
Chapter 12
Spectral Analysis of Signals

The process of determining the frequency contents of a continuous-time signal in
the discrete-time domain is known as spectral analysis. Most of the phenomena that
occur in nature can be characterized statistically by random processes. Hence, the
main objective of spectral analysis is the determination of the power spectrum
density (PSD) of a random process. The power is the Fourier transform of the
autocorrelation sequence of a stationary random process. The PSD is a function that
plays a fundamental role in the analysis of stationary random processes in that it
quantifies the distribution of the total power as a function of frequency. The power
spectrum also plays an important role in detection, tracking, and classification of
periodic or narrowband processes buried in noise. Other applications of spectrum
estimation include harmonic analysis and prediction, time series extrapolation and
interpolation, spectral smoothing, bandwidth compression, beam forming, and
direction finding. The estimation of the PSD is based on a set of observed data
samples from the process. Estimating the power spectrum is equivalent to esti-
mating the autocorrelation. This chapter deals with the nonparametric methods,
parametric methods, and subspace methods for power spectrum estimation. Further,
the spectrogram computation of non-stationary signals using STFT is also briefly
discussed in this chapter.

12.1 Nonparametric Methods for Power Spectrum
Estimation

Classical spectrum estimators do not assume any specific parametric model for the
PSD. They are based solely on the estimate of the autocorrelation sequence of the
random process from the observed data and hence work in all possible situations,
although they do not provide high resolution. In practice, one cannot obtain
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unlimited data record due to constraints on the data collection process or due to the
necessity that the data must be WSS over that particular duration.

When the method for PSD estimation is not based on any assumptions about the
generation of the observed samples other than wide-sense stationary, then it is
termed a nonparametric estimator.

12.1.1 Periodogram

The periodogram was introduced in [1] searching for hidden periodicities while
studying sunspot data. There are two distinct methods to compute the periodogram.
One approach is the indirect method. In this approach, first we determine the
autocorrelation sequence rðkÞ from the data sequence x(n) for �ðN � 1Þ�
k�ðN � 1Þ and then take the DTFT, i.e.,

P̂PERðf Þ ¼
XN�1

k¼�Nþ 1

r̂½k�e�j2pfk: ð12:1Þ

It is more convenient to write the periodogram directly in terms of the observed
samples x[n]. It is then defined as

P̂PER fð Þ ¼ 1
N

XN�1

n¼0

x½n�e�j2pfn

�����
�����
2

¼ 1
N

X fð Þj j2 ð12:2Þ

where X fð Þ is the Fourier transform of the sequence x(n). Thus, the periodogram is
proportional to the squared magnitude of the DTFT of the observed data. In
practice, the periodogram is calculated by applying the FFT, which computes it at a
discrete set of frequencies.

Df ¼ fk : fk ¼ k
N
; k ¼ 0; 1; 2; . . .; N � 1ð Þ

� �
The periodogram is then expressed by

P̂PER fkð Þ ¼ 1
N

XN�1

n¼0

x½n�e�j2pkn=N

�����
�����
2

fk 2 Df : ð12:3Þ

To allow for finer frequency spacing in the computed periodogram, we define a
zero-padded sequence according to
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x0½n� ¼ x½n�; n ¼ 0; 1; . . .;N � 1
0; n ¼ N;N þ 1; . . .;N 0

�
: ð12:4Þ

Then we specify the new set of frequencies D0
f ¼ ffk : fk ¼ k=N; k 2

f0; 1; 2; . . .; ðN � 1Þgg; and obtain

P̂PER fkð Þ ¼ 1
N

XN�1

n¼0

x½n�e�j2pkn=N 0

�����
�����
2

fk 2 D0
f : ð12:5Þ

A general property of good estimators is that they yield better estimates when the
number of observed data samples increases. Theoretically, if the number of data
samples tends to infinity, the estimates should converge to the true values of the
estimated parameters. So, in the case of a PSD estimator, as we get more and more
data samples, it is desirable that the estimated PSD tends to the true value of the
PSD. In other words, if for finite number of data samples the estimator is biased, the
bias should tend to zero as N ! 1 as should the variance of the estimate. If this is
indeed the case, the estimator is called consistent. Although the periodogram is
asymptotically unbiased, it can be shown that it is not a consistent estimator. For
example, if {~X[n]} is real zero mean white Gaussian noise, which is a process
whose random variables are independent, Gaussian, and identically distributed with
variance r2, the variance of P̂PER fð Þ is equal to r4 regardless of the length N of the
observed data sequence. The performance of the periodogram does not improve as
N gets larger because as N increases, so does the number of parameters that are
estimated, P f0ð Þ, P f1ð Þ,…, P fN�1ð Þ. In general, the variance of the periodogram at
any given frequency is

Var bPPER fð Þ
h i

¼ Cov bPPER fð Þ; bPPER fð Þ
h i

¼ P2 fð Þ 1þ sin 2pNf
N sin 2pf

� �2
" # ð12:6aÞ

For frequencies not near 0 or 1/2, the above equation reduces to

VarðP̂PER fð ÞÞ ffi P2 fð Þ ð12:6bÞ

where P2(f) is the periodogram spectral estimation based on the definition of PSD.

Example 12.1 Consider a random signal composed of two sinusoidal components
of frequencies 120 and 280 Hz corrupted with Gaussian distributed random noise.
Evaluate its power spectrum using periodogram. Assume sampling frequency
Fs = 1024 Hz.
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Solution The following MATLAB program can be used to evaluate the power
spectrum of the considered signal using Bartlett’s method.

