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Abstract
Strawberry, raspberry, grape, blueberry, and cranberry are major small fruit crops 
cultivated widely across the world. They are highly appreciated and have long 
been enjoyed enormous popularity among consumers. Their superior nutritive 
components play a significant dietary role in maintaining human health that has 
led to a dramatic increase of their global production. There has been an immense 
progress in small fruit micropropagation using semisolid gelled and liquid media 
containing different plant growth regulators (PGRs). Thidiazuron [1-phenyl-3-
(1,2,3-thiadiazol-5-yl)urea (TDZ)] is a PGR and with its cytokinin- and auxin-
like effects, has significant role in in  vitro propagation of small fruit crops. 
Bioreactor micropropagation containing liquid media with TDZ has resulted in 
significant progresses not only in reducing micropropagation cost but also in 
speeding up the process significantly for these crop species. However, the opti-
mal plant production depends upon a number of factors including genotype, 
media types, types and concentration of PGR, and culture environment. The 
chapter deals with the progress in-depth of various aspects of small fruit micro-
propagation in semisolid and liquid media containing TDZ and use of TDZ in a 
bioreactor micropropagation for commercial production. Somaclonal variation 
can be a major concern in small fruit micropropagation using TDZ. Although 
strategies have been developed to reduce these variations, DNA-based molecular 
markers are promising tools to monitor clonal fidelity of TDZ-induced micro-
propagated small fruit plants. The chapter also describes the use of molecular 
markers for the assessment of genetic fidelity, stability, and true-to-typeness in 
small fruit tissue culture plants.
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6.1	 �Introduction

Small fruits, also known as berry crops, are small- to moderate-sized fruits pro-
duced on perennial herbs, vines, or shrubs. Brambles (blackberry, raspberry and 
their hybrids), Ribes (currant and gooseberry), strawberries, table and wine grapes 
(Vitis spp.), and Vaccinium species (blueberry, cranberry, lingonberry, and others) 
are among the important small fruit crops worldwide (Debnath 2003a, 2016a). 
Native American peoples relied heavily on certain small fruits as a staple in their 
diet and passed on their knowledge of the fruit to the first European colonists. Many 
Native Americans and First Peoples of Canada combined dried meat with dried 
small fruits to add flavor (Trehane 2004). The production of blueberries, cranber-
ries, raspberries, and strawberries is a profitable agricultural enterprise that began in 
the early nineteenth century. Regionally important minor small fruit crops include 
Aronia (Aronia melanocarpa [Michx.] Elliott, Rosaceae), arctic raspberry (Rubus 
arcticus L., R. stellatus Sm. and their hybrids; Rosaceae), cloudberry (R. 
chamaemorus L., Rosaceae), mora (R. glaucus Benth., Rosaceae), Juneberry/saska-
toon (Amelanchier sp., Rosaceae), alpine strawberry (Fragaria vesca L., Rosaceae), 
edible honeysuckle (Lonicera caerulea L., Caprifoliaceae), elderberry (Sambucus 
Canadensis L., Caprifoliaceae), hardy kiwi (Actinidia arguta [Siebold & Zucc.] 
Planch.ex Miq., Actinidiaceae), sea buckthorn (Hippophae rhamnoides L., 
Elaeagnaceae), schisandra (Schisandra chinensis [Turcz.] Baill., Schisandraceae), 
bilberry (Vaccinium myrtillus L., Ericaceae), and muscadine grape (Vitis rotundifo-
lia Mich., Vitaceae). Chokecherry (Prunus virginiana L.), highbush cranberry 
(Viburnum trilobum Marshall), serviceberry [Amelanchier alnifolia (Nutt.) Nutt.], 
and silver buffalo berry [Shepherdia argentea (Pursh) Nutt.] are some of the other 
small fruit crops that are consumed in the traditional diets of North American tribal 
communities (Galletta and Himelrick 1990; Finn 1999).

Diets high in small fruits have a positive impact on human health, performance, 
and disease. They are flavorful providing unique contributions to dietary choices of 
consumers. Small fruits can satisfy diverse consumer choices and tastes with their 
different levels of sweetness and acidity, and with a variety of flavors and textures. 
They are consumed in fresh, dried, juice, and processed product forms. Small fruits 
are a major human dietary source of phytochemicals including flavonoids and other 
phenolic compounds, cyanogenic glucosides, phytoestrogens (Mazur et al. 2000), 
and phenols that are potentially health-promoting and are believed to fight against 
diseases (Macheix et al. 1991). Consumption of small fruits is likely to decrease the 
risk of cardiovascular diseases, certain forms of cancer, hypertension, type II diabe-
tes, and other age-related and degenerative diseases (Ames et al. 1993; Rissanen 
et  al. 2003). Fruit and leaf extracts from some small fruit species inhibit some 
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cancers or have strong antioxidant activities as were evident from in  vitro and 
in vivo studies with animal models (Yau et al., 2002). Ellagic acid of small fruits 
(Häkkinen and Törrönen 2000; Harris et al. 2001; Cordenunsi et al. 2002) affects 
cell proliferation and apoptosis, suggesting a potential anticancer role. Flavonoid-
rich blueberries and cranberries can limit the development and severity of certain 
cancers and vascular diseases including ischemic stroke, atherosclerosis, and neuro-
degenerative diseases of aging (Neto 2007). Lingonberry leaves and fruits are rich 
in antioxidant properties (Vyas et al. 2015) and can be used to treat stomach disor-
ders, rheumatic diseases, and bladder and kidney infections and to lower cholesterol 
levels (Novelli 2003). Cranberries produce proanthocyanidins (condensed tannins) 
that help to prevent urinary tract infections through reduced adhesion of uropatho-
genic Escherichia coli (Howell et al. 2005).

