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Abstract
Thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant 
growth regulator that is widely used in plant tissue culture. Due to its dynamic 
role in plant tissue culture, it has gained ample attention for several workers since 
the past decades. Wide array of TDZ-influenced physiological responses are 
reported in different medicinal plant species. TDZ has shown both auxin- and 
cytokinin-like effects, although, chemically, it is totally different from com-
monly used auxins and cytokinins. A number of physiological and biochemical 
events in cells are induced or enhanced by TDZ, but the mode of action of TDZ 
is yet to explore. However, varieties of underlying mechanisms have been 
revealed in several reports to defend the morphogenic events induced by 
the application of TDZ. Some reports emphasized that TDZ may modify endog-
enous plant growth regulators, either directly or indirectly, and produce reactions 
in cell/tissue, necessary for its division/regeneration. Other possibilities include 
modification in cell membrane, fluidity, nutrient uptake, transport and assimila-
tion, etc. In this review, recent advancements in TDZ application in plant sci-
ences are discussed.
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11.1  Introduction

Thidiazuron (N-phenyl-N′-1,2,3-thidiazol-5-yl-urea; TDZ) a multitask plant growth 
regulator has played a vital role to trigger differential physiological response in 
plant cell and tissue culture. Its peculiar feature is the capacity to act as the substi-
tute for the both auxins and cytokinin (Casanova et al. 2004). The TDZ is a substi-
tuted phenylurea compound known to act as cotton defoliant (Arndt et al. 1976) but 
later was found to mimic the cytokinin-like activity (Wang et al. 1986). The response 
of TDZ alone in plant tissue culture has become more advanced and continued to 
increase over the decades. The action of TDZ directly depends upon its concentra-
tion, exposure time, and cultured explants. According to Murthy et al. (1998), the 
effect of TDZ is 20 times more advanced as compared to other cytokinins, and 
hence, the comparison of TDZ and purine-based cytokine is complicated. The 
supremacy of the TDZ among other phytohormone is might be due to nutrients 
uptake capacity of the cell with the alteration in cell membrane and enhanced purine 
and cytokinin metabolism in the cell (Capelle et al. 1983). The production and accu-
mulation of phenols and enzymes like peroxidase and catalase is one of the major 
effects of TDZ activity in to the cell (Wang et al. 1991a). Moreover alteration in 
several enzyme concentrations such as ribulose diphosphate, carboxylase oxidase, 
and pentose enzymes is also an aftereffect of TDZ action (Mok et al. 1987). Wang 
et al. (1991a, b) reported that most of the TDZ-influenced enzymes are related to the 
cell wall, cell membrane, and its fluidity. They found that TDZ-influenced organo-
genesis leads a metabolic cascade which affects directly or indirectly to the other 
endogenous plant hormone. TDZ has been proved to be an effective plant growth 
regulator for shoot proliferation and adventitious shoot organogenesis in various 
plant species (Table 11.1).

Several factors including genotype, type of culture medium and explants, plant 
growth hormones, their concentration and exposure time, and environmental condi-
tion affect the adventitious shoot induction in vitro (Casanova et al. 2008; Casas 
et al. 2010). The action of TDZ has been found to promote both the organogenesis 
and somatic embryogenesis in vitro.