%Program 12.1

Power spectrum estimation using the periodogram
clear;clc;
N = 512;%total number of samples
k = 0:N-1;
f1 = 120;
f2 = 280;
FT = 1024;%sampling frequency in Hz
T = 1/FT;
x = sin(2*pi*f1*k*T) + sin(2*pi*f2*k*T)+2*randn(size(k));%vector of length N
%containing input samples
[pxx,f] = psd(x,length(x),FT);
plot(f,pxx);grid;
xlabel('Frequency(Hz)');ylabel('Power spectrum');

The power spectrum obtained from the above MATLAB program is shown in
Fig. 12.1.

12.1.2 Bartlett Method

In the Bartlett method [2], the observed data is segmented into K non-overlapping
segments and the periodogram of each segment is computed. Finally, the average of
periodogram of all the segments is evaluated. The Bartlett estimator has a variance
that is smaller than the variance of the periodogram.
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Consider a length N sequence x(n). Then, x(n) can be segmented into K sub-
sequence, each subsequence having a length L. If the ith subsequence is denoted by
xiðnÞ, 0� i\K; then the ith subsequence can be obtained from the sequence x(n) as

xiðnÞ ¼ xðiLþ nÞ; 0� n� L� 1

and its periodogram is given by

P
_

i fð Þ ¼ 1
L

XL�1

n¼0

xiðnÞe�j2pfn

�����
�����
2

i ¼ 0; 1; . . .;K � 1 ð12:7Þ

Then the Bartlett spectrum estimator is

bPB fð Þ ¼ 1
K

XK
i¼1

bPi fð Þ ð12:8Þ

Var bPB fð Þ
� �

¼ 1
K
P2 fð Þ: ð12:9Þ

The variance of the Barlett estimator can be related to the variance of the
periodogram as follows.

The Bartlett estimator variance is reduced by a factor of K compared to the
variance of the periodogram. However, the reduction in the variance is achieved at
the cost of decrease in resolution. Thus, this estimator allows for a trade-off between
resolution and variance.

The following example illustrates the computation of the power spectrum of a
random signal using the Bartlett method.

Example 12.2 Consider the random signal of Example 12.1 and evaluate its power
spectrum using Bartlett’s method.

Solution The following MATLAB program can be used to evaluate the power
spectrum of the considered signal using Bartlett’s method.
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%Program 12.2

Power spectrum estimation using Bartlett’s method
clear;clc;
N = 512;%total number of samples
k = 0 : N-1;
f1 = 120;
f2 = 280;
FT = 1024;%sampling frequency in Hz
T = 1/FT;
x = sin(2*pi*f1*k*T) + sin(2*pi*f2*k*T)+2*randn(size(k));%vector of length N
%containing input samples
L = 128;%length of subsequence
[pxx,f] = psd(x,L,FT);
plot(f,pxx);grid;
xlabel('Frequency(Hz)');ylabel('Power spectrum');

The power spectrum obtained from the above MATLAB program is shown in
Fig. 12.2.

12.1.2.1 Welch Method

The Welch method [3] is another estimator that exploits the periodogram. It is based
on the same idea as the Bartlett’s approach of splitting the data into segments and
finding the average of their periodogram. The difference is that the segments are
overlapped, and the data within a segment is windowed. If a sequence x(n) of length
N is segmented into K subsequences, each subsequence having a length L with an
overlapping of D samples between the adjacent subsequences, then
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N ¼ LþDðK � 1Þ ð12:10Þ

where N is the total number of observed samples and K the total number of sub-
sequences. Note that if there is no overlap, K = N/L, and if there is 50% overlap,
K = 2 N/L – 1.

The ith subsequence is defined by

xiðnÞ ¼ xðnþ iDÞ; 0� n� L� 1; 0� i�K � 1; ð12:11Þ

and its periodogram is given by

P̂i fð Þ ¼ 1
L

XL�1

n¼0

wðnÞxiðnÞe�j2pfn

�����
�����
2

: ð12:12Þ

Here P̂iðf Þ is the modified periodogram of the data because the samples x(n) are
weighted by a non-rectangular window wðnÞ; the Welch spectrum estimate is then
given by

bPWel fð Þ ¼ 1
KC

XK
i¼1

bPi fð Þ ð12:13Þ

where C is the normalization factor for power in the window function given by

C ¼ 1
K

XK�1

n¼0

w2 nð Þ

Welch has shown that the variance of the estimator is

Var bPWel fð Þ
� �

� 1
K
P2 fð Þ for no overlapping ð12:14aÞ

� 9
8K

P2 fð Þ for 50% overlapping and Bartlett window: ð12:14bÞ

By allowing overlap of subsequences, more number of subsequences can be
formed than in the case of Bartlett’s method. Consequently, the periodogram
evaluated using the Welch’s method will have less variance than the periodogram
evaluated using the Bartlett method.

Example 12.3 Consider the random signal of Example 12.1 and evaluate its power
spectrum using Welch’s method with 50% overlapping and Hamming window.

Solution The following MATLAB program can be used to evaluate the power
spectrum of the considered signal using Welch’s method.
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%Program 12.3

Power spectrum estimation using Welch’s method
clear;clc;
N = 512;%total number of samples
k = 0 : N-1;
f1 = 120;
f2 = 280;
FT = 1024;%sampling frequency in Hz
T = 1/FT;
x = sin(2*pi*f1*k*T) + sin(2*pi*f2*k*T)+2*randn(size(k));%vector of length N
%containing input samples
L = 128;%length of subsequence
window = hamming(L);% window type
overlap = L/2;%number of overlapping samples(50%overlapping)
[pxx,f] = psd(x,L,FT,window,overlap);
plot(f,pxx);grid;
xlabel('Frequency(Hz)');ylabel('Power spectrum');

The power spectrum obtained from the above MATLAB program is shown in
Fig. 12.3.