Thidiazuron (TDZ, N-phenyl-N′-1,2,3-thiadiazol-5-ylurea), first used as a cotton 
defoliant (Arndt et al. 1976), has been shown to exhibit strong cytokinin-like activ-
ity similar to adenine derivatives (Mok et al. 1982, 1987; Thomas and Katterman 
1986). Although TDZ was categorized as a cytokinin with natural cytokinin-type 
response (Murthy et  al. 1998), it has been found to possess both cytokinin- and 
auxin-like activities in in vitro culture of various plant species (Mok et al. 1982; 
Visser et al. 1992).While at higher concentrations, TDZ stimulates callus formation, 
shoot regeneration, and somatic embryo development, it induces axillary prolifera-
tion at low concentration (Huetteman and Preece 1993) although structurally TDZ 
is different from both auxins and purine-based cytokinins (Murthy et al. 1998).

6.2	 �Propagation In Vitro

Cultures in vitro (Fig. 6.1) contribute significantly to the small fruit crop develop-
ment programs. In vitro propagation or micropropagation that includes plant forma-
tion from existing meristems and somatic cells has been utilized for propagation and 
as a part of the genetic manipulation in many small fruit crops. Although micro-
propagation has been successful in some small fruit crops, there are many species 
where in vitro methods need to be established for elite selections and to develop 

Fig. 6.1  In vitro culture of 
blueberry on an agar-
gelrite gelled medium (left) 
and in a bioreactor 
containing liquid medium 
(right)
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genotype-independent routine procedures for increasing the propagation rates and 
to reduce the probability of somaclonal variation (Larkin and Scowcroft 1981).

Being genetically heterozygous, small fruit crops do not reproduce individuals 
from seed that are similar to the seed parent (Galletta and Himelrick 1990). Most of 
small fruit crop species are generally propagated vegetatively to maintain the desired 
genetic characteristics and to achieve rapidly a fruit-bearing condition. Although 
conventional vegetative propagation is successful in small fruit crops, the process is 
very time consuming. In vitro propagation is being used in various small fruit crops 
for year-round mass propagation of specific genotype and maintenance of pathogen-
free (indexed) germplasm and used as the initial step in a nuclear stock crop produc-
tion system. Shoot regeneration in  vitro could accelerate cultivar development 
programs when used in combination with classical breeding. Successful application 
of plant tissue culture for shoot regeneration is crucial (Cao and Hammerschlag 
2000), but the system can be used for genetic transformation followed by produc-
tion of transgenic plants and to induce somaclonal variants. Complete plant forma-
tion using tissue culture techniques can be achieved either through shoot proliferation 
from pre-existing buds, through adventitious shoot regeneration, or through the for-
mation of somatic embryos with a shoot meristem and a root (Steward et al. 1970).

Haberlandt (1902) explored plant cell culture in the early nineteenth century to 
study the concept of totipotency and to explore morphogenesis. He was successful 
to get survivability of in vitro-grown tissue. While Hannig (1904) was the first to 
observe plant cell division under in vitro condition, regeneration on callus tissue 
was first reported by Simon (1908). However, commercial micropropagation started 
with the work of Boxus (1974) and Anderson (1975) in strawberry and rhododen-
dron, respectively. Since then, micropropagation with small fruit crops has been 
reviewed in literature by various authors (Debnath 2003a, 2006a, 2007a, 2011a, 
2013, 2014a; Graham 2005; McCown and Zeldin 2005; Rowland and Hammerschlag 
2005; Skirvin et al. 2005; Debnath et al. 2012).

6.3	 �Thidiazuron-Induced Micropropagation on Semisolid 
Gelled Media

6.3.1	 �Axillary Shoot Proliferation

Shoot tips or nodal segments can be surface sterilized and cultured on an agar or 
agar-gelrite solidified gelled medium containing TDZ for axillary bud production 
(Debnath 2005a). Plant propagation through axillary shoot proliferation is the most 
reliable method to produce true-to-type plants as they normally retain the genetic 
composition of the mother plant. A higher cytokinin concentration alone or with 
low levels of auxins is generally used to induce axillary budding. Cytokinins are 
used in culture media to overcome apical dominance and to enhance lateral bud 
formation from the leaf axis. More extra shoots are produced through further axil-
lary bud growth during subculturing (Debnath 2003a). Different basal media sup-
plemented with cytokinins such as TDZ, zeatin, 6-benzyladenine (BA), zeatin 
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riboside, or N6-[2 isopentenyl] adenine (2iP) and possibly some auxin can be used 
for small fruit micropropagation (Debnath 2006a). For axillary shoot proliferation 
of lingonberries (Debnath 2005a), nodal explants can be cultured on Debnath and 
McRae’s (2001a) shoot proliferation medium containing low concentration of 
TDZ. A concentration of 0.1–1.0 μM TDZ was found effective for shoot prolifera-
tion of lingonberries (Debnath 2005a). Shoot proliferation of strawberry was found 
effective with 4 μM TDZ in a semisolid culture medium (Debnath 2005b).