The concentration and duration of exposure of TDZ to the explants is well docu-
mented by several plant biotechnologists. The short time exposure of TDZ with low 
concentration has been effective for morphogenesis, while higher levels, on the 
other hand, promote callus and somatic embryo formation (Rida et  al. 2001; 
Fengyen and Han 2002; Tulac et al. 2002). The abnormal morphogenesis, stunted 
growth of shoot, hyperhydricity, and fasciculation to the cell were the consequences 
of TDZ when the exposure was extended beyond the optimum level (Huetteman and 
Preece 1993; Faisal et al. 2005; Ahmad and Anis 2007). Shirani et al. (2009) also 
reported the deleterious effect of higher concentration of TDZ in regenerated shoots 
of banana and plantain (Musa spp.) after in vitro multiplication with TDZ and BAP 
from excised shoot tips. Additionally, continuous or more than optimal exposure of 
TDZ resulted in the inhibition of shoot elongation and formation of fasciated/dis-
torted shoot development.
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A highest number of shoot were produced in Artemisia judaica when TDZ con-
centration was used at 1 μM for 20 days; when the exposure time was stretched, 
further differentiation of shoot was restricted coupled with abnormality in the shoot 
(Liu et al. 2003). Besides the magnificent response of TDZ in plant tissue culture, 
its deleterious responses were also known as the days advance. The deleterious 
effect of the continued presence of TDZ on the growth and multiplication has been 
earlier reported from time to time for several species. However the investigators 
have found a solution to overcome the harmful effect of TDZ by transferring the 
regenerated shoot to TDZ-free medium after the optimum exposure. The technique 
brings a balanced morphogenesis to the in  vitro plant, and it is used by various 
workers including Huetteman and Preece (1993), Shahzad et al. (2006), Siddique 
and Anis (2007a, b), Faisal et  al. (2008), Jahan and Anis (2009), Makara et  al. 
(2010), and Jahan et  al. (2011), Saeed and Shahzad (2015). The present chapter 
documents the detailed account of physiological and morphological effects of TDZ 
in several plant species.

11.2  Mechanism of Action of TDZ

There are several reports available dealing the physiological role of TDZ in different 
medicinal plant species. However, the mechanism of action of TDZ is not well doc-
umented, and only preliminary reports are available. The pioneer work of Hare and 
Cress (1997) for the mechanism of action of TDZ established that proline itself 
being as a stress marker was involve in the activity of TDZ (Fig. 11.1). The higher 
proline accumulation in the cell controls the NAD(P)′/NAD(P)H ratios as a conse-
quence of plant undergoing stress which favors the oxidative pentose phosphate 
pathway leading to the production of precursor for auxin and cytokinin biosynthe-
sis. In this way, the accumulations of the plant growth regulators occur as a result of 
the cascade of biochemical reactions initiated by TDZ. Murthy et al. (1996a) have 
reported high level of accumulation of proline during TDZ-induced regeneration via 
embryogenesis. In another study of Casanova et  al. (2004), they found that the 
application of TDZ at a very low concentration (0.0–0.005 μM) leads to the forma-
tion of zeatin (ZT) while at higher concentration (0.5 μM) induces isopentyl adenine 
(IP) production in carnation petals. In the recent study of Jones et al. (2007) on the 
regeneration of Echinacea purpurea, they concluded the probable role of auxin, 
indolamines, and ion signaling in the morphogenesis. They found that the level of 
endogenous indoleamines is potentially influenced by the exposure of TDZ and 
enhanced level of the calcium and sodium transport in the cell was also found by the 
TDZ activity, and hence a positive effect was shown in regeneration. 

There is another report on role of IAA published by Chhabra et al. (2008). They 
proposed that the involvement of the phytohormone is closely related to the biosyn-
thesis and transportation of IAA. These reports indicate that TDZ-influenced mor-
phogenesis is the demonstration of metabolic cross talk that includes a primary 
signaling, accumulation, and transport of endogenous plant signals such as auxin 
and cytokinin and enhanced transport of secondary messengers.

