4:92Þ

For illustration, consider computation of a 12-point DIT FFT (N = 12 = 3.4).
The original sequence is divided into three sequences, each of length 4.

First sequence: x 0ð Þx 3ð Þx 6ð Þx 9ð Þ; second sequence: x 1ð Þx 4ð Þx 7ð Þx 10ð Þ;
Third sequence: x 2ð Þx 5ð Þx 8ð Þx 11ð Þ. Then, X kð Þ can be expressed as

XðkÞ ¼
X2
j¼0

Wjk
12

X3
i¼0

xð3iþ jÞW3ik
12

¼ F0ðkÞþWk
12F1ðkÞþW2k

12F2ðkÞ
ð4:93Þ

The flow graph of the 12-point DFT is shown in Fig. 4.19.
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4.11 The Inverse Discrete Fourier Transform

An FFT algorithm for computing the DFT can be effectively used to compute the
inverse DFT. The inverse of an N-point DFT XðkÞ is given by

xðnÞ ¼ 1
N

XN�1

k¼0

XðkÞW�nk
N ð4:94Þ

where W ¼ e�j2p=N . Multiplying both sides of the above expression by N and
taking complex conjugates, we obtain

Nx�ðnÞ ¼
XN�1

k¼0

X�ðkÞ Wnk
N ð4:95Þ

The RHS of Eq. (4.94) is the DFT of the sequence X� kð Þ and can be rewritten as

Nx�ðnÞ ¼ DFTfX�ðkÞg ð4:96Þ

Taking the complex conjugate on both sides of Eq. (4.96) and using the FFT for
the computation of DFT yield

0 1 2(0) (0) (0)+ +F F F

1 2
0 1 2(1) (1) (1)+ +N NF W F W F

2 4
0 1 2(2) (2) (2)+ +N NF W F W F

3 6
0 1 2(3) (3) (3)+ +N NF W F W F

7 14
0 1 2(3) (3) (3)+ +N NF W F W F

5 10
0 1 2(1) (1) (1)+ +N NF W F W F

6 12
0 1 2(2) (2) (2)+ +N NF W F W F

4 8
0 1 2(0) (0) (0)+ +N NF W F W F

8 16
0 1 2(0) (0) (0)+ +N NF W F W F

9 18
0 1 2(1) (1) (1)+ +N NF W F W F

10 20
0 1 2(2) (2) (2)+ +N NF W F W F

11 22
0 1 2(3) (3) (3)+ +N NF W F W F
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Fig. 4.19 Flow graph of a 12-point DIT FFT
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Nx nð Þ ¼ fFFT X� kð Þf g��

Hence,

x nð Þ ¼ 1
N
fFFT X� kð Þf g�� ð4:97Þ

The following example illustrates the IDFT computation using the DIT FFT
algorithm:

Example 4.25 Find the eight-point IDFT using DIT algorithm.

Solution Let the input be

X kð Þ ¼ 20;�5:828� j2:279; 0;�0:172� j0:279; 0;f
�0:172þ j0:279; 0;�5:828þ j2:279g

Hence,

X� kð Þ ¼ 20;�5:828þ j2:279; 0;�0:172þ j0:279; 0;f
�0:172� j0:279; 0;�5:828� j2:279g

With N = 8, the four twiddle factors are

W0
8 ¼ 1;W1

8 ¼ e�j2p=8 ¼ cosðp=4Þ � j sinðp=4Þ ¼ 0:707� j0:707;

W2
8 ¼ e�j4p=8 ¼ �j;W3

8 ¼ e�j6p=8 ¼ �0:707� j0:707;

The flow diagram for the eight-point inverse DFT using the DIT algorithm is
shown in Fig. 4.20.

Stage 1

x1 0ð Þ ¼ X� 0ð ÞþW0
8X

� 4ð Þ ¼ 20þ 0 ¼ 20

x1 4ð Þ ¼ X� 0ð Þ �W0
8X

� 4ð Þ ¼ 20� 0 ¼ 20

x1 2ð Þ ¼ X� 2ð ÞþW0
8X

� 6ð Þ ¼ 0þ 0 ¼ 0

x1 6ð Þ ¼ X� 2ð Þ �W0
8X

� 4ð Þ ¼ 0� 0 ¼ 0

x1 1ð Þ ¼ X� 1ð ÞþW0
8X

� 5ð Þ ¼ �5:828þ j2:279� 0:172� j0:279 ¼ �6þ j2

x1 5ð Þ ¼ X� 1ð Þ �W0
8X

� 5ð Þ ¼ �5:828þ j2:279þ 0:172þ j0:279 ¼ �5:656þ j2:558

x1 3ð Þ ¼ X� 3ð ÞþW0
8X

� 7ð Þ ¼ �0:172þ j0:279� 5:828� j2:279 ¼ �6� j2

x1 7ð Þ ¼ X� 3ð Þ �W0
8X

� 7ð Þ ¼ �0:172þ j0:279þ 5:828þ j2:279 ¼ 5:656þ j2:558
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Stage 2