Explant orientation on a TDZ-containing culture medium affects shoot prolifera-
tion. Lingonberry explants when placed horizontally on the culture medium 
responded by callus formation around the cut ends from day 6 to day 8 of culture, 
while vertical placement induced callus development at the basal end of the explants 
only. Changing the orientation of explants from vertically upright to horizontal 
improved the number of shoots per explant but reduced the number of leaves per 
shoot and shoot height (Debnath 2005a).

Lingonberry explants on cytokinin (TDZ)-free medium produced one unbranched 
shoot each, suggesting the presence of apical dominance (Debnath 2005a). Apical 
dominance is a major problem in micropropagation of some plant species (George 
and Sherrington 1984). Axillary branching in nodal explants occurs only when a 
cytokinin, e.g., TDZ, is applied exogenously in the culture media (Debnath 2005a). 
TDZ has an apical dominance release that accelerates shoot proliferation (Huetteman 
and Preece 1993).

The genotype often profoundly affects explant shoot proliferation performance 
in a medium containing TDZ (Debnath 2005a). Preece et al. (1991) observed differ-
ences in axillary shoot proliferation among woody plant species when cultured on a 
medium containing TDZ. Lingonberry genotypes belonging to two different sub-
species differed in their shoot proliferation potential (Debnath 2005a). This might 
be due to the fact that the cells within the same plant can have dissimilar endoge-
nous quantities of plant growth regulators (PGRs) and additional difference in 
receptor affinity or cellular sensitivity to PGRs (Minocha 1987). It is, therefore, 
expected that in vitro response will vary from genotype to genotype.

Although TDZ promotes callus development and at low concentration promotes 
shoot proliferation, it inhibits shoot elongation in lowbush blueberry (Kaldmäe et al. 
2006) and lingonberry (Debnath 2005a). Since TDZ possesses very high cytokinin 
activity, it is possible that its inhibitory effect on shoot proliferation is consistent with 
its high cytokinin activity as shown in cranberry (Marcotrigiano et al. 1996). The 
inhibition of shoot elongation can take place due to the increase of endogenous cyto-
kinins that hinders the action of cytokinin oxidase (Hare et al. 1994).

6.3.2	 �Adventitious Shoot Regeneration

Regeneration of adventitious shoots in vitro can be used not only in mass multipli-
cation of difficult-to-propagate crop plant species but also in crop improvement to 
produce genetically engineered plants and somaclonal variants. In vitro shoot 
regeneration can be either through the development of unipolar organs (shoots or 

6  Thidiazuron in Micropropagation of Small Fruits



144

roots), known as organogenesis, or of somatic embryos with a root and a shoot meri-
stem (somatic embryogenesis) (Ammirato 1985). Plant regeneration from excised 
explants through organogenesis includes (i) development of adventitious bud from 
explants, (ii) elongation of buds to form rootable shoots, and (iii) rooting of the 
shoots to form plantlets (Qu et al. 2000). Factors like genotype; culture medium; 
type, concentration, and combination of growth regulators; physical environment; 
and explant development stage are important for shoot regeneration.

TDZ-induced shoot regeneration in vitro on a semisolid gelled medium has been 
reported in many small fruit crops including lingonberry (Debnath 2003b, 2005c), 
strawberry (Debnath 2005b, 2006b; Haddadi et al. 2013), ohelo and bilberry (Shibli 
and Smith 1996), blackberry (Vujović et al. 2010), and blueberry (Debnath 2009a). 
While TDZ alone was sufficient to regenerate shoots from strawberry sepal, leaves, 
and calyx (Debnath 2005b, 2006b), 2,4-dichlorophenoxyacetic acid (2,4-D) (Passey 
et al. 2003) or 1H-indole-3-butanoic acid (IBA) (Yonghua et al. 2005; Murti et al. 
2012) in combination with TDZ was effective for shoot regeneration from straw-
berry leaves. Marcotrigiano et  al. (1996) used TDZ in combination with 
α-naphthaleneacetic acid (NAA) for shoot regeneration from cranberry leaves but 
was not very successful as the shoot elongation was limited. Qu et al. (2000) devel-
oped a highly efficient shoot regeneration system from cranberry leaves on a basal 
medium consisting of Anderson’s rhododendron salts (Anderson 1975) and 
Murashige and Skoog’s (MS) organics (Murashige and Skoog 1962) with 10.0 μM 
TDZ and 5.0 μM N6-(g-g-dimethylallylamino) purine (2ip) in five cranberry culti-
vars. TDZ was found more effective than 6-benzylaminopurine (BAP) for inducing 
adventitious shoot regeneration from blackberry leaves (Vujović et al. 2010).