11 Thidiazuron Influenced Morphogenesis in Some Medicinal Plants
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11.3  Effect of TDZ on Organogenesis

TDZ supposes to be less susceptible to enzymatic degradation in vivo than other 
naturally occurring amino purine cytokinins and has proved to be effective at lower 
concentrations (0.0091–3.99 μM) for the micropropagation of several plant species 
(Lu 1993). It has been shown to induce high bud regeneration rates than purine- 
based cytokinins and also has capability of fulfilling both the cytokinin and auxin 
requirements of regeneration responses in a number of woody plants (Jones et al. 
2007). However, there was another report of Augustine and D’Souza in (1997) for 
the in vitro propagation of Zanthoxylum rhetsa using TDZ at higher concentration 
(2.27–145.41 μM). The use of TDZ for shoot regeneration from different explants 
has been widely reported at a great extent for a number of woody plant species such 
as Hydrangea quercifolia (Ledbetter and Preece 2004), Cassia angustifolia 
(Siddique and Anis 2007a, b), Pterocarpus marsupium (Husain et al. 2007), and 
Vitex negundo (Ahmad and Anis 2007).

Ahmed and Anis (2014) investigated the prompt response of TDZ and developed 
a rapid and commercially applicable regeneration protocol for Cassia alata. They 
tried various concentrations of TDZ with different duration of exposure; however, 
harmful effect was also shown by the in vitro culture when exposure time stretches 

Fig. 11.1 Diagrammatic representation of proposed mechanism of action of TDZ

Z. Ahmad and A. Shahzad
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beyond the optimum period. The highest number of shoots 17.9 ± 0.3 with shoot 
length of 4.6  ±  0.1  cm was achieved when the explants were exposed to TDZ 
(5.0 μM) for 4 weeks. To avoid the deleterious effect of TDZ, they were transferred 
to TDZ-free medium. Likewise in another species of Cassia, Parveen and Shahzad 
(2010) found that MS medium fortified with TDZ (2.5 μM) was optimum for the 
production of 6.7 ± 0.2 shoot per explants. To avoid the aftereffect of TDZ, the 
microshoot was consequently transferred to TDZ-free medium containing BA for 
proper multiplication, proliferation, and shoot elongation.

Sharma and Shahzad (2008) reported TDZ-induced organogenesis in 
Abelmoschus moschatus using cotyledonary explants. TDZ alone proved to be supe-
rior in comparison to the combination of BA and NAA. MS medium augmented 
with low concentration of TDZ (0.01 mg L−1) was optimum for the multiple shoot 
induction in A. moschatus, and a maximum of 16.8 ± 1.46 shoot per explants were 
achieved. Faisal and Anis (2006) studied the effect of TDZ on in vitro axillary shoot 
proliferation from nodal explant of Psoralea corylifolia, an endangered medicinal 
plant. Proliferation of shoots was achieved on MS medium supplemented with dif-
ferent concentration of 0.5, 1, 2, 3, 4, and 5  μM TDZ.  The maximum number 
(13.6  ±  1.4) of shoots per explants was obtained from nodal segments on TDZ 
(2 μM) after 4 weeks of culture and followed by the transfer to hormone-free MS 
medium wherein the shoot differentiation significantly induced to 29.7 ± 2.1 after 
8 weeks. In another study on Cassia siamea by Parveen et al. (2010), it was found 
that TDZ could not be able to evoke a significant response in the terms of shoot 
multiplication. They applied distinct concentration of cytokinin, viz., BA, Kn, and 
TDZ, alone or in combination singly or in combination with auxins for regeneration 
from excised codeledonary nodal explants, and MS + BA (1.0 μM) found to be 
best for direct shoot regeneration as it induced an average of 8.20 ± 0.66 shoots 
per explant. The regeneration frequency further improved with synergistic response 
of BA with auxin. In the highest frequency for shoot regeneration (90%), the maxi-
mum number of shoots per explants (12.20 ± 0.73) was obtained on the medium 
which consisted of MS + BA (1.0 μM) + NAA (0.5 μM) in C. siamea.