12.1.2.2 Blackman–Tukey Method

In this method, autocorrelation of the observed data sequence x(n) is computed first.
Next, the autocorrelation is windowed and then the Fourier transform is applied on
it to obtain the power spectrum. Hence, the power spectrum using the Blackman–
Tukey method [4] is given by
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bP fð Þ ¼
XN�1

k¼� N�1ð Þ
w kð Þbr kð Þe�j2pfk ð12:15Þ

where the window wðkÞ is real nonnegative, symmetric, and non-increasing with
kj j, that is,

ðiÞ 0�wðkÞ�wð0Þ ¼ 1 ð12:16aÞ

ðiiÞ wð�kÞ ¼ wðkÞ ð12:16bÞ

ðiiiÞ wðkÞ ¼ 0:M\ kj j: M�N � 1: ð12:16cÞ

It should be noted that the symmetry property of wðkÞ ensures that the spectrum
is real. It is obvious that the autocorrelation with smaller lags will be estimated
more accurately than the ones with lags close to N because of the different number
of terms that are used. Therefore, the large variance of the periodogram can be
ascribed to the large weight given to the poor autocorrelation estimates used in its
evaluation. Blackman and Tukey proposed to weight the autocorrelation sequence
so that the autocorrelations with higher lags are weighted less. The bias, the vari-
ance, and the resolution of the Blackman–Tukey method depend on the applied
window. For example, if the window is triangular (Bartlett),

wB½k� ¼
M� kj j
M ; kj j �M

0; otherwise

�
ð12:17Þ

and if N � M � 1, the variance of the Blackman–Tukey estimator is

VarðP̂BT fð ÞÞ ffi 2M
3N

P2 fð Þ ð12:18Þ

where P(f) is the true spectrum of the process. Compared to Eqs. (12.6a) and
(12.6b) it is clear that the variance of this estimator may be significantly smaller
than the variance of the periodogram. However, as M decreases, so does the res-
olution of the Blackman–Tukey estimator.

Example 12.4 Consider the random signal of Example 12.1 and evaluate its power
spectrum using Blackman–Tukey method.

Solution The following MATLAB program can be used to evaluate the power
spectrum of the considered signal using Blackman–Tukey method.
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%Program 12.4

Power spectrum estimation Blackman–Tukey method
clear;clc;
N = 512;%total number of samples
k = 0 : N-1;
f1 = 120;
f2 = 280;
FT = 1024;%sampling frequency in Hz
T = 1/FT;
x = sin(2*pi*f1*k*T)+sin(2*pi*f2*k*T)+2*randn(size(k));%vector of length N
%containing input samples
r = f_corr(x,x,0,0);% evaluates correlation of input samples
L = 128;%length of window
window = Bartlett(L);% window type
[pxx,f] = psd(r,L,FT,window);
plot(f,pxx);grid
xlabel('Frequency(Hz)');ylabel('Power spectrum(dB)');

The power spectrum obtained from the above MATLAB program is shown in
Fig. 12.4.

12.1.3 Performance Comparison of the Nonparametric
Methods

The performance of a PSD estimator is evaluated by quality factor. The quality
factor is defined as the ratio of the squared mean of the PSD to the variance of the
PSD given by
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QP ¼ varðp̂ðf ÞÞ
E2ðp̂ðf ÞÞ : ð12:19Þ

Another important metric for comparison is the resolution of the PSD estimators.
It corresponds to the ability of the estimator to provide the fine details of the PSD of
the random process. For example, if the PSD of the random process has two peaks
at frequencies f1 and f2, then the resolution of the estimator would be measured by
the minimum separation of f1 and f2 for which the estimator still reproduces two
peaks at f1 and f2. It has been shown in [5] for triangular window that the quality
factors of the classical methods are as shown in Table 12.1.

From the above table, it can be observed that the quality factor is dependent on
the product of the data length N and the frequency resolution Df . For a desired
quality factor, the frequency resolution can be increased or decreased by varying the
data length N.

12.2 Parametric or Model-Based Methods for Power
Spectrum Estimation

The classical methods require long data records to obtain the necessary frequency
resolution. They suffer from spectral leakage effects, which often mask weak sig-
nals that are present in the data which occur due to windowing. For short data
lengths, the spectral leakage limits frequency resolution.

In this section, we deal with power spectrum estimation methods in which
extrapolation is possible if we have a priori information on how data is generated.
In such a case, a model for the signal generation can be constructed with a number
of parameters that can be estimated from the observed data. Then, from the esti-
mated model parameters, we can compute the power density spectrum.

Due to modeling approach, we can eliminate the window function and the
assumption that autocorrelation sequence is zero outside the window. Hence, these
have better frequency resolutions and avoid problem of leakage. This is especially
true in applications where short data records are available due to time variant or
transient phenomena.

The parametric methods considered in this section are based on modeling the
data sequence y nð Þ as the output of a linear system characterized by a rational
system function of the form

Table 12.1 Comparison of
performance of classical
methods

Classical method Quality factor

Periodogram 1

Bartlett 1.11 N Δf

Welch (50% overlap) 1.39 N Δf

Blackman–Tukey 2.34 N Δf
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H Zð Þ ¼ B Zð Þ
A Zð Þ ¼

Pq
k¼0 bkz

�k

1þ Pp
k¼1 akz

�k: ð12:20Þ

For the linear system with rational system function H Zð Þ, the output y nð Þ is
related to input w nð Þ and the corresponding difference equation is

y nð Þþ
Xp
k¼1

aky n� kð Þ ¼
Xq
k¼0

bkw n� kð Þ ð12:21Þ

where bkf g and akf g are the filter coefficients that determine the location of the
zeros and poles of H Zð Þ, respectively.

Parametric spectral estimation is a three-step process as follows

Step 1 Select the model
Step 2 Estimate the model parameters from the observed/measured data or the
correlation sequence which is estimated from the data
Step 3 Obtain the spectral estimate with the help of the estimated model parameters.

In power spectrum estimation, the input sequence is not observable. However, if
the observed data is considered as a stationary random process, then the input can
also be assumed as a stationary random process.

