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Abstract

Thidiazuron (TDZ) is a substituted phenylurea first synthesized in 1967 by the
Schering Corporation in Germany. Compared to other plant growth regulators,
TDZ is a powerful and potent synthetic growth regulator, leading to a wide array
of in vitro and in vivo applications in plants including prevention of leaf yellow-
ing, enhanced photosynthetic activity, breaking of bud dormancy, fruit ripening,
as well as proliferation of adventitious shoots, callus production, and induction
of somatic embryogenesis. Despite the diversity of effects attributed to TDZ, its
application and mode of action for induction of in vitro morphogenesis in plants
are not well understood. Thus, this review aims to summarize current under-
standings for TDZ during in vitro morphogenesis in order to better understand
the potential applications of TDZ for induction of in vitro morphogenesis and
organogenesis.
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1.1 Introduction

Thidiazuron (TDZ) is a substituted phenylurea first synthesized in 1967 by the
Schering Corporation in Germany, originally being used as a cotton defoliant and
eventually becoming registered in the USA in 1982 (Arndt et al. 1976; Pavlista and
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Fig. 1.1 Summary of the physiological effect of TDZ on apple plant organs which include the
stem, root, leaf, flower, and fruit

Gall 2011). Compared to other plant growth regulators (PGRs), TDZ is a powerful
and potent synthetic growth regulator exhibiting both auxin- and cytokinin (CK)-
like effects in plants, leading to a wide array of in vitro and in vivo applications
including prevention of leaf yellowing, enhanced photosynthetic activity, breaking
of bud dormancy, fruit ripening, as well as proliferation of adventitious shoots, cal-
lus production, and induction of somatic embryogenesis (Fig. 1.1). Despite this
unique and dual effect, TDZ’s action is often overgeneralized and referred to as a
cytokinin. It is therefore important to note that although TDZ can mimic the effects
of auxins and CKs, structurally it differs from both of these PGR groups, possessing
both phenyl and thiadiazole functional groups, with both groups required for bio-
logical activity (Mok et al. 1987).

Compared with other PGRs, TDZ can be used for regeneration at much lower
concentrations (10-1000 times lower) making it a valuable commercial agrochemi-
cal (Fig. 1.1; Guo et al. 2011). For instance, TDZ’s ability to inhibit leaf yellowing,
delay leaf senescence, maintain chlorophyll (Chl) concentrations, inhibit carotenoid
degradation, inhibit abscisic acid (ABA) biosynthesis, and decrease ethylene sensi-
tivity in cut flowers (Uthairatanakij et al. 2007; Ferrante et al. 2004) has led to its
application in the horticultural industry for the purpose of increasing the longevity
of cut flowers such alstroemeria (Alstroemeria aurea Graham), lilies (Lilium spp.),
tulips (Tulipa spp.), and chrysanthemum (Chrysanthemum spp.) (Ferrante et al.
2002a, b; Sankhla et al. 2003). In addition to the above, TDZ’s ability to increase
fruit size without affecting seed number, through the promotion of cell division in
the cortex layer of fruits (Stern et al. 2003), has led to its application for improving
fruit size in a number of crops including pear (Pyrus communis L.), grape (Vitis
vinifera L.), persimmon (Diospyros virginiana L.), cacumber (Cucumis sativus L.)
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and kiwifruit (Actinidia deliciosa (A. Chev.) C.FE. Liang and A.R. Ferguson)
(Amarante et al. 2003; Stern et al. 2003). In stone fruits and cut flowers, TDZ has
also been used to stimulate bud growth and opening and to accelerate bud breaking
(Erez et al. 2006; Wang et al. 1986).

Despite the diversity of effects attributed to TDZ, its application and mode of
action for induction of in vitro morphogenesis in plants is not well understood. This
notion largely stems from TDZ’s ability to display both CK- and auxin-like activi-
ties individually or simultaneously during in vitro regeneration. To complicate mat-
ters further, TDZ’s ability to induce a defensive response in plant tissues can also
initiate the up- or downregulation of other PGRs (i.e., ABA, ethylene, melatonin,
serotonin) and secondary metabolites (i.e., polyamines) while also modulating the
influx/efflux of specific cations (i.e., calcium) across biological membranes (Murch
et al. 1997; Murch and Saxena 1997; Murthy et al. 1995; Proctor et al. 1996). In
order to better understand potential applications of TDZ for induction of in vitro
morphogenesis and organogenesis, the current review aims to summarize the cur-
rent uses of this multipurpose synthetic PGR in plant tissue culture processes.

