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Part I
The Expert Overviews



Chapter 1
Editors’ Introduction

Xuejie Bai, Knox Lovell and Ruizhi Pang

1 Background

1.1 Background for the Volume

The transitional growth experience China is undergoing, with its emphasis on
reducing the energy intensity of the economy while maintaining satisfactory rates of
economic growth, is one of the most important research topics concerned with the
performance of China’s economy. The Nankai research group on efficiency and
productivity, located in the College of Economic and Social Development at
Nankai University, is one of the first research teams engaged in the study of the
efficiency and green productivity growth of China’s economy. Since 2006 the
Nankai research group, which includes scholars in industrial economics, regional
economics and green logistics, has achieved fruitful research outcomes.
A measurement framework for China’s green growth experience has been pro-
posed, including an appropriate GDP growth rate and measures of energy saving,
low pollution and low carbon emissions. Such green growth can be achieved
through economic reform and innovation oriented to improve China’s efficiency
and productivity, inclusive of its economic resources and its energy use and
composition, and its conventional GDP and its emissions and other environmental
impacts. In addition to these efforts, the Nankai research group has formed strong
partnerships with scholars overseas who are interested in the transitional growth
performance of China’s economy.

X. Bai � R. Pang (&)
Nankai University, Tianjin, China
e-mail: prz0525@nankai.edu.cn
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The Nankai research group has actively participated in a range of international
conferences related to economic development. It hosted the Conference on
Industrial Development and Industrial Efficiency across the Taiwan Strait in 2008,
2010, and 2013. In addition, several members of the Nankai research group par-
ticipated and delivered presentations at the Asia-Pacific Productivity Conference
(APPC) in 2006, 2008, 2010 and 2014, and the European Workshop on Efficiency
and Productivity Analysis (EWEPA) in 2007 and 2009. A wide range of topics
related to the measurement and estimation of efficiency and productivity, and their
roles as important drivers of economic and industrial development, were the focus
of academic discussions.

In July of 2015, Professor Knox Lovell (University of Queensland, Australia),
Professor Robin Sickles (Rice University, USA), Professor Cliff Huang (Vanderbilt
University, USA) and Professor Tsutan Fu (Soochow University, Taiwan), were
invited by Nankai University to host a workshop for advanced research methodology
in the fields of efficiency and productivity, further internationalizing the fields of the
study at the Nankai research group. In July of 2016, with the support of Professor
Knox Lovell, Professor Cliff Huang and Professor Tsutan Fu, the Nankai research
group successfully hosted APPC2016, the first Asian-Pacific Productivity
Conference hosted in China. APPC2016 was attended by over 120 scholars and
experts from more than 20 countries around the world, including Australia, USA,
Canada, England, Germany, Italy, Japan, South Korea, Malaysia, Thailand, Hong
Kong and Taiwan. Since it was the first APPC to take place in China, it attractedmany
participants from Chinese universities, and the main topics were selected to focus on
the efficiency, productivity and green composition of China’s economic growth.

We believe the focus of efficiency and productivity, including the green com-
ponent of both, of China’s economic growth experience is not only important to the
economic development of China as it transitions from one growth model to another,
but also in light of China’s sheer economic size, to the long-term health of world
economic development. Considering that APPC2016 was the first such event held
in China, as the host, we feel obligated to continue the study of China’s economic
development. This is the background of this collection of research. In addition, the
Centre for Efficiency and Productivity (CEP) in Nankai University has been newly
established, and we consider this monograph to be a good gift for CEP with the
website http://cep.nankai.edu.cn.

1.2 Background on China’s Economic Growth Model
and Its Transition

Between 1978, the year when China started its economic reform and 2008, China
experienced nearly 30 years of uninterrupted high-speed economic growth, which
was regarded by many as “the Chinese miracle.” However, accompanying the fast
economic growth was a huge consumption of energy, depletion of natural resour-
ces, and continuous deterioration of the ecosystem. For approximately the first
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decade of the 21st century China’s domestic economic policy continued to
emphasise energy-intensive rapid growth based on capital investment and expan-
sion of heavy industry and exports. During this decade China’s GDP grew by
roughly 10% per year, primary energy consumption increased proportionately, and
carbon dioxide emissions grew by about 8% per year (see Figs. 1.1, 1.2 and 1.3 for
the post-1978 history). At about 2007 China became the world’s largest contributor
to global greenhouse gas emissions. (Sources: Chinese Statistics Yearbook, 1980–
2016, Chinese Energy Statistics Yearbook, 2009–2015, and Chinese Environment
Statistics Yearbook, 2009–2015).

Beginning in 2008 the world economy declined sharply as a result of the global
financial crises initiated by the subprime mortgage crisis in the US, before recov-
ering only recently. With this background, China’s development model of reliance
on heavy industry, exports and capital investment met with serious challenges. The
subsequent decline in exports and downward trend in capital investment both
contributed to a significant slowdown in China’s economic growth. Both of the
changes that have taken place globally and domestically constitute an opportunity
for China to transform its growth model from a rapid growth energy- and
resources-intensive economy driven by investment and exports to a slower growth
energy- and resources-saving economy driven largely by domestic consumption.
The transition can be enhanced by raising the efficiency and productivity of
resources, energy and management.

Beginning with the 12th Five Year Plan (2011–2015), China’s domestic eco-
nomic policy transitioned to a “New Normal” approach to economic development
involving slower growth with an emphasis on domestic services and consumption
and reduced energy intensity. Economic growth has slowed to 7–8% per year, and
the growth in primary energy consumption and greenhouse gas emissions has
slowed dramatically. The energy intensity and carbon intensity of GDP have both

Fig. 1.1 Energy consumption and GDP
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declined. The trends can be seen from international comparisons with other
countries depicted in Figs. 1.4, 1.5 and Table 1.1. (Sources: The World Bank,
https://data.worldbank.org/indicator) In 1995 China’s energy intensity was 14.
23 MJ/$GDP (2011 PPP), nearly 2.7 times that of Japan and 1.7 times that of the
U.S. By 2014 China’s energy intensity had declined to 8.68, just 1.8 times that of
Japan and 1.3 times that of the U.S. China’s relative energy efficiency increased
substantially, although its absolute efficiency is still not high. As for its CO2

emissions intensity, China also experienced a big decline from 1.07 kg/$GDP

Fig. 1.2 CO2 emissions and GDP

Fig. 1.3 Industrial waste gas and GDP
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(2011 PPP) in 1995 to 0.59 kg/$GDP (2011 PPP) in 2014, decreasing nearly 50%
of that in 1995. Hu (2016) surveys the environmental objectives and impacts of the
five most recent five year plans, concluding with the 12th Five Year Plan.

An important driver of these domestic changes has been an increased role for
market mechanisms in the allocation of resources. Market-based environmental
policies such as environmental subsidies and taxes and emissions trading schemes
have been implemented in an effort to meet environmental targets as efficiently and
cost-effectively as possible, as emphasised by Wang et al. (2015, 2017), Zhang
(2015) and Gu et al. (2016), among others. Part of the impetus for the enactment of
market-based policies is a growing awareness by Chinese citizens of the adverse
impacts of air, water and land pollution on human health and prosperity (Yang and
Feng 2017) and an acknowledgement that road transport is a major source of air
pollution (Kishimoto et al. 2017).

The recent history is chronicled in great detail, with policy recommendations, in
a pair of reports issued by the China Council for International Cooperation on
Environment and Development (CCICED), “Evaluation and Prospects for a Green
Transition Process in China” and “Progress in Environment and Development
Policies in China and Impact of CCICED’s Policy Recommendations”, available at
the link provided at the end of this chapter.

From the first year of 13th Five Year Plan (2016–2020), China has enacted very
restrictive environmental protection policies, and thousands of industrial plants and
coal-fired boilers that failed to meet the new emissions targets are obliged to close
down. The serious problem of air pollution in the Beijing-Tianjin-Hebei area has
been addressed, in part by implementation of the aforementioned emissions trading
scheme. Air pollution originating in road transport is to be reduced by removing
millions of high-emission vehicles and by greatly expanding the electric vehicle
market. By the end of the plan, the energy intensity of GDP is to be reduced by 15%
from 2015 levels, and the carbon intensity of GDP is to be reduced by 18%,
principally through a shift in the energy mix away from fossil fuels and toward
renewables. Consequently, and also due to slower planned economic growth,

Fig. 1.4 International
comparison of energy
intensity
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greenhouse gas emissions are to be reduced by 18% from 2015 levels. This pro-
vides a strong indication of the intention of China’s central government to adjust its
economic growth model. Seligsohn and Hsu (2016) survey the intended impacts of
the 13th Five Year Plan on the environment.

In conjunction with its greener domestic economic policy, China has modified
its international approach to climate change and global warming. At the Paris
Conference of the Parties in 2015 China committed to peaking its total greenhouse
gas emissions by around 2030, reducing the carbon intensity of GDP by about
two-thirds from its 2005 level, reducing the share of fossil fuels in primary energy
consumption, and increasing its forest coverage (Center for Climate and Energy
Solutions 2015). China has also begun playing a constructive role in international
climate negotiations. China was an early signatory to the Paris Agreement in April
2016, it ratified the Agreement in September 2016 and the Agreement entered into
force in November 2016. China’s involvement on the international front is sum-
marised by Gao (2016) and updated frequently on the China Climate Change
Info-Net (http://en.ccchina.gov.cn/index.aspx).

Fig. 1.5 International comparison of carbon intensity

Table 1.1 International comparison of energy intensity and carbon intensity

Year Energy intensity unit: MJ/GDP ($2011
PPP)

Carbon intensity
unit: kg/GDP ($2011 PPP)

China Japan Germany The
U.S.

China Japan Germany The
U.S.

1995 14.23 5.28 5.10 8.23 1.07 0.29 0.31 0.49

2000 10.23 5.31 4.64 7.34 0.73 0.28 0.27 0.44

2005 10.28 5.02 4.51 6.60 0.79 0.27 0.26 0.39

2010 8.68 4.74 4.12 6.07 0.69 0.26 0.23 0.35

2014 7.43 4.09 3.63 5.63 0.59 0.26 0.20 0.32
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With this background, we expect this volume to contribute to a continuing
chronicling of the development of China’s economy during the green transition
period, and also to spur additional policy-relevant research into economic growth
patterns that are both economically productive and environmentally friendly.

2 Part I: The Expert Overviews

The three chapters in Part I provide authoritative, and frequently opinionated,
surveys of and original contributions to three important research areas directly
related to a simultaneous analysis of economic and environmental performance. In
Chap. 2 Zhou analyses the construction of meaningful composite indicators and the
properties they should satisfy, with an emphasis on indicators of environmental
sustainability. In Chap. 3 Førsund provides a wide-ranging treatment of the con-
struction of meaningful analytical models of joint production that generate envi-
ronmental externalities and that satisfy the materials balance condition. In Chap. 4
Zhou shows how to analyse environmental performance, not of widely studied
production activities but of rarely studied but equally important consumption
activities.

2.1 Chapter 2

Against a backdrop of the causes and consequences of global warming and climate
change, Zhou and Zhang summarise recent state-of-the-art methodological devel-
opments underlying the construction of meaningful composite indicators. The
authors pay special attention to the development of indicators created for the
assessment of sustainable development and their subsequent use in policy analysis
and decision making. Underlying the concept of sustainable development are cli-
mate change, environmental pollution and natural resource depletion.

Many such composite indicators exist, three of the most popular being the
Ecological Footprint, the Environmental Sustainability Index and the
Environmental Performance Index. The objective of each is to aggregate numerous
diverse individual component indicators having different units of measurement and
different ranges or scales into a single coherent aggregate composite indicator.
Aggregation requires assigning weights to each component indicator that reflect
their relative importance. The authors develop and evaluate alternative aggregation
procedures, which they categorize as exogenous methods (in which weights are
determined prior to the construction of the composite indicator, either arbitrarily or
by expert judgement), endogenous methods (in which weights are determined
simultaneously with the construction of the composite indicator by the behaviour of
the individual component indicators themselves) and hybrid methods. After eval-
uating the strengths and weaknesses of alternative methods, the authors provide a
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menu of challenges for future work on composite sustainability indicators, and an
extensive, up-to-date list of references spanning a number of disciplines.

2.2 Chapter 3

Førsund also uses global warming and climate change to motivate an investigation
into the modelling of production activities that combine primary inputs with
materials inputs to produce intended outputs and also generate unintended
by-products, or residuals. A prominent example involves the use of fossil fuels to
generate electricity and also carbon dioxide emissions that contribute to global
warming.

A meaningful joint production model must incorporate four sets of variables:
service inputs, such as capital and labour; materials inputs, such as coal and gas;
intended outputs, such as electricity and steel; and unintended by-products, such as
ground- and surface-water pollution and greenhouse gas emissions. The model
must include two sets of equations: one for the production of the intended outputs
and the other for the generation of the unintended by-products. The two sets of
equations are not independent, but linked, since changes in inputs must generate
changes in both intended outputs and unintended by-products. The model must
satisfy a number of properties, the most important being the materials balance
condition, which states that mass contained in the materials inputs cannot disappear
during the production process, but must appear either in the intended outputs or the
unintended by-products. Until recently this condition was ignored in much of the
economics and operations research literature devoted to the measurement of envi-
ronmental efficiency and productivity.

Førsund considers the measurement of efficiency, overall and environmental,
within the complete model, by converting equations to weak inequalities, and he
also considers alternative approaches to regulation of the unintended by-products.
Throughout he incorporates a rich history of thought on the topics he considers, and
his list of references ranges from Jevons, Pigou and Frisch up to the present day.

2.3 Chapter 4

Whereas Førsund examines the generation of unintended by-products of production
activities, Zhou examines an equally widespread phenomenon that for some reason,
the data constraint perhaps, has rarely been studied: the generation of unintended
by-products of consumption activities. The problem of consumer-driven external-
ities was examined most prominently by Pigou and Coase, but the problem has
been largely ignored in the environmental performance literature. A prominent
example, which Zhou studies empirically, is driving a car, a consumption activity
that combines resources and energy to provide transportation services and residual
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air pollution. This activity, which might be called joint consumption in parallel with
the joint production activity studied by Førsund, is of increasing concern in China
and elsewhere.

The concept of productivity change, the ratio of an index of output quantities to
an index of input quantities, is widely studied, at the aggregate economy level, at
the industry level, and at the level of individual firms or plants. The concept has
been generalised to incorporate unintended by-products, which has led to a variety
of environmental productivity indices. Zhou applies the concept of an environ-
mental productivity index to the consumption of passenger car services. In his
simplified model, engine power and curb weight combine to jointly produce
transportation services and carbon dioxide emissions. Using data from Finland, he
finds environmental productivity growth of over 3% per year since the turn of the
century. He attributes virtually all environmental productivity growth to improve-
ments in technology, as manufacturers have produced more environmentally
friendly cars.

The real value of Zhou’s contribution lies not productivity developments in
Finnish automobiles however, but in three areas: (i) highlighting a phenomenon,
environmental productivity change in consumer durables, that deserves further
research; (ii) emphasising the need for more data on the environmental impacts of
consumption activities; and (iii) developing an analytical framework capable of
supporting empirical work in the area. As a final thought, Zhou’s work may use-
fully be related to the “home production” literature associated with Gary Becker,
recipient of the 1992 Nobel Prize in Economic Sciences.

3 Part II: Studies in Energy and Environment

Chapters 5–11 explore a wide range of topics concerning energy utilization and its
environmental impacts. Five chapters discuss China’s experience, and the two
chapters that examine the experiences of OECD countries are likely to have insights
of relevance to China’s experience. Chapters 5–9 all use Chinese provincial data to
explore a variety of issues related to energy use. Chapters 10 and 11 also explore
energy use, but with aggregate data from OECD countries.

In Chap. 5 Li, Wang, Zou and Tamayi search for the sources of a decade of
serious power shortages in China. One obvious potential source is waste, or
operational inefficiency, which they reject, using both parametric and
non-parametric methods. They also reject underinvestment as a source. They finally
settle on a sort of market failure hypothesis brought on by a gap between the market
price of coal and the government-imposed price of electricity, which induced
management to reduce capacity utilisation, leading to power shortages.

In Chap. 6 Deng, Pang and Fan, and in Chap. 7 Xian and Wang, use different
analytical frameworks to examine alternative aspects of the same problem:
uncovering the relationship linking fossil fuel use and greenhouse gas emissions
across Chinese provinces. The first team uses a zero sum gain version of data
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envelopment analysis to contrast actual emissions with exogenous administrative
emissions reduction targets embodied in the 11th Five Year Plan and endogenous
emissions reduction targets generated by their analytical framework.
Unsurprisingly, they find large differences between the two allocation schemes,
which they attribute to the inefficiency of the administrative targets. The second
team examines a measure of environmental productivity change and its compo-
nents, and trends in the shadow price of CO2 emissions, in a framework in which
inputs, including coal equivalents, produce electricity and CO2 emissions. They
find productivity decline, except in the western region, and a doubling of the
shadow price of CO2, with wide variation across regions. Both studies provide a
basis for optimism. Inefficient administrative allocation schemes can be improved,
and regional variation in shadow prices allow for efficiency-enhancing reallocation,
as may happen when China’s new emissions trading scheme gets underway.

In Chap. 8 Hu and Chang compare total efficiency and energy efficiency across
China’s provinces, using a context-dependent analytical framework in which
inputs, including coal equivalents, produce GDP and SO-2 emissions. Total effi-
ciency treats all inputs as variable, while energy efficiency treats all inputs except
coal equivalents as quasi-fixed. The authors find inter-regional variation in both
types of efficiency, but the nature of the variation differs geographically, with
efficient provinces by one efficiency measure tending to be inefficient by the other.
In Chap. 9 Li and He ask whether Chinese economic growth has been environ-
mentally friendly, examining trends in the environmental performance of Chinese
cities rather than provinces. In their analytical framework inputs, including energy,
produce gross output and three undesirable by-products, waste dust emission, waste
gas and waste water. In one exercise they maximise the desirable output, and in the
other they minimise the three by-products. The authors find an upward trend
through time in the average efficiency of producing the desirable output, and a
somewhat less pronounced upward trend through time in the average efficiency of
reducing the three waste by-products. They also find wide geographic dispersion in
both efficiency measures. They discuss these findings and more against a back-
ground of China’s 12th Five Year Plan aimed at enhancing green economic growth.

In Chap. 10 Kang uses a stochastic cost frontier framework in a creative manner,
as a way of investigating the abilities of OECD countries to maximise environmental
efficiency, by attempting to minimise CO2 emissions, given desirable outputs and
inputs, one of which is fossil fuel use. A second stage is devoted to the estimation of
energy efficiency, as the ratio of minimum fossil fuel use to actual fossil fuel use,
controlling for other inputs and outputs. Results indicate considerable inefficiency of
both types. In Chap. 11 Lu, Hsieh, Chiu and Lin use a meta-frontier framework
based on dynamic data envelopment analysis to investigate the use of new forms of
green energy, by estimating green energy efficiency and green energy performance
of OECD countries. In their model new energy is one of three inputs used to generate
CO2 emissions and a carry-over output, total revenue. The main finding is a wide
variation in green energy efficiency between the top-ten and bottom-ten countries.
Once again it is possible to draw an optimistic conclusion from both studies: there is
much room for improvement in energy usage performance.

12 X. Bai et al.



4 Part III: Studies in Transitional Growth

Chapters 12–15 use a wide range of empirical techniques to explore a similarly
wide range of topics related to China’s transitional growth experience, with
emphasis on its environmental impacts. Chapters 12 and 13 take different
approaches to the analysis of the crucial role of environmental innovation as a
driver of the magnitude and structure of economic growth. Chapters 14 and 15
explore the roles of two dimensions of international trade, the regional allocation of
foreign direct investment into China and the emissions embodied in exports from
China.

In Chap. 12 Bai and Li find that technical progress has been biased in a
capital-using direction in Chinese industry. While they do not incorporate an energy
input or an environmental by-product, depending on complementarities between
future capital investment and energy usage, their findings have potential implica-
tions for the environmental nature of transitional growth in Chinese industry and for
the desirability of market-oriented reforms. In Chap. 13 Xie divides innovation into
green and traditional components and examines the impacts of each type of inno-
vation on a creative indicator of the greenness of economic growth apparently
introduced by Xie et al. (2017). The finding that green innovation is a driver of both
the magnitude and the green-ness of economic growth is perhaps unsurprising, but
the finding that traditional innovation does not have a positive impact is surprising,
and receives an interesting explanation.

In Chap. 14 Li, Guo, Guo and Liao examine the impacts of foreign direct
investment from two sources, overseas and non-overseas Chinese regions, on the
sustainable development of Chinese regions, in which “sustainable” encompasses
three dimensions, economic, environmental and social. Selection of proxies for the
three dimensions is creative, and the findings suggest that the regional pattern of
both sources of foreign direct investment has been suboptimal from a sustainability
perspective. In Chap. 15 Zhang and Wei reverse directions and analyse Chinese
exports from both economic and environmental perspectives. They do so by cal-
culating the domestic value added and emissions content of Chinese exports. They
find an increase in the value added of exports combined with a reduction in the
pollution intensity of value added exports, implying an improvement in the envi-
ronmental efficiency of export production. They also conduct a decomposition
analysis of gaps in the pollution intensity of value added exports between China and
other large economies, which they attribute largely to a combination of a dirtier
domestic production technology and a cleaner export structure.

Some Useful References and Links

Center for Climate and Energy Solutions (2015), “China’s Contribution to the Paris Climate
Agreement,” https://www.c2es.org/site/assets/uploads/2015/07/chinas-contribution-paris-climate-
agreement.pdf
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Gao, Yun (2016), “China’s Response to Climate Change Issues after Paris Climate Change
Conference,” Advances in Climate Change Research 7, 235–40

Gu, A., F. Teng and X. Feng (2016), “Effects of Pollution Control Measures on Carbon Emissions
Reduction in China: Evidence from the 11th and 12th Five-Year Plans,” Climate Policy http://
dx.doi.org/10.1080/14693062.2016.1258629

Hu, A.-G. (2016), “The Five-Year Plan: A New Tool for Energy Saving and Emissions Reduction
in China,” Advances in Climate Change Research 7, 222–28

Kishimoto, P. N., V. J. Karpus, M. Zhong, E. Saikawa, Xu. Zhang and Xi. Zhang (2017), “The
Impact of Coordinated Policies on Air Pollution Emissions from Road Transportation in
China,” Transportation Research Part D 54, 30–49

Seligsohn, D., and A. Hsu (2016), “How China’s 13th Five-Year Plan Addresses Energy and
the Environment,” http://www.chinafile.com/reporting-opinion/environment/how-chinas-13th-
five-year-plan-addresses-energy-and-environment

Wang, C., Y. Yang and J. Zhang (2015), “China’s Sectoral Strategies in Energy Conservation and
Carbon Mitigation,” Climate Policy 15 (sup 1), S60–S80

Wang, P., L. Liu and T. Wu (2017), “A Review of China’s Climate Governance: State, Market and
Civil Society,” Climate Policy https://doi.org/10.1080/14693062.2017.1331903

Xie, R. H., Y. J. Yuan and J. J. Huang (2017), “Different Types of Environmental Regulations and
Heterogeneous Influence on “Green” Productivity: Evidence from China,” Ecological
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Chapter 2
Composite Indicators for Sustainability
Assessment: Methodological Developments

P. Zhou and L. P. Zhang

1 Introduction

The intensive alteration to the natural environment by human beings has been
posing challenges to the natural and socio-economic systems (Munda and Saisana
2011). Global warming causes a huge economic loss to agriculture sector of some
countries including China in the past decade (Chen et al. 2016). Air pollution has
severe negative health effects, especially for those vulnerable people such as the
elderly, infant and child (He et al. 2016). Some pollution reduction mandates by
central and local governments also trigged severe unintended consequences. For
example, due to the effect “polluting thy neighbor”, the most downstream county of
a province in China has up to 20% more water polluting activities than other
counterparts since 2001 (Cai et al. 2016). Undoubtedly, problems resulted from
climate change, environmental pollution, depletion of natural resources and others
have been threatening the development of our society (Tilman et al. 2002). A rising
concern has been voiced in scientific community and policy circles on how human
beings should interact with nature, and how they are responsible for future gen-
erations in a sustainable way (Baumgärtner and Quaas 2010). Indeed, there are so
many efforts and initiatives towards sustainable development in our society.
However, whether those activities are adequate for pursuing sustainable develop-
ment is still questionable (Sala et al. 2015). To provide a scientific basis for fighting
with climate change and avoiding unanticipated consequence, the status of sus-
tainability should be evaluated in a solid and reliable manner to assess whether the
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target of “meet the needs of the present without compromising the ability of future
generations to meet their own needs” has gradually been realized (WCDE 1987).

Theoretically, sustainability is a multi-dimension (e.g. economic, social and
ecological) concept encompassing internal relationships between different dimen-
sions, which brings difficulty in sustainability assessment (Mayer 2008). In addi-
tion, the issues such as multi-interpretation in concept, the determination of
boundaries and measurability, also cause a rising concern on the reliability of
sustainability assessment (Hák et al. 2012). Different methods have been introduced
into sustainability assessment, e.g. indicators, product-based assessment, and inte-
grated assessment (Ness et al. 2007). The indicator approach, owing to some
desirable properties like simplicity, quantifiability and timely indentification of the
trends, has acquired compelling attention in the literature of environmental and
ecological economics (Dı́az-Balteiro and Romero 2004). At the end of last century,
the United Nations suggested to develop indicators for sustainable development to
provide an analytical foundation for policy analysis and decision making at dif-
ferent levels (UNCED 1992). Since then, various indicators have been developed,
e.g. Ecological Footprint (Wackernagel and Rees 1998), Environmental
Sustainability Index (Esty et al. 2005), Human Development Index (UNDP 2014),
Environmental Policy Stringency Index (Botta and Kozluk 2014), World Energy
Trilemma Index (WEC 2016), Oxford Sustainability Index (OCC 2016), and
Environmental Performance Index (Hsu et al. 2016). According to Zhou and Ang
(2008), the existing sustainability indicators may broadly be grouped into
non-composite and composite indicators. Non-composite indicators are usually in
the form of a set of indicators or an integrated indicator. The approach of composite
indicators aims to aggregate various indicators into a single real-valued score to
represent an entity’s sustainable performance. As Nardo et al. (2008) argued,
composite indicators can reduce the visible size of indicators and are easier to
interpret than a set of individual indicators. Hence, composite indicators have
recently gained much popularity in sustainability assessment. Hereafter we refer to
composite indicators for sustainability assessment as composite sustainability
indicators (CSI) for convenience purpose.