Autoregressive Moving Average (ARMA) Model
An ARMA model of order p; qð Þ is described by Eq. (12.21). Let Pw fð Þ be the
power spectral density of the input sequence, Py fð Þ be the power spectral density of
the output sequence, and H fð Þ be the frequency response of the linear system, then

Py fð Þ ¼ H fð Þj j2Pwðf Þ ð12:22Þ

where H fð Þ is the frequency response of the model.
If the sequence x nð Þ is a zero mean white noise process of variance r2x, the

autocorrelation sequence is

ryy mð Þ ¼ r2xd mð Þ: ð12:23Þ

The power spectral density of the input sequence w nð Þ is

Pw fð Þ ¼ r2x: ð12:24Þ

Hence, the power spectral density of the output sequence y nð Þ is

Py fð Þ ¼ H fð Þj j2Pw fð Þ
¼ r2x H fð Þj j2

¼ r2x
B fð Þ
A fð Þ
���� ����2:

ð12:25Þ
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Autoregressive (AR) Model
If q ¼ 0, b0 ¼ 1, and bk ¼ 0 for 1� k� q in Eq. (12.21), then

H Zð Þ ¼ 1
A zð Þ ¼

1
1þ Pp

k¼1 akz
�k

ð12:26Þ

with the corresponding difference equation

y nð Þþ
Xp
k¼1

aky n� kð Þ ¼ w nð Þ ð12:27Þ

which characterizes an AR model of order p. It is represented as AR (p).

Moving Average (MA) Model
If ak ¼ 0 for 1� k� p in Eq. (12.21), then

HðZÞ ¼ B Zð Þ ¼
Xq
k¼0

bkz
�k ð12:28Þ

with the corresponding difference equation

y nð Þ ¼
Xq
k¼0

bkw n� kð Þ ð12:29Þ

which characterizes a MA model of order q. It is represented as MA (q).
The AR model is the most widely used model in practice since the AR model is

well suited to characterize spectrum with narrow peaks and also provides very
simple linear equations for the AR model parameters. As the MA model requires
more number of model parameters to represent a narrow spectrum, it is not often
used for spectral estimation. The ARMA model with less number of parameters
provides a more efficient representation.

12.2.1 Relationships Between the Autocorrelation
and the Model Parameters

The parameters in AR(p), MA(q), and ARMA(p,q) models are related to the
autocorrelation sequence ryy mð Þ.

This relationship can be obtained by multiplying the difference Eq. (12.21) by
y� n� mð Þ and taking the expected value on both sides. Then
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E y nð Þ 	 y� n� mð Þ½ � ¼ �
Xp
k¼1

akE y n� kð Þ 	 y� n� mð Þ½ �

þ
Xq
k¼0

bkE w n� kð Þ 	 y� n� mð Þ½ �
ð12:30aÞ

ryy mð Þ ¼ �
Xp
k¼1

akryy m� kð Þþ
Xq
k¼0

bkcwy m� kð Þ: ð12:30bÞ

cxx mð Þ is the cross-correlation between w nð Þ and y nð Þ.
The cross-correlation cxx mð Þ is related to the filter impulse response h as

cxx mð Þ ¼ E x� nð Þw nþmð Þ½ �

¼ E
X1
k¼0

h kð Þw� n� kð Þw nþmð Þ
" #

¼
X1
k¼0

h kð ÞE w� n� kð Þw nþmð Þ½ �

¼ r2xhð�mÞ

ð12:31Þ

E w� nð Þw nþmð Þ½ � ¼ r2wd mð Þ ð12:32aÞ

cwx mð Þ ¼ 0; m[ 0
r2xh �mð Þ; m� 0

n
: ð12:32bÞ

By setting q = 0 in Eq. (12.30a), an AR model can be adopted. Then, the model
parameters can be related to the autocorrelation sequence as

ryy mð Þ ¼

�
Xp
k¼1

akryy m� kð Þ;m[ 0

�
Xp
k¼1

akryy m� kð Þþ r2w;m ¼ 0

r�yy �mð Þ;m\0

8>>>>>>><>>>>>>>:
: ð12:33Þ

The above equation can be written in matrix form as

ryy 0ð Þ ryy �1ð Þ . . . ryy �pþ 1ð Þ
ryy 1ð Þ ryy 0ð Þ . . . ryy �pþ 2ð Þ
. . . . . . . . . . . .

ryy p� 1ð Þ ryy p� 2ð Þ . . . ryy 0ð Þ

2664
3775

a1
a2
:

:
ap

266664
377775 ¼ �

ryy 1ð Þ
ryy 2ð Þ

:

:
ryy pð Þ

266664
377775 ð12:34Þ
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From Eq. (12.33), we can obtain the variance

r2w ¼ ryy 0ð Þþ
Xp
k¼1

akryy �kð Þ ð12:35Þ

Combining Eqs. (12.34) and (12.35), we get

ryy 0ð Þ ryy �1ð Þ . . . ryy �pþ 1ð Þ
ryy 1ð Þ ryy 0ð Þ . . . ryy �pþ 2ð Þ
. . . . . . . . . . . .

ryy p� 1ð Þ ryy p� 2ð Þ . . . ryy 0ð Þ

2664
3775

a1
a2
..
.

ap

26664
37775 ¼ �

ryy 1ð Þ
ryy 2ð Þ
..
.

ryy pð Þ

26664
37775 ð12:36Þ

which is known as the Yule–Walker equation.
The correlation matrix is a Toeplitz non-singular and can be solved with

Levinson–Durbin algorithm for obtaining the inverse matrix.