Debnath (2009a) developed a two-step procedure for adventitious shoot regen-
eration on an agar-gelrite gelled semisolid nutrient medium containing TDZ. Wild 
lowbush blueberry leaf segments were cultured on modified cranberry medium of 
Debnath and McRae (2001a) that contained three-quarter macro-salts and micro-
salts of Debnath and McRae’s (2001b) shoot proliferation medium D. The cultures 
were incubated in the dark at 20 ± 2 °C for 14 days and then exposed to light and 
maintained at 20 ± 2 °C with a 16-h photoperiod (PPF density at culture level was 
30 μmolm−2 s−1). The TDZ concentration affected the frequency and growth of calli, 
buds, and shoots on leaf explants. A range of 2.3–4.5 μM of TDZ concentration on 
a semisolid gelled medium was found the most suitable range for shoot regeneration 
of wild lowbush blueberry clones (Debnath 2009a). In strawberry, TDZ at 2–4 μM 
induced adventitious meristem, bud, and shoot regeneration, but the formation of 
buds and shoots was completely stopped in a semisolid gelled medium with 8 μM 
TDZ (Debnath 2005b, 2006b).

Shoot regeneration on a TDZ-containing medium is influenced by a number of 
factors including genotype, TDZ concentration, and the polarity and orientation of 
the explants on the culture medium. The concentration of TDZ affects callus size 
and regeneration percentage, shoot number, and the vigor of regenerated shoots. In 
lowbush blueberry, the leaf explants produced less shoots but more callus on a nutri-
ent medium with 4.5  μM than those treated with 2.3  μM of TDZ.  Shoot vigor 
declined with the increase of TDZ concentration on the culture medium (Debnath 
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2009a). Vujović et  al. (2010) reported the highest shoot regeneration rate from 
blackberry leaves on a medium containing 4.5  μM TDZ.  Swartz et  al. (1990) 
obtained shoot regeneration from Rubus leaves on a MS medium containing 10 μM 
thidiazuron.

Polarity of shoot regeneration can vary from genotype to genotype and can be 
upturned by PGR treatments (George 1993). In lowbush blueberries, TDZ was 
found to induce shoot formation on the whole leaf surface. However, more regen-
eration was observed on basal and medial segments of leaves than on apical seg-
ments (Debnath 2009a). This could be due to the fact that the distal portion of the 
leaf has less meristematic cells than those at the proximal portions. The effect of 
polarity on regeneration on a TDZ-containing medium was evident by more callus 
growth and higher number of buds and shoots formed from the apical than in the 
central and basal segments of lingonberry hypocotyl segments from seedlings 
(Debnath 2003b). Regenerative capacity increased substantially from the base 
toward the tip of the hypocotyl (Debnath 2003b). In strawberry, bud and shoot 
regeneration occurred on both sides of the sepals on a TDZ-containing medium 
(Debnath 2005b) as were observed in lingonberry (Debnath 2005c) and cranberry 
leaf cultures on a semisolid medium with TDZ (Marcotrigiano et al. 1996). However, 
shoot regeneration was on adaxial side of cranberry leaves on a medium with TDZ 
(Qu et al. 2000). Regeneration of lingonberry shoots from leaves was better when 
the adaxial side was in contact with the TDZ-containing medium (Debnath 2005c). 
Shoot regeneration was best when young expanding basal leaf segments of lowbush 
blueberry were placed with the adaxial side in contact with the culture medium 
supplemented with 2.3–4.5 μM TDZ and kept for 14 days in darkness (Debnath 
2009a). TDZ induces shoot regeneration in various small fruit crops (Debnath 
2003b, 2005b, c, 2007a, 2009a).

TDZ concentration required for the regeneration of adventitious shoots depends 
on genotype. A high concentration of TDZ (37.8–40.5 μM) in combination with 
2.5–0.5 μM IBA was effective for strawberry shoot regeneration by Murti et  al. 
(2012). However, excessive PGR concentration in culture media may cause soma-
clonal variation in micropropagated plants (Larkin and Scowcroft 1981).

6.3.3	 �Somatic Embryogenesis

Induction of somatic embryogenesis in blueberries has been reported recently by 
Ghosh et al. (2017) where callus formed from leaf segments after 4 weeks of culture 
on a semisolid gelled medium containing TDZ. Highest percentage (98%) of callus 
formation was observed in a hybrid blueberry obtained through crossing between 
highbush blueberry cvs. Chippewa and Patriot, at 4.5 μM of TDZ. Reports on plant 
regeneration via somatic embryogenesis are not available in Vaccinium species on 
gelled media, but it has been observed in the diploid (Fragaria vesca subspecies 
vesca “Hawaii 4”) (Zhang et al. 2014) and octoploid strawberries (Donnoli et al. 
2001; Biswas et al. 2007; Husaini and Abdin 2007; Husaini et al. 2008; Kordestani 
and Karami 2008). Strawberry shoot regeneration from leaf culture was noticed via 
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somatic embryogenesis or direct shoot regeneration based on the concentration of 
TDZ (Husaini and Abdin 2007). Strawberry leaf discs were cultured on a nutrient 
medium containing 4.0 mg l−1 TDZ and maintained at 10 ± 1 °C under darkness for 
1  week followed by 3  weeks under 16-h photoperiod to get somatic embryos 
(Husaini et al. 2008). Initiation of strawberry somatic embryos was successful with 
dark (Donnoli et al. 2001; Husaini et al. 2011) and cold treatments (Husaini et al. 
2011) of the culture. Nakajima and Matsuda (2003) reported somatic embryogene-
sis from filaments of eight grape cultivars using a combination of 1  μM 
2,4-dichlorophenoxyacetic acid (2,4-D) and 1 μM TDZ or 10 μM 2,4-D and 10 μM 
TDZ. TDZ has been used to induce somatic embryo formation from filaments in 
grapevines (Nakajima and Matsuta, 2003; Oláh et al. 2003). Bouamama et al. (2007) 
used 11.35 μM of thidiazuron and 9 μM of 2,4-D for the induction as well as the 
development of somatic embryos in several grapevine cultivars, using anther 
culture.