1.2  Application of TDZ During Plant Morphogenesis

Although shoot production and plant development reportedly vary in response to
TDZ concentration, plant material, and species (Liu et al. 1998), generally, TDZ is
more biologically active than BAP, kinetin, or zeatin (Capelle et al. 1983). For
example, Lu (1993) observed that TDZ is more effective at lower concentrations
compared to classical CKs during shoot regeneration of woody species. In addition
to the above, TDZ’s ability to exhibit its effects in explants well after the initial
treatment (subsequently transferred to media without TDZ) indicates that some
explants only require limited exposure (Matand and Prakash 2007). Short exposure
time and low concentrations of TDZ have, in fact, been found to be highly effective
in stimulation of shoot regeneration across diverse species (Mihaljevi¢ and Vrsek
2009). TDZ’s unique property of high efficacy at low doses and/or short exposure
times may be explained by TDZ’s ability to resist enzymatic degradation in vivo
(Murthy et al. 1998; Kumar and Reddy 2012) which in turn enables TDZ levels to
remain stable over time (Dey et al. 2012). For example, in bean callus incubated
with radiolabeled TDZ for 33 days, TDZ was found to remain largely intact, with
only a small fraction being glycosylated (Mok and Mok 1985). Tracer studies by
Benezet and Knowles (1982) have also observed limited degradation (oxidation) of
the TDZ molecule within etiolated hypocotyls by 13 species of microorganisms, as
evidenced by limited evolution of 14CO,, which is one of the principle degradation
products of TDZ. This indicates TDZ molecules were not undergoing significant
degradation and likely remained within plant tissues over the duration of the experi-
ment, up to a 28-day incubation period. Furthermore, through the use of 14C-TDZ
and fractionation experiments, Murch and Saxena (2001) noted that TDZ may in
fact exist in several forms, i.e., TDZ-free molecules, sequestered TDZ molecules,
and conjugated forms associated with proteins or cell wall components within plant
tissues.
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1.3 Shoot Bud Induction

In plants, the induction of shoot buds is dependent upon a balance between auxin
and CK levels, whereby an increased presence of auxin and CKs can inhibit or initi-
ate bud formation, respectively (Wang et al. 1986). TDZ appears to promote shoot
bud initiation by stimulating cell division and multiplication in the apical meristem
while also reprogramming cells to the appropriate developmental stage for initiation
of shoot differentiation (Dey et al. 2012; Vu et al. 2006). As in other processes
affected by TDZ, diverse factors may affect the ability of TDZ to induce shoot bud
initiation and growth including: concentration of TDZ, type and source of explant,
age or phase of growth, cultivar, presence of other PGRs, particularly auxin, in the
medium, balance of endogenous growth regulators, and presence of light (Sanikhani
et al. 2006; Visser et al. 1992; Table 1.1).

In general, low concentrations (>2.5 M) of TDZ enhance axillary bud forma-
tion on cultured shoot tip meristems, while moderate concentrations of TDZ
(5-10 pM) can result in somatic embryo formation. At higher concentrations,
morphological abnormalities like hyperhydricity have been reported (Lu 1993;
Mithila et al. 2003). Not surprisingly, TDZ is typically applied at low concentra-
tions to a wide range of explant types in order to induce bud growth (Murashige
1974; Jiang et al. 2008); however, the concentration required varies with explant
type. For instance, direct shoot bud formation occurred only on cotyledonary
nodes when TDZ was applied at rates of 0.9-5.4 pM during in vitro regeneration
of soybean (Glycine max (L.) Merr.) seeds. On the other hand, 10 pM TDZ was
optimal for induction of shoot buds in leaf explants of apple (Malus domes-
tica Borkh.) (Fasolo et al. 1989), while low concentrations of TDZ (0.02-0.56 pM)
induced bud/shoot regeneration in excised roots (Albizia julibrissin Durazz.)
(Sankhla et al. 1996). TDZ (10 pM) has also been found to induce bud formation
and regeneration in thin cell layer (TCL) system from the common bean Phaseolus
vulgaris L., where pretreatment significantly increased bud regeneration. Optimal
bud induction and further development of the formed buds were observed in
2-week cultures of TCLs on 10 pM TDZ later reduced to 1 pM TDZ (Cruz De
Carvalho et al. 2000). The length of time the explants are exposed to TDZ can also
impact the ability of TDZ to induce bud formation. In Curculigo orchioides
Gaertn., pretreatment with 15 pM TDZ for 24 h significantly stimulated adventi-
tious shoot regeneration from leaves, while in Tecomella undulata (Sm.) Seem.,
exposure to a concentration of 0.7 pM for a duration of 1-3 weeks was most effi-
cient for shoot regeneration (Varshney and Anis 2012). Interestingly, duration and
level of exposure of explants to light during TDZ treatment can also influence
shoot organogenesis. For example, de novo shoot bud formation in strawberry
(Fragaria x ananassa Duch) was achieved using leaf disks cultured in the dark
and on MS medium containing 9.08 pM TDZ (Husaini and Abdin 2007). Although
it is not yet fully understood how light affects TDZ action, it is believed that
TDZ’s ability to induce shoot bud production in the dark is triggered by calcium
stress, which in turn affects the production of ethylene (Mundhara and Rashid
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2002). Given the above, future research is greatly needed to explore the interac-
tion between light and TDZ as it will open new avenues for discovery in terms of
its mechanism of action.