Shahzad et  al. (2006) established a protocol for the organogenesis in Acacia 
sinuata using cotyledon. All the concentration of TDZ with MS was able to gener-
ate callusing to the explants, and MS + TDZ (0.6 μM) was found to be better in the 
terms of maximum callus formation in A. sinuata. However, the callus was further 
transferred to the shooting medium augmented with BA (3.0  μM) for optimum 
shoot induction wherein 6.60  ±  0.54 shoots were produced. Cocu et  al. (2004) 
recorded highest frequency of adventitious shoot regeneration in Calendula offici-
nalis in MS medium containing TDZ (0.75 mg dm−3). Likewise, Phippen and Simon 
(2000) reported both callus and shoot induction with TDZ (16.8  μM) alone in 
Ocimum basilicum via using leaf explants. Murthy et  al. (1996) observed direct 
organogenesis and somatic embryogenesis in Cicer arietinum when cotyledonary 
explants were inoculated on BA- and TDZ-amended MS medium. Multiple shoots 
formed de novo without an intermediary callus phase at the cotyledonary notch of 
the seedlings within 2–3 weeks of culture initiation. TDZ was found to be more 
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effective as compared to BA as an inductive signal of regeneration. The TDZ 
induced multiple shoot formation at all the concentrations tested (1.0–10.0 μM), 
although maximum morphogenic response was observed at 10.0 μM of TDZ.

De novo shoot organogenesis was reported in Artemisia judaica using TDZ 
(1.0 μM) by Liu et al. (2003). The role of TDZ has also been reported in several 
herbs and shrub like, Bacopa monnieri (Tiwari et al. 2001), Artemisia judaica (Liu 
et al. 2003), Hordeum vulgare (Ganeshan et al. 2003), Cineraria maritime (Banerjee 
et al. 2004), Hyoscyamus niger (Uranbey 2005), Psoralea corylifolia (Faisal and 
Anis 2006), Rauvolfia tetraphylla (Faisal et al. 2005), Ricinus communis (Kumari 
et al. 2008), Hypericum perforatum (Murch et al. 2000), Embelia ribes (Raghu et al. 
2006), Ochna integerrima (Ma et al. 2011), Morus alba (Chitra and Padmaja 2005), 
Bauhinia tomentosa (Naaz et  al. 2012), Bactris gasipaes (Graner et  al. 2013), 
Ceropegia ensifolia (Reddy et al. 2015), and Cassia sophera (Parveen and Shahzad 
2010).

11.4  Synergistic Effect of TDZ and Cytokinin

The synergistic effect of TDZ with other cytokinin found to be very useful to trigger 
organogenesis significantly (Chen et al. 2016). Lee and Pijut (2017) proposed an 
efficient regeneration system through adventitious shoot organogenesis in black ash 
(Fraxinus nigra), an endangered hardwood. In their study the MS medium aug-
mented with BA (22.2 μM) + TDZ (31.8 μM) was found good with the production 
of 1.9 ± 0.65 adventitious shoots per leaf explant. Similarly Ouyang et al. (2016) 
reported the efficiency of combined treatment of TDZ + BA on the improvement of 
regenerability and somatic embryo formation from the leaf of Metabriggsia ovali-
folia. Chen et  al. (2016) reported a positive effect on shoot bud regeneration in 
Chirita swinglei. A maximum of 23.1 ± 0.20 shoot bud per explants were produced 
on MS + TDZ (2.0 μM) + BA (2.5 μM). The shoot bud obtained in C. swinglei 
depends upon the exposure and concentration of the TDZ. The first observation they 
recorded was the swallowing of leaf explants after culture for 15 days at (2.0 μM) 
TDZ. Some shoot buds were observed after 20 days of culture. Shoot buds were 
clearly visible as culture period was extended from 35 to 45 days. Callus could also 
be induced from leaves when α-naphthalene acetic acid (NAA) was used alone or in 
combination with TDZ and BA.