The reliability of a CSI heavily depends on the underlying methods which are
used for constructing the CSI. In the past decades, scholars have contributed to
developing alternative methods for constructing CSI. See, for example, van den
Bergh and Veen-Groot (2001), Cherchye and Kuosmanen (2004), Dı ́az-Balteiro
and Romero (2004), Munda (2005), Despotis (2005a, b), Zhou et al. (2007) and
Zanella et al. (2015). In parallel, Ebert and Welsch (2004) showed how to construct
a meaningful environmental index from the social choice perspective. Zhou et al.
(2006a) proposed an information loss criterion for comparing different aggregation
functions. More recently, Pollesch and Dale (2015, 2016) investigated on the
application of aggregation theory and normalization methods to sustainability
assessment. Zhou et al. (2017) further looked through the meaningfulness of
composite environmental indices and showed that a cardinally meaningful com-
posite indicator can be constructed by nonparametric frontier approach. Several
scholars have also reviewed past CSI studies with emphasis on their theoretical and
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conceptual developments, e.g. Parris and Kates (2003), Ness et al. (2007) and Mori
and Christodoulou (2012). As pointed out by Mayer (2008), the identification of
bias introduced by method choice plays a significant role in improving the utility of
CSI for supporting policy making. The study by Böhringer and Jochem (2007)
highlights the significance of scientifically sound methods for normalization,
weighting and aggregation in building meaningful CSI. The purpose of this chapter
is to provide a systematic literature review of the methodological developments in
constructing CSI. It is expected that such a review provides not only a sketch of the
mainstream methods with their strengths and weaknesses but also useful insights on
the choice of an appropriate method for constructing CSI in various application
scenarios.

The rest of this chapter is organized as follows. Section 2 provides a description
of the framework on CSI construction. Section 3 summarizes the most popular or
promising methods in constructing CSI. In Sect. 4, we discuss the influential factors
and principles in method choice at the stages of normalization and aggregation. The
last section concludes this study with discussions on potential future research topics.

2 Generic Procedure of Constructing CSI

The construction of CSI starts from the determination of a set of indicators for the
entities whose sustainable performance is to be evaluated. The given information
may be represented by a performance matrix X as shown in Eq. (1) that deals with
m entities and n indicators.

X ¼
x11 � � � x1n

..

. . .
. ..

.

xm1 � � � xmn

2
664

3
775 m; n� 2ð Þ

W ¼ w1 � � � wn½ �

ð1Þ

In Eq. (1), xij refers to the performance value of entity i pertinent to indicator j,
and W is a weight vector in which wj denotes the weight assigned to indicator j. The
indicators for sustainability performance evaluation are usually measured by dif-
ferent units. In order to aggregate individual indicators into CSI, some aggregation
methods require each indicator to be dimensionless by certain transformation
function, i.e. V ¼ v Xð Þ. We assume that the performance matrix after normalization
is denoted by

V ¼
v11 � � � v1n
..
. . .

. ..
.

vm1 � � � vmn

2
64

3
75 m; n� 2ð Þ ð2Þ
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Once the weight vector W is determined, different aggregation techniques might
be used to combine individual indicators into real-valued CSI. In general, the
aggregation techniques aim to:

Seek a function ri ¼ f1 X or Vð Þ;Wð Þ for providing sustainable performance rank-
ings of entities, and/or
Seek a function ui ¼ f2 X or Vð Þ;Wð Þ for providing sustainable performance index
for each entity.

As described above, the construction of CSI from a set of pre-defined indicators
mainly involves the normalization of indicators, the assignment of indicator weights
and the search for an appropriate aggregation function. In literature, various methods
have been used for these three steps, which might broadly be classified into two
categories. One is based on multi-attribute decision making (MADM), and the other
is based on benefit of the doubt (BOD) that is a data envelopment analysis (DEA)-
like approach (see Fig. 1). Although BOD methods in the broad sense can be
attributed to MADM, they are different from each other in several aspects. For
example, by MADM, a set of common weights are shared by each entity. However,
BOD methods often aim to find a different set of weights which are most favorable
for each entity. Besides, CSI based on BOD methods may not require normalization.

3 MADM Methods

MADM is a well-established methodology with the aim to make choice under
multiple conflict criteria be more explicit, rational and efficient (Yoon and Hwang
1995). MADM methods can be involved in all procedure of constructing CSI. In the

Methods for constructing CSI

MADM

Normalization

Weighting

Aggregation

Compensatory

Weighting

Aggregation

Semi/
Non-Compensatory

BOD

Basic BOD

Common weights
Slack-Based

Non-compensatory

Extensions to Basic BOD

Direct restriction
Indirect restriction

Weight restriction

Fig. 1 Classification of the methods for constructing CSI
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followings, we shall describe the steps with focus on the methods used. It starts
from normalization followed by data aggregation, by which the importance of
indicator weighting is highlighted and discussed.

3.1 Normalization Methods

The underlying indicators for assessing sustainability are generally in different
measurable units, and different indicators have distinct ranges or scales (Mayer
2008). As such, normalization procedure is often taken for making underlying
indicators comparable (Nardo et al. 2008). The commonly used normalization
methods in constructing CSI may be categorized into three categories, namely,
standard deviation from the mean (i.e. z-score), distance from a reference, and
distance from best and worst performers (i.e. re-scaling). Table 1 provides a
description of the three normalization methods.

Z-score is used to statistically measure the relationship between the value of a
sustainable indicator and the mean of the values of the sustainable indicator system.
It has an average of zero, indicating that it can avoid introducing aggregation
distortions stemming from the differences in indicator means (Freudenberg 2003).
The positive (negative) value indicates that it is above (below) the mean by how
many standard deviations. Z-score transforms the original variables into a common
scale. These desirable characteristics make it be frequently used in normalization,
see Floridi et al. (2011).

Distance to a reference aims to normalize the underlying indicators by measuring
the distance of an entity to a reference point. When the sustainable indicators are
ratio-scale and the distance to a reference method is used for normalization, the CSI
derived from the simple additive weighting aggregation function are found to be
meaningful (Ebert and Welsch 2004). In operation, the method of distance to a
reference needs to first determine the reference point, which could be the leader of the
entities (Zhou et al. 2006a) or an external benchmark (Nardo et al. 2008). A popular
practice in application is to use the base time as a reference so that the sustainability
performance of entities could be dynamically monitored. Examples of such studies
can be found in Kang (2002), Kang et al. (2002), Krajnc and Glavič (2005) and

Table 1 The commonly used normalized methods

Method Formula Notes

Z-score vij ¼ xij��xjð Þ
rj

�xj and rj are the mean and standard deviation of the
value of indicator xij, respectively.vij is the normalized
value of indicator xij

Distance to a
reference

vij ¼ xij
xrij

xrij is the value of reference indicators

Re-scaling vij ¼ xij�mini xij
maxi xij�mini xij

max
i

xij and min
i

xij are the maximum and the minimum

values of indicator xij across all entities
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Cherchye et al. (2007a). In the circumstance, it is also possible to make meaningful
comparison over time when panel data is involved (Cherchye et al. 2007a).

Re-scaling method attempts to re-scale the original indicators to dimensionless
range [0, 1] by using the global maximum and minimum. One well-known example
is the Human Development Index. Other examples using the re-scaling method can
be found in Neumayer (2001), Dı́az-Balteiro and Romero (2004), Hajkowicz (2006),
Gómez-Limón and Riesgo (2009), and Gómez-Limón and Sanchez-Fernandez
(2010).

3.2 Aggregation Methods

The aggregation process implies the search for an appropriate function that can
incorporate multiple indicators into a single composite indicator. In the literature,
there are many aggregation functions available for use. Most of them can be rep-
resented by the following equation:

CIi ¼

Xn
j¼1

wj vij
� �b" #1

b

for b 6¼ 0

Yn
j¼1

vwj

ij for b ¼ 0

8>>>>><
>>>>>:

ð3Þ

When the parameter b is assigned to different values, the aggregation function
will collapse to different forms. It should be pointed out that the values of b have an
impact on the trade-offs between different indicators. More discussions can be
found in Decancq and Lugo (2013). Table 2 shows several aggregation functions
which are often used in constructing CSI.

Table 2 Several popular aggregation methods

Function name Formula

Simple additive weighting
CIi ¼

Pn
j¼1

wjvij when b ¼ 1

Weighted product
CIi ¼

Qn
j¼1

vwj

ij when b ¼ 0

Weighted displaced ideal
CIi ¼ 1� kð Þ � minwjvij þ k

Pn
j¼1

wjvij (k is the compensatory

parameter that ranges from 0 to 1)

Social multi-criterion
evaluation method CIi ¼

P
ejk (ejk ¼

Pm
i¼1

wi Pjk
� �þ 1

2wi Ijk
� �
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3.2.1 Simple Additive Weighting

When the parameter b ¼ 1, Eq. (3) reduces to the simple additive weighting
(hereafter referred to as SAW). In the context of constructing CSI, the simple
additive weighting might be the most commonly used aggregation function, e.g.
Kang (2002), Kang et al. (2002), Krajnc and Glavič (2005), Esty et al. (2005),
Hajkowicz (2006), Singh et al. (2009), Murillo et al. (2015), and Global Warming
Potential (IPCC 2001). The SAW method is easy to understand and can visualize
the relative contribution of each indicator to the CSI. Since the assumption of
preferentially independent relationship between indicators may not be satisfied in
practice, statistical techniques such as principal component analysis (PCA) and
factor analysis (FA) are often applied before aggregation (Grupp and Schubert
2010). Additionally, the use of SAW allows for the full substitutability between the
indicators so that the weights imply trade-offs, which is inconsistent with the
meaning of importance coefficients quoted by many earlier studies (Munda and
Nardo 2009). From a practical point of view, this characteristic of the SAW method
is not desirable since it violates the spirit of sustainable development (Ayres et al.
1998).

3.2.2 Weighted Product Method

With the parameter b ¼ 0, Eq. (3) is referred to as weighted product (WP) method.
Although WP method is not widely applied in constructing CSI, it has attracted
much attention owing to its several desirable characteristics, e.g. semi-compensatory
property (Nardo et al. 2008), meaningfulness for ratio-scale indicators (Ebert and
Welsch 2004; Böhringer and Jochem 2007), and less information loss (Zhou and
Ang 2009). In application, WP method has been used for constructing HDI to
replace SAW method by the United Nations Development Programme, which could
be affected by these earlier studies as discussed by Tofallis (2013).

Due to the exponent property, WP method requires that all ratings are greater
than one (Yoon and Hwang 1995). The relative contribution by each individual
indicator to the CSI is not visualized as that in SAW. Furthermore, the results
usually do not have a numerical upper bound. The former problem can be solved by
multiplied by 10l. The later problem, Yoon and Hwang (1995) suggested to
compute the distance between each entity and the ideal entity as follows:

Ri ¼
Qn

j¼1 v
wj

ijQn
j¼1 v�ij

� �wj
i ¼ 1; . . .;mð Þ ð4Þ

where v�ij is the best value for the jth indicators. It is clear that 0�Ri � 1, in which 1
(0) indicates the most (least) sustainable entity.
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3.2.3 Weighted Displaced Ideal

Weighted displaced ideal (WDI) method is on the basis of the ideal solution theory
that aims to calculate the distance between the normalized value of each entity and
the “ideal” entity (Zeleny and Cochrane 1981). This concept has further been gen-
eralized by Dı ́az-Balteiro and Romero (2004) which can provide solutions of “total
compensability” among the sustainable indicators and “total non-compensability” of
the indicators, as well as a compromise set of solutions between these two extreme
cases. By setting b ! þ1, Eq. (3) is transformed to the form CIi ¼ minwjvij, in
which substitutability between indicators are prohibited. To reach a balanced eval-
uation, Dı́az-Balteiro and Romero (2004) introduced a parameter k representing the
degree of substitutability between indicators. When k ¼ 0, non-compensatory
between indicators is assumed. When k ¼ 1, the WDI method will be simplified as
the SAW method which assumes full compensability. For 0\k\1, partial com-
pensation between indicators will be allowed. This aggregation function is also
attracted an increasing attention, e.g. Zhou et al. (2006a), Zhou and Ang (2009),
Gómez-Limón and Riesgo (2009), Blancas et al. (2010), Gómez-Limón and
Sanchez-Fernandez (2010), and Pollesch and Dale (2015).

3.2.4 Social Multi-criterion Evaluation Method

Social multi-criteria evaluation (SMCE) method, introduced by Munda (2005), is a
non-compensatory technique to provide rankings of the entities based on a
Condorcet-type of aggregation procedure. SMCE aims to improve the quality of
composite indicators by overcoming two technical weaknesses: independence
between indicators and the meaningfulness of weights (Munda and Nardo 2003).
Once the weights are determined, SMCE undergoes two steps to obtain the overall
sustainability rankings. At first, an outranking matrix is built by pair-wise com-
parison. Elements (ejk j 6¼ kð Þ) in the matrix is the score of the sum of the weights
for corresponding indicators under the condition of indicator j performing better
than indicator k. A half of the weight will be added if the relationship between
indicator j and k is indifference. Such process can be expressed by

ejk ¼
Xm
i¼1

ðwi Pjk
� �þ 1

2
wi Ijk
� � ð5Þ

where Pjk Ijk
� �

indicates preference (indifference) relationship. In this step, n n� 1ð Þ
pair-wise combinations need to be compared. The second step is to sum up the
relevant scores for a complete pre-order of entities. For instance, to rank three
entities (e.g. E1, E2, and E3), all possible permutations of these entities are
E1E2E3, E1E3E2, E2E1E3, E2E3E1, E3E1E2, and E3E2E1. Then the value of
each permutation can be calculated. The one with the highest score is used to
determine the ranking of the entities.

22 P. Zhou and L. P. Zhang



Compared with the aggregation methods described above, SMCE requires a
large amount of computation, especially in the second step. The information
including in the final results might also be limited. Nevertheless, SMCE provides a
novel framework for assessing sustainability. When CSIs are derived from SMCE,
their underlying subjective aspect only comes from the determination of indicator’s
weight. This property decreases the uncertainty in constructing CSI and also
relieves some burden in sensitivity analysis. Besides, SMCE is a totally
non-compensatory aggregation method which may better reflect the concept of
strong sustainability.

3.3 Weighting Methods

From the previous section, it is clear that there is close relationship between the
indicator weights and data aggregation. The existing weighting methods could be
partitioned into three categories: exogenous (or called normative) methods,
endogenous (or called data-driven) methods, and hybrid methods. The main dif-
ference between the three categories lies in the degree of value judgement of
decision-makers or experts involved in determining the weights. Exogenous
methods, mainly dependent on the value judgement of decision-makers or experts
are determined by participatory methods. Endogenous methods on the other hand
mainly rely on the data distribution, tending to let data “speak”. Hybrid methods
attempt to balance the exogenous and endogenous methods.

3.3.1 Exogenous Methods

Equal weighting, arbitrary weighting, and analytic hierarchy process (AHP) are
three frequently used exogenous methods. See, for example, Ecological Footprint,
Hope et al. (1992) and Murillo et al. (2015) for equal weighting, Kang (2002), Kang
et al. (2002) and Krajnc and Glavič (2005) for AHP. Equal weights are usually
applied in the circumstance of the absence of comprehensive understanding for the
entity. With the improvement of data collection techniques and the extensive
research on sustainability, equal weights have gradually been abandoned in con-
structing CSI. AHP and other methods like budget allocation processes and conjoint
analysis are heavily dependent on a thorough understanding about how each entity
works. The challenge in the application of these exogenous methods is the choice of
appropriate experts (Decancq and Lugo 2013). Once this problem is properly
handled, the reliability of the exogenous methods would significantly increase. It
should be noted that exogenous methods are ex ante approaches, which makes
performance comparison across time and space be feasible.
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3.3.2 Endogenous Methods

Statistical weighting and BOD methods are two major endogenous families in
determining the weights for constructing CSI. Statistical weighting methods are
based on statistical properties of the data, e.g. PCA, FA, and regression analysis
(RA). PCA is basically a multivariate statistical technique to summarize the data.
FA is based on the assumption that some observed indicators rely on a certain
number of unobserved factors. Although the basic assumption of these two methods
is distinct, in practice, one usually does not distinguish the difference. Once the
principal components are extracted, the factor loading matrix and eigenvalues of the
associate principal components can be calculated. The weights of indicators then
equal to the ratio of squared factor loadings to the corresponding eigenvalues. The
technical details can be found in Gómez-Limón and Riesgo (2009). Despite their
statistical soundness, the meaning of the weights estimated by PCA or FA fails in
accordance with the original meaning, i.e. importance, since these two methods
measure the overlapping information between two or more correlated indicators
(Shen et al. 2013). RA approach determines weight by multiple regression or linear
programming and assumes that individual indicator relies on the sum of an
observed variable and an error term. Thus, the RA approach is usually defined as
unobserved components model or observed derived weight method (Nardo et al.
2008).

3.3.3 Hybrid Methods

In addition to assess sustainability, one valuable characteristic of CSI is to compare
among all entities so that decision makers can detect the gap and then take actions
to improve sustainability performance. From this perspective, endogenous methods
somewhat fail to perform this function. Exogenous methods do not suffer the issue
since they do not rely on the data distribution. However, exogenous methods
depend on the value judgments that might be affected by different expert panels. As
mentioned by Decancq and Lugo (2013), expert groups might be underrepresented
or simply uninformed resulting in a skewed weighting scheme.

Hybrid methods are proposed to combine exogenous methods with endogenous
methods. Decancq and Lugo (2013) listed two hybrid methods, namely stated
preference weight and hedonic weights. Stated preference weight, instead of
imposing weights by expert panel, is directly based on individual opinions. Hedonic
weights also rely on the individual self-reported preference. After obtaining the
preference matrix, weights can be estimated by a linear regression. An example of
hybrid weighting methods is the BOD model with weight restrictions that can be
determined by experts.
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4 BOD Methods

Two problems in constructing CSI by MADM models are the information loss
caused by normalization (Zanella et al. 2015) and the subjectivity in determining
the weights. Fixed weight stemming from MADM models has been controverted
with argument that different cultural and social settings value individual weighting
framework in different ways (Cherchye et al. 2008).

Alternatively, as suggested by Lovell et al. (1995) and Lovell (1995), linear
programming models can be used to construct the ‘best practice’ frontier for the
entities. The linear programming approach for constructing CSI is usually defined
as benefit of the doubt (BOD). BOD roots in DEA which was originally proposed
for evaluating the relative efficiency of a homogeneous set of entities which use
multiple inputs to produce multiple outputs. In DEA, the weights of inputs and
outputs can be endogenously determined by raw data without using price infor-
mation. In methodology, CSI based on BOD borrow the idea of DEA for the
purpose of weighting and aggregation.

4.1 Basic BOD Model

For each of entities, the basic BOD model explores its most favorable weights
(Cherchye et al. 2007b). It can be formulated as follows:

CIi ¼ max
Pn
j¼1

wixij

s:t:
Pm
j¼1

wixik � 1k ¼ 1; . . .; n

wj � 0

ð6Þ

Model (6) is equivalent to the input oriented DEA model with the assumption of
constant returns to scale and a dummy input for all the evaluated entities. It pro-
vides the optimal aggregated performance values for all entities by solving the
model n times. Different from the MADM models, the weight assignment based on
BOD adheres to a posterior weighting scheme and the weights of the individual
indicators weight may differ between entities. Model (6) holds several desirable
properties, such as normalization-free and the invariance with respect to ratio scale
transformations (Athanassoglou 2015). Normalization-free can avoid the informa-
tion loss caused by data transformation. Invariance allows practitioners to aggregate
individual indicators into a meaningful composite indicator (Ebert and Welsch
2004). In essence, model (6) measures how far the evaluated entity is from the best
practice entity under most favorable weights (Zhou et al. 2007).

Model (6) has been used in many application contexts. The earliest literature
may date back to Mahlberg and Obersteiner (2001) who introduced model (6) to
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reassess HDI. Despotis (2005a, b) used an extension to model (6) to reevaluate
HDI. It is worth pointing out that Cherchye and his collaborators applied the model
in several backgrounds including sustainable development (Cherchye and
Kuosmanen 2004), internal market (Cherchye et al. 2007a) and technology
achievement (Cherchye et al. 2008).

4.2 Weight Restriction in Basic BOD Model

The BOD model brings new perspective for constructing CSI, while it also suffers
from some shortcomings. For example, model (6) assumes that the weights are
nonnegative. It is possible that all the weights are assigned to a single indicator
which may not be expected since all the selected indicators are theoretically
importance and thus need to be considered (Zhou et al. 2007). Besides, it could
open up the debate on the CSI’s credibility and acceptability. To overcome the
problems, it is appropriate to restrict weights in certain ways. A straightforward way
is to introduce non-Archimedean infinitesimal variable e into the model, e.g.
Despotis (2005a, b) and Kao (2010). With such modification, however, it is still
possible to diagnose an entity well performing even if it is only superior with
respect to one indicator but performs poorly with respect to the remaining indicators
(Mahlberg and Obersteiner 2001). Hence, further restrictions on weights usually are
considered in practice.

Broadly speaking, weight restriction could be classified into two categories, i.e.
direct restriction and indirect restriction (Allen et al. 1997). Direct restriction on
weights could be formulated in the forms of Eqs. (7) and (8) which are respectively
termed as “Type I Assurance Regions” and “Type II Assurance Regions” by
Thompson et al. (1990). The Greek letters in Eqs. (7) and (8) are specified by
decision makers to reflect their preference regarding the relative importance of
indicators. w0 could be the combination of weights. The use of direct restriction on
weights can be found in Mahlberg and Obersteiner (2001), Cherchye and
Kuosmanen (2004), and Cherchye et al. (2007b). Indirect restrictions on weights
could be formulated as the form of Eq. (9) which was originally proposed by Wong
and Beasley (1990). / and u also indicate the preference of decision-makers. Rather
than restricting actual weights, Eq. (9) places lower and upper bounds on the relative
contribution of each indicator to the entity’s aggregate performance value. This
restriction method has been adopted in many previous studies, e.g. Zhou et al. (2007,
2010), Cherchye et al. (2008), Zanella et al. (2015) and Athanassoglou (2015).

aj � wj

wjþ 1
� bj ð7Þ

kw0 � jwj � cw0 ð8Þ
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/j �
wjxijPn
j¼1 wjxij

�uj ð9Þ

The above restrictions cannot only overcome the problem aforementioned but
also introduce “valued judgment” to incorporate prior views or information in
assessing the performance of entities. The prior information can be incorporated via
the determination of boundaries by MADM method such as AHP, BAP and the
social surveys, e.g. Cherchye et al. (2008). Direct restriction usually incorporates
information of marginal rates of substitution between indicators which is sensitive
to the units of measurement (Allen et al. 1997). Consequently, it is often difficult to
specify meaningful substitution in real-life applications (Zanella et al. 2015). In
contrast, indirect restriction method holds the desirable property of ratio-scale
invariance (Cherchye et al. 2008; Zhou et al. 2007). This is particularly compelling
in the case of constructing environmental performance index (Ebert and Welsch
2004). Furthermore, as Cherchye et al. (2008) discussed, Eq. (9) can be expressed
as pie share constraints which are pure numbers and can be easily grasped by
decision makers. Nevertheless, the meaning of Eq. (9) is not so straightforward
since the implied restrictions on weights are entity-specific. Hence, Wong and
Beasley (1990) suggested several modifications. One of the modifications, i.e.
replacing xij with

Pn
j¼1

xij

n in Eq. (9), which represents the level of the ith indicator
of the “average” entity, has also been applied in constructing composite indicators,
e.g. Zanella et al. (2015).

4.3 Extensions of Basic BOD Model

Due to its striking properties, BOD model has been extended to solve various
problems in constructing CSI, e.g. hierarchy problem, compensability, compara-
bility, etc.

The basic BOD model usually treats all the indicators at the same level and thus
leaves out the information of the hierarchical structure of indicators. This hierarchy
problem might be unrealistic due to the fact that multiple layer indicator framework
is constructed in order to evaluate the increasing complicated sustainable perfor-
mance in a more comprehensive way. According to Becker (2005), frameworks are
mostly hierarchical extending from broad categories of data and information to
detailed measures. To overcome this limitation, Shen et al. (2013) improved the
basic BOD model to fit the property of hierarchical indicator system by specifying
weights in each category of each layer. More straightforwardly, in the situation of
multiple hierarchical indicator framework, the basic BOD model is first used to
determine the “best practice” performance of certain layer indicators. Then the
aggregation of higher layer indicators can be done by MADM methods. See, for
example, Kao et al. (2008).
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In addition, due to the linear characteristic of its objective function, BOD also
faces the compensatory issue as discussed earlier. Munda and Nardo (2009) sug-
gested that it is compulsory to construct non-compensatory composite indicators so
that weights are theoretical consistent with the meaning of importance. To relax the
compensatory characteristic, Zhou et al. (2010) combined the WP aggregation
method with basic BOD model to construct a multiplicative optimization approach
with semi-compensatory characteristic to reach a compromise solution. Pakkar
(2014) proposed a similar model for constructing Technology Achievement Index.
Fusco (2015) introduced directional penalties to enhance the non-compensatory
characteristic of basic BOD model to take into account the preference structure
among indicators. Generally, the methods take similar perspective, i.e. imposing
more penalties upon the indicators with worse performance.

The basic BOD model on the basis of conventional DEA technique distinguishes
efficient and inefficient entities in the DEA terminology, and is not suitable for
ranking the performance of entities (Kao 2010). The main strength of basic DEA
models is to recognize the inefficient entities. Hence, many studies have been
devoted to improve the comparability of basic BOD model under the framework of
composite indicators. For example, from an opposite perspective of Model (6),
Zhou et al. (2007) proposed a model to seek the “worst” set of weights for each
entity, and use an adjusting parameter to combine the “best practice” and the “worst
practice” to form composite indicators. Several studies have adopted this model to
construct composite indicators in various contexts, e.g. Domínguez-Serrano and
Blancas (2011), Rogge (2012), and Blancard and Hoarau (2013). Athanassoglou
(2015) further improved the worst-case of basic BOD model for constructing
composite indicators.

Besides, the concept of common-weight is also applied to enhance the compa-
rability of basic BOD model. Its basic idea is that every entity need to use the same
benchmark for calculating the performance score. Despotis (2005a, b) initially
introduced the concept of common-weight, in which basic BOD model is firstly
used to determine most favorable weights for entities and then a goal programming
model is developed to discriminate entities with the same performance score. Dong
et al. (2015) used similar two-stage method to measure farm sustainability. Kao
et al. (2008) proposed a similar two-stage model for evaluating the national com-
petitiveness. Kao (2010) combined the concept of common-weights with
Malmquist productivity index. Built upon Zhou et al. (2007), Hatefi and Torabi
(2010) also proposed a common-weights MCDA-DEA approach in which the
common-weights are calculated in one step. Tofallis (2013) also used two-stage
model to seek a common set of weights to apply to all entities. More recently,
Hatefi and Torabi (2016) further analyzed how to improve the composite indicators
of inefficient entities on the basis of a slack analysis framework.

BOD methods are flexible and systematic for constructing CSI. In recent years,
conventional DEA models are also used to establish composite indicators, e.g.
environmental performance index (EPI). Application of conventional DEAmodels to
construct EPI might begin with the establishment of environmental production
technology (Zhou and Ang 2008). Then an EPI can be constructed by different types
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of DEA models with different properties. See, for example, Zaim et al. (2001), Zhou
et al. (2006b), Zhou and Ang (2008), Blancard and Hoarau (2013), andWang (2015).
More recently, Zhou et al. (2017) evaluated previous studies and showed that the
range adjusted DEA model can generate a cardinally meaningful composite index.