1.4 Shoot Growth, Elongation, and Multiplication

TDZ’s CK-like activity has also shown to be useful for the development of shoot
buds and shoot proliferation/multiplication in plants (Table 1.2) (Mok et al. 1982;
Thomas and Katterman 1986; Fiola et al. 1990; Malik and Saxena 1992; Huetteman
and Preece 1993; Murch et al. 1997; Faisal et al. 2014; Singh and Dwivedi 2014;
Parveen and Shahzad 2011; Jones et al. 2015). TDZ’s CK-like activity is believed
to be largely responsible for its ability to release lateral buds from dormancy or
induce bud regeneration in vitro (Mok et al. 2005; Singh and Dwivedi 2014). Still
it is important to note that TDZ likely modulates levels of other PGRs, including
auxin, to achieve shoot bud regeneration by evoking regenerative responses, i.e.,
dedifferentiation and redifferentiation of tissue cells (Malik and Saxena 1992; Guo
et al. 2011; Visser et al. 1992). For example, treatment of geranium hypocotyl
explants with TDZ in combination with auxin increased shoot regeneration
(Hutchinson et al. 1996). With respect to shoot proliferation, a wide spectrum of
factors can influence TDZ’s effects in vitro including: plant PGR perception and
transduction, dedifferentiation and subsequent redifferentiation of cells, genotype,
wounding of explants, donor plant condition (e.g. explant age), and duration of
exposure to TDZ (Lazzeri and Dunwell 1984; Kumar and Reddy 2012; Magyar-
Tabori et al. 2010; Sharifi et al. 2010). Furthermore, TDZ’s ability to influence
shoot proliferation has shown to be concentration and species specific. At low con-
centrations, between 1 and 10 pM TDZ can be used to enhance axillary shoot
proliferation (Husain et al. 2007), while at much higher concentrations, shoot elon-
gation can be either inhibited (Kumar and Reddy 2012) or stimulated to produce
adventitious shoots (Feng et al. 2012; Guo et al. 2012). This trend has been
observed for several spp. including “Gala” apples (M. domestica), where shoot
production was found to decrease with increasing concentrations of TDZ (from 1
to 10 pM) (Liu et al. 1998), while TDZ concentrations greater than 22.7 uM inhib-
ited shoot regeneration (Montecelli et al. 1999).

In addition to concentration, other factors can impact shoot organogenesis
including the presence of other PGRs. For example, in vitro shoot multiplication of
Capsicum annuum L. from cotyledonary node explants excised from seedlings was
optimized on MS medium supplemented with 1.5 pM TDZ and 0.5 pM
IAA. Compared to purine-type CKs, TDZ is superior at inducing shoot proliferation
(Lu 1993) while also working synergistically with other PGRs to induce a response.
The synergistic effect of TDZ with other CKs may be due to differences in uptake,
recognition by the cells, or mechanisms of action of these different compounds
(Huetteman and Preece 1993). For instance, the effect of TDZ on axillary meristem
and shoot production was found to be 5-10 times greater compared to CKs (i.e.,
BA) in species such as soybean (G. max), peanut (Arachis hypogaea L.), and saffron
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(Crocus sativus L.) (Victor et al. 1999; Radhakrishnan et al. 2009; Sharifi et al.
2010). Furthermore, TDZ alone or in combination with other auxins/CKs (e.g., BA)
can induce shoot bud formation and multiplication especially after transfer of shoots
to TDZ-free medium (Singh and Dwivedi 2014). Consequently, the transfer of
explants from enriched TDZ medium to a secondary medium without growth regu-
lators has been successfully applied in plant regeneration systems for a variety of
species (Malik and Saxena 1992; Victor et al. 1999).

1.5 Somatic Embryogenesis

TDZ is a substitute for the auxin/CK requirement that is needed during somatic
embryogenesis, thereby increasing the number of formed somatic embryos (Visser
et al. 1992). Somatic embryogenesis changes somatic cells to embryonic cells in a
physiological sequence that is tightly regulated by a delicate balance of PGRs
(Murthy et al. 1998). Induction and development of somatic embryogenesis are
associated with endogenous PGRs including auxins and CKs; not surprisingly, TDZ
promotes somatic embryogenesis, alone or in combination with other PGRs, for a
wide range of recalcitrant species (Durkovic and Misalova 2008; Nhut et al. 2006)
as well as a variety of commercial crops including tobacco (Nicotiana tabacum L.),
peanut (A. hypogaea), geranium (Pelargonium spp.), African violet (Saintpaulia
spp.; Mithila et al. 2003; Shukla et al. 2013), and chickpea (Cicer arietinum L.)
(Visser et al. 1992; Saxena et al. 1992; Gill and Saxena 1993; Murthy et al. 1995)
(Table 1.3).