Parveen and Shahzad (2011) established a protocol for the in vitro propagation 
of the Cassia angustifolia. MS medium supplemented with TDZ (1.0 μM) was used 
for the production of organogenic calli followed by subsequent transfer to the TDZ- 
free medium augmented with different cytokinin, viz., BA, Kn, or TDZ for proper 
regeneration of shoot. They achieved a maximum of 35.63 ± 0.75 shoot per explants 
on MS + BA (2.5 μM) + NAA (0.6 μM) from the TDZ-induced calli. Zeng et al. 
(2008) reported an efficient micropropagation system for Tigridiopalma magnifica 
using leaves as explants. Up to 7.6 adventitious buds formed per leaf explant after a 
40-day culture on MS + BA (2.0 mg−1) + TDZ (0.1 mg−1). To avoid the aftereffect 
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of TDZ, the culture were transferred to the TDZ-free medium containing other 
cytokinin- like BA for enhanced proliferation rate of adventitious buds, and it 
reached to 5.7 on MS medium supplemented with 2.0 mg−1 of BA.

11.5  Effect of TDZ with Auxin/Growth Additives

The role of TDZ with different auxin and growth additives is also well documented 
by several workers. The auxin-like NAA, 2, 4-D, IBA, and IAA at various concen-
trations with optimum TDZ concentration was reported to play an important role in 
both direct and indirect organogenesis. In recent study of Baskaran et al. (2016) on 
developing a regeneration protocol for Ledebouria ovatifolia through direct and 
indirect organogenesis by using leaf explants  demonstrated that the adventitious 
shoot was best produced on MS + TDZ (5 μM) + NAA (2 μM), while organogenic 
callus was obtained on MS + IAA (2.0 μM) + TDZ (5.0 μM) + glutamine (30 μM). 
A maximum of 26.8 ± 1.06 and 32.0 ± 1.73 shoot per explants were achieved via 
direct and indirect organogenesis in L. ovatifolia.

A micropropagation protocol was developed by Babaei et al. (2014) for Curculigo 
latifolia. They used distinct concentration of auxin with optimum TDZ concentra-
tion for direct and indirect organogenesis using shoot tip explants. MS medium 
augmented with TDZ (0.5 mg L−1) + IBA (0.25 mg L−1) was found to be best for 
direct regeneration in terms of percentage of explants producing shoot, shoot num-
ber, and shoot length. Prathanturarug et al. (2012) studied the in vitro propagation 
of Stemona hutanguriana via using nodal and intermodal segment as explants. MS 
medium augmented with TDZ alone or in combination with NAA was able to pro-
mote regeneration in the S. hutanguriana. A regeneration frequency of 91.67% with 
shoot regeneration rate of 5.46 shoots/responding explant was observed when nodal 
segment inoculated on MS + TDZ (18.16 μM) + NAA (0.54 μM) for 8 weeks and 
followed by transferred to the PGR-free medium to avoid the adverse effect of TDZ.