5 The CSI Robustness and Beyond

5.1 Selection Principle

So far, we have examined three methodological aspects pertinent to CSI construc-
tion. Besides, two additional issues have often been questioned, i.e. comparability
and meaningfulness. Comparability is mainly caused by the incommensurability of
indicators’measurement units. Martinez-Alier et al. (1998) theoretically showed that
the incommensurability does not imply incomparability but weak comparability,
which means that there is a good potential for applying multi-indicator evaluation
methods (e.g. MADM and BOD) to sustainability assessment. Although the above
argument provides theoretical comparability foundation, sustainability assessment
still faces the difference and ambiguity caused by measurement units, which may
make CSI meaningfulness.

Ebert and Welsch (2004) first discussed how to construct a meaningful envi-
ronmental index, which has been used as a criterion for investigating whether an
environmental or sustainable index is meaningful or not by Böhringer and Jochem
(2007) and Singh et al. (2009). Meaningful CSI indicates that the preference
orderings does not vary with different scale of underlying indicators. Ebert and
Welsch (2004) classified different scales into four categories according to the con-
cept of comparability (measurability) of scales: interval-scale non-comparability,
interval-scale full comparability, ratio-scale non-comparability, and ratio-scale full
comparability. If interval-scaled indicators are full comparable, the arithmetic mean
aggregation function satisfies continuous, strongly monotone, and separable prop-
erties and thus can generate a meaningful index. If ratio-scaled indicators are
non-comparable, geometric mean aggregation function is recommended. Table 3
provides a summary of different cases. It should be pointed out that it is impossible to
construct meaningful CSI when there exist indicators with distinct measurement
scales (Böhringer and Jochem 2007; Ebert and Welsch 2004). More recently,
Pollesch and Dale (2015) investigated aggregation functions for six different scales
of indicators in constructing an appropriate meaningful CSI. Zhou et al. (2017)
generalized the meaningfulness concept by Ebert and Welsch (2004) and showed
how to construct a cardinally meaningful index.

In addition to scales, many other factors can have impact on the selection of
aggregation function in constructing CSI, e.g. interactive phenomena between
indicators, the types of weight, and the assumption of sustainability. When there are
interactive phenomena between indicators, some preliminary treatments should be
firstly conducted to eliminate those interactive relationships. However, as Mayer
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Table 3 Aggregation rules
for indicators by Ebert and
Welsch via Böhringer and
Jochem (2007)

Non-comparable Full comparable

Interval
scale

Dictatorial
ordering

Arithmetic mean

Ratio scale Geometric mean Any homothetic
function

(2008) stated, without a clear understanding of interactive relationship between
indicators and how those relationships influence the results, it is hard for decision
makers to formulate policy with the aim to increase economic equity, environ-
mental improvement, and further increase possibilities for long-term sustainability.
Hence, those aggregation methods taking interaction into consideration, e.g.
Choquet integral with fuzzy measure, might be a good choice. The types of weight
can also have impact on the application of aggregation function. For example,
weights, no matter on which weighting methods, can be classified into two cate-
gories: ordinal and cardinal ones. Ordinal weights usually cannot be handled well
by compensatory aggregation methods. In this situation, non-compensatory
approach may be an appropriate choice. In addition, the assumption of sustain-
ability theoretically determines the choice of aggregation algorithm (Munda 2005).
There are usually two economic paradigms of sustainability: weak sustainability
and strong sustainability (Dietz and Neumayer 2007; Neumayer 2013). From weak
sustainability perspective, natural capital is considered to be substitutable. In this
view, those compensatory aggregation algorithms might be suitable. From the
perspective of strong sustainability, natural capital is regarded as non-substitutable.
Then, the non-compensatory or semi-compensatory aggregation schemes may be
more appropriate.

In general, we may summarize the procedure for selecting an appropriate
approach to constructing CSI as follows. First and most importantly, economic
paradigms (weak or strong sustainability) should be clearly defined, based on which
either compensatory or non-compensatory aggregation scheme can be determined.
The indicator framework following the definition of different paradigms can also be
established. With the premise of indicator framework, practitioners can check the
scales of indicators and assign weight for each indicator. Once indicator framework
show the property of the same measurement scales, the procedure can continue.
Otherwise, indicators with different scales should be replaced by other proxy
indicators with the same scale. Additionally, there are two other factors that should
be considered, namely interactive phenomena between indicators and hierarchical
structure. If practitioners decide to model the interactive relationship between
indicators, the way for assigning weights to indicators might be different on which
the selection of aggregation scheme will directly be influenced.

5.2 Uncertainty and Sensitivity Analysis

It must be acknowledged that each method has its own merits. However, as
Booysen (2002) discussed, every element of methods used to construct composite
indicators cannot escape from criticism. The disagreements originate from many
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facets, and one main source is the robustness of CSI. Theoretically, different
combinations of methods can be used to construct CSI which implies that it is
possible to derive very different results.

Two alternative approaches are used in constructing CSI to increase their
robustness. One is to ensure the transparency of the whole construction process.
This requires vivid statement of the models including those important aspects, such
as mathematical and descriptive properties. In addition, the way by which such
models are used and integrated in a decision process still needs to be elaborated
clearly. The other approach is to assess the uncertainties by sensitivity analysis.
Sensitivity analysis can answer the question why those entities with similar sus-
tainable performance get distinct rankings, and can also be used to globally analyze
the variation in CSI when different aspects vary over a reasonable range of pos-
sibilities (Saisana et al. 2005; Munda and Saisana 2011). For instance, Zhou et al.
(2010) compared different rankings of entities obtained by a large set of randomly
chosen weighting schemes. Munda and Saisana (2011) analyzed the stability of
sustainability rankings by different aggregation rule while keeping the weights of
indicators unchanged.

Keeping transparency and conducting sensitivity analysis are posterior uncer-
tainty analysis. Correspondingly, there are also a priori uncertainty analysis
methods, e.g. the Shannon-Spearman measure (SSM) developed by Zhou et al.
(2006a, b) and Zhou and Ang (2009). SSM is based on the concept of information
loss in the process of aggregating underlying indicators into a composite index.
Intuitively, methods with smaller SSM, i.e. less loss of information, may be
regarded as better ones. Methods with zero SSM are deemed inheriting full
information, and thus are regarded as perfect model. In this sense, SSM might be
another approach for uncertainty evaluation of CSI.

5.3 Beyond Rankings

Although CSI intuitively provides the index values and ranking results, as empha-
sized by Nardo et al. (2008) and Grupp and Schubert (2010), it can be a means of
initiating discussion to facilitate communication between different stakeholders. The
influential CSI can draw the attention from policy makers towards the importance of
sustainable development. Its intuitive construction also provides opportunity to
uncover the debate for the public, instead of excluding them straightaway. Besides,
CSI may help to stir policy competition about best practice in sustainable devel-
opment policies and become a useful monitoring tool to avoid unintended conse-
quence caused by unsuitable policies. The process of constructing CSI also provides
the possibility of further analyzing the questions. For example, where is the strength?
Which aspect of the entity should be improved? What is the real contribution of
certain indicators to CSI? The information hidden in the CSI can be visually
exhibited with the help of spider diagrams or radar charts, by which the strengths and
weaknesses can be easily and intuitively represented. The correlation analysis

2 Composite Indicators for Sustainability Assessment 31



between underlying indicators and the values of CSI can illustrate the contribution of
each indicator, and then help identify the priority of improvement.

6 Conclusions

This chapter provides a state-of-the-art review of CSI construction with focus on the
methodological developments. We firstly introduce the general structure of CSI
construction. Then, we classify the methods for constructing CSI into two groups,
i.e. MADM and BOD. In MADM, methods for normalization, weighting and
aggregation together with their pros and cons are respectively discussed. It is found
that z-score normalization scheme, hybrid weighting methods and compensatory/
semi-compensatory aggregation functions are most commonly used in application.
Non-compensatory aggregation scheme has received increasing attention by some
recent studies. In BOD, the basic BOD model, weight restriction and other
extensions are described. A new trend is that analysts tend to incorporate various
MADM methods into BOD to construct CSI. Finally, we investigate the principles
for selecting appropriate aggregation methods in constructing CSI. Uncertainty and
sensitivity analysis have also been discussed in order to establish CSI with
robustness.

CSI has evolved as a popular tool for the purpose of monitoring sustainability
performance and providing valuable information for supporting policy analysis and
decision making. However, various challenges still exist, e.g. the conceptual issue
of sustainability, dimensional diversity, data availability and so on. The widely
accepted definition of sustainability includes the impacts on the next generation,
which implies that it is important to incorporate the influence of time and geo-
graphical factor. When taking geographical factors into account, practitioners may
also need to consider entities’ different culture and development patterns. There is
also a rising concern on how to construct a meaningful CSI from both theoretical
and methodological perspectives, as the existing CSIs seldom satisfy the axiomatic
requirements of the meaningfulness definition. In this sense, further efforts are still
required to improving the meaningfulness and robustness of existing CSIs.
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Chapter 3
Pollution Meets Efficiency:
Multi-equation Modelling of Generation
of Pollution and Related Efficiency
Measures

Finn R. Førsund

1 Introduction

Pointing out the importance of the materials balance principle Ayres and Kneese
(1969); Kneese et al. (1970) signalled the start of a new more realistic way of
modelling the interaction between human activities of consumption and production
and the discharge of residuals to the environment that can be polluting. The concept
of (negative) externalities had been used before in the literature to analyse pollution.
However, somewhat innocent examples like vibrations from a confectionary’s
machines disturbing a doctor having a consulting room next door (Coase 1959,
p. 26), sparks from a locomotive causing forest fire, and smoke from a factory
chimney dirtying washing hanging out to dry (Pigou 1920), were used. The
materials balance principle underlined the pervasiveness of generation of residuals
caused by using material resources and the unavoidability of their generation,
invoking the two thermodynamic laws. The same principle holds for energy inputs.
Energy residuals are heat and noise. As to energy production, like charcoal or
electricity, the second law of thermodynamics tells us that all energy contained in
primary inputs cannot be fully utilised in the energy outputs due to the entropy
created (Baumgärtner and de Swaan Arons 2003).

We now face threats of global warming due to emission of greenhouse cases,
increasing urban health problems mainly due to emissions from the transport sector,
problems due to increased acidity of lakes and oceans from burning fuel like coal and
oil for thermal electricity production, and residential heating and cooking. The
capacity of Nature to absorb emissions from human activities have long since been
exhausted, and the exponential accumulation of certain substances in the environ-
ment may result in the necessity of a drastic future cut in carbon-based energy use if
global disasters are to be avoided. A necessary international cooperation to reduce
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the emission of global pollutants started with the Kyoto Protocol in 1997, and the
Paris Agreement in 2016 is the last effort of the United Nations. To achieve results
reliable modelling is needed at all levels of aggregation, also at the micro level
studied in this chapter.

The purpose of the chapter is to develop a way to model the generation of
residuals in production (or consumption1) activities when producing intended
outputs that complies with the materials balance. A distinction is made between an
efficient production of desirable outputs for given resources and inefficient opera-
tions facilitating measuring both efficiency in producing desirable outputs and
efficiency in generating residuals. The dominating single equation model in
empirical studies comprising resources and two types of output; desirable and
undesirable, is shown not to comply with the materials balance and efficiency
properties of the production relations, both in the cases of strong (free) disposability
of outputs and inputs and weak disposability for desirable- and undesirable outputs
together. It is demonstrated in the chapter that separating production relations for
desirable outputs and undesirable ones is in theoretical compliance with both the
materials balance and efficiency of production relations.

The chapter is organised as follows. Section 2 states the general model blocks of
environmental economics limited to a static analysis, the definition of the materials
balance, and provides a brief non-technical overview of recent developments
concerning the joint generation of desirable and undesirable outputs in the case of
inefficiency. Section 3 discusses the concept of joint production and the Frisch
classification scheme. It is demonstrated that a single functional representation of
frontier technology relying on a trade-off between desirable and undesirable outputs
for given resources does not satisfy the materials balance. In Sect. 4 the
multi-equation model based on a special case of multiple output production set out
in Frisch (1965) satisfying the materials balance, is introduced and discussed.
End-of-pipe abatement is introduced in Sect. 5, and the impact of regulating the
emission of pollutants studied. Inefficiency is discussed in Sect. 6. The assumption
of weak disposability that has dominated efficiency studies of joint desirable and
undesirable outputs is scrutinised and found to violate the materials balance prin-
ciple and efficiency assumptions of production relations. Section 7 introduces
efficiency measures that can be estimated for a non-parametric multi-equation
production model. Section 8 concludes.

2 Environmental Economics

Concerns about the environment have old roots in economics, as indicated in
Sect. 1. We will focus on the modelling of relationships after the introduction of the
materials balance principle in Ayres and Kneese (1969).

1Xun Zhou studies environmental productivity growth in consumer durables in this volume.
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2.1 Environmental Economics Post Externality Models

The need for sound modelling of the interaction between human activities and
Nature is obvious for the understanding of how to deal with the problems in a way
that is most effective in utilising the trade-offs between intended man-made goods
and the environmental qualities. Within the strand of research of environmental
economics the main model elements to capture are [see Førsund 1985, 2011;
Førsund and Strøm 1988; Perman et al. 2011 (first edition 1996)]:

(a) The generation of residuals in production and consumption and discharge to
receptors.

(b) The natural processes taking place in the environment as reactions to discharge
of residuals, like transformation of residuals by diluting, decaying, decom-
posing, and transportation between and among receptors.

(c) Defining the environmental services “produced” by the environmental medium
and establishing the impact on these of ambient concentrations of residuals.

(d) Evaluating the preferences attached to changes in environmental services,
including the time perspective (of the “present generation”).

The materials balance, based on the first and second thermodynamic laws, tells
us that production activities using material inputs and energy will also generate
material or energy residuals. Therefore production activities represent joint pro-
duction; at least one desirable output is produced and at least one residual is
generated simultaneously.

The receiving bodies of Nature, the environmental receptors, play a decisive role
in the economic analysis of pollution. The view common in environmental eco-
nomics is that the receptors provide man with two types of services: residual
disposal services and environmental services. The former type relates to the
inherent generation of residuals by the materials-processing economy of an
industrialised society, and the last type is an omnivorous category of recreation
activities like sport fishing, boating, skiing, etc., amenity services, aesthetic values,
including the intrinsic value of Nature, and the provision of extraction possibilities
from mineral deposits, water, air, etc.

A residual is defined as a pollutant if the corresponding disposal service of
receptors negatively affects, quantitatively or qualitatively, the raw materials and
recreation services “produced” by the receptors (points (c) and (d) above). The
discharge of residuals does not of necessity generate pollution. The natural envi-
ronment has an assimilative capacity. Owing to dilution, decay, decomposition,
chemical transformation, etc. occurring in nature, there are certain threshold values
of ambient residual concentrations that must be exceeded before harmful effects
appear.

A general equilibrium analysis must show the trade-offs open to rational deci-
sions. However, this chapter will only focus on the first point (a) above. (Dynamic
problems caused by accumulating residuals in the environment will thus not be
covered.)
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Significant sources for change as regards point (a) are

(i) The scale of the activities and the output mix among activities
(ii) The input mix in an activity
(iii) Process technologies of production and consumption
(iv) The product characteristics, including durability
(v) Modification2 of primary residuals (“end-of-pipe” treatment)
(vi) Recycling of residuals
(vii) The location of activities.

We will assume that changes in process technologies [option (iii)] are rather
modest and short-term measures (done within a year), that the products remain the
same [option (iv)] and that recycling of waste materials [option (vi)] is internal only.
The last option (vii) is not useful for global pollutants, but for local or regional
pollutants like e.g. acid rain or pollutants emitted to air causing localised health
effects.

2.2 The Materials Balance

The materials balance concerns the first step (a) above in Sect. 2.1 in environmental
economics modelling.3 We will simplify and use production activity to cover
economic activity. It is the mass of material inputs that appears in the materials
balance relation, and it is therefore convenient to operate with two classes of inputs;
material inputs (tangible raw materials) xM and non-material inputs xS that we will
call service inputs (Ayres and Kneese 1969, p. 289). These inputs are not “used up”
or transformed in the production process. The materials balance tells us that mass
contained in material inputs xM cannot disappear, but must be contained in either
the products y or end up as residuals z. All three types of variables are in general
vectors. The residuals are discharged to the natural environment [step (b) in
Sect. 2.1]. The variables must be expressed in the same unit of measurement in the
materials balance relation. Weight of mass is a natural unit of measurement. The
weight of the different inputs can then be summed over the number of material
inputs and the same can be done with outputs and residuals:

2As observed in Ayres and Kneese (1969, p. 283) abatement does not “destroy residuals but only
alter their form”. Following Russell and Spofford (1972), the concept of “modification” should be
used instead of waste treatment or purification to underline the conservation of mass. The mass of
residuals does not physically disappear by waste treatment or purification.
3The materials balance is quite seldom mentioned in papers published in operational research
journals or papers written by researchers from that field. In a recent survey article (Sueyoshi et al.
2017) based on 693 papers using data envelopment analysis within energy and environment,
materials balance is never mentioned once.
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There are nM inputs containing mass (there are nS service inputs and
nM + nS = n inputs), m outputs y and K residuals z. The weights ajk, bik, ck convert
the unit of measurements commonly used for the variables (piece, area, length, etc.)
into weight. (The parameters ajk are also called emission coefficients.) The first line
in (1) shows the mass balance for one type of substance (k) (see Baumgärtner and
de Swaan Arons 2003, footnote 5, p. 121), while the second line shows the total
mass balance for the production unit. One issue is the creation of residuals during
the production process also containing materials provided free by nature; like
oxygen for combustion processes, oxygen used to decompose organic waste dis-
charged to water (biological oxygen demand, BOD), nitrogen oxides created during
combustion processes, and water for pulp and paper that adds to the weight of
residuals discharged to the environment. Such substances must either be added to
the left-hand side as material inputs—and then contained in the residuals z—or we
can focus on the actual materials in inputs and redefine z accordingly, like calcu-
lating the carbon content in weight for all three types of variables and not measure
residuals as CO2 or CO, etc.

For each production unit we have an accounting identity for the use of materials
contained in the input xM. It follows from Eq. (1) that the residuals cannot exceed
the material content of inputs measured in the same unit; ckzk �

PnM
j¼1 ajkxMj

ðk ¼ 1; . . .;KÞ. The materials can be part of the intended goods y or contained in
the residuals z. The relation holds as an identity meaning that it must hold for any
accurately measured observation, being efficient or inefficient. The relation should
not be regarded a production function, but serves as a restriction on specifications of
these (more on this later in Sect. 4.3).

The materials balance is valid at a real-life micro level. If production relations
are specified at a sufficiently detailed level, we do not have to worry about the
materials balance being fulfilled. However, as expressed in Frisch (1965, p. 14): “If
we go into details we shall find that the number of circumstances which in one way
or another can influence a production result is endless.” He mentions both gravity
and molecular forces, and continues: “No analysis, however completely it is carried
out, can include all these things at once. In undertaking a production analysis we
must therefore select certain factors whose effect we wish to consider more clo-
sely.” It is unavoidable to simplify, but this must be based on a good engineering
understanding of the activity in question, and following the principle of Ockham’s
razor. The specification may then not satisfy the materials balance accurately, but
we should be satisfied if our specification is “accurate enough”, and especially
avoid specifying relations that cannot in principle conform to the materials balance
principle.
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2.3 Literature on Modelling Production of Goods
and Generation of Waste

This subsection is an overview of main modelling issues occurring after the seminal
paper Ayres and Kneese (1969) was published that will be brief and not show the
formal models. However, the key models and issues will be treated in detail in later
sections.

The formal model in Ayres and Kneese (1969) is basically an input-output
model covering the complete flow of materials between production and con-
sumption and discharge to the natural environment, formulated as a static general
equilibrium exercise in the spirit of Walras-Cassel. The use of linear relationships
with fixed coefficients served their purpose of demonstrating the pervasiveness of
residuals generation, but lacked flexibility regarding technology.

More conventional input-output models including pollutants were formulated by
Leontief (1970); Leontief and Ford (1972). An abatement sector dealing with
pollutants was introduced. The fixed input-output coefficients were extended to
include fixed emission coefficients for various pollutants calculated as emissions per
unit of output. Recognising the role of material inputs, fixed coefficients related to
outputs were assumed, and also that there were fixed coefficients in production in
general, as there are in the standard input-output model. Førsund and Strøm (1974)
introduced extensive input-output emission coefficients for Norway in a
multi-sector model of economic growth (Johansen 1960) to predict the time paths of
discharge of a large number of pollutants, following the economic growth of sec-
tors. Based on data for Norway, the costs of obtaining a “greener” mix of final
deliveries for a given amount of primary inputs were shown in Førsund and Strøm
(1976); Førsund (1985), the last paper also providing a survey of input-output
models including residuals.

A more flexible modelling of production was formulated in Førsund (1972)
based on a special formulation of joint production in Frisch (1965) termed facto-
rially determined multi-output production.4 This model is the main model of this
chapter and will be extensively treated in Sect. 4. Suffice it to say that the main idea
is that inputs generate simultaneously both intended outputs and unintended ones in
the form of waste or residuals, in accordance with the materials balance principle. It
is assumed that each output has its own production function in the same set of
inputs.5 This model was extended in Førsund (1973) to include end-of-pipe
abatement of residuals.

4This type of model but without reference to Frisch (1965) was used in Mäler (1974). His book
was written when the author was a visiting scholar at Resources for the Future (RFF) invited for a
year by Allen V. Kneese.
5This model applied with explicit reference to Frisch (1965) to production of both desirable and
undesirable outputs, was, to the best of our knowledge, first used in Førsund (1972, 1973) and
developed further in Førsund (1998, 2009, 2018).
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Baumol and Oates (1988) (first published in 1975) introduced a transformation
function in desirable and undesirable outputs and inputs.6 However, the possibility
of allocating given resources to produce a different mix of outputs that was a
consequence of the formulation was not discussed. To overcome the inherent
problem of allocating zero resources to produce undesirable outputs, residuals were
treated as inputs without any discussion. It will be pointed out in Sects. 3.3 and 4.3
that this procedure is counter to the materials balance.

The use of a Baumol and Oates type of transformation function is widely
adopted in the environmental economics literature. In the well-reputed textbook of
Perman et al. (2011, p. 25) the assumption of using residuals as inputs is defended,
based on their production function (2.3) for firm i: Qi ¼ fiðLi;Ki;MiÞ where Qi is
the desirable output, Li labour, Ki capital and Mi residuals:

Equation (2.3) may appear strange at first sight as it treats waste flows as an input into
production. However, this is a reasonable way of proceeding given that reduction in wastes
will mean reductions in output for given levels of the other inputs, as other inputs have to
be diverted to the task of reducing wastes.

Cropper and Oates (1992, p. 678) are adopting the same type of arguments.
However, such a diversion of inputs may be relevant in a macro setting, but not in a
setting of a single firm. A marginal productivity is calculated for an input keeping
all other inputs constant. However, if production is efficient then output cannot
increase by increasing a residual because the other inputs are constant, so the
materials balance rules out both an increase in output and an increase in residuals.
The residuals are generated by material inputs, and thus cannot itself be treated as
an input.

The Ecological Economics journal started publishing in 1989. Joint production
is regarded as a fundamental part of ecological economics. As Baumgärtner et al.
(2001, p. 365) state, “the concept of joint production should be considered as one of
the conceptual foundations of ecological economics”. Joint production will be
discussed in Sect. 3.

Pethig (2003, 2006) follow up the general equilibrium approach of Ayres and
Kneese (1969). However, the materials balance is used as a part of the production
relations. This usage is criticised in Sect. 4.3.

The papers reviewed so far did not discuss inefficiency of operations. The pro-
duction relations were based on efficient utilisation of inputs. Within the axiomatic
approach to measuring inefficiency, Färe et al. (1986, 1989) were the first empirical
papers to introduce generation of residuals, or bads as these outputs were called,
together with desirable outputs, or goods. Then environmental efficiency could be
measured. Especially the 1989 paper spawned a large number of papers (623 citations

6A production possibility set was also introduced using the transformation relation such that the
value of the transformation function is zero for efficient utilisation of resources and less than zero
for inefficient operations, but no inefficiency issues were discussed. The solutions to the optimi-
sation problems were based on the production of desirable outputs being efficient.
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in SSCI per 25.01.2018).7 The 1986 paper was somewhat peculiar assuming a
technology with strong disposability of the bads before the introduction of regulation
of residuals, and then assuming weak disposability of the bads after the introduction
of the policy. (Shephard (1970) introduced the concept weak disposability that will
be discussed in Sect. 6.) It is rather questionable if imposing a regulation can change
the nature of technology in such a way (see Sect. 5 where abatement is introduced
without any change in the production technology). The opportunity cost of regulation
is measured as the relative loss of outputs based on the two sets of different hypo-
thetical frontier values given the inputs of the observations.

Färe et al. (1989) introduced a hyperbolic efficiency measure expanding the
goods with a common scalar and contracting the bads with the inverse of the scalar
to project an inefficient observation to a reference point on the frontier. This was
done in order to credit producers for “their provision of desirable outputs and
penalize them for their provision of undesirable outputs” (Färe et al. 1989, p. 90).
A problem with this procedure is the arbitrariness of using a scalar and its inverse
only, there is no obvious rational for this and no argument is offered. The problem
is that the common scalar implies an arbitrary trade-off between goods and bads
confounding the efficiency analysis as such.8 The assumptions that goods and bads
are jointly weakly disposable, but that goods alone are strongly disposable, are also
made without any explanation. (The criticism of the single equation model and
weak disposability is presented in Sects. 3.3, 4.3 and 6.)9

The use of a directional distance function instead of a radial one to discriminate
between goods and bads were introduced in Chung et al. (1997), and the approach has
become popular.10However, it is based on a single-equationmodel and assumingweak
disposability. An expansion factor for outputs that enters additively for goods but is
subtracted for the bads when identifying frontier points (footnote 8 also applies here) is
estimated. “Rewarding” the production of the good and “punishing” the production of
the badwith the same factor is just an implicit relative evaluation of these outputs that is
quite arbitrary. Preferences have to be involved (see point (d) in Sect. 2.1). In addition
the choice of direction to the frontier will influence the measures.