Different types of tissues can be selected for induction, for instance, TDZ has
been described to induce somatic embryos on hypocotyl, epicotyl, cotyledonary
node, cotyledon, and leaves of intact seedlings of Azadirachta indica A. Juss. (Gairi
and Rashid 2004; Saxena et al. 1992; lantcheva et al. 1999). In peanut, induction of
direct somatic embryogenesis occurs by culturing mature intact seeds on a medium
supplemented with 0.5-10 pM TDZ or N-(2-chloro-4-pyridyl)-N’-phenylurea
(CPPU). Explants with no cotyledons, and thus no embryogenic potential, did not
respond to increasing levels of TDZ. In contrast, retention of one or both cotyledons
resulted in increased response to TDZ (Saxena et al. 1992; Murthy and Saxena
1994; Murthy et al. 1995). Exposure time can impact the effectiveness of TDZ. For
example, application of TDZ on plant tissues alone or in combination with other
PGRs for short periods of time at low concentration (10 uM) has been found to
induce embryogenic responses (Hutchinson et al. 1997; Malik and Saxena 1992;
Murthy et al. 1998), while exposure to TDZ for longer than 3—4 weeks (10 pM) led
to a reduced induction of roots (Malik et al. 1993). This is interesting, as it reflects
patterns also observed in induction of somatic embryogenesis by the synthetic auxin
and pesticide, 2,4-dichlorophenoxyacetic acid (2,4-D). Similar to TDZ, short expo-
sure to 2,4-D followed by explant transfer to growth regulator-free medium allows
for first an accumulation of 2,4-D in tissues followed by a gradual decrease over
time with somatic embryos developing with these falling concentrations (Zee 1981;
Fujimura and Komamine 1980; Feher et al. 2002). The similarity between this
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well-documented process and the pattern observed in TDZ treatment supports a
strong auxin-like role for TDZ in this mechanism. Further, it is likely that the inher-
ent stability of TDZ in living tissues is a strong contributing factor in establishing
this function.

1.6 Intact Seedling Development

TDZ enhances seed germination via improvement of shoot regeneration, with posi-
tive effects being reported in soybean (G. max), pea (Pisum sativum L.), common
bean (P. vulgaris), chickpea (C. arietinum), and lentil (Lens culinaris Medik)
(Radhakrishnan et al. 2009; Malik and Saxena 1992) (Table 1.4). In contrast, the
intact seedling regeneration system is a unique morphogenetic system which
involves the direct development of multiple shoots on the germinating seedling.
For the first time, Malik (1993) reported a direct seed culture method for de novo
differentiation of shoots from intact seedling without explanting. The number of
shoots regenerated from intact seedling of Lathyrus sativus L., L. cicera L., and L.
ochrus L. DC. was significantly higher than that observed with explants. These
results indicated that excision of explant is not always necessary for induction of
morphogenesis and also that the morphological integrity of intact seedlings plays
a critical role in the induction of organogenesis/somatic embryogenesis (Malik
1993). TDZ induction of shoot production in the intact seedling system effectively
depends on the applied concentration. For example, intact seedlings of silk tree (A.
Jjulibrissin) grown on MS medium containing 0.1-10 pM TDZ produced shoots
indirectly through callus. Interestingly, at higher TDZ concentrations (2.5-10 pM),
shoots were produced, but did not form callus (Mok et al. 1987). Sankhla et al.
(1994) also reported high efficiency of TDZ in inducing shoot formation from
roots of intact seedling of A. julibrissin at 0.1-1.0 pM TDZ. Regeneration of mul-
tiple shoots from intact seedlings of switch grass (Panicum virgatum L.) was
induced on MS medium supplemented with 4.5 pM2, 4-dichlorophenoxyacetic
acid (2,4-D), and 18.2 pM TDZ (Gupta and Conger 1998). An in vitro propagation
system for Artemisia judaica L., a medicinal plant, induced shoot organogenesis
by culturing intact seedlings on medium supplemented with 1 pM TDZ for 20 days
(Liu et al. 2003). In a study with seeds of Firmiana simplex (L.) W. Wight, induc-
tion of shoot proliferation was assessed on MS medium supplemented with 5.0 pM
TDZ + 1.5 M GA; + 0.1% ascorbic acid compared to various levels (1.0-15 M) of
several different cytokinins (BA, 2-iP, zeatin, and kinetin). Shoots formed within
8 weeks of culture and the shoot-forming capacity of seeds were found to be influ-
enced by the type and concentration of CKs, with TDZ showing up to 13% greater
regeneration rates than other cytokinins tested (Hussain et al. 2008). Induction of
shoot organogenesis for felty germander (Teucrium polium L.), an endangered
medicinal plant, was obtained using intact seedlings cultivated in MS medium
supplemented with 22.72 pM TDZ (Rad et al. 2014). Regeneration ability of kohl-
rabi (Brassica oleracea var. gongylodes) cultivars Vienna Purple (VP) and Vienna
White (VW) has also been tested. Intact seedlings were cultivated on MS media
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supplemented with BA, TDZ, and trans- or cis-zeatin. All tested CKs induced
shoot regeneration with 47.5-60% shoot regeneration frequency from hypocotyl
explants and intact seedlings (Cosi¢ et al. 2015).