In another study by Ma et al. (2011) on Metabriggsia ovalifolia, TDZ at higher 
concentration (5.0 μM) was found to be better for efficient propagation and regen-
eration of 36.7 shoots per leaf explants; however, the regeneration efficiency was 
further enhanced when auxin was supplemented with optimum TDZ. Among the 
various auxins, NAA at 0.5 μM with optimum TDZ concentration was efficient to 
induce a maximum of 79.1 adventitious shoots from each leaf explants. TDZ- 
mediated indirect organogenesis was also achieved by Siddique et  al. (2010) in 
Cassia angustifolia via using petiole explants excised from 21-day-old axenic seed-
lings. They used MS medium fortified with 2, 4-D (5.0 μM) and TDZ (2.5 μM) for 
the organogenic callus induction. TDZ at higher concentration (5.0 μM) was able to 
induce calli differentiation to the adventitious shoot with the highest of 8.5 ± 0.98 
shoots per culture. However, the regeneration efficiency of the explants was signifi-
cantly improved when combination of TDZ (5 μM) + IAA (1.5 μM) was applied and 
produces a maximum of 12.5 ± 1.10 shoots per culture.
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Sujatha and Dinesh Kumar (2007) compared the efficacy of cytokinin with TDZ 
for direct organogenesis in the species of Carthamus. The MS medium fortified 
with TDZ (0.2 mg dm−3) + NAA (0.2 mg dm−3) was more efficient for the induction 
of shoot from the leaf explants of C. tinctorius. On the other hand Radhika et al. 
(2006) found that optimum TDZ (0.2 mg dm−3) with high concentration of NAA 
(1.0 mg dm−3) was proved to be better for regeneration in C. arborescens. Faisal and 
Anis (2005) has set a protocol for the in vitro propagation Tylophora indica using 
petiole as an explant. They obtained optimum callus from the explants when inocu-
lated on to the MS + 2,4-D (10 μM) + TDZ (2.5 μM). To achieve the shoot induc-
tion, TDZ-derived callus was transferred to the shoot induction medium. TDZ alone 
found to be best for the shoot multiplication in T. indica and a highest of 56 ± 3.6 
adventitious shoot were obtained from the surface of the callus when MS medium 
fortified with TDZ (2.5 μM) was used. In another study of Thomas and Puthur 
(2004a, b) on a multipurpose tree, Kigelia pinnata, they used nodal segment and 
inoculated to the MS medium augmented with 2,4-D (3 μM) for callus induction. 
The obtained calli were then transferred to the shooting medium fortified with TDZ 
(3.0 μM) + NAA (0.5 μM) for the proliferation and multiplication of the shoot where 
21 ± 0.3 shoots per culture were obtained.

11.6  Effect of TDZ on Somatic Embryogenesis

Somatic embryogenetic systems are of growing interest for medicinal, ornamental, 
and horticultural plants (Ji et al. 2011). Dedifferentiation of cells, activation of cell 
division, reprogramming of cell physiology, metabolism, and gene expression pat-
terns occurred during unique developmental pathways of somatic embryogenesis. 
However, morphological abnormalities such as embryo fusion and lack of suitable 
apical meristems or loss of bipolarity have occurred resulting in poor yields (Benelli 
et al. 2010). TDZ-influenced regeneration via somatic embryogenesis is well docu-
mented by several workers for different medicinal plant species. In the recent study 
of Baskaran and Staden (2017), they were able to get friable embryogenic callus 
(FEC) from the leaf explants of Lachenalia montana through suspension culture for 
the first time. Liquid MS medium (MSL) supplemented with 2, 4-D (0.5 μM) + TDZ 
(1  μM) was optimum for the formation of somatic embryos of different stages 
(globular to cotyledonary stages, respectively). However, the enhanced concentra-
tion of 2,4-D and TDZ was needed for the germination of somatic embryos, and 
liquid MS medium augmented with 2,4-D (1.0 μM) + TDZ (2.0 μM) was proved to 
be best in terms of enhanced germination frequency.

Naaty et  al. (2017) found best response for somatic embryo production in 
Schizozygia coffaeoides on the medium comprises of MS + BA (2.0 mg/l) + Kn 
(0.8 mg−1) + NAA (0.4 mg−1) + TDZ (0.5 mg−1), which survived to maturity and 
formed shoot. Baskaran et al. (2016) achieved embryogenic callus induced on liquid 
MS augmented with sucrose (15 g L−1) + TDZ (0.2 Μm) + picloram (0.1 μM) + 
glutamine (10  μM) with the highest numbers of somatic embryos, 43.2–35.6 
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(globular to cotyledonary stages, respectively). Baskaran and Staden (2014) were 
able to achieve different developmental stages of somatic embryos, globular 
embryos, partial pear-shaped embryos and club-shaped embryos obtained from leaf 
explants of Drimia robusta on MS + Picloram (10 μM) + TDZ (1 μM) + glutamine 
(20 μM). Sahai et al. (2010) developed a protocol for the in vitro propagation of an 
endangered medicinal climber Tylophora indica through leaf explants. Different 
types of calli produced on BA and TDZ-augmented MS basal medium were selected 
for shoot induction and somatic embryogenesis studies. Calli when transferred from 
BA (5.0 μM) + TDZ (2.5 μM) to the MS medium containing BA (5.0 μM) resulted 
in high-frequency shoot induction (26.8 ± 0.97 shoots/culture) along with somatic 
embryogenesis (10.20 ± 0.37 embryoids/culture) up to three subculture passages. 
Embryoids transformed into complete plantlets when transferred to growth 
regulator- free half-strength MS medium.