x2ð0Þ ¼ x1ð0ÞþW0
8 x1ð2Þ ¼ 20þ 0 ¼ 20;

x2ð4Þ ¼ x1ð4ÞþW2
8 x1ð6Þ ¼ 20þ 0 ¼ 20;

x2ð2Þ ¼ x1ð0Þ �W0
8 x1ð2Þ ¼ 20;

x2ð6Þ ¼ x1ð4Þ �W2
8 x1ð6Þ ¼ 20;

x2ð1Þ ¼ x1ð1ÞþW0
8 x1ð3Þ ¼ �6þ 2j� 6� 2j ¼ �12;

x2ð5Þ ¼ x1ð5ÞþW2
8 x1ð7Þ ¼ �5:656þ j2:558þð�jÞð5:656þ j2:558Þ ¼ �3:098� j3:098;

x2ð3Þ ¼ x1ð1Þ �W0
8 x1ð3Þ ¼ �6þ 2jþ 6þ 2j ¼ 4j;

x2ð7Þ ¼ x1ð5Þ �W2
8 x1ð7Þ ¼ �5:656þ j2:558þ j5:656� 2:558 ¼ �8:214þ j8:224;

Fig. 4.20 Eight-point inverse DFT of Example 4.24 using the DIT algorithm
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Stage 3

x3ð0Þ ¼ x2ð0ÞþW0
8 x2ð1Þ ¼ 20� 12 ¼ 8;

x3ð1Þ ¼ x2ð4ÞþW1
8 x2ð5Þ ¼ 20þð�3:098� j3:098Þð0:707� j0:707Þ ¼ 16:0006;

x3ð2Þ ¼ x2ð2ÞþW2
8 x2ð3Þ ¼ 20þð�jÞð4jÞ ¼ 24;

x3ð3Þ ¼ x2ð6ÞþW3
8 x2ð7Þ ¼ 20þð�0:707� j0:707Þð�8:214þ j8:214Þ ¼ 31:9982;

x3ð4Þ ¼ x2ð0Þ �W0
8 x2ð1Þ ¼ 20þ 12 ¼ 32;

x3ð5Þ ¼ x2ð4Þ �W1
8 x2ð5Þ ¼ 20� ð�3:098� j3:098Þð0:707� j0:707Þ ¼ 23:9994;

x3ð6Þ ¼ x2ð2Þ �W2
8 x2ð3Þ ¼ 20� ð�jÞð4jÞ ¼ 16;

x3ð7Þ ¼ x2ð6Þ �W3
8 x2ð7Þ ¼ 20� ð�0:707� j0:707Þð�8:214þ j8:214Þ ¼ 8:0018;

Therefore,

8x� nð Þ ¼ 8; 16; 24; 32; 32; 24; 16; 8f g

Hence,

x nð Þ ¼ 1; 2; 3; 4; 4; 3; 2; 1f g

4.12 Computation of DFT and IDFT Using MATLAB

The built-in MATLAB functions fft(x) and ifft(x) can be used for the computation
of the DFT and the IDFT, respectively. The functions use computationally efficient
FFT algorithms.

Example 4.26 Consider the input sequence x nð Þ ¼ 1; 1; 1; 1; 0; 0; 1; 1f g of
Example 4.5. Compute the DFT using MATLAB.

Solution Execution of fft(x) yields the DFT of x nð Þ as

6:000 1:7071� 0:7071i� 1:0000þ 1:0000i 0:2929� 0:7071i 0

0:2929þ 0:7071i� 1:0000� 1:0000i 1:7071þ 0:7071i

which is equivalent to the DFT computed using the definition of DFT as in Example
4.3.
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Example 4.27 Consider the input

X kð Þ ¼ 20;�5:828� j2:279; 0;�0:172� j0:279; 0;f
�0:172þ j0:279; 0;�5:828þ j2:279g

of Example 4.24. Compute IDFT using MATLAB.

Solution Execution of ifft(X) yields the IDFT of X as

1:0 2:0 3:0 4:0 4:0 3:0 2:0 1:0

which is the same as the result obtained in Example 4.24.