6.3.4	 �Rooting and Acclimatization

Thidiazuron-induced small fruit microshoots can be rooted either under in vitro or 
ex vitro conditions (Qu et  al. 2000; Debnath 2005a, b, 2009a). For rooting on a 
gelled medium, microshoots are excised and cultured onto an auxin-free medium 
(Qu et al. 2000). Ex vitro rooting of micropropagated shoots can be done in shred-
ded sphagnum moss (Qu et al. 2000) or in a peat-perlite medium (Debnath 2003b, 
2005a, c, 2009a). Vaccinium species can be rooted under ex vitro condition, while 
rooting in vitro is very common for strawberries and Rubus species (Debnath 2005b, 
2006b, 2007b, 2010). Rootings ex vitro are rapid and less expensive, but in vitro 
rooting reduces disease contamination and environmental stress during rooting 
period (Pedroso et al. 1992).

Ex vitro rooting of Vaccinium microshoots can be done by treating the excised 
shoots by 39.4  mM IBA powder and planting them in a peat-perlite medium 
(Debnath 2009a). In vitro-derived strawberry shoots can be planted in a potting 
medium and maintained in a humidity chamber with a vaporizer at a temperature of 
20 ± 2  °C, humidity 95%, PPF  =  55  μmol m−2  s−1, and 16-h photoperiod. 
Acclimatization of the plantlets can be done by gradually dropping the humidity 
over 2–3 weeks. Hardened-off plants can be transferred in a greenhouse and grown 
at 20 ± 2 °C, humidity 85%, maximum PPF = 90 μmol m−2 s−1, and a 16-h photope-
riod (Debnath 2005c).

Debnath (2006b) observed that TDZ, in a semisolid culture medium, strongly 
inhibited root formation of adventitious strawberry microshoot. Media with TDZ 
promoted more callus formation but suppressed shoot elongation and rooting of 
shoots. TDZ-induced strawberry shoots when proliferated in a medium containing 
1 or 2 μM zeatin rooted well (Debnath 2006b). Lower cytokinin concentration may 
be required to form roots as the formation of roots is generally inhibited when the 
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cytokinin is adequately concentrated for the initiation of shoot proliferation (Gaspar 
and Coumans 1987). Endogenous cytokinins play a role in the formation of adventi-
tious root (Bollmark et  al. 1988). It is probable that TDZ is more efficient than 
zeatin to enhance endogenous cytokinin production which, in turn, might have pre-
vented rooting (Bollmark et al. 1988). Induction of rooting for strawberry micro-
shoots is possible without exogenous auxin. This might be due to the effect of 
exogenous auxins that can inhibit root growth (Scott 1972).

6.4	 �Bioreactor Micropropagation in Liquid Culture 
with Thidiazuron

Haberlandt (1902) was the first to use a liquid medium to culture isolated cells from 
bracts of Lamium purpureum in Knop’s solution supplemented with sucrose (Preil 
2005) although the cells did not divide. Later, Kohlenbach (1959) observed that dif-
ferentiated mesophyll cells of Macleaya develop into cell clusters and calli forming 
organs and somatic embryos. Use of a liquid culture medium for in vitro propaga-
tion offers much more uniform culturing conditions than a semisolid medium 
(Debnath 2011a). Use of a gelled medium for propagating plants is difficult to auto-
mate and costly for large-scale production. Automated bioreactors that use liquid 
media are important for large-scale production of small fruit crops.

Bioreactors are designed for intensive culture and control over microenviron-
mental conditions (aeration, agitation, dissolved oxygen, etc.) (Paek et al. 2005). 
Liquid culture in a bioreactor system can cut down cost and labor in terms of agar, 
medium volume, and subculture periods (Sandal et al. 2001). Micropropagation can 
be done in bioreactors in agitated and non-agitated vessels (Ziv 2005). However, 
under submersed condition, a bioreactor system can limit the gas exchange to the 
culture that may lead to suffocation, hyperhydricity, and abnormal plantlet forma-
tion (Detrez et al. 1994) with chlorophyll-deficient glossy hyperhydrous leaves, cell 
hyperhydricity, hypolignification, reduced deposition of epicuticular waxes, and 
changes in enzyme activity and protein synthesis (Ziv 1991a, b). Temporary immer-
sion bioreactors (TIBs) and use of growth retardants in culture media can be used to 
overcome some of these problems (Ziv et al. 2003). Cultures are alternately exposed 
to air and dipped into a liquid medium in a TIB system. Some of the other alterna-
tive procedures include putting a liquid medium on top of an established culture on 
agar and mist bioreactors and use of supports over stationary liquid media such as 
cellulose blocks, rafts, sponges, or paper bridges (Etienne and Berthouly 2002).