Consequences on efficiency of introducing environmental regulation was put
forward in Porter (1991); Porter and van der Linde (1995), and called The Porter
hypothesis in the literature.11 It is based on the existence of inefficiency, but the

7Chinese researchers have written several such papers, see e.g. Wang et al. (2012, 2017a, b); Xie
et al. (2017); Zhao et al. (2015) for recent applications to Chinese data.
8In Førsund (2017), it is argued that desirable and undesirable outputs must be measured in the
same unit in order to perform a trade-off, cf. point (d) in Sect. 2.1. This can be done by introducing
a damage function, as also used in Førsund (2017, 2018).
9Førsund (1998) was the first to criticise both the assumption of bads as inputs and the weak
disposability assumption. However, the first submission to a journal of the paper was rejected, and
an improved version Førsund (2009) published first 11 years later.
10However, problems with translation properties are pointed out in Aparicio et al. (2016), and
infeasibility problems pointed out in Arabi et al. (2015).
11The text below builds on Førsund (2017), Chapter 8.5.
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approach is different from the axiom-based measures of efficiency, being purely
empirically based. The hypothesis is that substantive environmental regulation giving
flexibility of firms’ choice of abatement techniques may induce firms to innovate to
such a degree that profit increases. Such regulation represents a win-win situation. It is
stated that the pessimistic view stems from considering a static situation only, but that
the pressure of environmental regulation induces a dynamic process of change
representing retooling, process improvement and technical change, which more than
offsets the abatement costs. However, Porter and van der Linde do not present any
formal mechanism supporting the cost-offset hypothesis, but refer to a few examples
of successful adaptation and technical change. The Porter hypothesis and attempts to
model the positive dynamics, empirical studies and critique of the hypothesis (e.g.
Palmer et al. 1995), are extensively reviewed in Brännlund and Lundgren (2009),
Lanoie et al. (2011), Ambec et al. (2013). These three references provide long lists of
references to the literature on the Porter hypothesis.

Porter and van der Linde suggest two different dynamic effects. A neat illus-
tration of the story told in Porter and van den Linde (1995) of the increased
efficiency effect and the shift in technology effect, is presented in Brännlund and
Lundgren (2009), connecting the Porter hypothesis to the efficiency literature. First,
assuming that there is inefficiency in utilisation of resources before the introduction
of environmental regulation, this inefficiency is reduced or even removed after
regulation has been introduced. Second, the regulation induces new technology to
be developed, shifting the production function outwards. This is set out in Fig. 1. In
the space of the desirable output (q in the original figure) and emissions z the
pre-regulation position of the firm is at the inefficient point C below the initial
frontier production function f0(z). The efficient point A on the frontier shows the
production the firm could have had corresponding to emission z0. After introducing
regulation, the firm improves its efficiency and reduces the emissions down to the
regulated amount, zR, and increases output from q0 to qR at point B on the initial
frontier. Then there is a shift of the frontier due to innovation after introducing
regulation to fR(z) where the point E is the efficient point for the level zR of the

Fig. 1 The Porter
hypothesis. Source Brännlund
and Lundgren (2009, p. 83)
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reduced emission. The firm continues to reduce emissions and increase output q,
and profit P moving towards the new frontier.

In a series of eight more or less overlapping papers published in the period
2010–2013 (see Førsund (2018) for the list of these references and evaluations),
Sueyoshi with co-authors actually employed the Frisch (1965) factorially deter-
mined multi-output model with both good and bad outputs being functions of the
same inputs (see e.g. models 4 and 5 in Sueyoshi and Goto 2010, p. 5905), using
non-parametric DEA models for empirical applications mainly to the energy sector.
This is as formulated for frontier models in Førsund (1972, 1973, 2009). No
explanation is given for the choice of this type of model (and the references above
are not given). Sueyoshi et al. developed separate efficiency measures for desirable
and undesirable outputs, but emphasis was put on unified measures by solving for
the combined production possibility sets.

The multi-equation model of Førsund (2009) is followed up in Murty et al. (2012)
using a model called the by-production approach.12 In the theoretical model with
abatement, the first relation is a transformation relation between a desirable output,
an abatement output and two types of resources; one pollution generating and the
other not. The second relation has the pollution (or residual) as a function of the
polluting input (positive impact) and the abatement output (negative impact).
The production possibility set is formed by the intersection of the two sets based on
these relations. Efficiency measures for the two types of output separately and a form
of aggregated measure were developed for non-parametric DEA models.13 Førsund
(2018) argues against the usefulness of aggregate measures for policy purposes.

The abatement activity is only indirectly treated in a non-transparent way in
Murty et al. (2012), maybe due to reflecting process changes. In Førsund (2018) it
is pointed out that it is difficult to get data for process changes and resources
consumed in such activities. Instead an end-of-pipe abatement facility is explicitly
modelled there, separate efficiency measures for desirable outputs and residuals
efficiency are developed, and also a measure for abatement efficiency.

Murty and Russell (2018)14 show that the multi-equation by-product model in
Murty et al. (2012) (with abatement) has an axiomatic foundation supporting such
models, reconciling the abstract axiomatic characterization of an
emission-generating technology in Murty (2015) with the empirically oriented
by-production technology formulated by Murty et al. (2012).

12The name is meant to point to the production of both desirable goods and residuals. However,
the name is not according to the classical economist, calling by-products commercial outputs, but
with less value than other goods. Their word for residuals was waste, see next Sect. 3.1.
13Dakpo et al. (2016) review weak disposability models and the by-production model. Hampf
(2018) reviews single equation models only, and has several critical remarks to the typical Färe
et al. models of desirable and undesirable outputs.
14Førsund (2018), Murty and Russell (2018) and Hampf (2018) are forthcoming in a special issue
‘Good modelling of bad outputs’ of Empirical Economics, see Kumbhakar and Malikov (2018).
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3 Joint Production

The materials balance forcefully establishes that any production involving material
inputs results in two types of outputs; desirable and undesirable. Therefore, a joint
output model must be used in order to model such type of production.

3.1 The Historical Background

Most of the current textbooks, at least on a lower level, dealing with production
theory assume a single output being produced by two or more inputs. However, this
choice of modelling is not based on any empirical evidence that this is the domi-
nating form of production. On the contrary, joint production seems to be the general
rule in practice. As pointed out in Kurz (1986, pp. 1–2):

The view “that these cases of joint production, far from being ‘some peculiar cases’, form
the general rule, to which it is difficult to point out any clear or important exception”, has
been advocated already one century ago by W.S. Jevons.

Kurz (1986) reviews how a number of classical and early neoclassical econo-
mists, among them Adam Smith, Karl Marx, von Thünen, Longfield, Mill, von
Mangoldt, Jevons, and Marshall, treat joint production. The examples used by these
economists were mainly drawn from agriculture; like raising sheep yielding wool
and mutton, animal rearing yields meat and hides, growing wheat yields grain and
straw, and forestry yields timber and firewood, etc.

A standard textbook way to represent a multiple-output multiple input produc-
tion relation is to use a single implicit functional representation:

Fðy; xÞ ¼ 0 ;F0
y [ 0;F0

x\0 ð2Þ

F(.) is commonly called the transformation function. y and x are vectors of
outputs and inputs, respectively. The signing of partial derivatives identify outputs
and inputs. We assume that F(.) is continuous, but not necessarily differentiable at
all points.

There is a clear distinction between inefficient and efficient operation. The
production possibility set corresponding to (2) can be written

Fðy; xÞ� 0; ð3Þ

and contains in principle all feasible production plans. An engineer will probably
not waste his time mapping inefficient ways of producing; a blueprint of technology
represents efficient operations. The production function concept (2) is attached to
efficient operations that are on the border of the set. In the efficiency literature the
efficient way of producing is termed the frontier function (or best practice as used in
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Farrell 1957) due to the factual observations used to estimate the frontier function.
Strongly inefficient observations are found in the interior of the set.

The concept of disposability is expressed by assuming that for a feasible point,
an increase of the x-vector for constant outputs leaves the new point inside the
production set, and a decrease of the output vector y for constant inputs leaves the
new point inside the set. On the frontier, we see from (2) that an (infinitesimal)
increase in an input leads to the interior of the set, as will a decrease in an output.15

The monotonicity expressed by the partial derivatives in (2) corresponds to the free
(strong) disposability of outputs and inputs of the set (3). The production possibility
set allows observations to be located in the interior of the set, so such a set is
therefore a natural starting point for analysing inefficiency. We will return to this
point later in Sect. 6.

According to Kurz (1986, p. 16) Karl Marx researched production technologies
extensively and in addition to agriculture examples had many other examples of
joint production, like mining, forestry, paper manufacturing, the chemical indus-
tries, the textile industries, mechanical engineering, etc. Marx divided products into
a main desired product, and one or several by-products that may or may not be
useful, and that, at any rate, are of secondary economic interest. He was especially
concerned by waste and stated (according to Kurz 1986, p. 16): “The so-called
waste plays an important role in almost every industry.” True to form Marx called
waste excretions of production. Furthermore, Marx stated that the “excretions of
production” should be reduced to a minimum, and the immediate utilisation should
be increased to a maximum of all raw- and auxiliary materials required in pro-
duction. This sounds very modern!

Jevons introduced the distinction between commodities and discommodities, the
last category could cause inconvenience or harm (Jevons 1965, p. 58), and he
pointed out that discommodities could have negative value. He used as an example
of discommodity waste from a chemical plant fouling the water downstream
(Jevons 1965, p. 202).

The classical and neoclassical economists focused much of the discussion of
joint production on the problem of unique determination of the output prices. There
is a problem of determining the share of costs due to joint outputs. It was often
assumed that market forces would lead to as many equations as outputs, and that a
unique set of prices could be determined.

There is one more recent definition of joint production in the literature (Pasinetti
1980) that has some following based on Sraffa (1960) that should be mentioned.
Considering time as periods, capital is entered as an input at the start of a period,
and defined as an output at the end of the period. This type of joint production is not
the type of joint production that we are concerned with in this chapter and will be
disregarded in our classification.

15To say that inputs and outputs can be disposed of by throwing them away (Shephard 1970, p. 14)
is not in accordance with economic use of inputs and outputs.
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3.2 Frisch on Joint Production

The materials balance tells us that desirable and undesirable outputs are produced
jointly. Therefore the modelling of joint production is essential within environ-
mental economics. Joint production takes place when the production unit in
question produces more than one output. According to Frisch (1965), who has a
comprehensive discussion and classification of joint production, joint production
implies that there is a technical connection between products; because there are
certain inputs either which can be used or on technical grounds must be used
jointly, or because there are inputs that can be used alternatively for one product or
the other.16 In The New Palgrave, producing outputs by separate production pro-
cesses is also classified as joint production; there is a choice how to allocate a given
amount of inputs to outputs. This is a typical situation in international trade when
countries are considered as production units. In Chambers (1988); Kohli (1983);
Nadiri (1987, p. 1028) this is called non-joint production.17 In the two first refer-
ences, a main example is how production is modelled in the international trade
literature.

We will use the Frisch (1965) classification below.18 Two main forms of joint
production are suggested:

(i) Inputs can be used to produce different outputs within the same general pro-
duction technology. Examples in Frisch (1965) are that a piece of agricultural
land can be used alternatively to grow different crops, and that a wood cutting
machine tool can be used to produce different types of wood articles. The
producer has a freedom of choice as to the mix of products he wants to
produce. Frisch calls this assorted production.

(ii) The technical process is such that it is impossible to produce one product
without at the same time producing one or more other products; using coal as
input gas, coke, and tar are produced, and raising sheep results in wool and
mutton.

16According to Kurz (1986, p. 25), Mangoldt’s definition is about the same as the one of Frisch:
“pure joint production (or joint production in the technical sense) and what may be called com-
peting, alternative or rival (Edgeworth) production which derives from the fact that a firm’s (given)
productive equipment may be used for several purposes.”
17Using non-jointness when defining joint production seems a little awkward; sounding almost like
a contradiction. Nadiri (1987, p. 1028) claims that absence of non-jointness is a crucial test of joint
production, in spite of including non-jointness as part of the definition of joint production: “Joint
production includes two cases: (1) when there are multiple products, each produced under separate
production processes—i.e. the production function is non-joint […]”. He uses the term “intrinsic
jointness” when there is jointness in a technical sense.
18There are unfortunately few references to Frisch (1965) about joint production, neither Chambers
(1988); Kohli (1983), nor Nadiri (1987) refer to Frisch. It seems appropriate to make his take on
joint production better known.

3 Pollution Meets Efficiency: Multi-equation Modelling … 49



The connection between outputs demands, according to Frisch (1965, p. 269),
that production laws cannot be studied separately for each product, but must be
considered simultaneously for all connected products. In order to catch the engi-
neering complexities of multioutput production Frisch (1965) generalised various
possibilities by introducing a system of µ equations between m outputs y and
n inputs x19:

Fiðy1; . . .; ym; x1; . . .; xnÞ ¼ 0; i ¼ 1; . . .; l ð4Þ

These relations are frontier ones in our terminology. Corresponding production
possibility sets will be

Fiðy1; . . .; ym; x1; . . .; xnÞ� 0; i ¼ 1; . . .; l ð5Þ

The two classes (i) and (ii) above are special cases of (4). The production
possibility set for the system of Eq. (4) will be the intersection of the production
possibility sets (5) for each equation (see Chambers 1988, p. 290).

Frisch (1965) introduced the concept of degree of assortment a that tells us the
limits for reallocating inputs on outputs, a ¼ m� l. If we have only a single
relation in (4), i.e. l = 1—as in (2)—then the degree of assortment is maximal;
amax ¼ m� 1. If there is no assortment, i.e., there is no choice of output mix given
the inputs, then amin ¼ m� l ¼ m� m ¼ 0. There are as many equations l as
there is products m.

An important case is m� l; the degree of assortment is non-negative as assumed
above. However, in the system (4) there may be more relations than products so the
case m\l cannot be excluded. If this is the case then there are one or more pure
product bands independent of factors. Frisch (1965) calls the number of such
equations for the degree of coupling j. This is not determined by m, n, l, but is
expressed by the greatest number of equations in (4) that do not contain any of the
inputs when transforming the equations in such a way that as many of them as
possible are free from inputs (Frisch 1965, pp. 278–279). The band (or coupling)
between outputs is expressed by:

Fcðy1; . . .; ymÞ ¼ 0; c 2 C ð6Þ

where C is the set of relations between outputs only of the l equations in (4). In the
classical literature on joint production, it was often assumed a fixed relation
between outputs, e.g. the quantity of wool bears a fixed relation to the quantity of
mutton (Frisch 1965, p. 271).

19In a very readable book, Whitcomb (1972) discusses the connection between externalities and
joint production. He refers both to Frisch (1965) and specifies a variant of the system (4), and to
Ayres and Kneese (1969), but does not use the materials balance explicitly in his analysis.
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There may also be pure factor bands between inputs, i.e. relations between inputs
independent of outputs:

Fbðx1; . . .; xnÞ ¼ 0; b 2 B ð7Þ

where B is the set of relations between inputs only of the l equations in (4), e.g. a
chemical process where inputs must be applied in fixed proportions.

The efficient border of the production possibility set (3) is specified as a single
functional relationship in (2). This is commonly done, but we see that the system of
Eq. (4) is much more general. However, it may be problematic to impose convexity
assumptions on the general specification of the intersection of µ technology sets (5).

An important special case of the system (4) is that the equations can be solved
with respect to the m products (cf. the concern of the classical economists men-
tioned in Sect. 3.1), and where the m ensuing production functions are single
valued. This is the case of Factorially determined multi-output production (Frisch
1965, p. 270)20,21:

yi ¼ fiðx1; . . .; xnÞ; i ¼ 1; . . .;m ð8Þ

The same set of inputs appears in all separate production functions. Both the
degree of coupling and the degree of assortment are zero. The products are sepa-
rable, but the ratios between outputs are not fixed, but change with input mix. The
mix of wool and mutton depends on the breed of sheep and maybe feeding, and the
mix of eggs and poultry meat depends on the feeding.

Within this case, there are important sub-cases. Frisch (1965, p. 275) claims that
necessary and sufficient condition for coupled (joint) products in the case of fac-
torially determined multi-output production functions is that there exist a functional
relationship Fðy1; . . .; ymÞ ¼ 0, independent of inputs. One way of obtaining a fixed
ratio between outputs is:

yi ¼ cif ðx1; . . .; xnÞ ) yi
yj
¼ ci

cj
; i; j ¼ 1; . . .;m; i 6¼ j ð9Þ

where the c’s are constants. The technology is the same for all outputs except for a
scaling constant ci implying a fixed ratio between the outputs. An example of
coupled products is refining of crude oil and the distillates emerging from the same
process.

20Kohli (1983) introduces this case in his Definition 4 on p. 213 and calls it “non-joint in input
prices”. This seems a little peculiar name since there are no input prices appearing in the definition
(however, duality results use shadow prices). He has no reference to Frisch (1965) that introduced
this type of relation decades before.
21Chambers (1988, p. 289 ) calls the factorially determined functions for generalised fixed coef-
ficients technologies.
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There may be more complex couplings than (9). The ratios between products
may be a function of the quantities of outputs, but the degree of assortment is still
zero. A complete coupling occurs when isoquants in the input space coincide, and
substitution regions are identical (see Frisch 1965, p. 273 for an illustration). The
relation between outputs for the same isoquant is independent of input quantities.

3.3 Restrictions on Production Models

Going back to classical or neoclassical economists concerned with joint production
in Sect. 3.1, the three categories of outputs specified were main products,
by-products and waste products. By-products (the alternative spelling ‘bi-products’
is used in Frisch 1965, p. 11) are commercial products of more minor economic
importance than the main products. Waste products without economic value to the
producer are termed residuals in this chapter.

In the influential textbook by Baumol and Oates (1988, first edition 1975) the
essence of their model can be captured by specifying a single transformation
relation as the border of the set and the production possibility set as follows (more
based on externalities modelling than referring to the materials balance)22:

Fðy; z; xÞ ¼ 0;F0y;F0z[ 0;F0x\0

Fðy; z; xÞ� 0
ð10Þ

Notice that with the sign conventions for the partial derivatives all variables
exhibit strong (free) disposability. However, the question is if this relation can
function as the efficient border of the production possibility set as relation (2) does for
the set (3). As the first relation in (10) stands it has a maximal degree of assortment
according to the scheme of Frisch (1965), meaning that all the inputs can be real-
located to produce the desirable products y and no resources used to produce the
undesirable products z, unless more conditions are specified. However, this goes
against the fact that the residual z is not a result of choice as is the case with the
desirable outputs, but is physically linked to the material inputs used in the pro-
duction of desirable outputs. Baumol and Oates may have been aware of this prob-
lem, because without telling the reader they assume that the z variables function as if
they are inputs. The formal Pareto-optimal results when they maximise the utility of
one consumer for a given input vector x, under the condition that all other consumers’
utilities shall not be lower than given levels, then apparently seems to make sense.
However, this cannot be done because as we see from the materials balance (1), the
material content is distributed on products y and residuals z. Residuals cannot be

22The assortment property is not discussed in Baumol and Oates (1988, Chap. 4). The materials
balance principle is not mentioned in the book.
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reduced in (10) for given x because the transformation function is by definition
efficient, in the sense that it is constructed by maximising outputs y for given inputs x,
neglecting residuals z because they are undesirable outputs. The maximal possible
amount of raw materials is already extracted from x to produce desirable outputs y,
and this amount cannot then be increased for a given x vector.

The conjecture is that a single transformation relation cannot work without
specifying restrictions on the degree of assortment. However, even more serious is
the combination of the materials balance and the efficiency assumption that the
transformation function is based on. The combination of these two factors implies
that we cannot operate with a functional trade-off between a desirable output and a
residual. The option to reallocate inputs between desirable goods and residuals is
simply not available. The residuals are generated simultaneously with desirable
outputs by using material inputs. Some sort of separation between modelling of
production relations for the desirable and undesirable output is needed. This point
will be developed further in Section 6.

4 Multi-equation Models for Desirable and Undesirable
Outputs

To make a useful model is an art. As quoted in Sect. 2.1 Ragnar Frisch was fully
aware of the need for simplification. He introduced the term ‘model world’ in Frisch
(2010, pp. 31–32):

The observational world itself, taken as a whole in its infinite complexity and with its
infinite mass of detail, is impossible to grasp. […] In order to create points where the mind
can get a grip, we make an intellectual trick: in our mind we create a little model world of
our own, a model world that is not too complicated to be overlooked, and which is
equipped with points where the mind can get a grip, so that we can find our way without
getting confused. And then we analyse this little model world instead of the real world. […]
It shall picture those indefinable things in the real world which we may call ‘essentials’ […]

Part of the ‘essentials’ is that the model should satisfy the materials balance and
efficiency properties of the production relations. A solution to the problems is to
employ the Frisch (1965) scheme of factorially determined multi-output production
in the previous Sect. 3.2 as in (8), introducing residuals as outputs in the same way
as desirable outputs. The adoption of a multi-equation model instead of a
single-equation one is crucial for satisfying theoretically the materials balance and
efficiency conditions. More specifically, as stated in the previous subsection, there
cannot be any functional trade-off between desirable and undesirable outputs for
given resources.
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4.1 The Frisch Multi-equation Model

As stated previously, residuals are generated simultaneously with the desirable
products and stem from the raw materials employed as inputs. It seems important to
satisfy these physical realities arising from use of material inputs in any sound
modelling of the interaction of economic activity and generation of pollutants. The
model from the production theory of Frisch (1965) presented in Sect. 3.2 of product
separability, the factorially determined multi-output model, seems tailor-made for
capturing the physical process of generation of residuals simultaneously with
desirable outputs. Single-output production functions for each undesirable residual
are added to the single-output functions for desirable goods23:

y ¼ f ðxM ; xSÞ; f 0xM ; f 0xS [ 0; f 00xM ; f
00
xS\0

z ¼ gðxM ; xSÞ; g0xM [ 0; g0xS � 0; g00xM ; g
00
xS [ 0

ð11Þ

To keep the model as simple as possible we consider a single desirable output
y (or the good for short) that is the purpose of the production activity, and a single
residual or undesirable output z (a pollutant or a bad for short). Two types of inputs
only are also specified following Ayres and Kneese (1969); material inputs xM and
non-material inputs, or service inputs xS. Generalising to multi-output and
multi-pollutants can be done just by adding more equations, one for each variable,
keeping the same inputs (their number can easily be expanded too) as arguments in
all relations (see Førsund 2009).

In the previous Sect. 3.3, it was stated that the model must have a certain
property of separability. The model (11) satisfies this property because the pro-
duction of desirable outputs is not influenced by undesirable outputs, and vice versa
for the production of undesirable outputs.24

It should be stressed that the two relations in (11) do not represent physically
separate technologies. It is the analyst that simplifies a complex technology of
simultaneous transformations to the two relations. Changes in inputs generate
simultaneously both the intended and unintended outputs. Generation of residuals
cannot be controlled independently, but follows from the use of the inputs needed
for production of the intended outputs.

23Leontief type models with fixed coefficients are not considered.
24The Frisch model of factorially determined multi-output equations is not the only model having
the sufficient separability properties.
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The material inputs are essential in the sense that we will have no production
neither of material goods nor bads if xM = 025,26:

y ¼ f ð0; xSÞ ¼ 0; z ¼ gð0; xSÞ ¼ 0 ð12Þ

The function f(.) is defined by maximising y for given inputs, and the function g(.)
is defined by minimising z for given inputs. They are both frontier functions. The
partial productivities in the good output production have the standard properties of
positive but decreasing values. The signing of partial derivatives of the residuals
function may be more unconventional. It seems reasonable to assume positive but
increasing marginal productivity of the material input, and negative but decreasing
marginal productivity of the service input. The positive partial productivity of service
inputs xS in the desirable output production function and the negative sign in the
residuals generation function can be explained by the fact that more of a service input
improve the utilisation of the given raw materials through better process control,
fewer rejects and increased internal recycling of waste materials.27 The negative
partial derivative of service inputs in the residuals function mirrors the positive sign
in the output function. If y is non-material (e.g. electricity) then bk = 0 in (1) and
g0xS ¼ 0 implying that the residual has the same mass but that the output is increased
when xS increases. The residuals generation function may degenerate to a fixed
relation between residuals and raw materials similar to Leontief technologies, but
then we will have a Leontief relation for the good y also.

4.2 Substitution Possibilities

There will in general be substitution possibilities between material and service
inputs. The rate of substitution evaluated at a point on an isoquant for y in (11) is
ð�f 0xM=f

0
xSÞ\0 in the interior of the substitution region (this is a Frisch concept for

the economic region; i.e. all marginal productivities in goods production are pos-
itive). This is the amount of the service input that has to be increased if the material
input is reduced with one unit, keeping output y constant. Considering several
material inputs there may be substitution possibilities between them also,

25One or more service inputs may also be essential, but the point is that residuals are in general an
unavoidable feature using material inputs in production. Although y ¼ f ðxM ; 0Þ ¼ 0 we may have
z ¼ gðxM ; 0Þ[ 0; e.g. as in a fully automated thermal electricity-generating plant running in a
spinning mode (the energy stored by spinning is then not considered an output).
26In Murty and Russell (2018, p. 15) xM is called jointly essential with z, it is rather obvious that
z cannot be zero for xM > 0, however, Rødseth (2017a) covers the possibilities with the concepts
output- and input essentiality.
27Cf. the famous chocolate production example in Frisch (1935), discussed in Førsund (1999), of
substitution between labour and cocoa fat due to more intensive recycling of rejects not filling the
forms the more labour and less cocoa fat that are employed producing the same amount of
chocolate.
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e.g. between coal and natural gas, that will keep the output constant, but decrease
the generation of bads if the marginal contribution of gas to creation of bads is
smaller than the marginal contribution of coal.

There is also substitution between the two types of inputs in the
residuals-generating function. The marginal rate of substitution is positive,
ð�g0xM=g

0
xSÞ[ 0 in the interior of the substitution region for bads due to the marginal

productivity of service inputs being negative in this case. The necessary increase in
the service input to keep a constant level of the residual when the material input
increases with one unit, is increasing following the signing of the partial derivatives
in (11). This implies a special form of isoquants in the factor space and the direction
of increasing residual level compared with a standard isoquant map for the output, as
seen in Fig. 2. (The substitution regions, the borders of which have zero marginal
productivities, are not shown.) The isoquants for the two outputs can be shown in the
same diagram because the arguments in the functions are the same. The level of the
residual z is increasing moving South-East (red isoquants) in the direction of the
broken red arrow, while the level of the intended (desirable) good y is increasing
moving North-East (blue isoquants) in the direction of the broken blue arrow. Going
from point A to point B in input space, increasing both the material and service
inputs, but changing the mix markedly towards the service input, we see that the
production of the residual z has decreased while the production of output y has
increased. Reducing the service input but increasing the material input going from
point B to point C, keeping the same level of the desirable output, the level of the
undesirable output increases. All points of the type (xS

A, xM
A ) in input space generating

points (yA, zA) in output space are frontier points.
There are obviously limits to substitution between material and service input

keeping the same desirable output.28 Moving along the y isoquant from point A in a
North-West direction there is a limit to the amount of raw materials that can be
extracted from the material input and keeping the output constant, i.e. there is a
limit on how much the residual generation can be reduced. The lower limit of the
residual is reached at the border of the substitution region for the good output

C
B

y

z

A

D

xS

xSA

xM
xMA

Fig. 2 Isoquants for the
production of y and z

28Continuing the chocolate example in footnote 27: when so much labour is employed so that all
the defect chocolates re-circulated to the production cannot be increased any more employing more
labour, based on a given mass of raw material with a minimum of cocoa fat for the required taste.
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isoquant in question. (This is not illustrated in the figure.) Another angle on this
lower limit is keeping the material input constant at the level xM

A at point A, and then
see how much residuals can be reduced increasing the service input from xS

A. Let us
say point D will be the point with the minimum generation of residuals z, but then
the good output has also increased. Point D is then on the border of the substitution
region (zero marginal productivity for service input) for the isoquant for the new
level of good output. The minimum level of residual generation depends typically
on the level of both types of inputs, as does the level of maximal good output.