1.7  Mechanisms of TDZ Activity
1.7.1 Cytokinin-Related Effects of TDZ

TDZ was first reported to have CK activity in 1982 by Mok et al. and later con-
firmed by Visser et al. (1992). TDZ exhibits a considerably higher degree of biologi-
cal activity when compared with traditional CKs for inducing regeneration in plant
species (Mok et al. 1987; Van Nieuwkerk et al. 1985; Escalettes and Dosba 1993),
stimulating organogenesis and somatic embryogenesis, and retarding senescence or
leaf yellowing in plants (Mehrotra et al. 2015). For example, callus tissue of
Phaseolus lunatus L. which cannot grow without CKs is able to grow after exposure
to TDZ (Murthy et al. 1998). Similarly, lower concentrations of TDZ are needed to
initiate shoot differentiation and regeneration responses compared to levels required
for CKs (Baker and Bhatia 1993). TDZ’s CK-like activity is believed to stem from
its ability to modulate pathways responsible for CK biosynthesis in plants (Mok
et al. 1987) by acting on endogenous adenine-based CK metabolism (Capelle et al.
1983). To date it is unclear whether TDZ causes CK responses by interacting
directly with CK receptors or indirectly either by stimulating the conversion of CK
nucleotides to active ribonucleosides or by inducing the accumulation of endoge-
nous adenine-based CKs.

It has been proposed that TDZ promotes the conversion of CK ribonucleotides
(inactive CKs) to active forms of CKs (i.e., ribonucleosides and free bases) by
encouraging the synthesis of endogenous purine CKs while also inhibiting their
degradation (Capelle et al. 1983; Lu 1993; Murthy et al. 1995; Mok and Mok 1985).
On the other hand, TDZ has demonstrated binding affinity for CK receptors such as
CREI1 as well as CRE1/AHK4, AHK2, and AHK3 (de Melo Ferreira et al. 2000;
Susan 1996; Rolli et al. 2012). It is interesting to note that both purine- and urea-
type CKs have demonstrated binding affinities for cytokinin-specific binding pro-
teins (CSBPs). A stronger association has, however, been demonstrated for
compounds containing phenylurea derivatives (Murthy et al. 1998); this could help
to explain TDZ’s ability to modulate plant morphogenesis at lower concentrations.
In addition to the above, TDZ can also increase endogenous levels of CKs by reduc-
ing catabolism, increasing synthesis, and changing non-active CK molecules to
active forms (Kefford et al. 1968; Murthy et al. 1995), possibly through inactivation
of CK oxidase/dehydrogenase (CKX) (an enzyme responsible for CK inactivation
through cleavage of the unsaturated N6 side chain of most isoprenoid CKs) (Nikoli¢
et al. 2006). TDZ can also modify CK biosynthesis pathways by decreasing endog-
enous pools of the CK 2iP and by increasing the concentration of purine-based CKs
(Zhang et al. 2005).
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In general, reduced rooting capacity and inhibition of shoot elongation are attrib-
utable to the high CK activity of TDZ. Medium concentrations (approx. 10-20 pM)
of TDZ may result in both axillary and adventitious shoot organogenesis, and high
concentrations tend to stimulate callus formation. Concentrations of TDZ much
smaller than most CKs often stimulate higher shoot proliferation. Combinations of
TDZ with other CKs result in better shoot proliferation due to differences in uptake,
recognition by the cells and receptors, or mechanisms of action of different com-
pounds (Huetteman and Preece 1993). TDZ facilitates efficient multiplication of
apical meristem cells and their reprogramming to appropriate developmental stages
for shoot differentiation (Dey et al. 2012).

1.7.2 Auxin-Related Activity of TDZ

The auxin-like activity of TDZ was first assessed by Suttle (1984). Following this
work, TDZ’s ability to modulate auxin levels in plants was reported by Yip and Yang
(1986) who found that TDZ stimulated auxin concentrations in mung bean (Vigna
radiata (L.) R.Wilczek) hypocotyl tissue. Similarly, results by Visser et al. (1992)
suggested that auxin(s) were involved during the induction and/or expression of
TDZ-induced morphogenic differentiation.