4.13 Application Examples

4.13.1 Detection of Signals Buried in Noise

One of the applications of the DFT-based spectral analysis is to detect the signals
buried in noise. For example, consider a noisy signal with K sinusoidal components
with unknown frequencies f1; f2; . . .; fK given by

x nð Þ ¼
XK
i¼1

2pnfi
FT

þ g nð Þ 0� n�N ð4:98Þ

where gðnÞ is additive white noise. The unknown frequencies f1; f2; . . .; fK can be
detected by using DFT. For simulation, a signal with two (K = 2) sinusoidal
components N = 1024 and the sampling frequency FT ¼ 1000 Hz are assumed.
The following MATLAB program is used to generate the noisy signal and to detect
the unknown frequencies by applying the DFT on the generated noisy signal.

Program 4.1 Detection of signals buried in noise

clear;clc;
N = 1024;
K=2;
x =randn(1,N);% random noise generation
FT ¼1000; % sampling frequency
T = 1/FT ; % sampling time period
k=1:N;
f=(FT /2)*rand(1,K); %random generation of unknown frequencies
for i=1:K

x=x+sin(2*pi*f(i)*k*T); % noisy signal with sinusoidal components
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end
t = k*T;
figure(1),plot (t(1:N/8),x(1:N/8))
xlabel(′Time(sec)′);ylabel(′Magnitude′);
% Compute and plot power density spectrum
figure(2),
X= abs(fft(x));
S = X.^2/N;
f = linspace (0,(N-1)*Fs/N,N);
plot (f(1:N/2),S(1:N/2))
set(gca,′Xlim′,[0,Fs/2])
xlabel(′Frequency (Hz)′);
ylabel(′Power spectrum′)
% Finding frequencies
s = f_prompt (′Enter threshold for locating peaks′,0,max(S),.7*max(S));
for i = 1: N/2

if (S(i)>s)
fprintf (′f = %.0f Hz\n′,f(i))

end
end

For a random run of the above program, the noisy signal and its power spectral
density are shown in Fig. 4.21a, b, respectively, and the two unknown frequencies
are identified as f1 ¼ 322 Hz and f2 ¼ 411 Hz.

4.13.2 Denoising of a Speech Signal

The DFT can be applied to Fourier domain filtering which is equivalent to circular
convolution of a sequence of finite length with an ideal impulse response of finite
length. This approach is useful in denoising a signal for suppressing high-frequency
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Fig. 4.21 a Noisy signal and b power spectrum density of the noisy signal

232 4 The Discrete Fourier Transform



noise from a low-frequency signal corrupted with noise. For purpose of illustration,
we considered the speech signal ‘To take good care of yourself’ from sound file
‘goodcare.wav’. The following MATLAB program is used to read the speech signal
from the wav file and to add noise to the speech signal and to reconstruct the
original speech signal by performing circular convolution of the noisy speech signal
with finite length impulse response.

%Program 4.2 Denoising using circular convolution

clear;clc;
[x,fs]=wavread(′goodcare.wav′);
wavplay(x,fs)% listen to original speech signal
no=0.075*randn(1,length(x));% noise generation
xn=x+no′;%add noise to original speech signal
wavplay(xn,fs)%listen to noisy speech signal
figure(1),plot(x);xlabel(′Number of samples′);ylabel(′Amplitude′);
figure(2),plot(xn);xlabel(′Number of samples′);ylabel(′Amplitude′);
h=ones(1,64)/64;y=fftfilt(h,xn);%perform denoising
wavplay(12*y,fs);% listen to recovered speech signal
figure(3),plot(12*y);xlabel(′Number of samples′);ylabel(′Amplitude′);

The speech signal, the noisy speech signal, and the recovered speech signal after
denoising, obtained from the above MATLAB program, are shown in Figs. 4.22a–c,
respectively. From these figures, it can be observed that the recovered speech signal
after denoising is nearly same as the original signal.

4.13.3 DTMF Tone Detection Using Goertzel Algorithm

Dual-tone multifrequency (DTMF) signaling is widely used worldwide for voice
communications in modern telephony to dial numbers and configure switch boards.
It is also used in voice mail, electronic mail, and telephone banking.

DTMF signaling uses two tones to represent each key on the touch pad. There
are 12 distinct tones. When any key is pressed, the tone of the column and the tone
of the row are generated. As an example, pressing the ‘5’ button generates the tones
770 Hz and 1336 Hz. In this example, use the number 10 to represent the ‘*’ key
and 11 to represent the ‘#’ key.