Obviously, there must also be upper bounds on emission generation for given
amounts of emission-generating inputs; residuals cannot exceed the material inputs
measured in mass units [see the discussion of (1)]. Since minimum levels are the
crucial variables in the analysis upper bounds will not be specified explicitly for
convenience (following Murty and Russell 2018).

In addition to the two ways of reducing generation of residuals by input sub-
stitutions there is the obvious way of reducing the production of desirable products
by scaling down the use of both inputs. However, this may be often the most
expensive way to reduce residuals generation (Rødseth 2013).

4.3 The Materials Balance and the Multi-equation Model

Model (11) is a theoretical one, our model world, and as such can be compatible
with the materials balance. A theoretical model that is not compatible with the
materials balance is obviously inferior to a model that does comply. Notice that the
materials balance (1) is a physical law and should not be regarded as a separate part
of the production relations (11). The observations of y and z generated by inputs xM
and xS through the f(.) and g(.) functions must satisfy the materials balance. Thus,
this identity constrains what kind of production relations to specify, but does not
give any specific information as to the nature of the technology. It should be born in
mind that the system (11) of production functions is a long way from describing
physical engineering relations in real life details. As is standard in economics, the
relations are extreme simplifications, but containing the essential features necessary
for the analyses we want to do in our model world. As stated in Sect. 2.2 the
materials balance is functioning on a much more detailed level of aggregation,
especially when representing the residuals discharged to the environment and the
part of residuals that are due to physical/chemical processes of combustion. It will
be difficult to get data on the level necessary to control the materials balance
numerically.29

29A practical use of the materials balance is the estimation of emission coefficients, e.g. when coal
is used in thermal electricity generation, assuming a specific physical composition of coal and
optimal running of the process. Then, because the complete contents of coal end up as residuals,
knowledge of the combustion process allows the emission coefficients concerning the substances
actually discharged to the external environment to be calculated.

3 Pollution Meets Efficiency: Multi-equation Modelling … 57



It may be the case that the materials balance principle is taken a little too literally
or philosophically in ecological economics doing practical modelling (Baumgärtner
et al. 2001; Lauwers 2009). It should be born in mind that the materials balance, as
an identity for all kinds of processes using material inputs, cannot give any
information about a specific technology at hand, but only give some restrictions on
what kind of relations to specify. A restriction mentioned in Pethig (2003) is that
the Cobb–Douglas function cannot be used because of the extreme substitution
possibility between inputs. A problem in Pethig (2003, 2006) is the use of the
materials balance in specifying the residuals generation function by just inserting
for z in the materials balance identity (1). It is rather difficult to believe that such a
relation can properly represent any specific technology.

How can we then know that the frontier relations (11) comply with the materials
balance principle? The short answer is that we cannot know this until we have
accurate observations, but due to the requirement of details, this will be quite
difficult to carry out. However, what we do know from the results of Section 3 is
that there cannot be what we can call a direct functional basis for a trade-off
between goods y and bads z.30 In Fig. 2 we have no trade-off between y and z for
given x; i.e. at point A the output levels y and z are given for the input levels xM

A and
xS
A at A. To change the mix between y and z always requires changing input mixes
and levels.

5 End-of-Pipe Abatement and Regulation

5.1 End-of-Pipe

We will add an independent abatement process to the multi-equation model (11).
End-of-pipe abatement often consists of a facility separated from the production
activity. Other abatement options in the short run is to retool the processes and do
small-scale changes. These options are alternatives to integrated technological pro-
cess solutions. However, it is often rather difficult to identify such activities distinct
from the general process activity and to identify the inputs involved. It is easier to do
this with a stand-alone abatement facility in terms of inputs used and outputs pro-
duced. Add-on abatement requires that we make a clear distinction between primary
pollutants z from the production process and pollutants zD actually discharged to the
environment. Primary pollutants can then be regarded as an input to the abatement
process. In addition to inputs like labour, capital, and energy, other inputs like
absorbing substances, chemicals and specialised capital, may have to be used in order
to convert part of the primary pollutants z into abated pollutants za as outputs creating

30This trade-off should not be confused with a correlation between y and z depending on indirect
effects. Increasing xM in (11) will lead to increases in both y and z, thus we have a positive
correlation, increasing xS will increase y but decrease z (if y contains materials), and thus we have a
negative correlation.

58 F. R. Førsund



less harm (usually no harm at all is assumed in applications) than the primary ones
(Førsund 2009)31 In the long run there may be a choice between end-of-pipe
abatement and large-scale investment in new technology integrating production
processes and abatement. The time horizon for environmental improvement,
uncertainty about what can be achieved by new technology, and uncertainty about the
future regulatory regime may determine the choice between these two options.

Expressing the abated residuals as outputs we formulate the following abatement
production function (see also Førsund 1973; Pethig 2006; Färe et al. 2013; Hampf
2014; Førsund 2009, the last paper provides a generalisation to more than one
primary residual, and the introduction of new types of abatement outputs with
detrimental environmental effects)32:

dza ¼ zA xaM ; x
a
S

� �
;A0

xS ;A
0
xS [ 0;

dza

z
2 ½0; 1�

zD ¼ z� dza � 0
ð13Þ

The abatement activity receives the primary residual z appearing in (11) and uses
resources xaM ; x

a
S to modify z into another form za that by assumption (for conve-

nience) can be disposed of without social or private costs. In order to express the
residual variables in the same unit, we can convert abatement residuals za, typically
given another form than the primary residual, into units of primary residual applying
a conversion coefficient d. The theoretical feasible range of modification is from zero
to one. In practice 0.95 seems to be the upper limit, e.g. for flue-gas desulphurisation.
The partial productivities in the abatement production function are assumed positive.
Increases in the abatement inputs contribute to an increase in the relative share of
abated amount and an absolute increase for a given amount of primary residual.

To make sense of the abatement function (13) it is assumed that the amount of
abatement inputs determines the capacity to treat the primary residual generated by
the production system (11). It may be more realistic that capital equipment deter-
mines a physical capacity to treat the primary residual. However, we do not want to
introduce an analysis of investing in abatement capacity. We let the amount of
current inputs in (13) determine the abated amount and assume that the maximal
relative abatement level that realistically exists will not be reached for economic
reasons (e.g. due to sufficiently decreasing marginal productivities of the inputs).

The second equation defines the amount of residual zD that is actually emitted to
the environment. It is often called the secondary residual in the environmental
economics literature, but also controlled emission is used. One may think of the

31Modification and recycling of residuals using factorially determined multioutput production
functions was introduced already in Førsund (1973).
32Hampf (2014) has a similar specification of the abatement function with primary residuals as
input together with a stage-specific amount of non-polluting abatement inputs (same as similar
inputs in the production of the good output in stage 1), a shared input of the two stages, and part of
the output from stage 1 as an input. The abated amount is the single output, and the secondary
residual emitted to the environment is residually calculated as in Førsund (2009, 2018).
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secondary pollutant as an output, but it is more to the point (and analytically more
convenient) to regard the secondary pollutant to be determined residually.33 It is
assumed that the secondary residual has the same form as the primary residual, e.g.
measured in CO2, or SO2, or in carbon and sulphur, or in the form determined by
the combustion process or production process in general. It is typically the case that
at least all gaseous residuals cannot be dealt with completely and modified to
harmless substances, so z[ dza ) zD [ 0. The partial productivities in the
abatement production function are assumed positive. Increases in the abatement
inputs contribute to an increase in the relative share of abated amount and an
absolute increase for a given amount of primary residual. Given the amount of the
primary residual from the production stage, and knowing the rate of abatement A,
both the absolute amounts of the two abatement outputs can be calculated:
dza ¼ Az; zD ¼ ð1� AÞz.

The multiplicative decomposition of primary pollutants and the relative abate-
ment part facilitates focussing on the latter as the endogenous variable of the
end-of-pipe abatement activity. It may be assumed that the function A(.) is concave.

Usually abatement is represented by a cost function in the environmental eco-
nomics textbooks (Førsund and Strøm 1988; Perman et al. 2011, see also Rødseth
and Romstad (2014, p. 119) for a non-parametric application to US electricity
generation regulating sulphur emissions). The main advantage is simplification (see
Førsund 2017), but the details of a physical abatement production function (13) are
then hidden. Here it is chosen to focus on the relative amount of primary residual
that is modified to other forms, e.g. from gas to solid waste. We can also say that
there are two outputs generated by the abatement activity; the harmless abatement
residual za and the remaining amount of the primary residual in its original form.

Applying the materials balance principle to (13) the abatement activity will add
to the total mass of residuals if material inputs are used; the material factors and
primary pollutants are now inputs to a production process and the mass is dis-
tributed on the output za and the secondary pollutant zD. The total mass of residuals
has increased, but the point is that abatement means less mass of the harmful
residual; zD < z.

In the environmental efficiency literature, the resources of a firm are often
regarded as given, and then increased abatement will imply fewer resources to
produce the intended output and thereby decreasing the generation of primary
pollutants (see e.g. Martin 1986; Färe et al. 2013). To do this requires an explicit
restriction to be imposed on the availability of inputs (done only in Färe et al.
2013). However, this problem is created by the analyst and does not necessarily
reflect decisions of a firm having access to markets for inputs to given prices. If it is
assumed that abatement is a separate identifiable activity, as e.g. end-of-pipe, and

33The abatement stage in Färe et al. (2013, p. 112) does not, somewhat awkwardly, show the use
of the abated amount explicitly, neither in the definition of their production possibility set (16) nor
in their model Eqs. (18), (19) and (20). In Pethig (2006, p. 189) the primary residual seems to be
the output of abatement.
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inputs are sourced in markets, there is no reason to assume that abatement resources
are taken from the production inputs of a firm. Thus, abatement does not influence
the output directly, but increases the cost of production and may then indirectly
reduce output and production inputs. It is closer to reality at the micro level not to
consider a common resource pool for the production unit, but to regard the activities
(11) and (13) as separate “profit centres”.

We recommend to follow this approach and thus avoid constructed trade-offs not
embedded in technology. The abatement inputs therefore have a super-index “a” to
indicate abatement inputs. It may also be the case that there are specific types of
abatement inputs, e.g. chemicals and capital equipment, not used in the production
process itself. In the case of thermal electricity generation, it is quite usual that
abatement activities require electricity as an input. Carbon capture and storage may
draw as much as 20% of the gross production of electricity. However, this elec-
tricity can be formally regarded as a bought input so (13) may still be used.

5.2 Imposing a Constraint on Emission

Environmental regulatory agencies typically prefer direct regulation and not indirect
economic instrument.34 The most common type of direct regulation is to impose an
upper limit on discharge of harmful residuals on firms. In order to predict how a
firm reacts to direct regulation it is necessary that the firm acts rationally, commonly
interpreted as meaning in a private economic sense. It is then standard to assume
that the firm starts out being technically efficient and not to be inefficient as was the
case discussing the Porter hypothesis in Sect. 2.3.

For simplicity, we consider a single undesirable output only. An environment
agency may impose an upper limit zDR on the amount emitted from a firm during a
specific time period; zD � zDR . The firm’s optimisation problem, cast as a profit
maximisation problem, becomes

Max py�
X

j¼M;S

qjxj �
X

j¼M;S

qaj x
a
j

s:t:

y ¼ f ðxM ; xSÞ
z ¼ gðxM ; xSÞ
dza ¼ zAðxaM ; xaSÞ
zD ¼ z� dza

zD � zDR

ð14Þ

34See Zhao et al. (2015), Xie et al. (2017) for studies of types of command-and-control and
market-based environmental regulation in China.
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The optimisation problem may be written more compactly as

Max pf ðxM ; xSÞ �
X

j¼M;S

qjxj �
X

j¼M;S

qaj x
a
j

s:t:

gðxM ; xSÞð1� AðxaM ; xaSÞÞ� zDR

ð15Þ

The necessary first-order conditions are:

pf 0xj � qj � kg0xjð1� AÞ ¼ 0; j ¼ M; S

� qaj þ kzA0
xj ¼ 0; j ¼ M; S

ð16Þ

Here k is the shadow price on the emission constraint. Assuming that the con-
straint is binding the shadow price shows the gain in profit of marginally relaxing
the constraint.

Without the regulation on discharge of residuals, the standard first-order con-
dition is pf 0xj ¼ qj; j ¼ M; S; the value of the marginal productivity of a factor is

equal to the factor price. With regulation binding the unit factor cost will increase
for the material input but decrease for the service input, thus leading to a substi-
tution between the factors. However, total costs will go up leading to reduced
output. If abatement is used this means that abatement is cheaper than reducing
discharge of residuals by only reducing production of the good, and reduction of
output will then not be so great as without abatement.

6 Allowing for Inefficient Operations

6.1 Defining Inefficiency

In view of the importance of the materials balance for how to specify a technology
based on using material inputs, it might be of interest to expand on the meaning of
inefficiency. Inefficiency arises in general when the potential engineering or
blue-print technology, the frontier for short, is not achieved when transforming
inputs into outputs, assuming that this is feasible.35 For given desirable outputs too
much resource of raw materials and service inputs are used. For a given amount of
inputs containing physical mass it means that at the frontier more outputs could
have been produced. In terms of the materials balance (1) the implication is that the

35In the case of the presence of embodied technology or vintage capital, a distinction should be
made between efficient utilisation of the mix of existing technologies and the most modern
technology (Førsund 2010).
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amount of residuals z for constant inputs xM at inefficient operation will be reduced
if the frontier is achieved, assuming that intended output y contains materials.
Inefficiency in the use of service inputs means that with better organisation of the
activities more output could be produced if the frontier is realised for constant xS.
The materials balance also holds for inefficient observations (as pointed out in
Sect. 2.2). It is the amount of residuals and outputs that have potentials for change,
while the a, b, c coefficients and the inputs in Eq. (1) remain the same. The
combustion process may be less efficient in converting the raw material into heat,
and a different mix of combustion substances may be produced than at efficient
operation, e.g., for thermal electricity production based on coal, the mix of sub-
stances CO2, CO, particles, NOx and ash may differ between inefficient and efficient
operations.

Another source of inefficiency is the occurrence of rejects and unintended waste
of raw materials, e.g., producing tables of wood, residuals consists of pieces of
wood of different sizes from rejects and down to chips and sawdust. The ways of
improving the use of raw materials and thereby reducing the amount of residuals are
more or less of the same nature as factors explaining substitution possibilities
between material and service inputs in Sect. 4.2.

There is another type of problem in the efficiency strand of research not often
mentioned concerning the behaviour of (or the management of) firms. It is difficult
to assume, as in standard production theory using frontier functions only, that
inefficient firms can optimise in the usual sense of obtaining maximal profit or
minimising costs, as modelled in the previous Sect. 5.2. There is no production
function formulated for inefficient firms in non-parametric analyses. Introducing
behaviour in non-parametric DEA models for a unit it is assumed that frontier
technology is used. However, in the real world all firms, also inefficient ones, have
to react to e.g. environmental regulation. If firms do know the frontier, how come
they end up being inefficient? To appeal to randomness only is not so satisfying.
[See e.g. Førsund (2010) for a review of reasons for inefficiency.] When efficiency
is estimated the observations are usually taken as given and no behavioural action
on the part of the units is assumed to take place. It is the analyst that creates an
optimisation problem when calculating efficiency measures. This may be a reason
for the lack of pursuing policy instruments in the literature addressing inefficiency
when both desirable and undesirable outputs are produced. In the environmental
economics literature not addressing efficiency issues the design of policy instru-
ments, playing on giving firms incentives to change behaviour, is of paramount
interest, as exemplified in Sect. 5.2. However, the assumptions in the inefficiency
literature reviewed in Sect. 2.3 are made for measuring efficiency, and are not
suitable for developing policy instruments applied to all units in an industry. We
saw this in Färe et al. (1986) making introduction of regulation of emissions change
the form of the production possibility set for all units and not addressing the
reactions of each individual unit to the regulation. If economic behaviour is
assumed in the efficiency literature, then the unit in question operates on the
frontier.
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6.2 The Production Possibility Set

The general production possibility set allowing for inefficiency including both
desirable and undesirable outputs is:

T ¼ fðy; z; xÞ y� 0 and z� 0 can be produced by x� 0j g ð17Þ

Such a definition covers the possibility of both efficient and inefficient opera-
tions. The border of the production possibility set is commonly referred to as the
frontier and expresses efficient operation. This frontier corresponds to the trans-
formation relation (2) in neoclassical production theory used in Sect. 3.

The technology set (17) can equivalently be represented by the output set

PðxÞ ¼ fðy; zÞ x� 0 can produce y� 0 and z � 0j g ð18Þ

In the case of desirable outputs it is obvious that efficient use of resources
implies that maximal amount of these outputs are produced for given resources.
Concerning undesirable outputs these are automatically kept at a minimum given
the maximisation of desirable outputs.

6.3 Weak Disposability

In order to operate the single equation model (10) with undesirable outputs avoiding
the zero solution for residuals pointed out in Sect. 3.3, restrictions must be placed
on the production possibility set.36 This has typically been done in the axiomatic
efficiency literature by imposing weak disposability, a mathematical concept
introduced by Shephard (1970), defined as

If ðy; zÞ 2 PðxÞ; then ðhy; hzÞ 2 PðxÞ for 0� h� 1 ð19Þ

This means that along the frontier desirable and undesirable outputs must change
with the same proportionality factor (segment-specific in the case of a
non-parametric frontier). No economic or engineering reasoning for this restriction
is given in Shephard (1970), but it may resemble the assumption of fixed
input-output coefficients in input-output models including pollution, as in the fixed
coefficient model of Ayres and Kneese (1969) reviewed in Sect. 2.3 that is backed
up by economic reasoning and empirical findings.

36In Färe et al. (2013, p. 110) it is stated: “which [without a restriction] as pointed out by Førsund
(2009) would give us a […] nonsensical result that zero bads can be achieved at no costs […]”.
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Illustrations of weak disposability for output sets, taken from the first illustration
of weak disposability of desirable and undesirable outputs in Shephard (1970), are
presented in Fig. 3.

The desirable output is u2 and the undesirable is u1. The trade-off contours for
two levels of inputs are shown together with the Leontief (1970) case of a fixed
relationship between the two outputs as indicated by the ray 0�u.37 The contour
curves starting from the origin (thinner lines are not part of the efficient frontier
according to Shephard) secure the condition of inevitability of positive undesirables
when desirable output is positive, termed the null-jointness condition in Shephard
and Färe (1974).38

Fig. 3 Illustration of weak disposability. Source Shephard (1970, p. 188)

37Notice that using input-output type of models does not support the assumption of weak dis-
posability, as is made clear in Fig. 3; the input-output assumption means that there is only a single
ratio between the good and the bad, not many as illustrated by the two other trade-off curves.
However, notice that the Leontief assumption is valid for the point �u only. Furthermore, weak
disposability is not a case of Frisch (1965) output couplings as in Eq. (6).
38Note that Shephard (1970, p. 187) was aware of the fact that production relations need not be of
a single-equation type: “It is useful to reiterate at this point that the foregoing assumptions for the
production correspondence do not exclude the technology being composed of several processes (or
sub-technologies) which are to be jointly planned, as well as situations where joint outputs are
inherently involved.”
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An explanation of the simultaneous reduction of desirable and undesirable
outputs along a trade-off curve often used is that inputs are reallocated to abatement
of pollutants.39 However, it seems rather difficult to both have constant inputs along
the curve and to take some inputs away to be used in another activity. If abatement
is to take place it must be introduced explicitly, and show the connection between
input use and abatement.

A problem with the approach of Shephard to overcome the problem of strong
disposability of the residual is the coupling between desirable and undesirable
outputs. The situation is that the couplings are between raw materials and the
outputs, and take place simultaneously. Specifically, the single-equation model
using distance functions cannot capture this fact. The popular use of the directional
distance function (Chung et al. 1997):

~Doðx; y; b; gy;�gbÞ ¼ max b : ðyþ bgy; b� bgbÞ 2 PðxÞ; ~Doðx; y; b; gy;�gbÞ� 0
� �

;

where (gy, −gb) is the directional vector and P(x) is the output production set (18),
has the problem that assuming differentiability, as is often done (Färe et al. 2013),
then ð@~Doðx; y; z; gy;�gbÞ=@zÞ=ð@~Doðx; y; z; gy;�gbÞ=@yÞ is the rate of transfor-
mation between the good and the bad for given inputs. This ratio is used for
estimating shadow price of the residual (Färe et al. 2013), and the trade-off curve is
illustrated in numerous papers by Färe et al. (2013) and authors of similar models.
However, such a trade-off is not compatible with the material balance.40

6.4 Recent Attempts to Improve the Single-Equation Model

In Rødseth (2017a) there are interesting attempts to reconcile the type of efficiency
model used in Chung et al. (1997) based on directional distance functions with the
materials balance, extending the model with abatement and also some new axioms.
(The new model is applied in Rødseth 2016.) However, the model remains a
single-equation one. Such a model is based on a trade-off between desirable and
undesirable outputs for given inputs at the frontier. As shown previously a
single-equation model building on such a trade-off is not compatible with the
materials balance. Rødseth (2016) introduces a way to satisfy the materials balance
when identifying the reference point for an inefficient observation on the frontier
using a special directional vector called weak g-disposability by keeping the
materials balance identity for a fixed input vector when projecting the observation

39Färe et al. (2008, p. 561) state: […] “disposal of bad outputs is costly—at the margin, it requires
diversion of inputs to ‘clean up’ bad outputs” […].
40A peculiarity with the trade-off in Färe et al. (2013) is that the trade-off occurs with the output for
final consumption and the secondary pollutants from the abatement stage, and not between the
total output of the good (electricity) and the generation of pollutants in the production stage.
However, it is the last trade-off that is the functional trade-off that goes against the materials
balance principle in the single-equation model of the production stage.
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to the frontier. However, the single equation model is based on a trade-off at the
frontier between y and z, implying that the materials balance is not fulfilled. The
materials balance, that is an accounting identity, cannot in general be used as a
production technology. As explained in Sect. 4.3 (see also Førsund 2018, pp. 77–
78), the materials balance expressed by Eq. (1) is an accounting identity and cannot
explain how residuals are created within a production process. However, intro-
ducing axioms of jointness of inputs and outputs are improvements over the
assumption of null jointness of the desirable and undesirable outputs.

The new model in Rødseth (2017a) is implemented empirically in Hampf (2018)
and compared with Färe et al. models applied to the same data. However, choosing
the best model based on empirical applications is not the approach recommended in
Sect. 4. Theory should come first.

Abatement is introduced in Rødseth (2014, 2016, 2017b). However, abatement
as a production activity is not modelled explicitly. In Färe et al. (2013) explicit
end-of-pipe abatement is added to the production of desirable and undesirable
outputs. Inputs to abatement come from a given resource pool by reallocation, and
in addition abatement receives part of desirable output as input together with pri-
mary pollutants. However, the two distinct production activities are lumped toge-
ther using a directional distance function with final delivery of desirable outputs,
secondary undesirable outputs, and total “source” resources.41

A similar two-stage approach is also developed in Hampf (2014). The distinct
production activities are as the first stage producing desirable and undesirable
outputs, and intermediate desirable output used as input in the abatement produc-
tion, and at the second stage producing abatement outputs using undesirable output
from the first stage as input together with non-polluting inputs and a commonly
shared input. A restriction in the form of a material balance is introduced in the first
stage, so no production relation proper is used for the undesirable output. The
modelling of the production activities of desirable and undesirable outputs remain a
single equation that does not satisfy the materials balance.

It should be emphasised that the arguments as formulated in Sect. 3.3 are not
only concerning weak disposability, but also strong disposability. It was demon-
strated how also strong disposability fails. The point is that single-equation models
when material inputs are involved, cannot fulfil the materials balance and efficiency
conditions for the frontier relations because a trade-off between intended and
unintended outputs violates the materials balance and the efficiency properties of
the frontier. There must be a clear disentanglement between the modelling of the
production of desirable and undesirable outputs.42 It is the single-equation approach

41A material balance restriction is mentioned, but not implemented in the empirical model. Weak
disposability is assumed.
42This is also the message in Murty and Russell (2018, p. 18) stating: […] “the complex real-world
trade-offs among inputs and outputs in these technologies cannot be captured by a single functional
relation. For example, it is impossible for a single function to capture, simultaneously, the positive
relations between emissions and emission-causing inputs and the positive relations between
emissions and intended outputs.”
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that is at fault, not specifically the imposition of weak disposability. The crucial
feature of the Frisch-inspired two-equation model Eq. (11) in Sect. 4 is just the
separate frontier functions for goods and bads.

The single equation model has apparently been successfully applied in the
numerous empirical studies found in the literature. The data have seemingly allowed
the model to be estimated. However, the ease of obtaining estimates of efficiency
does not guarantee that the results are correct. Unfortunately, at the level of
abstraction of such models the risk is that a ‘false frontier’43 is estimated, i.e., the data
fit a model that goes against the physical law of materials balance principle, and
against a fundamental efficiency requirement of a frontier production function.44

7 Efficiency Measures and Their Estimation
in the Multi-equation Model

7.1 The Production Possibility Sets of the Factorially
Determined Multi-equation Model

The multi-equation frontier model (11) with add-on abatement (13) can be
straightforwardly extended to include inefficient operations. It remains to show how
such a model can be implement empirically. The multi-equation model with
abatement allowing inefficiency can be set up using inequalities [with the partial
derivatives of the functions as given in (11) and (13)]:

y� f ðxM ; xSÞ
z� gðxM ; xSÞ
dza=z�AðxaM ; xaSÞ

ð20Þ

Following Murty et al. (2012) the production possibility sets can formally be
written:

T1 ¼ ðxM ; xS; yÞ y� f ðxM ; xSÞ and y� 0; xM � 0; xS � 0jf g
T2 ¼ ðxM ; xS; zÞ z� gðxM ; xSÞ and z� 0; xM � 0; xS � 0jf g
T3 ¼ ðxaM ; xaS; z; zaÞ dza � zAðxaM ; xaSÞ; za � 0; z� 0; xaM � 0; xaS � 0

��� �
ð21Þ

43This apt expression is due to Barnum et al. (2017).
44Dakpo et al. (2016, p. 356) argue that all the different models introduced should be estimated for
comparison. As mentioned previously this is also the approach in Hampf (2018). However, in light
of the risk of estimation a ‘false model’, one cannot identify the “best” model in such a way. The
only way is to choose the theoretically best model.
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The functions f(.), g(.) andA(.) represent the frontier technologies. For given inputs
the realised amount of the desirable output may be less than the potential, the primary
pollutant may be greater than the potential, and the relative share of abated primary
residuals may be less than the potential at each frontier technology, respectively.