12.2.2 Power Spectrum Estimation Based on AR Model
via Yule–Walker Method

Since the autocorrelation sequence actual values are not known a priori, their
estimates are to be computed from the data sequence using

r_yy mð Þ ¼ 1
N

XN�m�1

n¼0

y� nð Þy nþmð Þ m
 0 ð12:37Þ

These autocorrelation estimates and the AR model parameter estimates are used
in Eq. (12.36) in place of their true values, and then the equation is solved using the
Levinson–Durbin algorithm to estimate the AR model parameters. Then, the power
density spectrum estimate is computed using

PYul fð Þ ¼ E
_2

p

1þ Pp
k¼1 âke

�j2pfk
�� ��2 ð12:38Þ

where âk are AR parameter estimates and

E
_

p ¼ ryy 0ð Þ P
p

k¼1
1� âkj j2
h i

ð12:39Þ

is the estimated minimum mean squared value for the pth order predictor.
The following example illustrates the power spectrum estimation based on AR

model via Yule–Walker method.
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Example 12.5 Consider a fourth-order AR process characterized by

yðnÞ ¼ 2:7607yðn� 1Þ � 3:8106yðn� 2Þþ 2:6535yðn� 3Þ � 0:9238yðn� 4Þ
¼ wðnÞ

where wðnÞ is a zero mean, unit variance, white noise process.
Estimate the power spectrum of the AR process using the Yule–Walker method.

Solution The MATLAB function pyulear(X,m,FT) gives the power spectrum of a
discrete-time signal X using the Yule–Walker method. m being the order of the
autoregressive (AR) model used to produce the PSD. FT is the sampling frequency.
A prediction filter with two zeros at z1 ¼ 0:9804ej0:22p; z2 ¼ 0:9804ej0:28p gives the
fourth-order AR model parameters. The two zeros are close to the unit circle; hence,
the power spectrum will have two sharp peaks at the normalized frequencies 0:22p
and 0:28p rad/sample.

The following MATLAB Program 11.5 is used to obtain the power spectrum
using the Yule–Walker method.

%Program 12.5

Power spectrum estimation via Yule–Walker method
clear;clc;
FT = 1024;
randn(‘state’,1);
w = randn(200,1);
y = filter(1,[1-2.7607 3.8106 -2.6535 0.9238],w);
pyulear(y,4,FT);

The power spectrum obtained from the above program based on 200 samples is
shown in Fig. 12.5.
Due to lack of sufficient resolution, the two peaks corresponding to the frequencies
0:22p and 0:28p are not seen. The resolution can be improved by increasing the
data length.
When the above program is run with 1000 data samples, the power spectrum
estimate obtained is shown in Fig. 12.6 in which we can see clearly the two peaks
corresponding to the frequencies 0:22p and 0:28p.

12.2.3 Power Spectrum Estimation Based on AR Model
via Burg Method

The Burg method [6] can be used the estimation of the AR model parameters by
minimizing the forward and backward errors in the linear predictors. Here we
consider the problem of linearly predicting the value of a stationary random process
either forward in time (or) backward in time.
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Fig. 12.5 Power spectral density estimate using Yule–Walker method based on 200 samples

Fig. 12.6 Power spectral density estimate using Yule–Walker method based on 1000 samples
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Forward Linear Prediction
Here in this case, from the past values of a random process, a future value of the

process can be predicted. So, consider one-step forward linear prediction as
depicted in Fig. 12.7, for which the predicted value of y nð Þ can be written as

y_ nð Þ ¼ �
Xp
k¼1

apðkÞy n� kð Þ ð12:40Þ

where �apðkÞ
	 


are the prediction coefficients of the predictor of order p.
The forward prediction error is the difference between the value y nð Þ and the

predicted value ðy_ nð ÞÞ of y nð Þ and can be expressed as

e fp nð Þ ¼ y nð Þ � y_ nð Þ

¼ y nð Þþ
Xp
k¼1

apðkÞy n� kð Þ: ð12:41Þ

Backward Linear prediction
In the backward linear prediction, the value y n� pð Þ of a stationary random

process can be predicted from the data sequence y nð Þ; y n� 1ð Þ; . . .; y n� pþ 1ð Þ of
the process. For one-step backward linear prediction of order p, the predicted value
of y n� pð Þ can be written as

y_ n� pð Þ ¼ �
Xp
k¼1

a�pðp� kÞy nþ k � pð Þ: ð12:42Þ

The difference between y n� pð Þ and estimate vy n� pð Þ is the backward pre-
diction error which can be written as denoted as

ebp nð Þ ¼ y n� pð Þþ
Xp�1

k¼0

a�pðkÞy nþ k � pð Þ: ð12:43Þ

For lattice filter realization of the predictor, a p-stage lattice filter is described by
the following set of order-recursive equation

−

( )f
pe n

+( )y n

( )y n( )1−y n
1z−

Forward 
Linear 
predictor

∑

Fig. 12.7 One-step forward linear predictor
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e f0 nð Þ ¼ eb0 nð Þ ¼ x nð Þ ð12:44aÞ

e fm nð Þ ¼ e fm�1 nð ÞþKme
b
m�1 n� 1ð Þ m ¼ 1; 2; . . .; p ð12:44bÞ

ebm ¼ K�
me

f
m�1 nð Þþ ebm�1 n� 1ð Þ m ¼ 1; 2; . . .; p ð12:44cÞ

where Km is the mth reflection coefficient in the lattice filter.
A typical stage of a lattice filter is shown in Fig. 12.8.
From the forward and backward prediction errors, the least squares error for

given data yðnÞ; n ¼ 0; 1; . . .;N � 1; can be expressed as

em ¼
XN�1

n¼m

e fm nð Þ�� ��2 þ ebm nð Þ�� ��2� �
: ð12:45Þ

Now, the error is to be minimized with respect to predictor coefficients satisfying
the following Levinson–Durbin recursion

am kð Þ ¼ am�1 kð ÞþKma
�
m�1 m� kð Þ; 1� k�m� 1; 1�m� p: ð12:46Þ

where Km ¼ amðmÞ is the mth reflection coefficient in the lattice filter of the
predictor.