 Dhandapani et al. (2008) were able to achieve plant regeneration via somatic 
embryogenesis in Catharanthus roseus. The highest regeneration percentage 
through somatic embryogenesis was achieved from mature zygotic embryo on MS 
+ TDZ (7.5 μM), and further the mature embryo also regenerated efficiently via 
organogenesis in MS medium fortified with TDZ (2.5 μM) + BA (2.2 μM). Joshi 
et al. (2008) found that failure of peanut somatic embryos to convert into plantlets 
is attributed to the abnormal development of the plumule. TDZ was effective in the 
conversion of peanut somatic embryos to plantlets by triggering morphogenetic 
activity in the abnormal plumules of the rooted somatic embryos. Bud-like projec-
tions appeared in the embryogenic masses when these were cultured in media con-
taining combinations of 2,4-D and TDZ. These projections developed into buds, 
which subsequently formed shoots and plantlets. The response varied with the con-
centration and exposure of TDZ. At lower concentrations, the buds appeared in a 
defined row in the equatorial region of the explant, and with extended incubation, 
more and more buds appeared in rows alongside the initial row. Induction of 
multiple buds in a defined row in this specific site (equatorial region) suggested 
the presence of potent cells around this region. At higher concentrations, these 
projections appeared in large numbers spread over the whole upper part of the 
embryogenic mass starting from the equatorial region. The ability of embryogenic 
mass to convert into organogenic mass and to produce large number of organogenic 
buds provides an excellent system for basic studies and for the genetic transforma-
tion of peanut.

Mithila et al. (2003) observed TDZ-mediated regeneration using leaf and petiole 
explants from in vitro grown African violet plants. The response of cultures to other 
growth regulators over a range of 0.5–10 μM was 50% less than that observed with 
TDZ. A comparative study among several cultivars of African violet indicated that 
“Benjamin” and “William” had the highest regeneration potential. In “Benjamin,” 
higher frequencies of shoot organogenesis (two fold) and somatic embryogenesis (a 
50% increase) were observed from in vitro and greenhouse-grown plants, respec-
tively. At concentrations lower than 2.5 μM, TDZ induced shoot organogenesis, 
whereas at higher doses (5–10 μM) somatic embryos were formed.
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11.7  Conclusions

Regulation of cell division and cell differentiation is necessary for the morphogen-
esis either in vivo or in vitro. Auxin and cytokinin are believed to be responsible for 
this synergistic control. The present review deals the importance of TDZ, another 
class of plant growth regulators, significantly different from the cytokinin. It also 
attempts to integrate the vast amount of knowledge generated on TDZ-induced 
responses in a myriad of systems. Application of TDZ results in a wide variety of 
responses in in vitro cultured tissues, but the biochemical and physiological basis of 
the modulation of morphogenic response induced by TDZ are poorly understood. 
However, studies encompassing a wide array of species, techniques, and physiolog-
ical responses have led to several tentative models to explain the regulatory role of 
TDZ. A complete picture concerning the mechanism of action of TDZ is not likely 
to occur, and many mysteries of auxin- and cytokinin-related morphogenesis are 
resolved. Nevertheless, the recent advancement in biochemical and molecular char-
acterization of auxin and cytokinin mutants and general enthusiasm in plant growth 
regulator research promises very exciting results in the next decade. A complete 
understanding of the biochemical and physiological responses of plant tissues to 
TDZ will broaden our understanding of morphogenesis and further help in improve-
ment of tissue culture technology.
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