Bioreactor micropropagation in small fruit crop has not been used with many 
species but reviewed in literature (Debnath 2011a; Debnath et  al. 2016). Some 
results that used TDZ-containing liquid media in Fragaria, Rubus, and Vaccinium 
species are presented below.
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6.5	 �Fragaria (Strawberry)

The strawberry is enjoyed by millions of people across the world (Hancock et al. 
1991) and is used fresh or in processed forms including jams, jellies, and frozen 
whole berries or sweetened juice extracts or flavorings. It is one of the most popular 
small fruit crops more extensively distributed than any other fruit crops (Childers 
1980). The cultivated strawberry (Fragaria × ananassa Duch.) is a hybrid between 
F. virginiana Duch. and F. chiloensis (L.) Duch. Strawberries are a low-growing, 
dicotyledonous, perennial herb. They are grown in most arable regions of the world. 
Strawberries are a high source of vitamin C and fiber (Galletta and Bringhurst 1990).

Although strawberries can be propagated vegetatively by runner cuttings, a lim-
ited number of propagules are produced though this process and the product are not 
free of fungal diseases (Dijkstra 1993). Virus-free plants can be produced through 
micropropagation, and they can be saved under refrigeration (Mullin and Schlegel 
1976). This makes it a reliable technique for germplasm storage.

Strawberry liquid culture with cell suspensions was started by Keßler et  al. 
(1997) in bioreactors with different stirrer types. Adventitious shoot regeneration 
was successful in strawberry cultivars using a TIB bioreactor (RITA®) in a liquid 
MS medium supplemented with 9 μM TDZ and 2.5 μM IBA although regeneration 
frequency was not as good as on semisolid medium (Hanhineva et al. 2005). A com-
bination of semisolid gelled medium and a liquid medium has been used by Debnath 
(2008a) where shoots were regenerated from leaf, sepal, or petiole explants of 
strawberries on a semisolid culture medium containing 2–4  μM TDZ (Debnath 
2005b, 2006b), followed by culturing in the same liquid medium in a TIB bioreactor 
system with a 15-min immersion of explants every 4 h. Shoots can be proliferated 
and rooted in the bioreactor system with the same medium with 0.5–1 μM zeatin. In 
vitro-derived rooted shoots can be transferred planted on ProMix BX (Premier 
Horticulture Limited, Riviere-du-Loup, QC) potting medium and acclimatized fol-
lowing Debnath (2008a).

6.5.1	 �Rubus Species

The members of the genus Rubus (Tourn.) L. are called brambles that include rasp-
berries, blackberries, and dewberries. They are distributed in both hemispheres 
except desert regions (Daubeny 1996). Ideobatus (raspberries) is the most important 
domesticated subgenera of genus Rubus containing around 200 species (Debnath 
2011a, 2016a). The cloudberry (R. chamaemorus L., family Rosaceae) is a less 
known small fruit crop in Rubus species. This boreal circumpolar fruit species is a 
perennial, rhizomatous, and dioecious herb common to bogs. Cloudberries are rich 
in vitamin C and tannins and are used in traditional medicine to treat scurvy and 
diarrhea (Thiem 2003).

Bioreactor micropropagation using a liquid medium in Rubus species was first 
described by Debnath (2007b). Three cloudberry wild clones were cultured in an 
airlift bioreactor containing liquid medium with 0.45–2.3 lμ TDZ. A concentration 
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of 1.1–2.3  μM TDZ was needed for shoot proliferation. Liquid culture system 
enhanced the micropropagation efficiency of cloudberry clones; shoot number was 
almost double those on semisolid gelled medium for two cloudberry wild clones. A 
concentration of 1.1 μM TDZ was found to produce five to seven 4-cm-high shoots 
per nodal explant in a bioreactor containing a liquid medium in wild cloudberries 
(Debnath 2007b). However, TDZ induces hyperhydricity in liquid culture; 20–30% 
of the cloudberry shoots were hyperhydric after 8–10 weeks of culture in liquid 
medium (Debnath 2007b). Generally, hyperhydricity takes place in liquid media 
because of high water potential of leaves (Paek and Han 1989).This happens when 
a culture medium is rich in cytokinin (Gaspar 1991). Liquid culture-derived hyper-
hydric microshoots cannot root properly and give rise to malformed plants with 
poor survivability. In the reversible process, it was found that the quality of the 
cloudberry shoots could be improved by transferring them onto a gelled medium 
with 8.9 μM BAP and 5.8 μM gibberellic acid (GA3) (Debnath 2007b).