Minimization of em with respect to the reflection coefficient Km yields

K
_

m ¼ �PN�1
n¼m e fm�1 nð Þ ebm nð Þ� ��

1
2E

_

m

ð12:47Þ

where E
_

m is the total squared error which is an estimate of E
_ f

m�1 þE
_b

m�1, E
_ f

m�1 and

E
_b

m�1 being the least squares estimates of the forward and backward errors given by

mk
∗

mk ( )b
me n( )1−

b
me n

( )f
me n( )1−

f
me n +

+1z−

Fig. 12.8 A typical stage of a lattice filter
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E
_ f

m�1 ¼
XN�1

n¼m

e fm�1 nð Þ
��� ���2 ð12:48Þ

E
_b

m�1 ¼
XN�1

n¼m

ebm�1 nð Þ�� ��2: ð12:49Þ

The estimate E
_

m can be computed by using the following recursion

E
_

m ¼ 1� K
_

m

��� ���2� �
E
_

m�1 e fm m� 2ð Þ�� ��2� ebm m� 2ð Þ�� ��2 ð12:50Þ

The Burg method computes the reflection coefficients K
_

m using Eqs. (12.47) and
(12.50), and AR parameters are estimated by using Levinson–Durbin algorithm.
Then, the power spectrum can be estimated as

PBUR fð Þ ¼
bE2
m

1þ Pp
k¼1 bake�j2pfk

�� ��2 : ð12:51Þ

The following example illustrates the power spectrum estimation using the Burg
method.

Example 12.6 Consider the AR process as given in Example 12.5. Evaluate its
power spectrum based on 200 samples using the Burg method.

Solution The MATLAB Program 12.5 can be used by replacing pyulear(y,4,Fs) by
pburg(y,4,Fs) to compute power spectrum using the Burg method. Thus, the PSD
obtained based on 200 samples using the Burg method is shown in Fig. 12.9.

The two peaks corresponding to the frequencies 0:22p and 0:28p are clearly seen
from Fig. 12.9. Using the Burg method based on 200 samples, whereas it is not as
shown in Fig. 12.5 using Yule–Walker method for the same number of samples.

The main advantages of the Burg method are high-frequency resolution, stable
AR model, and computational efficiency. The drawbacks of the Burg method are
spectral line splitting at high SNRs and spurious spikes for high-order models.

12.2.4 Selection of Model Order

Generally, model order is unknown a priori. If the guess for the model order is too
low, it will result in highly smoothed spectral estimate and the high-order model
increases resolution but low-level spurious peaks will appear in the spectrum. The
two methods suggested by Akaike [7, 8] for model order selection are:
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1. Akaike forward prediction error (FPE) criterion states that

FPE pð Þ ¼ r2wp

Nþ pþ 1
N � p� 1

� �
ð12:52Þ

should be minimum. Here, N stands for the number of data samples, p is the order
of the filter, and r2wp

is the white noise variance estimate.

2. Akaike forward prediction error (FPE) criterion states that

FPE pð Þ ¼ N lnðr2wp
Þþ 2p ð12:53Þ

should be minimum.

12.2.5 Power Spectrum Estimation Based on MA Model

By setting p = 0 in Eq. (11.30a) and letting hðkÞ ¼ bðkÞ; 1� k� q; a MA model
can be adopted. Then, the model parameters can be related to the autocorrelation
sequence as

Fig. 12.9 Power spectral density estimate via Burg method based on 200 samples
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ryy mð Þ ¼
r2x
Pq

k¼0 bkbkþm; 0�m� q
0; m[ q

r�yy �mð Þ; m\0

8<: : ð12:54Þ

Then, the power spectrum estimate based on MA model is

PMA fð Þ ¼
Xq
m¼�q

ryy mð Þ e�j2pfm: ð12:55Þ

Equation (12.55) can be written in terms of MA model parameter estimates

b
_

k

� �
, and the white noise variance estimate ðr_2

wÞ can be written as

PMA fð Þ ¼ r_
2
w 1þ

Xq
k¼1

b
_

k e�j2pfk

�����
�����
2

: ð12:56Þ

12.2.6 Power Spectrum Estimation Based on ARMA Model

ARMA model is used to estimate the spectrum with less parameters. This model is
mostly used when data is corrupted by noise.

The AR parameters are estimated first, independent of the MA parameters, by
using the Yule–Walker method or the Burg method. The MA parameters are
estimated assuming that the AR parameters are known.

Then, the ARMA power spectral estimate is

PARMA fð Þ ¼ r_
2
w
1þ Pq

k¼1 b
_

ke�j2pfk

1þ Pp
k¼1 a

_

ke�j2pfk

�����
�����
2

: ð12:57Þ

12.3 Subspace Methods for Power Spectrum Estimation

The subspace methods do not assume any parametric model for power spectrum
estimation. They are based solely on the estimate of the autocorrelation sequence of
the random process from the observed data. In this section, we briefly discuss three
subspace methods, namely, Pisarenko harmonic decomposition, MUSIC, and
eigenvector method.
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12.3.1 Pisarenko Harmonic Decomposition Method

Consider a process y consisting of m sinusoids with additive white noise. The
autocorrelation values of the process y can be written in matrix form as

ryyð1Þ
ryyð2Þ

..

.

ryyðmÞ

26664
37775 ¼

ej2pf1 ej2pf2 ej2pf3 . . . ej2pfm

ej4pf1 ej4pf2 ej4pf3 . . . ej4pfm

..

. ..
. ..

.
. . . ..

.

ej2pmf1 ej2pmf2 ej2pmf3 . . . ej2pmfm

2664
3775

P1

P2

..

.