7.2 The Multi-equation By-Product Model

The by-product model in Murty et al. (2012, p. 122) with abatement (also used in
Murty and Russell 2018) has two frontier relations:

f ðxM ; xS; y; yaÞ ¼ 0

zD ¼ gðxM ; yaÞ
ð22Þ

(The notation in Model (11) is used.) The variable ya is called abatement output, but
its functional role is somewhat unclear. The partial derivative of the goods in the
first relation is assumed positive and the partial derivatives for the inputs are
assumed negative. In the second residual-generating equation the partial derivative
of the polluting input is assumed positive and the partial derivative of the abatement
output negative. The undesirable output zD is the secondary residual, i.e. the
residuals actually emitted to the environment, see Eq. (13). We notice that the
residual zD does not appear in the first relation, and that the desirable good does not
appear in the second relation, thus the generation of emissions seems to be inde-
pendent of intended-output production and usage of non-emission-causing inputs.
(This is in accordance of the definition of the emission-generating technology of
Murty et al. (2012) as shown in Murty and Russell 2018, p. 19, Theorem 1.)

The two production possibility sets can be written:

T1 ¼ fðxM ; xS ; y; y
a; zDÞ 2 R5

þ f ðxM ; xS; y; yaÞj � 0g
T2 ¼ fðxM ; xS ; y; y

a; zD; Þ 2 R5
þ zD � gðxM ; yaÞ
�� g ð23Þ

The technology set T for the total activity is the intersection of the two subsets;
T ¼ T1 \ T2. Murty and Russell (2018) combine Murty et al. (2012) and Murty
(2015) to make the case for an axiomatic foundation for the multi-equation model.

Comparing the frontier models (21) and (23) we see that the Murty et al. (2012)
model does not conform to the factorially determined multi-output format regarding
the residuals-generating relation by specifying the secondary residual as output and
materials inputs and abatement output as inputs.45 How abatement takes place is

45The multi-equation model in Serra et al. (2014) is based on the development in Førsund (2008)
(an improved version of this working paper is Førsund 2009) and Murty et al. (2012). Both
polluting and non-polluting inputs are specified to produce residuals emitted to the environment
[see their Eq. (3)], i.e. no abatement is taking place.
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then rather hidden. End-of-pipe abatement is ruled out, so there must then be some
internal adjustment of technology or recycling of raw materials (cf. the chocolate
production example in footnote 27). A problem excluding the non-polluting input
in the residuals-generating function is that reducing the residual by input substi-
tution, as explained in Sect. 4.2 (see Fig. 2), is not reflected in the specification of
the residuals relation. However, more seriously, as explained in Sect. 4.1, positive
marginal productivity as assumed in the first relation in (22), i.e. increasing xS
partially increasing y is usually obtained by utilising raw material better. This then
implies less residuals for constant xM, but the second relation states that only change
in xM can influence the generation of residuals and not changes in xS. This seems a
drawback and goes against knowledge about substitution (cf. footnote 27).

The Frisch scheme of joint production separating outputs and having the same
set of inputs as arguments in all production functions is a well-argued scheme, and
is especially so in our case of simultaneous production of both goods and bads,
because it is just the inputs that are used producing a desirable output that also
generates the nondesirable outputs.

In accordance with theorems in Murty and Russell (2018) a strategy for effi-
ciency measures is to introduce separate measures for each of the different activi-
ties. Then the Farrell (1957) technical measures of efficiency may be used (these are
equivalent to distance functions), giving us three types of measures based on rel-
ative distance from best-practice frontiers: desirable output efficiency Ey, primary
residual efficiency Ez, and abatement efficiency EA, all three measures restricted to
be between zero and one. Efficiency measures can in general be either input ori-
ented or output-oriented. In our setting output orientation is a natural choice.

7.3 The Efficiency Measures

Concerning the estimation of the unknown frontiers a non-parametric DEA model,
build up as a polyhedral set, assuming standard axioms such as compactness,
convexity and monotonicity, can be applied to estimate the efficiency measures
based on the estimate of the best practice frontier that the data at hand can give us.
However, forming the residual production possibility set is not quite standard due to
the negative sign of the derivative of the service input.

In the three DEA optimisation problems below for unit i among N units in total,
variable returns to scale functions are specified (for simplicity a single output and
two inputs are specified):
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1=Eyi ¼ Maxk;hh

s:t:

XN

j¼1

kjyj � hyi;

XN

j¼1

kjxkj � xki; k 2 M; S

XN

j¼1

kj ¼ 1; kj � 0; h� 0

ð24Þ

The optimal solution of the weighted sum of observed outputs and inputs of the
efficient units spanning the frontier are the output and input values at the frontier
segment for the radial projection of observations (yi, xi), (zi, xi). As to disposability
decreasing good output for given inputs, and increasing input for given good output
leaves us in the interior of the production possibility set.

Remember that we have assumed that the function g(.) is convex when for-
mulating the primary residuals efficiency measure:

Ezi ¼ Mink0;uu

s:t:

XN

j¼1

k0jzj �uzi;

XN

j¼1

k0jxkj � xki; k 2 M; S

XN

j¼1

k0j ¼ 1; kj � 0;u� 0

ð25Þ

As to disposability increasing bad output for given inputs, and decreasing input
for given bad output leaves us in the interior of the production possibility set. For
the two first frontier production relations in theoretical models in (20), a unit that is
on the frontier for the intended output, will also be residual-efficient because of the
combined effect of the materials balance and the efficiency assumptions of the
functions. (All points on isoquants illustrated in Fig. 2 are by definition efficient.)
However, the estimation of the border of a polyhedral set based on observations
implies typically a negative bias of the frontier technology compared with the
unknown theoretical model. It may then be the case that best practice points
spanning the set may not be efficient within the true unknown technologies (20).
A best practice unit in the problem (24) in desirable output production may not be
efficient in undesirable output production in the problem (25), and vice versa.
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The materials balance identity is not specified for the efficiency problems above.
It holds for the two problems together, not (24) and (25) separately, but only if the
polyhedral model is the true theoretical model. The concern with the materials
balance estimating a non-parametric frontier using DEA is then that projections to
the frontier in problems in (24) and (25) of inefficient points may not satisfy the
relevant materials balance conditions. The projection points for inefficient obser-
vations within the N units are:

XN

j¼1

kjyj;
XN

j¼1

kjxkj; k 2 M; S

XN

j¼1

k0jzj;
XN

j¼1

k0jxkj; k 2 M; S

ð26Þ

These points are not observations, but constructs of the analyst. Assuming
projection points being on efficient faces, i.e. all the inequalities in (24) and (25)
hold as equalities, it may be tempting to say that the materials balance restriction for
the frontier projection of unit i is

a
XN

j¼1

kjxMj � b
XN

j¼1

kjyj þ c
XN

j¼1

k0jzj ) axMi ¼ bhyi þ cuzi; i ¼ 1; . . .;N ð27Þ

However, this is only correct if the border of the estimated polyhedral set is the
true frontier. The materials balance condition in (27) can be checked by inserting
the optimal solution for the projected residuals point solving (25) and the solution
for the desirable output solving (24) into (27), thus exposing difference between the
left-hand and right-hand of (27). (Notice that we must have

PN
j¼1 kjxMj ¼PN

j¼1 k
0
jxMj by definition.)

The expansion of yi (h� 1) must be counteracted by the reduction in zi
(0�u� 1). However, without imposing this restriction on projection points on the
frontier there may be no guarantee that this is fulfilled. It may be a problem that the
frontier output projection points come from two different models, while the inputs
are the same. Regarding weakly efficient faces there will be slacks on constraints
yielding zero shadow prices. However, the set of these units may be different
between the models. Material inputs with zero shadow prices not impacting the
efficiency scores must also be counted in the materials balance.

Imposing a materials balance constraint on projection points as in Rødseth
(2017a) in the single-equation model is not straightforward in the multi-equation
model. However, given the possibility of biased estimation using DEA it may not
be desirable to force the materials balance condition upon synthetic projection
points possibly changing the estimates of efficiency scores.

In the non-parametric estimation model for abatement efficiency the observed
amount of primary residual for unit i is now given from the production stage and
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not appearing in the model determining the frontier relative degree of abatement
due to the assumption of multiplicative decomposition of the abatement function in
the first relation in (13)46:

1=EAi ¼ Maxk00;//

s:t:

XN

j¼1

k00j Aj �/Ai

XN

j¼1

k00j x
a
kj � xai ; k 2 M; S

XN

j¼1

k00j ¼ 1; k00j � 0;/� 0

ð28Þ

Once we have the solution for the relative abatement the absolute amounts of
abatement residuals and secondary residuals for a projection of an inefficient unit to
the frontier can be calculated. As to disposability decreasing the degree of purifi-
cation for given inputs, and increasing input for given degree of purification leaves
us in the interior of the production possibility set.

For the materials balance to hold in the models in (20) the relations must be a
“good” representation of the production relations (see Sect. 2.2). A problem is that it is
quite difficult to verify the goodness. One may doubt that the piecewise linear fron-
tiers, or the faceted structure of the borders of the production possibility sets, meet a
goodness criterion. There is also the problem of the variables with zero shadow prices
generating faces not of full dimension regarding forming projection points of ineffi-
cient observations on the frontier. However, forming the materials balance all vari-
ables containing mass must be counted, also for units with zero shadow prices.

The term environmental efficiency or eco-efficiency is used somewhat differently
in the literature and is not used in the efficiency measures introduced above. One
reason for this is that onewould expect that environmental efficiency has something to
do with what happens within the environment in terms of degradation of environ-
mental qualities, cf. points (c) and (d) in Sect. 2.1. However, the most common notion
of environmental efficiency is showing the potential relative reduction in emission of
residuals. The so called unified approach in Sueyoshi and Goto (2010) and the
measure for the set T used in Murty et al. (2012) have the drawbacks that they show
measures for the aggregate level and hide the individual results as in (24) and (25).

However, for policy purposes the individual measures above provide most
valuable information for designing specific direct regulations or indirect economic
instruments.

46Hampf (2014) also solves separate optimisation problems for the production stage and the
abatement stage, but this is done by minimising the weighted emissions in the two stages.
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8 Conclusions

The introduction of the materials balance in the environmental economics literature
(Ayres and Kneese 1969) heralded a new approach to modelling the interactions
between the production of desirable outputs and the natural environment. The
materials balance tells us that mass (and energy) in an economic activity cannot
disappear, but only takes on different forms. Surveying the use of the materials
balance 30 years after Ayres and Kneese (1969) pioneered the concept within
environmental economics, Pethig (2003), from a standpoint of ecological economics,
complains that the materials balance has not been used to the extent it warrants.

However, the position in this chapter (supported by Murty et al. 2012; Murty and
Russell 2018) is that the materials balance is important when picking the model to
use. However, the materials balance is an accounting identity and cannot give
information about specific technologies explaining the transformation of resources
to desirable and undesirable outputs, so an active use of the materials balance
condition may not be necessary if the right model is picked. In addition, at the
aggregation level the models are usually formulated on, it may be difficult to
represent all the physical quantities involved. Data accuracy and availability are
also important factors.

In production activities involving material inputs, the simultaneous generation of
desirable outputs and residuals as undesirable outputs, the latter turning up as
pollutants in the natural environment, must be captured in a sufficiently realistic way.
Classical and neoclassical economists were concerned with production of waste and
have many interesting observations that should be utilised. In the efficiency literature
the last decades, the most popular approach to empirical efficiency studies of
simultaneous production of ‘goods’ and ‘bads’ has been to apply a single-equation
model. To assume a mathematical property of weak disposability of the production
possibility set allowing for inefficient observations, has then been seen necessary.
This property blocks the maximal assortment case of using all resources on desirable
outputs resulting in zero emission of residuals.

However, a main result of the chapter is that a functional trade-off between
desirable and undesirable outputs, as implied by the weak disposability model, is
not theoretically compatible with the materials balance and efficiency in resource
utilisation. Notice that it was shown in Sect. 3.4 that also strong disposability of
outputs is not compatible with this trade-off. But more importantly, this implies
further that it is the format of a single equation model to tackle efficiency mea-
surement when producing both desirable and undesirable outputs using material
inputs, which is at fault, not weak disposability as such. The main message of the
chapter is that the single-equation model, which has been almost exclusively used
in the literature about inefficiency when dealing with material-based bads, is not
able to conform to the materials balance and efficiency requirements on frontier
relations. A multi-equation model is required separating production relations of
desirable and undesirable outputs.
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A multi-equation model, based on ‘classical’ joint production theory, that the-
oretically satisfies the materials balance and frontier efficiency requirements, is
developed in the chapter, and shown to function well both in an efficient and in an
inefficient world. It is also straightforward to understand the mechanisms of the
model without mathematical knowledge necessary to relate to rather complex
axiomatic approaches.

The model proposed in the chapter can straightforwardly be extended to cover
abatement efforts of the end-of-pipe type.

The single-equation models based on weak disposability have had a good run for
decades. However, as happens with technologies when experiencing technical
progress in an economy also happens to models: they become outmoded and should
then substituted with better ones; the multi-equation models. As Ragnar Frisch
expresses it: […] “we disregard a model world as soon as we get upon the idea of
another model world which ‘smells’ better” (Frisch 2010, p. 33).

It was conjectured that single-equation models cannot comply with the materials
balance, and furthermore that a specific type of a multi-equation model can obey the
materials balance. Further research will be focussed on substantiating more for-
mally this conjecture.

Other research tasks are implementing empirically the type of multi-equation
models including abatement proposed in this chapter. More challenging are intro-
ducing dynamics not only involving embodied technologies, but also dynamic
analyses of how inefficiencies are reduced due to pressure of environmental regu-
lation, i.e. tackling the Porter hypothesis in a dynamic framework.

As underlined in the chapter generation of residuals occurs when material inputs
are used. Typical industries studied in the environmental efficiency literature are
thermal generation of electricity and pulp and paper. In addition, we have material
throughput industries such as oil refineries, other chemicals, steel and iron,
aluminium, and other energy-intensive industries, as well as food processing and
cement. A common feature for all these industries is that much of the key tech-
nologies are embodied in the capital equipment.

The pace of technical progress depends on investments in new technology.
A consequence is that care must be exercised when having observations for several
vintages of plants when using DEA to estimate the best practice frontiers. The risk
is great for estimating a ‘false frontier’, in the sense that there may be a mix of
plants of different vintages spanning out the frontier. An efficiency measure may
then give a false picture of obtainable improvement (Førsund 2010; Belu 2015,
point to some related problems). Developing more appropriate models for tackling
vintage structures when studying environmental efficiency is a challenge for future
research.47

47Hampf and Rødseth (2015) find that most of the efficiency differences in U.S. power plants
measured by electricity generation using coal can be explained by the age of plants.
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Chapter 4
Environmental Productivity Growth
in Consumer Durables

Xun Zhou

1 Introduction

Environmental productivity1 refers to the ratio of an aggregate measure of eco-
nomic outputs (goods and services) to that of environmental costs (i.e., energy and
resources used, pollutants and wastes emitted during production) (Arabi et al. 2014;
Kuosmanen 2013; OECD 2011).2 Growth in environmental productivity would
thus be necessary for production units to increase economic outputs while miti-
gating environmental pressure. In recent decades, a large number of studies on
environmental productivity have appeared across various sub-disciplines of eco-
nomics (e.g., energy economics, environmental economics, ecological economics,
agricultural economics, production economics, mathematical economics, econo-
metrics, etc.), as well as in other related disciplines such as operations research,
management science, engineering, and public administration. In these studies,
production units of interest are usually plants or firms [e.g., paper and pulp mills in
(Chung et al. 1997; Färe et al. 1989); power plants in (Arabi et al. 2017; Song et al.
2017; Yu et al. 2017b; Zhang and Choi 2013); iron and steel enterprises in (He et al.
2013); automobile manufacturers in (Du et al. 2017); airlines in (Liu et al. 2017)],
sectors or industries [e.g., agriculture in (Kuosmanen 2013; Lin and Fei 2015);
transportation in (Yu et al. 2017a; Zhang et al. 2015); manufacturing industries in
(Emrouznejad and Yang 2016; Shao and Wang 2016; Yao et al. 2016; Yu et al.
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2016)], regions [e.g., (Du et al. 2017; Sueyoshi et al. 2017; Zhang et al. 2011)], and
countries [e.g., (Aparicio et al. 2017; Shen et al. 2017; Zhou et al. 2010)]. To our
knowledge, however, only one previous study by Kortelainen and Kuosmanen
(2007) considers environmental performance of consumer durables. This is some-
what surprising because, during their use phase, consumer durables such as pas-
senger cars, washing machines, refrigerators, and other home appliances are in fact
production units that consume energy and resources (and hence generate environ-
mental pollutants) to provide services for consumers.

A possible reason for this gap is that services provided by consumer durables go
unmeasured in economic censuses, and thus the (environmental) productivity of
consumer durables has gained little attention in the literature of efficiency and
productivity analysis. However, we cannot ignore the importance of consumer
durables in providing services for consumers and in casting pressure on the natural
environment. For instance, the use of passenger cars—the main category of con-
sumer durables—is a very convenient and flexible means of transportation in daily
life but also an important contributor to emissions of greenhouse gases, air pollu-
tants, and noise. In the European Union, passenger cars on roads amounted to 251
million in 2015 and were responsible for 770 million tonnes of CO2 emissions,
nearly a quarter (22.2%) of total EU emissions during the year; in China, there were
95.1 million registered passenger cars in 2015 and they were estimated to emit
approximately 291.7–446.9 million tonnes of CO2, 2.7–4.2% of China’s total
emissions in the same year (see Table 2 in Sect. 2).

Therefore, environmental productivity growth in consumer durables is important
for environmental protection and sustainable development, and deserves in-depth
studies. Since consumer durables can be seen as production units (though very
tiny), we can, in principle, estimate environmental productivity change in consumer
durables within the existing productivity analysis framework (Chung et al. 1997;
Kuosmanen 2013; Lovell 2003), yet such estimation should be consistent with
particular features of consumer durables as compared to conventional production
units. Those particular features would influence the way of modeling the production
activity (polluting technology3) for consumer durables and the way of computing
and interpreting environmental productivity change. The primary purpose of this
chapter is thus to develop an environmental productivity index specially designed
for consumer durables.

Since virtually all empirical data are subject to more or less stochastic noise, this
chapter presents the first study of environmental productivity growth in consumer
durables that takes stochastic noise explicitly into account. We resort to the convex
nonparametric least squares (CNLS) approach (Kuosmanen 2008), which deals
with stochastic noise in a nonparametric way, to estimate the polluting technology
of consumer durables. As noted earlier, only one previous study considers envi-
ronmental performance of consumer durables, and there is only one previous study

3Also known as environmental production technology.
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that applies CNLS to environmental productivity analysis at the sectoral level
(Kuosmanen 2013).4

The rest of this chapter proceeds as follows: In Sect. 2 we present and analyze
the particular features of consumer durables and introduce a typical example.
Section 3 elaborates how to specify the polluting technology of consumer durables.
Section 4 provides a brief overview of conventional environmental productivity
measures and constructs a Malmquist-type index of environmental productivity
change for consumer durables. In Sect. 5 we use a unique Finnish data set of
passenger cars to demonstrate how to interpret environmental productivity change
in consumer durables. Section 6 concludes this chapter.

2 Particular Features of Consumer Durables

The use of consumer durables (passenger cars, refrigerators, washing machines, and
other home appliances, etc.) greatly facilitates people’s life while at the same time
causes much environmental pressure on the society; in this context, environmental
productivity growth in consumer durables would be important for environmental
protection and sustainable development. Therefore, it is meaningful to assess
environmental productivity change in consumer durables as well as the driving
forces behind such change. In light of the lack of literature on this subject, we
present here the first such study which might help pave the way for future research.

During their use phase, consumer durables are in fact production units that
consume energy and resources (and hence generate environmentally bad outputs) to
provide services for consumers (see Fig. 1 for an illustration). As a result, we can,
in principle, estimate environmental productivity change in consumer durables
within the existing productivity analysis framework, which consists of three main
stages: (1) modeling the polluting technology of the production units being
investigated; (2) estimating the polluting technology for each interval of the study
period by using techniques such as CNLS, data envelopment analysis (DEA),
parametric programming, and stochastic frontier analysis (SFA); (3) measuring and
decomposing environmental productivity change in the production units over the
study period based on a selected productivity index, e.g., the Malmquist index
(Kuosmanen 2013). Note however that this framework was originally developed for
conventional production units. A mechanical application of it to consumer durables
may encounter problems or lead to biased or inaccurate estimates, because con-
sumer durables differ from conventional production units in a number of important
respects as presented below:

4Kuosmanen (2013) uses the term StoNED (stochastic nonparametric envelopment of data), but in
fact, he only applies CNLS (which is the first stage of StoNED) and does not proceed to further
steps.
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1. In a region under consideration, the total fleet of a category of consumer dur-
ables can reach a huge size and face the dynamics involving entry of new
consumer durables and exit of older ones at each moment.

2. Consumer durables are not decision-making units—their environmental pro-
ductivity are not influenced by themselves but regulators, producers, consumers,
and ambient conditions.5

3. Real-world data on environmental costs (fuel consumption and emissions) at the
consumer durable level tend to be unavailable or difficult to obtain.6

4. A consumer durable usually uses a single type of fuel (gasoline, diesel, or
electricity, etc.). The amount of fuel consumption directly determines the level
of its CO2 emissions (see Table 1 for reference).

Taken together, the first and second particular features of consumer durables
state that environmental productivity growth in the total fleet of a particular cate-
gory of consumer durables is driven by three major sources: (1) environmental
productivity growth in new consumer durables, mainly influenced by regulators,
producers, and consumers; (2) exit of older consumer durables with lower envi-
ronmental productivity, mainly influenced by regulators and consumers; (3) envi-
ronmental productivity growth in consumer durables already in use, mainly
influenced by regulators, consumers, and ambient conditions. However, it may not
be feasible to investigate all these sources of environmental productivity growth

Inputs Outputs
• 

• 

Energy
- fossil fuel
- electricity
Resources 
- water ...
Capital 
- price 

• 

• 

Consumer durables 
(cars, refrigerators, 

washing  machines, etc.)

Bad outputs
- CO2
- wastes 
- pollutants 

• Services for 
consumers

Fig. 1 Illustration of the use phase of consumer durables

5For example, fuel consumption of passenger cars on roads are affected by driving behavior,
vehicle maintenance, and ambient conditions (e.g., temperature, road, traffic flow, altitude,
weather, etc.) (VCA 2016). As a result, even given cars of the same make and model, the actual
amounts of fuel consumption may vary significantly.
6Estimation of real-world fuel consumption and CO2 emissions of consumer durables, passenger
cars in particular, has attracted a lot of attention. See for example (Alvarez and Weilenmann 2012;
André et al. 2006; Dings 2013; Zhang et al. 2014).
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(especially the third one) due to the lack of real-world data on environmental costs
as suggested by the third particular feature.7

In this context, a possible way is to assess environmental productivity growth in
new consumer durables using type-approval data (which are more likely to be
available), yet this is still challenging within the existing productivity analysis
framework. The first particular feature implies that there could be a considerable
and variable number of new consumer durables taken in use each year and thus we
would be faced with an unbalanced, large-sized panel data set. Although the
existing framework can deal with unbalanced panel data by matching observations
in adjacent periods and computing (environmental) productivity change for mat-
ched observations, it is computationally expensive and probably meaningless to do
so in the case of new consumer durables. Moreover, the fourth particular feature
highlights the proportional link between fuel consumption and CO2 emissions of
consumer durables. For this reason, several key axiomatic assumptions of a pol-
luting technology, such as free disposability of inputs and weak disposability of
good and bad outputs, may no longer hold (Rødseth 2017).

To address these issues, we propose an empirical strategy as follows: The total
fleet of a particular category of consumer durables can be decomposed into cohorts
of consumer durables taken in use each year (or another time interval) of the study
period, that is, yearly cohorts of new consumer durables. We can model the pol-
luting technology of consumer durables by revisiting the general axioms underlying
the existing productivity analysis framework (Chung et al. 1997; Färe et al. 1989,
2005; Hailu and Veeman 2000). Then the polluting technology can be estimated for
each cohort by one or another technique (e.g., CNLS, DEA, SFA) in terms of
the models of new consumer durables. Finally, the environmental productivity

Table 1 Correlation coefficients between fuel consumptiona and emissions of passenger cars

(1) Gasoline consumption (2) Diesel consumption

q p-value Count q p-value Count

CO2 emissions (g/km) 0.999 0.000 2095 0.997 0.000 2275

Noise level (dB(A)) 0.363 0.000 2095 0.114 0.000 2275

CO emissions (mg/km) 0.057 0.009 2095 0.005 0.798 2275

HC emissions (mg/km) 0.000 0.991 2095 0.312 0.099 29

NOx emissions (mg/km) 0.071 0.001 2095 0.162 0.000 2275

PM emissions (mg/km) 0.817 0.183 4 0.131 0.000 2275

Source Self-calculation based on the type-approval data for new models of cars (August 2016)
collected from the Vehicle Certification Agency (VCA) of the United Kingdom Department for
Transport
aFuel consumption is measured in liters per 100 km

7An exception is that some real-world data at the aggregate level (e.g., total amount of fuel/
electricity consumption) may be available for consumer durables and those data can be used to
estimate other related aggregate measures (e.g., total CO2 emissions). As such, environmental
productivity analysis might be able to be performed at the aggregate level (sector, region, or
country).
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change from one cohort to another can be computed and decomposed based on a
preferred productivity measure. Note that each cohort is represented by a hypo-
thetical consumer durable that possesses the average of inputs and outputs in that
cohort (other choices of the hypothetical consumer durable are possible).

The advantages of this empirical strategy lie in the incorporation of the particular
features of consumer durables into the existing productivity analysis framework, the
higher availability of type-approval data for consumer durables, and the relevance
to environmental and climate policy (new consumer durables are subject to
increasingly stringent environmental regulations).8

2.1 Typical Example

Without loss of generality, this chapter considers passenger cars—the main cate-
gory of consumer durables—as a typical example to implement our empirical
strategy. A passenger car in road traffic serves as a private transportation tool that
consumes gasoline, diesel, or alternative fuel to provide transportation services for
its user(s) and simultaneously emits CO2 (the key greenhouse gas), noise, and a
variety of air pollutants such as carbon monoxide (CO), nitrogen oxides (NOx),
hydrocarbons (HC), particulate matter (PM), etc. The effects of these emissions are
summarized in e.g., (Kortelainen and Kuosmanen 2007; VCA 2016).

Note however that there are a number of important differences between CO2

emissions and air pollutant emissions from the use of passenger cars. Firstly, the
CO2 emissions and the fuel consumption of a passenger car are directly propor-
tional, which can be shown by calculating their correlation coefficients (0.999 for
gasoline and 0.997 for diesel) based on the type-approval data for new models of
cars (see Table 1), while the air pollutant emissions (as well as the noise level) of a
passenger car are much less correlated with the fuel consumption.9 Secondly, the
type-approval data on fuel consumption and CO2 emissions are comparable across
different models of passenger cars but this is not the case for air pollutant emissions
(VCA 2016). Thirdly, compared to local air pollutants, CO2, a global pollutant that
can remain in the atmosphere for centuries, is much more difficult to be reduced.
For the last two differences, in what follows we shall consider CO2 emissions as the
single bad output.