To date TDZ’s auxin-like activity is believed to act through the modulation of
metabolism and transport for endogenous hormones including auxins, cytokinins,
ethylene, abscisic acid, and gibberellins (Feng et al. 2012; Murch and Saxena 2001).
While a significant amount of work has been performed to understand TDZ’s
cytokinin-like effects in plants, far less is understood in terms of its relationship to
auxin. Currently, two concepts have been proposed: (1) TDZ directly promotes
growth due to its own biological activity, and (2) TDZ may modulate the synthesis
and accumulation of endogenous auxins or auxin-like bioregulators in synergism
with CKs (Capelle et al. 1983; Mok and Mok 1985).

Auxins including natural (IAA) and synthetic auxins (e.g., naphthaleneacetic
acid (NAA) and 2,4-D) are responsible for cell proliferation and development of
callus (a mass of dedifferentiated cells), which are the first part of the morphoge-
netic process. They are also strongly associated with regeneration and somatic
embryogenesis (Murthy et al. 1998). TDZ via auxin-like activity has been shown to
induce callus formation on the graft and bud cutting of grape and leaf disks of cotton
(Lin et al. 1988; Kartomysheva et al. 1983), increasing proliferation and growth rate
of callus 30 times more than the common auxins. Tracer studies by Murch and
Saxena (2001) noted that the translocation of auxin is essential for TDZ-induced
morphogenesis through the observation that radiolabeled IAA accumulated in the
hypocotyl of geraniums and was translocated over a great distance within the tis-
sues. TDZ may also mimic an auxin response by modifying endogenous auxin
metabolism, for example, TDZ had a stimulating effect on auxin synthesis when
peanut seedlings were treated with TDZ, causing an increase in cytosolic auxin fol-
lowed by induction of somatic embryogenesis (Murthy et al. 1995).
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The relationship between TDZ and auxin metabolism has also been confirmed
through inhibitor studies. Suppression of TDZ-induced regeneration by inhibitors
of auxin action and transport has been employed in several studies to better under-
stand the relationship between auxin and TDZ across several different regeneration
studies (Hutchinson et al. 1996; Murch and Saxena 2001; Murch et al. 2002). For
example, application of 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB, an
auxin biosynthesis inhibitor) in peanut and geranium demonstrated an increasing
effect of TDZ during somatic embryogenesis (Murthy et al. 1998). Although use of
2,3,5-triiodobenzoic acid (TIBA, an inhibitor of polar auxin transport) in samples
treated with TDZ did not change auxin levels, a decrease in the rate of somatic
embryogenesis was observed (Hutchinson et al. 1996). Reduced rate of embryogen-
esis in TDZ-exposed tissues treated with TIBA and PCIB suggests TDZ may modu-
late auxin metabolism during developmental processes such as embryogenesis
(Hutchinson et al. 1996). Furthermore, in TDZ-exposed leaf tissue of Echinacea
purpurea L., inclusion of TIBA and PCIB decreased TDZ-induced morphogenesis
(shoot organogenesis and somatic embryogenesis) but increased concentrations of
auxin and endogenous indoleamines (i.e., melatonin and serotonin) (Jones et al.
2007). The above examples indicate that TDZ-induced regeneration is correlated
with a metabolic cascade, i.e., accumulation and transport of endogenous signals
auxin and melatonin, and the activation of a stress response.

Endogenous and exogenous auxin levels are closely associated with somatic
embryogenesis in plants, and TDZ plays a crucial role in modulating the interaction
among different hormones. It is important to note that TDZ’s ability to induce
somatic embryogenesis is not solely dependent upon its auxin-like properties, as
CKs have also been implicated. For example, embryogenesis was repressed in TDZ-
treated geranium tissues by applying diaminopurine (DAP, an inhibitor of a purine-
based CK) (Hutchinson and Saxena 1996). Unlike purine-based CKs, TDZ alone
can induce somatic embryogenesis (Murthy et al. 1998), which in turn highlights
the ability of TDZ to act as both an auxin and cytokinin. In addition to somatic
embryogenesis, TDZ’s auxin-like activity has also been shown to be beneficial dur-
ing callus formation by increasing proliferation and growth rate of callus (Lin et al.
1988). Synthetic auxins such as NAA and 2,4-D are responsible for stimulation,
multiplication, and differentiation of cells into somatic embryos and callus develop-
ment (Murthy et al. 1998). The regulatory role of TDZ appears to be partially medi-
ated through inactivation of genes responsible for auxin and CK biosynthesis, which
in turn causes changes in developmental patterns in plants (Malik 1993).

In general, TDZ inhibits root meristem activity effectively by acting as an auxin
antagonist (Rolli et al. 2012). Auxin-like activity of TDZ is also strongly associated
with regeneration, somatic embryogenesis, organogenesis, and development of
adventitious shoots in many plant species (Huetteman and Preece 1993; Lu 1993;
Feng et al. 2012; Guo et al. 2012). A low concentration of TDZ induces organogen-
esis of axillary buds on cultured shoot tip meristem by reducing apical dominance
(Lu 1993). However, it is important to note that auxin-like properties of TDZ are
dependent on a multitude of factors including the basal medium used, type of culti-
var, source of the explant, developmental stage of explant, and age of the donor
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plant (Radhakrishnan et al. 2009). TDZ seems to act via reprogramming the fate of
cells, developmental pathway, and interaction between endogenous hormones
(Malik 1993).