Pm

26664
37775 ð12:58Þ

where Pi is the average power in the ith sinusoid.
If the frequencies fi; 1� i�m; are known, then from the known autocorrelation

values ryyð1Þ to ryyðmÞ; the sinusoidal powers can be determined from the above
equation.

The stepwise procedure for the Pisarenko harmonic decomposition method is as
follows.

Step 1: Estimate the autocorrelation vector from the observed data.
Step 2: Find the minimum eigenvalue and the corresponding eigenvector ðvmþ 1Þ
Step 3 : Find the roots of the following polynomial

XM
k¼0

vmþ 1ðkþ 1Þz�k ð12:59Þ

where vmþ 1 is the eigenvector. The roots lie on the unit circle at angles 2pfi for
1� i�M;M is dimension of eigenvector,
Step 4 : Solve Eq. (12.58.) for sinusoidal powers ðPiÞ.

12.3.2 Multiple Signal Classification (MUSIC) Method

The MUSIC estimates the power spectrum from a signal or a correlation matrix
using Schmidt’s eigen space analysis method [9]. The method estimates the signal’s
frequency content by performing eigen space analysis of the signal’s correlation
matrix. In particular, this method is applicable to signals that are the sum of
sinusoids with additive white Gaussian noise and more, in general, to narrowband
signals. To develop this, first let us consider the ‘weighted’ spectral estimate

12.3 Subspace Methods for Power Spectrum Estimation 743



P fð Þ ¼ SHðf Þ
XM

k¼mþ 1

ckVkV
H
k

 !
Sðf Þ ¼

XM
k¼mþ 1

ck S
H fð ÞVk

�� ��2 ð12:60Þ

where m is the dimension of the signal subspace, Vk, k ¼ mþ 1; . . .;M are the eigen
vectors in the noise subspace, ck are a set of positive weights, and

S fð Þ ¼ 1; ej2pf ; ej4pf ; . . .; ej2pðm�1Þf
h i

is complex sinusoidal vector:

It may be noted that at f ¼ fi, S fið Þ ¼ Si; such that at any one of the p sinusoidal
frequency components of the signal we have,

P fið Þ ¼ 0 i ¼ 1; 2; . . .;m: ð12:61Þ

This indicates that

1
P fð Þ ¼

1PM
k¼mþ 1 ck S

H fð ÞVkj j2 ð12:62Þ

is infinite at f ¼ fi: But, in practice due to the estimation errors, 1
P fð Þ is finite with

very sharp peaks at all sinusoidal frequencies providing a way for estimating the
sinusoidal frequencies.

Choosing ck ¼ 1 for all k, the MUSIC frequency estimator [10] is written as

PMUSIC fð Þ ¼ 1PM
k¼mþ 1 SH fð ÞVkj j2 ð12:63Þ

The peaks of PMUSIC fð Þ are the estimates of the sinusoidal frequencies, and the
powers of the sinusoids can be estimated by solving Eq. (12.58). The following
example illustrates the estimation of power spectrum using the MUSIC method.

Example 12.7 Consider a random signal generated by the following equation

xðnÞ ¼ sin
2pf1n
Fs

� �
þ 2 sin

2pf2n
Fs

� �
þ 0:1wðnÞ

where the frequencies f1 and f2 are 220 and 332 Hz, respectively, the sampling
frequency Fs is 2048 Hz and wðnÞ is a zero mean, unit variance, white noise
process. Estimate power spectrum of the sequence xðnÞ; 0� n� 1023f g:
Solution The MATLAB function pmusic(X,m,‘whole’) gives the power spectrum
of a discrete-time signal X using the MUSIC method, m being the number of
complex sinusoids in the signal X. If X is an autocorrelation data matrix of
discrete-time signal x, the function corrmtx can be used to generate data matrices.
The signal vector x consists of two real sinusoidal components. In this case, the
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dimension of the signal subspace is 4 because each real sinusoid is the sum of two
complex exponentials.

The following MATLAB Program 12.6 is used to obtain the power spectrum
using the MUSIC method.

Program 12.6

Power spectrum estimation using the MUSIC method
clear;clc;
randn('state',0);
N = 1024;%total number of samples
k = 0 : N-1;
f1 = 280;
f2 = 332;
FT = 2048;%sampling frequency in Hz
T = 1/FT;
x = sin(2*pi*f1*k*T) + 2*sin(2*pi*f2*k*T)+0.1*randn(size(k));%input vector of
length N
X = corrmtx(x,12);%estimates (N+12) by (12+1) rectangular autocorrelation
matrix
pmusic(X,4,'whole'); %estimates power spectrum of x containing two sinusoids

The power spectrum obtained from the above program is shown in Fig. 12.10.

Fig. 12.10 Power spectral density estimate using MUSIC method
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12.3.3 Eigenvector Method

The eigenvector method is a weighted version of the MUSIC method. Selecting
ck ¼ 1

kk
in Eq. (12.62) for all k, the eigenvector method produces a frequency

estimator given by Johnson [11].

Peig fð Þ ¼ 1PM
k¼mþ 1

1
kk

� �
VH
k S fð Þ�� ��2� � ð12:64Þ

where M is the dimension of the eigenvectors and Vk is the kth eigenvector of the
autocorrelation matrix of the observed data sequence. The integer m is the
dimension of the signal subspace, so the eigenvectors Vk used in the sum corre-
spond to the smallest eigenvalues kk of the autocorrelation matrix. The eigenvectors
used in the PSD estimate span the noise subspace. The power spectrum estimation
using the eigenvector method is illustrated through the following example.

Example 12.8 Consider the random signal generated in the Example 12.7 and
estimate its power spectrum using the eigenvector method.

Solution The MATLAB function peig(X,m,‘whole’) estimates the power spectrum
of a discrete-time signal X, m being the number of complex sinusoids in the signal
X. If X is an autocorrelation data matrix of discrete-time signal x, the function
corrmtx can be used to generate data matrices. The signal vector x consists two real
sinusoidal components. In this case, the dimension of the signal subspace is 4
because each real sinusoid is the sum of two complex exponentials.