Bioreactor micropropagation in a TDZ-containing liquid medium was also 
reported in red raspberry (R. idaeus L.) (Debnath 2010, 2014b). Shoot regeneration 
can be achieved from raspberry leaves in a liquid medium-containing bioreactor 
system combined with a semisolid gelled medium with 2.3–9.0 μM TDZ (Debnath 
2014b). The polarity and orientation of red raspberry leaves and TDZ concentration 
played a significant role for callus and bud formation and for bud and shoot number 
per regenerating explants. Although regeneration was observed on the whole sur-
face of the leaf, it increased markedly from the tip toward the base of the leaf. 
Regeneration was more in explants from basal segments (proximal ends) than the 
apical segments (distal regions) (Debnath 2010). As was in semisolid gelled media 
with small fruit crops, TDZ also inhibits shoot elongation in liquid media. In red 
raspberry, shoot inhibition can be improved by culturing in a BA-added medium. 
BA-induced elongated shoots can be rooted in the same liquid medium that contains 
no plant growth regulator (Debnath 2010, 2014b).

6.5.2	 �Vaccinium Species

The genus Vaccinium L., with about 400–500 species, is native to all continents 
except Antarctica and Australia (Vander Kloet 1988; Vander Kloet and Dickinson 
2009). Genetically they are dicot and heterozygous angiosperms with small- to 
medium-sized fleshy edible fruits on woody perennial shrubs or vines. Although 
Vaccinium species includes blueberry, cranberry, lingonberry, bilberry, huckleberry, 
and whortleberry, the first three are commercially cultivated Vaccinium fruit crops.

Not many reports are available where bioreactor micropropagation has been used 
in Vaccinium species in a TDZ-supplemented liquid medium. A bioreactor system 
containing a liquid medium with TDZ combined with a semisolid gelled medium 
was used by Debnath (2011b) to propagate wild lowbush blueberries. Leaf seg-
ments were cultured on a semisolid gelled medium with 2.3 μM TDZ for 4 weeks 
followed by in liquid medium containing 1.2–2.3 μM TDZ for another 4 weeks. 
Leaf polarity and TDZ concentration had significant influence in callus formation 
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and shoot regeneration. Regeneration percentage was highest in the basal leaf seg-
ment followed by medial and apical leaf segments (Debnath 2011b) that collabo-
rates the previous findings on a semisolid gelled medium (Debnath 2009a). Shoot 
regeneration took place on both sides of the leaves but was better when leaf seg-
ments were cultured with their adaxial surface in contact with the culture medium 
(Debnath 2011b).

6.6	 �Characteristics of Micropropagated Plants

Enhanced vegetative growth including increased branching and/or rhizome produc-
tion is often observed in micropropagated small fruit crop plants (Debnath et al. 
2012; Fig. 6.2). The effect of propagation methods on the morphological and bio-
chemical properties of Vaccinium species was reported by various authors 
(Gustavsson and Stanys 2000; Debnath 2005d, 2006c, 2007c, 2008b; Foley and 
Debnath 2007; Debnath et al. 2012; Vyas et al. 2013; Goyali et al. 2015). In straw-
berry, Debnath (2009b) compared TDZ-induced regenerated strawberry tissue cul-
ture (TC) shoots that were elongated by treating with zeatin with those propagated 
by conventional runner cutting (RC) plants. TC plants produced more vegetative 
growth with more berries than those of RC plants. Berries produced by TC plants 
had also more anthocyanin contents and antioxidant activities than did RC plants 
(Debnath 2009b). This might be because the in  vitro hormonal treatment (TDZ, 
zeatin) could have effects to increase crown, runner, leave, and berry number per 
plant (Debnath 2009b). However, increased vegetative growth and berry yield of TC 
plants over RC plants are genotype dependent, and all genotypes did not produce 
enhanced growth and berry yield in raspberries (Debnath 2014b). TC plants had 
higher berry yield and more and longer canes and more berries than root cutting 
plants in cultivar “Festival” but not in “Latham” indicating genotype-dependent 
juvenile branching characteristics of “Festival” TC plants but not in “Latham” TC 
plants (Debnath 2014b). Similar results with micropropagated strawberries were 
also reported by Dalman and Malata (1997) for overwintering. Increased resistance 
to frost damage was observed in micropropagated strawberries than the runner 
plants (Rancillac and Nourrisseau (1989).

Fig. 6.2  Greenhouse-
grown root cutting (left) 
and tissue culture (right) 
raspberry plants
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6.7	 �Clonal Fidelity and Molecular Analysis 
in Micropropagules