1.7.3 Calcium Signaling

TDZ is believed to modulate plant morphogenesis through its ability to influence
inter- and intracellular calcium (Ca*) concentrations and signaling cascades
(Trewaves 1999). Plant cells and tissues react to different hormones due to changes
in concentration of external Ca** (Guo et al. 2011), and the balance of cytosolic Ca**
may relate to the TDZ induction. Ca** is an important secondary messenger and
signaling molecule in plants, facilitating different morphological responses in plant
cells and tissues through modulation of PGR levels (Guo et al. 2011; Allen and
Schroeder 2001). In response to TDZ, Ca** channels will open, leading to changes
in plant cytosolic Ca** levels; intermittent signals are then sent across the cell initiat-
ing a cascade of metabolic events (White and Broadley 2003). Several studies have
confirmed the above noted theory. Hosseini-Nasr and Rashid (2002) reported that
addition of Ca?* uptake inhibitors (lanthanum, calmodulin, trifluoperazine (TFP),
chlorpromazine (CPZ)) to culture medium supplemented with TDZ led to decreased
levels of shoot production, while Jones et al. (2007) applied a Ca** channel activa-
tor, (S)-Bay K8644, in TDZ-treated explants of E. purpurea and noted changes in
cell polarity, increased auxin concentration, callus induction, and regeneration.
Murch et al. (2003) found that treatment with the calcium channel antagonist
(S)-Bay K8644 increased influx of Ca*, leading to a change in the pattern of somatic
embryogenesis. Increases in cytosolic Ca?* for a long period, however, can also lead
to apoptosis and cell death (White and Broadley 2003).

1.7.4 Relationship to Other PGRs and Stress Signaling
Molecules

Plants interpret TDZ as stress, and it has been suggested that TDZ’s ability to initi-
ate stress in plants helps to induce morphogenesis through modulation of PGRs as
well as other metabolites and ions. For instance, proline is considered a marker of
stress as it enables plants to produce more NADP*/NADPH. Proline levels have
been found to increase in tissues which have been treated with TDZ and which show
a capacity to switch from shoot formation to somatic embryogenesis (Hare and
Cress 1997). In addition to proline, accumulation of mineral ions in TDZ-treated
tissues may also act as a trigger factor for induction of somatic embryogenesis and
regeneration in carrot (Daucus carota subsp. sativus (Hoffm.) Arcang) (Guo et al.
2011). Stress-related metabolites 4-aminobutyrate, ABA, proline, and mineral ions
increased in the TDZ-treated root tissues of geranium (Pelargonium domesticum
L.H. Bailey) (Murch et al. 1997, Murch and Saxena 1997).
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TDZ treatment has also been found to significantly improve accumulation of
endogenous hormones (IAA, zeatin, GA3, and ABA) during shoot organogenesis.
For instance, in leaf explants of E. purpurea, the levels for auxin, melatonin, and
serotonin were found to increase after exposure to TDZ during regeneration.
Furthermore, TDZ exposure stimulates ethylene production concurrent to accumu-
lations of ABA, auxin, proline, and Ca** (Jones et al. 2007). Inhibition of rooting
and hypocotyl elongation, swelling at the base of hypocotyl, and tightening of coty-
ledons toward the apex induced by TDZ are characteristics of an ethylene action
(Mundhara and Rashid 2006); not surprisingly, TDZ is more effective than CK for
inducing “stress ethylene” production in plants (Yip and Yang 1986). Some negative
effects of TDZ on growth parameters like rooting can be related to the stimulatory
effect of TDZ on endogenous ethylene production (Pourebad et al. 2015). An
increase in ethylene production following TDZ treatment results in an inhibition of
auxin transport in many dicots (Radhakrishnan et al. 2009), which in turn further
highlights the complex relationship between TDZ’s auxin-like activity in terms of
downstream effects with other PGRs.

1.7.5 Morphological Abnormalities Resulting from TDZ Use

Genetic evaluation of TDZ-induced explants using flow cytometry, inter-simple
sequence repeat (ISSR), molecular markers, and directed amplification of
minisatellite-region DNA (DAMD) has shown uniformity and stability in genome
size and consistent ploidy level (Faisal et al. 2014). Still unfavorable side effects
involving TDZ have been reported including hyperhydricity, dwarfing, uncontrolled
callusing, abnormal shoot growth, and difficulty in rooting of shoots. The above
side effects are manageable by transferring samples to TDZ-free medium and alter-
ing concentration and exposure time (Huetteman and Preece 1993; Mok et al. 2005;
Singh and Dwivedi 2014; Magyar-Tabori et al. 2010). In addition to the concentra-
tion, undesired side effects associated with the use of TDZ will increase over time
as a result of overexposure to TDZ (Manjula et al. 2014; Zhihui et al. 2009; Franklin
et al. 2004).