The frequencies were chosen to avoid harmonics: No frequency is a multiple of
another, the difference between any two frequencies does not equal any of the
frequencies, and the sum of any two frequencies does not equal any of the
frequencies.

The industry standard frequency specifications for all the keys are listed in
Fig. 4.23.

The DTMF signals for each button on telephone pad are shown in Fig. 4.24.
The MATLAB program to generate the DTMF signals is listed in Program 4.3.
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Fig. 4.23 DTMF tone
specifications
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Fig. 4.22 a Speech signal, b noisy speech signal, and c recovered speech signal after denoising
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Program 4.3

%MATLAB program DTMF tones generation
clear all;clc;
Fs = 8000;N = 205;t=[0:1:204]/Fs;
lf=[697;770;852;941];hf=[1209;1336;1477];
ylf1=sin(2*pi*lf(1)*(0:N-1)/Fs);ylf2=sin(2*pi*lf(2)*(0:N-1)/Fs);
ylf3=sin(2*pi*lf(3)*(0:N-1)/Fs);ylf4=sin(2*pi*lf(4)*(0:N-1)/Fs);
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Fig. 4.24 Time responses of each tone of the telephone pad
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yhf1=sin(2*pi*hf(1)*(0:N-1)/Fs);yhf2=sin(2*pi*hf(2)*(0:N-1)/Fs);
yhf3=sin(2*pi*hf(3)*(0:N-1)/Fs);
y1=ylf1+yhf1;y2=ylf1+yhf2;y3=ylf1+yhf3;y4=ylf2+yhf1;
y5=ylf2+yhf2;y6=ylf2+yhf3;y7=ylf3+yhf1;y8=ylf3+yhf2;
y9=ylf3+yhf3;ystar=ylf4+yhf1;y0=ylf4+yhf2;yhash=ylf4+yhf3;
figure(1)
subplot(2,2,1);plot(t,y1);xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:1,[697,1209]′);
subplot(2,2,2);plot(t,y2);xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:2,[697,1336]′);
subplot(2,2,3);plot(t,y3);xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:3,[697,1477]′);
subplot(2,2,4);plot(t,y4);
xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:4,[770,1209]′);
figure(2)
subplot(2,2,1);plot(t,y5);xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:5,[770,1336]′);
subplot(2,2,2);plot(t,y6);xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:6,[770,1477]′);
subplot(2,2,3);plot(t,y7);xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:7,[852,1209]′);
subplot(2,2,4);plot(t,y8);xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:8,[852,1336]′);
figure(3)
subplot(2,2,1);plot(t,y9);xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:9,[852,1477]′);
subplot(2,2,2);plot(t,ystar);xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:*,[941,1209]′);
subplot(2,2,3);plot(t,y0);xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:0,[941,1336]′);
subplot(2,2,4);plot(t,yhash);xlabel(′time (seconds)′)
ylabel(′Amplitude′);grid;title(′symbol:#,[941,1477]′);

DTMF tone detection

The DTMF detection relies on the Goertzel algorithm (Goertzel filter). The main
purpose of using the Goertzel filters is to calculate the spectral value at the specified
frequency index using the filtering method. Its advantage includes the reduction of
the required computations and avoidance of complex algebra. The detection of
frequencies using Goertzel algorithm contained in each tone of the telephone pad is
shown in Fig. 4.25. The MATLAB program for the tones detection using the
Goertzel algorithm is listed in Program 4.4.
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Program 4.4

clear all;clc;
Fs = 8000;N = 205;load DTMFdata
f = [697 770 852 941 1209 1336 1477];
freq_indices = round(f/Fs*N) + 1;
for tonechoice=1:12
tonedata=DTMFs(tonechoice,:);
dft_data(tonechoice,:) = goertzel(tonedata,freq_indices);
end
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Fig. 4.25 DTMF tone detection using Goertzel algorithm
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figure(1)
subplot(2,2,1);stem(f,abs(dft_data(1,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:1,[697,1209]′);
subplot(2,2,2);stem(f,abs(dft_data(2,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:2,[697,1336]′);
subplot(2,2,3);stem(f,abs(dft_data(3,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:3,[697,1477]′);
subplot(2,2,4);stem(f,abs(dft_data(4,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:4,[770,1209]′);
figure(2)
subplot(2,2,1);stem(f,abs(dft_data(5,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:5,[770,1336]′);
subplot(2,2,2);stem(f,abs(dft_data(6,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:6,[770,1477]′);
subplot(2,2,3);stem(f,abs(dft_data(7,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:7,[852,1209]′);
subplot(2,2,4);stem(f,abs(dft_data(8,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:8,[852,1336]′);
figure(3)
subplot(2,2,1);stem(f,abs(dft_data(9,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:9,[852,1477]′);
subplot (2,2,2);stem(f,abs(dft_data(10,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:*,[941,1209]′);
subplot (2,2,3);stem(f,abs(dft_data(11,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:0,[941,1336]′);
subplot (2,2,4);stem(f,abs(dft_data(12,:)));ax = gca;ax.XTick = f;
xlabel(′Frequency(Hz′)
ylabel(′DFT magnitudetude′);grid;title(′symbol:#,[941,1477]′);
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4.14 Problems