True-to-type propagules and clonal fidelity are prerequisites for commercial micro-
propagation. The use of in vitro propagation has concerns about genetic changes 
resulting from the process (Dale et al. 2008). Although production of true-to-type 
micropropagules is the main objective for mass propagation or conservation of a 
specific genotype, in vitro culture is also a tool to create new variation. In vitro 
culture-derived variation or somaclonal variation (Larkin and Scowcroft 1981) can 
broaden the genetic variation in small fruit crop plants resulting in a range of geneti-
cally stable variations useful in crop improvement (Jain 2001). Somaclonal varia-
tion can be genetic (heritable) and epigenetic (nonheritable). Somaclones were 
found to be regenerated from leaf culture (Popescu et  al. 1997), from somatic 
embryogenesis (Donnoli et al. 2001), and from leaf and petiole cultures irradiated 
with gamma rays (Kaushal et al. 2004). Debnath (2017) reported somaclonal varia-
tions in strawberries for fruit yield under field condition. Two TC plants had higher 
berry yield than those of other tissue culture plants and the runner cutting mother 
plant. However it was not identified whether these variations were genetic or epi-
genetic (Debnath 2017). Somaclonal variation can be due to changes in the structure 
and number of chromosomes, sister chromatid exchanges, transposable element 
activation, DNA methylation pattern alteration and activation of hypervariable DNA 
regions, and point mutations including deletion, addition, or substitution of nucleo-
tides and rearrangements in the nuclear and cytoplasmic genomes (Kaeppler et al. 
1998). Factors like genotype, ploidy level, degree of departure from organized meri-
stematic growth, explant type, donor plant age, types and concentrations of growth 
regulators used, auxin-cytokinin balance, duration of culture period, and number of 
subcultures are the possible causes for the origin of somaclonal variation (Henry 
et al. 1998).

There are many ways to monitor variation in micropropagated plants including 
evaluation at morphological, biochemical, physiological, and genetic levels. Vujović 
et  al. (2010) used cytological, flow cytometry, and isozyme analyses to monitor 
somaclonal variation in blackberry regenerants. Chromosome counting in root tip 
meristems and flow cytometry analysis indicated identical ploidy level in all TC 
plants although the peroxidase patterns showed differences between some in vivo 
and micropropagated plants (Vujović et al. 2010).

DNA markers are independent of environmental influences (Weising et al. 1995) 
and can be a powerful tool for assessing clonal fidelity in micropropagated small 
fruit crops. Markers that are available for genetic analysis of tissue culture-raised 
plants include random amplified polymorphic DNA (RAPD), amplified fragment 
length polymorphism (AFLP), inter simple sequence repeat (ISSR), restriction frag-
ment length polymorphism (RFLP), arbitrary primed polymerase chain reaction 
(AP-PCR), sequence characterized amplified region (SCAR), DNA amplification 
fingerprinting (DAF), simple sequence repeat (SSR), short tandem repeat (STR), 
sequence-tagged sites (STSs), expressed sequence tag-polymerase chain reaction 
(EST-PCR), and cleaved amplified polymorphic sequences (CAPS) derived from 
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EST-PCR markers (Debnath 2011a). While ISSR markers have been used to con-
firm trueness-to-type of bioreactor-derived micropropagated strawberries (Debnath 
2009b), EST-PCR markers showed similar monomorphic amplification profiles in 
lowbush blueberry micropropagules (Debnath 2011b). SSR markers have been used 
for monitoring clonal fidelity in raspberry micropropagules (Debnath 2014b). 
Somaclonal variation is likely to be associated with regeneration of plants through 
unorganized callus formation (Piola et al. 1999). However, axillary buds can also 
produce variant plants (Soneji et al. 2002).

6.8	 �Conclusions

Small fruit crops are being propagated increasingly using tissue culture methods to 
multiply massive amounts of disease-free, genetically uniform plants. Axillary 
shoot proliferation is a very simple and reliable method to produce true-to-type 
micropropagules, and it is more preferred over adventitious shoot regeneration and 
somatic embryogenesis in small fruit crops. The latter two, however, are also power-
ful tools for rapid propagation of small fruit crops, provided clonal fidelity of the 
micropropagated plants is maintained. TDZ possesses both cytokinin- and auxin-
like effects in in vitro culture (Mok et al. 1982; Visser et al. 1992) and can provide 
significant role in small fruit micropropagation. Compared to other cytokinins, TDZ 
at lower concentration induces proliferation of axillary shoots, while at higher con-
centration it promotes both axillary and adventitious shoot formation in small fruit 
crops (Debnath 2005a, b, c, 2008a). In vitro organogenesis was found to produce 
genetically uniform and true-to-type micropropagules in strawberry (Debnath 
2009b), blueberry (Debnath 2011b), and raspberry (Debnath 2014b). Although bio-
reactor micropropagation is more cost-effective and ideal for automation, hyperhy-
dricity including morphological and physiological disorders is common in liquid 
culture-derived micropropagules (Debnath 2011a). Optimization of TDZ concen-
tration and culture conditions is needed for TDZ-induced bioreactor micropropaga-
tion in various small fruit crops.

Clonal fidelity is a major concern in small fruit micropropagation and can be 
monitored by DNA-based markers. Occurrence of variation during in vitro culture 
depends on factors like explant donor genotype, explant type, explant polarity and 
orientation on a culture medium, presence of chimeral tissue, media type, types and 
concentrations of plant growth regulators, culture duration, and cultural environ-
ment (temperature and light) (Debnath 2011a; Graham 2005). Micropropagated 
small fruit crops exhibit enhanced vegetative growth and can be used for rapid 
establishment and early fruit production. In vitro and molecular techniques are pow-
erful tools, and combined with classical breeding, they can be used in small fruit 
improvement program (Debnath 2011a, 2016b; Fig. 6.3).
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