The following MATLAB Program 12.7 is used to obtain the power spectrum
using the eigenvector method.

Program 12.7
Power spectrum estimation using the eigenvector method
clear;clc;
randn('state',0);
N = 1024;%total number of samples
k = 0 : N-1;
f1 = 280;
f2 = 332;
FT = 2048;%sampling frequency in Hz
T = 1/FT;
x = sin(2*pi*f1*k*T)+2*sin(2*pi*f2*k*T)+0.1*randn(size(k));%input vector of
length N
X = corrmtx(x,12);%estimates (N+12) by (12+1) rectangular autocorrelation
matrix
peig(X,4,'whole');%estimates power spectrum of x containing two sinusoids

The power spectrum produced from the above program is shown in Fig. 12.11.

746 12 Spectral Analysis of Signals



12.4 Spectral Analysis of Non-stationary Signals

A signal with time-varying parameters, for example, a speech signal, is called a
non-stationary signal. The spectrogram which shows how the spectral density of a
signal varies with time is a basic tool for spectral analysis of non-stationary signals.
Spectrograms are usually generated using the short-time Fourier transform (STFT)
using digitally sampled data. To compute the STFT, a sliding window which
usually is allowed to overlap in time is used to divide the signal into several blocks
of data. Then, an N-point FFT is applied to each block of data to obtain the
frequency contents of each block.

The window length affects the time resolution and the frequency resolution of
the STFT. A narrow window results in a fine time resolution but a coarse frequency
resolution, whereas a wide window results in a fine frequency resolution but a
coarse time resolution. A narrow window is to be used to provide wideband
spectrogram for signals having widely varying spectral parameters. A wide window
is preferred to have narrowband spectrogram. The following example illustrates the
computation of the spectrogram of a speech signal.

Example 12.9 Consider a speech signal ‘To take good care of yourself’ from the
sound file ‘goodcare.wav’ (available in the CD accompanying the book). Compute
the spectrogram of the speech signal using Hamming window of lengths 256
samples and 512 samples with an overlap of 50 samples.

Fig. 12.11 Power spectral density estimate using eigenvector method
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Solution The STFT of a non-stationary signal x can be computed by using the
MATLAB file specgram(x,wl,Fs, window,noverlap)

where wl stands for window length, and noverlap is the number of overlap
samples.

Program12.8
Spectrogram of a speech signal
[x,FT] = wavread('goodcare.wav');
i = 1:length(x)
figure(1),plot(x)
xlabel(‘Time index i’);ylabel('Amplitude');
figure(2), specgram(x,256, FT,hamming(256),50)

The speech signal 'To take god care of yourself' is shown in Fig. 12.12.
The spectrograms of the speech signal for window lengths of 256 and 512 samples
are shown in Fig. 12.13a, b respectively.
From the above spectrograms, the trade-off between frequency resolution and time
resolution is evident.
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Fig. 12.12 A speech signal

748 12 Spectral Analysis of Signals



12.4.1 MATLAB Exercises

1. Consider a random signal of length 1024 composed of two sinusoidal components
of frequencies 180 and 320 Hz with sampling frequency of FT = 2048 Hz cor-
rupted with zero mean, unit variance, white noise process. Evaluate its power
spectrum using Bartlett’s method with subsequence lengths of each 256 samples.

2. Consider the following signal of length N = 1024 with sampling frequency of
Fs = 2048 Hz corrupted with zero mean, unit variance, white noise process.

x ið Þ ¼ sin
800pi
FT

� �
cos

800pi
FT

� �
þw ið Þ; 0� i\N

where wðiÞ is zero mean Gaussian white noise.
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Fig. 12.13 a Spectrogram
with window length 256,
overlap = 50 and
b spectrogram with window
length 512, overlap = 50
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Evaluate its power spectrum using Welch’s method with subsequence lengths of
each 256 samples using Blackman window for overlaps of 64 and 128 samples,
respectively.

3. Consider the following signal of length N = 1024 with sampling frequency of
Fs = 2048 Hz corrupted with zero mean, unit variance, white noise process.

x ið Þ ¼ sin2
400pi
FT

� �
cos2

200pi
FT

� �
þw ið Þ; 0� i\N

where wðiÞ is zero mean unit variance, white noise process.
Evaluate its power spectrum using Blackman–Tukey method with window

length of 256 samples.

4. Consider a fourth-order AR process characterized by

yðnÞþ a1yðn� 1Þþ a2yðn� 2Þþ a3yðn� 3Þþ a4yðn� 4Þ ¼ wðnÞ

where wðnÞ is a zero mean, unit variance, white noise process. The parameters
a1; a2; a3; a4f g are chosen such that the prediction error filter

AðzÞ ¼ 1þ a1z
�1 þ a2z

�2 þ a3z
�3 þ a4z

�4

has zeros at the locations.

0:98e�j0:15p and 0:98e�j0:35p

Estimate the power spectrum of the AR process using the Yule–Walker method
and Burg method based on 200 samples. Comment on the results.

5. Consider the following signal of length N = 1024 with sampling frequency of
Fs = 2048 Hz corrupted with zero mean, unit variance, white noise process.

x nð Þ ¼
X3
i¼1

ej2pfin þw nð Þ; 0� n\N

where wðiÞ is zero mean unit variance, white noise process, and the frequencies are
Hz f1 ¼ 256Hz; f2 ¼ 338Hz; and f3 ¼ 338Hz:

Evaluate its power spectrum using the MUSIC method and the eigenvector
method. Comment on the results.

6. Consider a speech signal from the sound file ‘speech.wav’ (available in the CD
accompanying the book) and compute its spectrogram for different window
lengths with and without overlap. Comment on the results.
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