Observed abnormalities demonstrated by cultured tissues exposed to TDZ are
likely to be specific to plant organ and species; still certain trends have been observed
including: enlarged dark-green cotyledons and leaves (Lu 1993; Murch et al. 1999),
short, compact shoots and shoot buds, inhibited shoot elongation, deformation and
hyperhydricity of seedlings (Franklin et al. 2004; Hosokawa et al. 1996; Varshney
and Anis 2012; Zaytseva et al. 2016; Zhihui et al. 2009; Hare and Van Staden 1994;
Dobranszki and da Silva 2010; Lu 1993), inhibited rooting, stunted and thickened
root systems (Lu 1993; Murch et al. 1999; Proctor et al. 1996; Dobranszki and da
Silva 2010), and necrosis and browning of tissue in seedlings (Zhihui et al. 2009).
Morphological effects caused through exposure to TDZ can also be species specific,
for instance, morphological abnormalities have been observed in C. annuum and
Malus spp. along with positive effects including increased bud production. TDZ
promotes abnormal regenerated shoots from roots of Bixa orellana L. (da Cruz et al.
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2014). Seedlings developed in the presence of TDZ exhibited reduced root, epi-
cotyl, and hypocotyl elongation. Sankhla et al. (1994) found that A. julibrissin roots
developed under the influence of TDZ were very thick and short and the develop-
ment of secondary roots was inhibited. On the other hand, no abnormalities (i.e.,
including fasciated shoots, hyperhydricity, and inhibited shoot elongation) were
reported for other species including white pine and Dendrocalamus strictus (Roxb.)
Nees (Mihaljevic and Vrsek 2009; Huetteman and Preece 1993; Tang and Newton
2005; Singh and Dwivedi 2014).

Abnormalities caused by TDZ can be overcome. For instance, vitrification can
be reduced by using unsealed petri dishes during shoot bud initiation, vented caps
for jars during shoot elongation, and a higher concentration of gelling agent. Also,
transferring regenerated shoots induced by TDZ to a second medium containing
different CKs BA, 2iP, or IBA but lacking TDZ, can lead to regenerated shoots with
normal growth and development (Lu 1993; Husain et al. 2007). Another solution to
reduce the frequency of shoot fasciation is subculturing induced shoots to medium
without TDZ which results in elongated shoots and normal leaves (Huetteman and
Preece 1993; Varshney and Anis 2012). Furthermore, the type and combination of
other CKs with TDZ significantly influence the occurrence of morphologically
abnormal plants (Manjula et al. 2014). Generally, most morphological abnormali-
ties associated with applying TDZ can be overcome by reducing TDZ concentra-
tions and exposure time (Lu 1993). Additionally, TDZ-induced abnormal variations
may be overcome by testing various concentrations and times of TDZ application in
balance with other phytohormones. Application of TDZ in root-based regeneration
systems may also be useful as roots are considered to be genetically more stable in
regeneration responses. Regardless of these shortcomings of TDZ in inducing
regeneration, it still remains a very useful tool to achieve the designed goals in a
range of short-term and long-term micropropagation projects.

1.8 Conclusion

Although TDZ was discovered half a century ago, many questions still remain with
respect to its mode of action and function during morphogenesis and organogenesis,
which in turn provides interesting opportunities for researchers to explore. For
instance, it is still largely unclear as to how plants metabolize TDZ upon exposure
and how the mode of action of TDZ may contribute toward its ability to induce
morphogenesis in plants even after being removed from growth media. Similarly,
the observation that a relationship between TDZ and photoperiod exists suggests
that additional mechanisms of action may exist for TDZ, potentially via downstream
interactions with phytochrome. While a wealth of attention has been given to TDZ’s
auxin- and CK-like properties, there is growing information in the literature to sug-
gest that its mode of action is far more complicated than once initially thought, with
PGRs and regulatory signals likely playing a greater role than once imagined. The
diversity of mechanisms with which TDZ is thought to act is reflected across the
wide spectrum of morphological responses that has been observed for TDZ in
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plants. For example, specific responses including bud development, shoot prolifera-
tion, somatic embryogenesis, and seedling development are known to vary signifi-
cantly across species, explant, concentration, exposure time, and photoperiod, as
well as in the presence or absence of other PGRs. As greater efforts are put forth to
understand TDZ’s multifaceted role in vivo, new ways for utilizing this intriguing
PGR will undoubtedly be realized as researchers will be better equipped to predict
plant growth and developmental responses when inducing morphogenesis in vitro.
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