8See (Yang and Bandivadekar 2017; Yang et al. 2017), for example, for overviews of CO2

emission/fuel consumption standards for new passenger cars in different countries.
9In fact, the air pollutant emissions of a passenger car are also associated with a broad range of
factors such as the vehicle technology (e.g., end-of-pipe abatement) and maintenance, fuel quality,
driving behavior, and ambient conditions. See (VCA 2016) for a more detailed discussion.
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In 2015, passenger cars on EU roads amounted to 251 million and were
responsible for 770 million tonnes of CO2 emissions, nearly a quarter (22.2%) of
total EU emissions during the year; meanwhile, there were 95.1 million passenger
cars on China’s roads and they were estimated to emit approximately 291.7–446.9
million tonnes of CO2, 2.7–4.2% of China’s total emissions during the year (see
Table 2). Compared to the EU, China’s passenger car fleet has a quite smaller size
and accounts for a much lower proportion of total CO2 emissions. However, as
shown in Fig. 2, the fleet has experienced a dramatic expansion over the past few

Table 2 CO2 emissions from passenger cars registered in Europe and China in 2015

European Union China

Number of registered cars (million) 251.0 95.1

Cars per 1000 people 499 69

Annual CO2 emissions of all cars (million tonnes) 770.0 � 291.7–446.9a

Annual CO2 emissions per car (tonnes) 3.1 � 3.1–4.7a

Proportion of total CO2 emissions (%) 22.2 � 2.7–4.2a

Sources The figures were collected from and self-calculated based on (1) Emission Database for
Global Atmospheric Research (EDGAR), release version 4.3.2, European Commission, Joint
Research Centre (JRC)/PBL Netherlands Environmental Assessment Agency; (2) European
Vehicle Market Statistics Pocketbook 2015/16, International Council on Clean Transportation
Europe; (3) Statistical Communique of the People’s Republic of China on the 2015 National
Economic and Social Development (in Chinese), National Bureau of Statistics of China; (4) Green
Vehicle Guide, U.S. Environmental Protection Agency
aAs there are no reliable CO2 emissions data available for passenger cars registered in China, we
estimated the annual CO2 emissions of all cars in China in 2015 by multiplying the number of
registered cars by the annual CO2 emissions per car in the EU (3.1 tonnes) and in the United States
(4.7 tonnes), respectively
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Fig. 2 Growth in the number of registered passenger cars in China, 2004–2016. Source Statistical
Communiques of the People’s Republic of China on the National Economic and Social
Development, 2004–2016 (in Chinese), National Bureau of Statistics of China
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decades, and cars per 1000 people in China increased rapidly from 7 in 2004 to 79
in 2016, though still quite lower than developed countries (499 for the EU in 2015).
In view of China’s fast-growing economy, the fleet seems very likely to reach a
considerable size and contribute to a fairly huge amount of CO2 emissions in future
years.

Given the importance of passenger cars in sustainable development, both the EU
and China have set mandatory CO2 emission/fuel consumption targets for new
passenger cars. For new cars sold in Europe, the average CO2 emissions shall not
exceed 95 g/km by 2021 (European Parliament, the Council 2009); and for new
cars sold in China, the average fuel consumption should reach 5 liters per 100 km
(*120 g/km of CO2) by 2020 (Ministry of Industry and Information Technology of
the People’s Republic of China 2015).

3 Conceptual Modeling of Consumer Durables

The purpose of this section is to specify the polluting technology of passenger cars
during their use phase, which is a key step of the empirical strategy outlined in
Sect. 2. This section has two parts. The first part reviews the general axioms of the
production theory and gives a conventional specification of the polluting technol-
ogy for passenger cars; the second part examines whether the conventional speci-
fication is consistent with the particular features of consumer durables and presents
a final specification of the polluting technology that is appropriate and specific to
passenger cars.

3.1 Conventional Specification of Polluting Technology

Consider a production unit that employs an input vector x 2 <P
þ to produce an

output vector y 2 <Q
þ For each period t, the production technology is represented

by the production possibility set

Tt ¼ fðx; yÞjx can produce y in period tg ð1Þ

Tt consists of all technologically feasible combinations of x and y in period t and
requires the following axiomatic assumptions (Färe and Primont 1995):

1. Tt is closed, convex, and bounded;
2. Inactivity is possible: (x, 0) 2 Tt;
3. No free lunch: (0, y) 62 Tt;
4. Free disposability of inputs: if (x, y) 2 Tt and ~x� x then ~x; yð Þ 2 Tt;
5. Free disposability of outputs: if (x, y) 2 Tt and ~y� y then x; ~yð Þ 2 Tt.
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For joint production of good outputs u 2 <R
þ and bad outputs b 2 <Q�R

þ , the
axiom of free disposability of outputs are replaced by the following three axioms
(Färe et al. 2005):

6. Free disposability of good outputs: if (x, u, b) 2 Tt and ~u� u then ðx; ~u; bÞ 2 Tt;
7. Weak disposability of good and bad outputs: if (x, u, b) 2 Tt and 0 � h � 1

then (x, hu, hb) 2 Tt;
8. Null-jointness: if (x, u, b) 2 Tt and b = 0 then u = 0.

Given Axioms 1–4 and 6–8, we can completely characterize Tt (which is now a
polluting technology) by the traditional Shephard input and output distance func-
tions (Färe and Primont 1995; Shepard 1953, 1970), which are respectively
expressed as

DItðx;u; bÞ ¼ supf/[ 0jðx=/; u; bÞ 2 Ttg
DOtðx;u; bÞ ¼ inffr[ 0jðx; u=r; b=rÞ 2 Ttg ð2Þ

The Shephard input distance function DItð�Þ measures the largest proportion by
which we can deflate the input vector x onto the frontier of Tt while keeping the
output vectors u and b constant; the Shephard output distance function DOtð�Þ
measures the largest proportion by which we can expand u and b onto the frontier
given the input vector x. The evaluated production unit is said to be environmen-
tally efficient if DItð�Þ ¼ 1 orDOtð�Þ ¼ 1, and environmentally inefficient if
DItð�Þ[ 1 or DOtð�Þ\1. Since DOtð�Þ simply expands good and bad outputs
simultaneously onto the frontier, the more general directional distance function,
which allows simultaneous contraction of bad outputs and expansion of good
outputs (Chung et al. 1997), is more often used in the literature. Mathematically, the
directional output distance function is defined in terms of Tt as

D
!t

x; u; b; gu;�gbð Þ ¼ sup d� 0 x; uþ dgu; b� dgbð Þj 2 Ttf g ð3Þ

where gu;�gbð Þ is the directional vector corresponding to u and b. One need to
specify ex ante an appropriate directional vector in spite of the generality of the
directional distance function. u;�bð Þ is a commonly-used directional vector, and
given that, ~Dtðx; u; b; u;�bÞ measures the largest proportion by which we can
simultaneously expand good outputs u and contract bad outputs b onto the frontier
of Tt given inputs x. To put it another way, the directional distance function seeks
the maximum ratio of good outputs to bad outputs for given inputs (Färe et al.
2004). The evaluated production unit is said to be environmentally efficient if
~Dtðx; u; b; u;�bÞ ¼ 0, and environmentally inefficient if ~Dtðx; u; b; u;�bÞ[ 0.

It should be noted that in addition to the axioms inherited from the polluting
technology Tt, these multiple-output distance functions also need to satisfy axio-
matic properties such as the linear homogeneity of the Shephard distance functions
or the translation property of the directional distance function [see e.g., (Färe and
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Grosskopf 2000, 2006; Färe and Primont 1995; Färe et al. 2005) for detailed
discussions].

Since passenger cars jointly produce transportation services and CO2 emissions
during their use phase, a conventional specification can be readily set for the
polluting technology of passenger cars as shown in Fig. 3. Fuel consumption
(gasoline, diesel, natural gas, or electricity) is the single input, CO2 emissions are
the bad output, and transportation services (measured by mass-kilometer and
power-kilometer)10 are the good outputs. One might argue that it is necessary to
consider also car price as an input, analogous to the capital input in conventional
efficiency and productivity analysis. In fact, whether or not car price should be
included as an additional input is an open question that depends on whose per-
spective one takes. There are, generally speaking, three perspectives: consumers’,
producers’, and regulators’. Let us assume that consumers, producers, and regu-
lators are all rational, and concerned with environmental productivity growth in
passenger cars.

• For consumers, price is an important (if not the most important) factor to
consider in the purchase decision of a passenger car. They are facing an opti-
mization problem: maximization of the amount of transportation services subject
to price (budget) and CO2 emission constraints, or minimization of price and
CO2 emissions given a certain amount of transportation services.

• For producers, the objective is to produce passenger cars that not only meet CO2

emission standards set by regulators, but also are compatible with demand and
purchasing power of consumers.

CO2 emissions

Fuel
consumption Passenger cars

Transportation
services

Mass-kilometer Power-kilometer

Fig. 3 Conventional specification of the polluting technology for passenger cars

10The measures are analogous to units of transportation measurement, such as passenger-kilometer
and freight-kilometer.
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• Including car price as an additional input implicitly allows substitution between
car price and CO2 emissions—the price of a car may be lower in exchange for
more CO2 emissions while maintaining the same level of transportation services.
This leads to a question: is low price a valid excuse to emit more CO2 emis-
sions? The answer is probably “no” from regulators’ perspective.

Therefore, in summary, car price should be included as an additional input if one
takes the perspective of consumers or producers; and it should not be included if
one takes the perspective of regulators. The current study follows the latter.

3.2 Direct Proportionality and Materials Balance

The fourth particular feature of consumer durables indicates the direct propor-
tionality between the amount of fuel consumption and the level of CO2 emissions
during the use of passenger cars. This connects to the materials balance principle,
which argues some general axioms of the production theory may be inconsistent
with the laws of thermodynamics [see e.g., Chap. 3 and (Coelli et al. 2007; Førsund
2008; Rødseth 2016, 2017) for detailed discussions]. The materials balance prin-
ciple is defined in terms of Fig. 3 as follows:

kb ¼ qx� p0u� a ð4Þ

where x is the input (fuel consumption); u is the vector of good outputs
(mass-kilometer and power-kilometer); b is the bad output (CO2 emissions); q > 0,
p, and k > 0 stand for the content of carbon in x, u, and b, respectively; a denotes
the amount of emissions reduction through end-of-pipe abatement. Since
mass-kilometer and power-kilometer do not contain carbon (i.e., p = 0) and there is
currently no end-of-pipe abatement for CO2 emissions from passenger cars (i.e.,
a = 0), Eq. 4 collapses to

b ¼ q
k
x ð5Þ

where q
k [ 0 is the CO2 emissions factor of the fuel consumed. For example,

burning a liter of gasoline produces about 2.3 kg of CO2, while burning a liter of
diesel produces about 2.7 kg of CO2.

11 Thus we can state that, for a fleet of
passenger cars using the same type of fuel, a constant CO2 emissions factor can be
reasonably assumed across the fleet, which we would refer to as the direct pro-
portionality assumption. More importantly, Eq. 5 reveals that the materials balance
principle and the fourth particular feature of consumer durables are equivalent in the
current context, both leading to the direct proportionality assumption.

11See the websites for more information: https://www.eia.gov/tools/faqs/faq.php?id=307&t=11,
https://ec.europa.eu/clima/policies/transport/vehicles/cars.
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As a result, Axioms 2 (inactivity is possible), 4 (free disposability of inputs), 7
(weak disposability of good and bad outputs), and 8 (null-jointness) underlying the
conventional model specification in Fig. 3 are no longer valid.12

• Inactivity is not possible as CO2 will be inevitably produced from burning a
finite amount of fuel. Suppose, when a passenger car is stopped but with its
engine running, it produces zero mass-kilometer and power-kilometer but
non-zero CO2 emissions.

• It is not feasible to increase the fuel consumption of a passenger car with its CO2

emissions held constant, or to decrease its CO2 emissions with its fuel con-
sumption held constant, in the sense that given one of them the other is uniquely
determined. As such, Axioms 4 and 7 cannot be true.13

• Axiom 8 implies that it holds for any amount of fuel consumption (Rødseth
2017). But in fact, when there are no CO2 emissions from a passenger car there
is no fuel consumption, i.e., if b = 0 then x ¼ k

q b ¼ 0.

Moreover, the distance functions defined in Eqs. 2 and 3 are problematic due to
the direct proportionality assumption. It is infeasible for any evaluated passenger
car to use a smaller amount of fuel to produce the same transportation services and
CO2 emissions (corresponding to DIt), or to use the same fuel consumption to
produce either larger amounts of transportation services and CO2 emissions (cor-
responding to DOt) or more transportation services but less CO2 emissions (cor-
responding to ~Dt). Thus, every passenger car evaluated would be environmentally
efficient irrespective of the distance function used, and this is apparently unrealistic.

In summary, the conventional specification of the polluting technology for
passenger cars is not consistent with the particular features of consumer durables.
To address this problem, we can simply exclude either fuel consumption or CO2

emissions from the specification without loss of information (Kuosmanen 2013),
because from the modeling viewpoint, the two contain equivalent information. For
the current study, fuel consumption can be excluded since the focus is placed on
CO2 emissions.

Figure 4 presents the final specification of the polluting technology for pas-
senger cars, where CO2 emissions are treated as the single input and transportation
services (mass-kilometer and power-kilometer) are the outputs. The treatment of
CO2 emissions can be interpreted in two ways: one is that CO2 emissions act as a
perfect proxy for fuel consumption, breaking the direct proportionality between
them; the other is that the use of passenger cars consumes “services from natural

12See Rødseth (2017) for a more general discussion on the consistency between the general axioms
of the production theory and the materials balance principle.
13The direct proportionality assumption implicitly assumes that all fuel in the tank is burned into
CO2. It is possible that only part of the measured amount of fuel is burned while the other is
wasted, and in this circumstance, Axioms 4 and 7 hold. Nevertheless, this possibility can be ruled
out under type-approval test conditions or in the case that CO2 emissions data are estimated by
multiplying the measured amount of fuel by a constant emissions factor.
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assets” to dispose of CO2 emissions (OECD 2011), that is, from the perspective of
society (or regulators), CO2 emissions are regarded as an environmental cost that
needs to be reduced. The final specification satisfies the original Axioms 1–5
(which can be easily verified) and we can simply resort to the traditional Shephard
distance functions to characterize the polluting technology of passenger cars.

As shown in Fig. 4, the final specification applies to not only conventional
passenger cars powered by gasoline, diesel or alternative fuel, but also electric cars.
There is also a direct proportional link between the CO2 emissions of an electric car
(for which it should be responsible) and the amount of electricity consumed. We
can find out on average how much CO2 emissions are produced per kilowatt-hour
of electricity in the region considered. Furthermore, such way of modeling can be
readily extended to other consumer durables, e.g., refrigerators, washing machines,
air conditioners, etc.

4 Measurement of Environmental Productivity

4.1 Brief Overview of Conventional Measures

In the case of single good output (u) and single environmental factor (e), the level of
environmental productivity in period t and the change in environmental produc-
tivity from period t to t + 1 are simply defined as

EPt ¼ ut=et

EPðt; tþ 1Þ ¼ utþ 1=etþ 1

ut=et
ð6Þ

Mass-kilometer

CO2 emissions 
(or alternatively 
fuel consumption)

Passenger cars 
(conventional or 

electric)

Power-kilometer

Fig. 4 Final specification of the polluting technology for passenger cars
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where e can be either a bad output or an energy or resource input. Note that u and
e could be aggregate measures, e.g., gross domestic product (GDP) and total pol-
lutants or emissions.

Equation 6 is seen as the partial measure of environmental productivity in the
context of multiple-input and/or multiple-output polluting technologies. Examples
of the partial measure include energy productivity (economic output per unit of
energy input) (Berndt 1990; Chang and Hu 2010) and carbon productivity (eco-
nomic output per unit of CO2 emissions) (Kaya and Yokobori 1998; Meng and Niu
2012). In addition, the reciprocal of the partial measure is widely used in practice,
such as energy intensity, carbon intensity, fuel economy of vehicles (fuel con-
sumption divided by mileage traveled), etc. These partial indicators are very intu-
itive but likely to be problematic due to the absence of other factors in the
underlying polluting technology (Kuosmanen 2013).

Total-factor productivity (TFP) indices are therefore generally used in the lit-
erature to assess environmental productivity change in multiple-input and/or
multiple-output settings. The estimation of environmental TFP is quite challenging
because one must somehow manage to aggregate the inputs and the outputs,
especially without readily available price data for environmental bads [see e.g.,
(Kuosmanen 2013) for a more detailed discussion]. In this context, the
Malmquist TFP index proposed by Caves et al. (1982) [or one of its many variants
such as the Malmquist-Luenberger index proposed by Chung et al. (1997)] has been
the most common environmental TFP indicator, because it does not require price
data for environmental bads, but rather employ shadow prices of technology dis-
tance functions.

Assume for the moment that the Shephard input and output distance functions
defined in Eq. 2 are known, we can derive the input- and output-oriented
Malmquist indices of environmental productivity change, respectively, as follows:

MIðt; tþ 1Þ ¼ DIt xt; ytð Þ
DIt xtþ 1; ytþ 1ð Þ �

DItþ 1 xt; ytð Þ
DItþ 1 xtþ 1; ytþ 1ð Þ

� �1=2

MOðt; tþ 1Þ ¼ DOt xtþ 1; ytþ 1ð Þ
DOt xt; ytð Þ � DOtþ 1 xtþ 1; ytþ 1ð Þ

DOtþ 1 xt; ytð Þ
� �1=2

ð7Þ

It is said that there is environmental productivity growth from period t to t + 1 if
the value of MI(t, t + 1) or MO(t, t + 1) is greater than unity, and environmental
productivity decline if the value is less than unity.

Alternatively, we can derive the Malmquist index based on the directional output
distance function defined in Eq. 3 [which is generally referred to as the
Malmquist-Luenberger index (Chung et al. 1997)] as follows:
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MLðt; tþ 1Þ ¼ 1þ~Dt xt; ut; bt; gtu;�gtb
� �

1þ~Dt xtþ 1; utþ 1; btþ 1; gtþ 1
u ;�gtþ 1

b

� �
 

� 1þ~Dtþ 1 xt; ut; bt; gtu;�gtb
� �

1þ~Dtþ 1 xtþ 1; utþ 1; btþ 1; gtþ 1
u ;�gtþ 1

b

� �
!1=2 ð8Þ

Likewise, ML(t, t + 1) indicates environmental productivity growth from period
t to t + 1 if its value is greater than unity, and environmental productivity decline if
the value is less than unity.

The Malmquist indices can be decomposed into two components, namely
technical change (TC) and efficiency change (EC) (Chung et al. 1997; Nishimizu
and Page 1982). Taking the input-oriented Malmquist index as an example, the
decomposition proceeds as follows:

MIðt; tþ 1Þ ¼ MITCðt; tþ 1Þ �MIECðt; tþ 1Þ

MITCðt; tþ 1Þ ¼ DItþ 1 xt; ytð Þ
DIt xt; ytð Þ � DItþ 1 xtþ 1; ytþ 1ð Þ

DIt xtþ 1; ytþ 1ð Þ
� �1=2

MIECðt; tþ 1Þ ¼ DIt xt; ytð Þ
DItþ 1 xtþ 1; ytþ 1ð Þ

ð9Þ

The technical change component accounts for the shift of frontier over time:
there is technical progress from period t to t + 1 ifMITC(t, t + 1) > 1, and technical
regress if MITC(t, t + 1) < 1. As for the efficiency change component MIEC(t,
t + 1), a value greater (or less) than unity indicates that the evaluated production
unit is catching up to (or moving farther from) the frontier.14

The standard techniques for estimating distance functions include parametric
programming (Aigner and Chu 1968), DEA (Charnes et al. 1978), and SFA (Aigner
et al. 1977; Meeusen and Van den Broeck 1977). Since the multiple-output distance
functions must satisfy axiomatic properties such as the linear homogeneity of the
Shephard distance functions or the translation property of the directional distance
function, and in SFA one cannot impose such properties globally, in this context,
parametric estimation of distance functions is usually based on parametric pro-
gramming (Färe et al. 2005). DEA has an advantage over parametric programming
in that it does not require any parametric specification of the functional form but is
based on some general axioms of the production theory. However, both DEA and
parametric programming are deterministic methods that assume away random
noise. This is a major shortcoming because virtually all empirical data are subject to
more or less noise. In order to simultaneously impose the axiomatic properties

14Färe et al. (1994) proposes a third component: scale efficiency change under variable returns to
scale (VRS). Yet, no consensus has been reached on the derivation and interpretation of this
component. See (Färe et al. 1997; Ray and Desli 1997) for a critical exchange on this topic and
(Lovell 2003) for a more detailed discussion.

4 Environmental Productivity Growth in Consumer Durables 95



required by the distance functions and deal with stochastic noise in a nonparametric
way, one can resort to CNLS (Kuosmanen 2008) or stochastic nonparametric
envelopment of data (StoNED) (Kuosmanen and Kortelainen 2012).

Having briefly described the conventional measures of environmental produc-
tivity, we will turn our attention in the next subsection to consumer durables—how
the Malmquist-type index can be applied to the current context of consumer
durables.

4.2 Malmquist-type Index for Consumer Durables

Depending on the polluting technology of passenger cars specified in Fig. 4 and the
perspective that we take (i.e., that of regulators, which seeks to reduce CO2

emissions from passenger cars), an input-oriented Malmquist-type index of envi-
ronmental productivity change would best suit the current study.

Suppose now that we have data on a total fleet of passenger cars using the same
type of fuel, this fleet can be decomposed into cohorts of cars taken in use each year
(e.g., cohorts of 2016, 2015, 2014,…), i.e., yearly cohorts of new cars. Following
Kuosmanen (2008, 2012), consider the model

xti ¼ gt yti
� �þ eti ð10Þ

where xti denotes the CO2 emissions of passenger car i in cohort t, yti is the vector of
transportation services (mass-kilometer and power-kilometer), gt is an increasing
and convex emissions generating function, characterizing the best-practice frontier
of the polluting technology, and eti is a composite error term that combines both an
inefficiency term lti and a stochastic noise term mti (i.e., eti ¼ lti þ mti). We can
equivalently write Eq. 10 in terms of car models as

xtm ¼ gt ytm
� �þ etm ð11Þ

where each m = 1,…, Mt characterizes a subset of identical new cars (i.e., a car
model) within cohort t, Mt is the number of car models, and etm ¼ ltm þ mtm. Note
that we assume that ltm; m

t
m; and ytm are uncorrelated with each other, and

E ltm
� � ¼ Zt [ 0;E mtm

� � ¼ 0. To empirically estimate the polluting technology, we
can estimate Eq. 11 separately for each cohort by employing the CNLS approach
(the first stage of StoNED).

The CNLS approach produces a consistent estimator of the expected level of
CO2 emissions, and for each cohort t the estimator is obtained by solving the
following quadratic programming problem (Kuosmanen 2008, 2012)
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min
c;a;b;e

XMt

m¼1

etm
� �2

s:t:

xtm ¼ ctm þ etm 8m
ctm ¼ atm þ btm

� �0ytm 8m
ctm � atk þ btk

� �0ytm 8m; k
btm � 0 8m

ð12Þ

where ctm is the CNLS estimator of the expected CO2 emissions of car model m in
cohort t given the transportation services ytm; a

t
m and btm—specific to each car model

—are the intercept and the slope coefficients that define tangent hyperplanes to the
convex piece-wise linear CNLS frontier, and notably btm measures the CO2 emis-
sions increased by producing one additional unit of transportation services (i.e.,
shadow prices).

The CNLS frontier is an average-practice frontier of the polluting technology,
rather than the best-practice frontier gt ytm

� �
. Mathematically,

E xtm
��ytm� � ¼ E gt ytm

� �þ etm ytm
��� �

¼ E gt ytm
� �þ ltm þ mtm ytm

��� �
¼ gt ytm

� �þ Zt

ð13Þ

To estimate Zt and gt ytm
� �

, one should proceed to further stages of StoNED [see
(Kuosmanen andKortelainen 2012; Kuosmanen et al. 2015) formore details]. But for
this study, we do not need to do that because CNLS can produce consistent shadow
price estimates that are required by aMalmquist-type index (Kuosmanen et al. 2015).

When it comes to computing the CNLS estimator, there are several points worth
mentioning. First, prior to the computation we divide both sides of Eq. 11 by
kilometer to obtain xtm measured in grams of CO2 per kilometer (g/km)15 and ytm
measured in vehicle characteristics: curb weight in kilograms (kg) and engine
power in kilowatts (kW). Second, the number of inequalities in Eq. 12 rises as a
quadratic function of the number of observations: let the number of observations be
x, the number of inequalities will be xðx� 1Þ (Kuosmanen et al. 2015). Although
the models of new cars act as observations in the computation, the data size of each
cohort could still be very large (see Table 3 for reference), resulting in heavy
computational burden. Fortunately, a penalized algorithm proposed by Keshvari
(2017) can help to partly ease the computational burden.

The next step is to derive an input-oriented Malmquist-type index based on the
estimated CNLS frontier of each cohort. First, we need to construct a hypothetical

15Type-approval data on the CO2 emissions of new passenger cars are normally measured in g/km.
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car to represent each cohort, according to our empirical strategy outlined in Sect. 2.
It appears straightforward to define the representative car (RC) of cohort t with the
average CO2 emissions, curb weight, and engine power. Specifically, the average
CO2 emissions of cohort t are calculated as

�xt ¼
XNt

i¼1

xti=N
t ð14Þ

where Nt is the number of passenger cars within cohort t. Equivalently, we can
calculate the average CO2 emissions as the weighted average of model specific
emissions, that is,

�xt ¼
XMt

m¼1

wt
mx

t
m=N

t ð15Þ

where wt
m is the number of new cars that belong to car model m in cohort t. Note

that the average curb weight and engine power of cohort t can be calculated
likewise.

The use of a RC implies identical shadow prices across car models in a cohort,
which is consistent with the perspective of regulators. Given the RC of each cohort t,
we can define an input-oriented Malmquist-type index for passenger cars, as shown
below:

MCðt; tþ 1Þ ¼ Dt �xtþ 1; �ytþ 1ð Þ
Dt �xt; �ytð Þ � Dtþ 1 �xtþ 1; �ytþ 1ð Þ

Dtþ 1 �xt; �ytð Þ
� �1=2

ð16Þ

where Dtð�xt; �ytÞ measures the distance of the RC of cohort t relative to the CNLS
frontier of cohort t, Dtð�xtþ 1; �ytþ 1Þ measures the distance of the RC of cohort t + 1
relative to the CNLS frontier of cohort t, and so forth. It is said that there is
environmental productivity growth in new passenger cars from cohort t to t + 1 if
the value of MC(t, t + 1) is greater than unity, and environmental productivity
decline if the value is less than unity.

The four distance measures in Eq. 16 are calculated as

Dt �xt; �ytð Þ ¼
max atm þ btm

� �0
�yt

D E
�xt

Dt �xtþ 1; �ytþ 1� � ¼ max atm þ btm
� �0

�ytþ 1
D E

�xtþ 1

Dtþ 1 �xt; �ytð Þ ¼
max atþ 1

m þ btþ 1
m

� �0
�yt

D E
�xt

Dtþ 1 �xtþ 1; �ytþ 1� � ¼ max atþ 1
m þ btþ 1

m

� �0
�ytþ 1

D E
�xtþ 1

ð17Þ
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where max �h i is designed to obtain the reference point on the CNLS frontier of
cohort t or t + 1 for a given RC, in accordance with the third constraint in Eq. 12.