1. Determine the Fourier series representation for the following discrete-time
signals:

(a) x nð Þ ¼ 3 sin pn
4

� �
sin 2pn

5

� �
(b) x nð Þ is periodic of period 8, and x nð Þ ¼ n for 0� n� 3, and x nð Þ ¼ n for

4� n� 7

2. Compute the eight-point DFT of �1ð Þn
3. Find the four-point DFT of the following sequences

(i) x nð Þ ¼ 1; 2; 1; 1f g
(ii) x nð Þ ¼ sin nþ 1ð Þp=4
(iii) x nð Þ ¼ 2;�1; 1;�2f g:

4. Find eight-point DFT of the following sequences

(i) x nð Þ ¼ 1; 0; 1; 0; 0; 1; 1; 0f g
(ii) x nð Þ ¼ cos nþ 1ð Þp=2
(iii) x nð Þ ¼ 1; 1; 0; 0; 1; 0; 1; 1f g

5. Compute the eight-point DFT of the square-wave sequence:

x nð Þ ¼ 2 0� n� N=2ð Þ
�2 N=2ð Þ� n\N � 1

�
6. Find 16-point DFT of the following sequence:

x nð Þ ¼ 1 0� n� 7
0 7\n\15

�
7. Compute the eight-point circular convolution of

x1 nð Þ ¼ 1; 1; 0; 1; 0; 1; 1; 0f g and x2 nð Þ ¼ sin 3p=4ð Þ; 0� n� 7:

8. Find the output y nð Þ of a filter whose impulse response is h nð Þ ¼ 0; 1; 1f g and
the input signal is x nð Þ ¼ 1;�2; 0; 1; 0; 2; 1; 2; 2; 1f g using the overlap-add
method.

9. Using linear convolution, find y nð Þ ¼ x nð Þ � h nð Þ for the sequences x nð Þ ¼
2;�3; 1; 2; 1; 1;�1;�3; 1; 2; 1;�1ð Þ and h nð Þ ¼ 2; 1ð Þ. Compare the result by
solving the problem using overlap-save method.

10. Compute the eight-point DFT of the following sequence using the radix-2 DIT
algorithm for the following sequences:
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(i) x nð Þ ¼ 1; 1;�1; 0; 1; 0; 1;�1f g
(ii) x nð Þ ¼ 1; 2; 1;�1; 2; 1;�1; 1f g
(iii) x nð Þ ¼ 0:5; 0; 1; 0:5; 1; 0; 0:5; 0:5f g

11. Compute the eight-point DFT of the sequence x nð Þ ¼ 1; 1;�1; 0; 1; 0; 1;�1f g
using the DIF algorithm

12. Find the 16-point DFT of the following sequence using radix-4 DIF algorithm.

x nð Þ ¼ 1; 1; 0; 0; 1; 1; 1; 1; 0; 0; 0; 0; 1; 1; 1; 1f g

13. Compute DFT of the sequence x nð Þ ¼ 1; 2; 3; 4f g using the Goertzel algorithm
14. Develop the FFT algorithm for the composite number 18, and show the flow

graph.
15. Find the IDFT of Y kð Þ ¼ 1; 0; 0; 1f g.
16. Compute the IDFT of the sequence X kð Þ ¼ 3; j; 1þ 2j; 1� j; 1þ 2j; 1; 0;�jf g

using (a) DIT algorithm and (b) DIF algorithm.

4.15 MATLAB Exercises

1. Verify the results of Problem 10 of Sect. 4.13 using MATLAB.
2. Verify the results of Problem 14 of Sect. 4.13 using MATLAB.
3. Write a MATLAB program using the command circshift to compute circular

convolution of two sequences and verify the result of Problem 7 of Sect. 4.13.
4. Verify the results of Problem 8 of Sect. 4.13 using MATLAB.
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