In a conventional way, we can decompose MC(t, t + 1) into two components
representing the effects of technical change and efficiency change:

MCðt; tþ 1Þ ¼MCTCðt; tþ 1Þ �MCECðt; tþ 1Þ

MCTCðt; tþ 1Þ ¼ Dt xt; ytð Þ
Dtþ 1 xt; ytð Þ �

Dt xtþ 1; ytþ 1
� �

Dtþ 1 xtþ 1; ytþ 1
� �

 !1=2

MCECðt; tþ 1Þ ¼ Dtþ 1 xtþ 1; ytþ 1
� �
Dt xt; ytð Þ

ð18Þ

Unlike in conventional Malmquist indices, the two components in the current
context can be interpreted as follows:

• The technical change component MCTC(t, t + 1) accounts for the shift in the
CNLS frontier made up by models of new cars. Technical progress, i.e., MCTC
(t, t + 1) > 1, indicates that models of new cars in cohort t + 1 become overall
more environmentally efficient than those in cohort t, and technical regress, i.e.,
MCTC(t, t + 1) < 1 indicates that models of new cars become overall less
environmentally efficient. Note that this component depends on the car industry,
which is regulated by the government through supply-side measures (recall the
second particular feature of consumer durables discussed in Sect. 2).

• If the value of MCEC(t, t + 1) is greater (or less) than unity, it shows that the
environmental efficiency of cohort t + 1 improves (or deteriorates) compared to
cohort t. The environmental efficiency of a cohort depends on the composition
of its RC, that is, the popularity of environmentally efficient car models (or the
proportion of environmentally efficient new cars). Therefore, efficiency
improvement from cohort t to t + 1 can be interpreted that the popularity of
environmentally efficient car models rises from year t to t + 1. Note that this
component captures changes in consumer behavior, whether due to changes in
consumer preferences or incentives set by the government (e.g., changes in tax
policy).

Finally, it is worth noting that the Malmquist-type index constructed in terms of
passenger cars can be readily extended to other consumer durables.

5 Empirical Case: New Passenger Cars in Finland

In this section, we apply the proposed Malmquist-type index for passenger cars to a
unique Finnish data set that covers all vehicles in road traffic in Finland in 2015.
The purpose is to demonstrate the interpretation of the proposed index through
investigating the environmental productivity change in new, gasoline-fueled
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passenger cars registered in Finland from 2002 to 2014 and the driving forces
behind the change.

Table 3 presents the descriptive statistics of the input and output variables for the
cohorts of new gasoline cars. Each observation in a cohort is a subset of identical
cars (in terms of CO2 emissions, curb weight, and engine power), i.e., a car model.
Note that the descriptive statistics are model-specific, and the model-specific
weighted average CO2 emissions, curb weight, and engine power constitute the RC
of each cohort (see Eq. 15 for reference). As shown in the table, there was a clear
decline in both the average and the weighted average CO2 emissions over the years
2002–2014, whereas neither the curb weight nor the engine power saw such a
decline. Further, the weighted average input and output variables were always
lower than the arithmetic averages during the years.

Table 4 reports the empirical results for the cohorts of new gasoline cars,
including the estimates of the Malmquist-type index (MC) and the two components,
namely technical change (MCTC) and efficiency change (MCEC). In order to gain
intuition, we have subtracted unity from the estimates, thereby expressing them in
the form of percentage change (Färe et al. 1994). As can be seen in the table, all the
estimates of MC and MCTC were positive, while MCEC had both positive and
negative estimates. Overall, the environmental productivity of new gasoline cars
registered in Finland grew at an average of 3.22% per year from 2002 to 2014. The
main driver of this growth was the technical progress that occurred in models of
new gasoline cars, which had an average annual growth rate of 3.08% over the
years. In the meantime, however, the annual rate of efficiency change averaged
0.14%, quite close to zero, that is, the popularity of environmentally efficient car
models overall remained unchanged.

Table 4 Empirical results for the cohorts of new gasoline cars in Finland; 2002–2014

Period Environmental productivity
change (%)

Technical change
(%)

Efficiency change
(%)

2002–2003 1.42 1.32 0.10

2003–2004 0.57 1.61 −1.02

2004–2005 1.54 1.50 0.03

2005–2006 1.31 1.48 −0.17

2006–2007 2.26 3.15 −0.86

2007–2008 4.71 2.67 1.99

2008–2009 6.53 3.63 2.80

2009–2010 3.87 4.51 −0.61

2010–2011 4.49 5.64 −1.09

2011–2012 3.91 4.47 −0.53

2012–2013 5.77 4.90 0.84

2013–2014 2.27 2.05 0.22

Mean 3.22 3.08 0.14
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Figure 5 depicts the trends in MC, MCTC, and MCEC from 2002 to 2014.
Technical progress developed at relatively low rates during the first four periods
(2002–2003, 2003–2004, 2004–2005, and 2005–2006), and after this it entered a
stage of rapid growth. At that stage, technical progress accelerated steadily until it
reached a peak growth rate of 5.64% in the period 2010–2011; but after the peak,
technical progress declined to reach a low point in the last period (2013–2014). In a
different manner, MCEC basically fluctuated at zero with small ranges, except the
periods 2007–2008 and 2008–2009 when there were remarkable efficiency
improvements of 1.99% and 2.80%, respectively. Finally, environmental produc-
tivity growth, not surprisingly, evolved in almost the same way as its major driver,
technical progress, but was clearly boosted or hindered by the efficiency change
component during certain periods.

In summary, 95.7% (3.08/3.22) of the environmental productivity growth in new
gasoline cars from 2002 to 2014 should be attributed to the technical progress that
occurred in models of new cars—car models provided by the car industry became
more environmentally efficient over the years. On the other hand, Finnish car
consumers contributed, on average, almost zero to the environmental productivity
growth. But this does not mean that consumer behavior can only play a minor role,
in fact, it has great potential of pushing the environmental productivity growth up to
a higher level. For instance, Finland introduced a CO2 emissions based vehicle tax
in 2008,16 and around that year, the popularity of environmentally efficient car
models increased dramatically. From the perspective of regulators, in order to
continue improving the environmental productivity of new passenger cars, they
should not only encourage car manufacturers to intensify their efforts in green
technological innovations but also stimulate consumers to purchase environmen-
tally efficient passenger cars.

7%
6.53 %

6%
5.64 % 5.77 %

5%

4%

3% 2.80 %

2% 1.99 %

1%

0%
2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10

-1%
2010/11 2011/12 2012/13 2013/14

-1.09 %

-2%

Environmental productivity change Technical change Efficiency change

Fig. 5 Environmental productivity change, technical change, and efficiency change in the cohorts
of new gasoline cars in Finland; 2002–2014

16See https://www.trafi.fi/en/road/taxation/vehicle_tax/structure_and_amount_of_tax for more
information.
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6 Concluding Remarks

In this chapter, we have constructed an input-oriented Malmquist-type index spe-
cially for consumer durables (passenger cars in particular). This index is capable of
measuring and decomposing environmental productivity change in new consumer
durables. The empirical strategy proposed and the methodology used in this chapter
have the following key advantages:

1. The particular features of consumer durables are explicitly taken into account
and incorporated into the existing productivity analysis framework. Specifically,
our specification of the polluting technology for passenger cars considers CO2

emissions as the input and transportation services as the outputs, thereby
breaking the direct proportionality between fuel consumption and CO2 emis-
sions. The aggregation of passenger cars into their respective models and the use
of a representative car make it possible to compute the Malmquist-type index
based on large-sized and unbalanced panel data.

2. The CNLS approach proposed by Kuosmanen (2008) is used to estimate the
polluting technology. This approach is capable of dealing with stochastic noise
without pre-specifying any functional form and of handling data sets with
thousands of observations by running the penalized algorithm developed by
Keshvari (2017).

3. This study is of interest to regulators as new consumer durables are subject to
increasingly stringent environmental regulations. The exclusion of car price
from the polluting technology specification and the idea of using a representa-
tive car (which implies a unified set of shadow prices) are consistent with the
perspective of regulators.

In order to illustrate the interpretation of the proposed index, we have applied it
to investigate the environmental productivity change in new gasoline cars in
Finland from 2002 to 2014. The empirical study has found that the environmental
productivity of new gasoline cars in Finland grew at an average rate of 3.22% per
year between 2002 and 2014. Over 95% of the growth was due to the technical
progress that occurred in models of new gasoline cars over the years. Although the
contribution of Finnish car consumers to the growth was, on average, negligible,
they played an important role around 2008 when Finland introduced a CO2

emissions based vehicle tax.
As regards future research, it would be interesting to investigate environmental

productivity growth in other kinds of new cars and other new consumer durables
given data availability. It might also be possible to use more hypothetical consumer
durables in a cohort (representing, e.g., brands, regions, etc.). In addition, estima-
tion techniques other than the CNLS approach and more productivity indices can be
applied to this emerging study of consumer durables.
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The reader should bear in mind that this study is based on type-approval data,
which might be subject to test manipulation [e.g., the Volkswagen scandal
(Blackwelder et al. 2016)]. Another limitation is that we did not discuss the returns
to scale property of the polluting technology. We defer this to future work.
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Chapter 5
Revisiting Reasons for Ten Years
of Power Shortages in China

Hui-Xian Wang, Hong-Zhou Li, Tao Zou and Yuki Tamai

1 Introduction

During the first decade of the 21st century, China experienced serious nationwide
power shortage. According to Yu et al. (2008) and the 2003 to 2011 versions of
China Power Yearbook, there were 12 provincial administrative regions that were
forced to limit residential as well as non-residential electricity consumption due to
shortages in power supply in 2002. The number further increased to 21 and 27
provinces in 2003 and 2004 respectively (Bai 2006). For example, in March 2003
Shanxi province artificially cut off the power supply for 10,051 times, equalling to a
power shortage of 52.52 million kWh. In Changsha, a city in Hunan province, all
consumers except 49 important entities (Yu et al. 2008) were without power supply
for several hours every fourth day from November 2003 onwards (Wu et al. 2004).
According to Bai (2006), the nationwide power shortage in 2004 amounted to 60
billion kWh. Although the central government has not released more accurate
information regarding the power shortage since 2005, it has been said that at least
23 provinces suffered from this (Bai 2006) during that year. After 2005, during a
two-year period, some mitigation of the power shortage was achieved, but in 2008
the power supply shortage rose again. Recently, as the aftermath of four-trillion
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economic stimulus plan, the situation has become worse, since in 2011 shortages
even happened during months when there were relatively low periods of power
consumption. Because of the fundamental role of the electric power industry in
economic growth, and the increasing importance of China’s economy in the world
market as well as global production chains, it is necessary for researchers to provide
more objective and independent explanations for power shortage so that
policy-makers can take measures based on academic results in order to prevent the
recurrence of these in the future. The findings obtained from this study will help
inform Chinese policy-makers with respect to the relationship between productiv-
ity, the coal-electricity conflict and power shortage. Further, our findings will
contribute to the existing literature by bringing new knowledge about the problems
faced by transitional economies when they undergo the switch from a highly
centralised administrative mechanism to a market-oriented one.1

The discussion flow behind our study to identify the causes of or reasons for the
power shortage is as follows: firstly, we examine whether there was underinvest-
ment in installed capacity. If there was not, we estimate the efficiency levels as well
as productivity change and the sources of the latter of the power generation sector.
Again, if the performance levels are not low enough to confirm that low perfor-
mance are the main contributor to the power shortage, we resort to existing liter-
ature and ask business leaders in the power sector for their opinion on the reasons
for power supply shortages and then link their insights with our empirical results on
efficiency and productivity.

Nationwide power supply shortages could result from two reasons. First, the
installed capacity of power generation is too low in order to satisfy demand in
certain periods of time. Second, the performance of the electric power industry is
inefficient, which manifests as an inability to fully utilise the installed capacity.
However, it seems that the first reason is not supported by literature with regards to
China. According to Li (2010), the increase in power consumption during 2003–
2009 was 68.3%, much lower than the growth of 98.3% in the installed capacity of
power generation. Furthermore, the top five power generation group corporations in
China have expanded their installed capacity by as much as 173% during the same
period.2 Yu et al. (2008) also report a similar relationship between the capacity and
demand for electric power in China. Given that there was no power shortage before
2002 and the increase of the power capacity was bigger than that of power con-
sumption after 2002, we exclude the first cause of the nationwide power shortage in
this study. In other words, China’s electric power shortage of the past ten years may
be largely attributed to the low performance of power plants. In order to obtain as

1While in recent years, due to both domestic and overseas economic downturn, the demand for
mass products was weakness and many enterprises suffered from overcapacity, which leaded
to the decrease of operating rate in enterprises. As a result, the power supply was greater than the
relatively weak demand in the recent years.
2The top five power generation group corporations include China Huaneng Group, China Guodian
Corporation, China Datang Corporation, China Huadian Corporation and China Power Investment
Corporation. They are all large state-owned electricity generation companies.
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objective and accurate measures of power plant productivity as possible, taking into
account the somewhat limited data accessibility and availability, this study employs
two distinct production frontier-based methodologies, one a non-parametric and the
other a parametric method. Given the relative advantages and disadvantages of
these two methods, e.g. no need for arbitrary model specification in the case of the
non-parametric method and a capability of accommodating statistical error in the
case of the parametric method, empirical results from a single methodology are
sometimes less convincing and reliable. As a consequence, conclusions and insights
based on these kinds of results are often handled with reservation. However, if we
use the same sample but with different methods, and if they lead to robustly similar
results, the policy implications of the results would make more sense. From the
methodological viewpoint, compared to the parametric method the non-parametric
one has advantages in that it avoids arbitrary function specification and distribu-
tional assumptions imposed on error terms, though the non-parametric method is
unable to deal with any statistical errors (Coelli et al. 2005). For example, any
possible impacts of the 2008 snow disaster on the power generation sector in China
will be treated as changes in productivity itself, in the estimation of the
non-parametric method, whereas in the case of the parametric method it will be
treated properly as a random disturbance. On the other hand, the arbitrary
assumptions on function specification and the distribution form of error terms
imposed by the parametric method make it more subjective and demanding in
calculation. Finally, we inter-test the estimated efficiency levels results from these
two methods. Taking all the aforementioned arguments into consideration, we
decided to employ both methods in this study in order to obtain as full a picture of
the efficiency and productivity levels of the power plants in China as possible.

We decided to employ Data Envelopment Analysis (hereinafter DEA) as a pre-
sentative of the non-parametric method and Stochastic Frontier Analysis (hereinafter
SFA) as a presentative of the parametric method in what follows. Both are suitable in
frontier-based estimation of efficiency and productivity, and further can be used to
decompose productivity change. When it comes to other possible methodologies of
estimating productivity change that are not used in this study, such as non-parametric
Tornqvist or the Fisher index, in addition to the need for price information (which is
not available for this study), neither of these are frontier-based and consequently
are less comparable with the SFA method. Further, from the viewpoint of com-
pleteness of Total Factor Productivity (TFP) decomposition, the frontier-based
Hicks-Moorsteen method which was first suggested by O’Donnell (2008) and can be
performed by free software DPIN (O’Donnell 2010; See et al. 2015), is superior to
the Malmquist productivity index.3 However, the Hicks-Moorsteen method decom-
poses TFP change into technical change, pure efficiency change, scale efficiency

3When compared with Tornqvist or the Fisher index, the Hicks-Moorsteen method has no need for
price information. When compared with the Malmquist productivity index, it imposes no
assumption on returns to scale and firm behavior while it is capable of decomposing TFP changes
into different sources. For more details on these methods, see O’Donnell (2012a) and O’Donnell
(2012b).
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change and mixed efficiency change. These are not, however, comparable to the
results from the SFA model because it only decomposes TFP change into technical
change, pure efficiency change and scale efficiency change.

The rest of the paper is structured as follows. Section 2 presents a literature
review on relevant empirical studies. Section 3 depicts methodologies used in this
study. Section 4 reports descriptive statistics of data and the concrete model
specification. Section 5 reports the results of the efficiency and productivity esti-
mates; the comparison between results from two methods and analysis are also
conducted in this part. Finally, some concluding comments and policy insights are
presented in Sect. 6.

2 Literature Review

Literature concerning performance estimation in the electric power industry can be
classified into four groups: (i) technical or cost efficiency estimation; (ii) estimation
on determinants of efficiency; (iii) estimation on economies of scope and/or scale
and; (iv) estimation on productivity change (by means of the Malmquist produc-
tivity index or other indices) within a given period (Li et al. 2015). Considering that
both Chen et al. (2015) and Li et al. (2015) provide detailed literature reviews on
this topic, our study here limits the literature review to the most related and/or
representative researches on the performance evaluation for the Chinese power
generation sector in chronological order.

Both theoretical methodologies on efficiency estimation and their empirical
applications in the power generation sector, which mainly motivated to identify the
impacts of ownership (public vs. private) on the performance of power generation
plants, have been carried out prosperously since the late 1950s in developed
countries (See and Coelli 2012). Until recent years, China has seldom been the
target of this kind of research due to the non-existence or non-disclosure of qual-
ified data as well as ideological issues. Our research shows that Yang and Yu
(1996) is the first and the most important academic research to focus on the
qualitative examination on the Chinese electric power industry (Zhang and Chen
2011; Wang et al. 2012; Zhao et al. 2012). Being the first quantitative study, Lam
and Shiu (2001) published their empirical research on the efficiency estimation for
China’s power generation sector using the Malmquist productivity index. More
specifically, they regard provincial administrative regions as decision making units
(hereinafter DMUs) and applied the DEA approach to measure the technical effi-
ciency of thermal power generation plants in 30 sample regions using data from
1995 to 1996. Their results show that the average efficiency score increased from
88.8% in 1995 to 90.3% in 1996, with the lowest score of 66.1% in the sample. The
paper also identifies the determinants of the efficiency using the DEA-Tobit model
and finds that only the capacity factor and fuel efficiency are significant factors
affecting technical efficiency. Three years later, Lam and Shiu (2004) published the
second DEA-based paper on Chinese power generation which extends the
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estimation target from efficiency to as well efficiency as productivity using data for
1995, 1996, 1998 and 2000. Their results show that the average efficiency score
decreased from 93.7% in 1995 to 91.3% in 1998, but then increased to 93.5% in
2000. The TFP growth between 1995 and 2000 was 2.1% per year on average, with
the main contribution coming from the technological change in the means of
technical innovation. Yang and Pollitt (2009) is another example of DEA-based
empirical research on the same topic. However, this study is different from studies
of Lam and Shiu (2001, 2004) in three aspects: first, DMUs in Yang and Pollitt
(2009) are 221 Chinese coal-fired power plants instead of provincial administrative
regions; second, data is cross-sectional rather than panel; and the last but most
important aspect is that the DEA model specification utilised in the paper could
incorporate undesirable outputs (pollutants jointly produced with the generation of
power) as well as uncontrollable environmental variables.

SFA-based efficiency estimation studies on the Chinese electric power generation
sector have not been published in mainstream academic literature until Du et al.
(2013) mainly due to the data-demanding characteristic of the parametric method. Du
et al. (2013) used a sample including 2093 plants, almost all the fossil-fired gener-
ation plants in China, to test the effects of electricity reforms on the productivity and
efficiency of China’s fossil-fired power plants. Unfortunately, although the model
proposed by Battese and Coelli (1995) is used to estimate efficiency levels, the paper
does not report any information on efficiency levels of the power plants, but only the
determinants of them. Li et al. (2015) employ six different stochastic cost frontier
models to estimate the efficiency levels using a panel data of 20 power plants listed in
the Chinese securities market during 2002–2011. Their results show that the means of
cost efficiency from different models range from 32% of the pooled model to 86% of
the true random effects model. Based on these empirical results, they conclude that
the coal-electricity pricing linkage scheme in China is a double-edged sword: it
provides incentives for less-efficient power plants to increase their efficiency, but
imposes a penalty to highly-efficient power plants. From the perspective of
methodology, another noteworthy study is Chen et al. (2015). Besides having a
relatively big sample size, this research is distinct from existing literature on Chinese
electric power generation efficiency estimation in two aspects. The first aspect is that
all models used in earlier studies, excluding the true random effects model in Li et al.
(2015), assume that all the DMUs (either individual power plants or provincial
administrative regions) share the same production frontier, which runs the risk of
confounding between technological differences and technology-specific inefficiency
(Tsionas 2002, p. 128). The random parameter model employed by Chen et al. (2015)
gives up the restrictive assumption that all DMUs must share exactly the same
frontier, namely the same technological possibilities. In contracts, it separates tech-
nical inefficiency from technological differences across DMUs.4 The second aspect is

4As shown in model specifications, the true random effects model (yit ¼ a0 þX
0
itbþ ai þ vit þ uit)

assumes that the shape of the frontier for all DMUs is same (shaped by X
0
itb) but shifted upward

or downward according to the value of a DUM-specific random term (ai). By contrast, the
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that all models mentioned so far are estimated either by linear programming or by the
maximum likelihood method, whereas the model employed by Chen et al. (2015) is
estimated by the Bayesian method. Compared with estimation techniques, such as
maximum likelihood, which are based on sampling theory, the Bayesian method has
several desirable virtues.5 Results from Chen et al. (2015) show that the average
efficiency score of power plants is about 0.93, with a minimum value of 0.88. Finally,
with increasing attention paid to environmental protection and low-carbon develop-
ment, researches which take undesirable (or bad) outputs into consideration attract
more and more emphasis. Studies in this respect include Xie et al. (2012), Wu et al.
(2012), Zhou et al. (2012, 2014), Wang et al. (2013) and Bi et al. (2014).

In addition to those studies published in English journals, an increasing number
of studies on performance estimation for the power generation sector are also
published in well-known Chinese journals. Yang and Yu (2008) estimate efficiency
and productivity of a panel sample covering 28 provincial administrative regions
over the 1996–2003 period using the DEA and Malmquist index techniques. Their
studies indicate a high technical efficiency level, with even the minimum value
being 91%. As for productivity, their findings show that productivity has increased
by an average of 2.1% annually and solely due to technological progress (2.2% per
year). This result is in line with the findings of Lam and Shiu (2004). Using the
three-stage DEA method, Bai and Song (2009) analyse the impact of environmental
regulation (restriction on the quantity of SO2 emissions) on the efficiency of the
thermal power sector in 30 provinces in 2004. Their research shows that under
non-regulation, weak regulation and strong regulation scenarios, the corresponding
average technical efficiency scores change from 70 to 75 and 89%, respectively.
This indicates that environmental regulation may help improve the efficiency levels
of the thermal power sector as a whole. Li (2009), based on panel data on listed
thermal companies over the period of 2001–2007, estimates the efficiency levels of
this sector and further identifies determinants of efficiency. The research shows that
technical efficiency levels range from 80 to 98%, with a mean value of 87%.

In terms of research scope and variable selection, this study is much analogous to
the Zhang and Xia (2011) study, which was designed to gauge technical efficiency
levels of the Chinese power generation sector (including not only the thermal or
fossil power generation sectors, but also nuclear power, hydroelectric power and
renewable resource power, as well as solar power generation) and identify deter-
minants of efficiency. Using the translog production stochastic frontier model
proposed by Battese and Coelli (1995), with a data set covering 30 provincial
administrative regions over the period of 2003–2009, their research selects capital
(installed capacity) and labour as two inputs. Results from this study show that the

random parameter model (yit ¼ a0 þX
0
itbi þ ai þ vit þ uit) assumes that the shape of the frontier

of individual DMUs may be different (shaped by X
0
itbi) if bi 6¼ b.

5Including: (i) exact inference on efficiencies even in the case of a small sample (Griffin et al. 2007,
p. 163; Jondrow et al. 1982, p. 235); (ii) easy incorporation of prior ideas and restrictions such as
regularity conditions; and (iii) formal and easy treatment with model uncertainty.
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technical efficiency levels of the whole power generation sector are relatively low,
ranging from 37 to 53%, with an average value of 47%. Li and Zou (2012), which
use data on 27 provincial administrative regions covering the 2000–2009 period,
select the same model and variables as Zhang and Xia (2011). Their results show
that sample selection does affect empirical findings since technical efficiency levels
estimated from Li and Zou (2012) are between 65 and 79%, with a mean of 72%,
much higher than those from Zhang and Xia (2011).

3 Methodology on Decomposition of Productivity Change

Since efficiency scores of individual DMUs can be obtained simultaneously in the
process of estimation and decomposition of productivity change, we here focus our
methodology description on problems concerning productivity instead of efficiency.

3.1 Non-parametric Approach of Decomposing
Productivity Change

In this study, non-parametric approach refers to the Malmquist productivity change
index, which was first proposed and applied in empirical context by Färe et al.
(1994), who incorporated ideas of efficiency measurement from Farrell (1957) and
productivity measurement from Caves et al. (1982). In his pioneering article, “The
Measurement of Productive Efficiency,” Farrell introduced a framework for the
measurement of efficiency which can be decomposed into two subcomponents:
allocative and technical efficiency. Caves et al. (1982) build their Malmquist pro-
ductivity index on the base of distance function, which was put forward by
Shephard (1953) and Malmquist (1953). To avoid an arbitrary choice of bench-
marking technology, Färe et al. (1989) specified the output-based Malmquist pro-
ductivity change index as the geometric mean of two Caves et al. (1982)-type or
CCD-type Malmquist productivity indices. Further, motivated by Nishimizu and
Page (1982), who firstly used a parametric approach to decompose the productivity
change into technical change and efficiency change, Färe et al. (1992) decomposed,
using a non-parametric method, productivity change as follows:

MO
FGLRðxtþ 1; ytþ 1; xt; ytÞ ¼ Dtþ 1

0 ðxtþ 1; ytþ 1Þ
Dt

0 xt; ytð Þ
� ½ð Dt

0ðxtþ 1; ytþ 1Þ
Dtþ 1

0 ðxtþ 1; ytþ 1Þ
Þð Dt

0 xt; ytð Þ
Dtþ 1

0 xt; ytð ÞÞ�
1=2 ð1Þ

The first term on the right-hand side of Eq. (1) is used to measure the change in
technical efficiency, i.e. the change in how far the observed outputs are from the
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frontier between periods t and t + 1, while the geometric mean of the two ratios
inside the brackets captures the shift in technology (i.e. the change of the maximum
potential outputs given the inputs) between the two periods. By decomposing the
Malmquist productivity change index into two subcomponents, Färe et al. (1992)
demonstrate that the productivity change could originate from two sources, i.e.,
from catching up the frontier (technical efficiency change) and from the innovation
(technology progress). This is a vital extension to Caves et al. (1982) who deemed
the innovation as the sole source of productivity changes and ignored the existence
of technical inefficiency. However, Färe et al. (1992) decompose productivity
changes on the condition of returns to scale assumption. To release from this
assumption, in Färe et al. (1994) the technical efficiency change component in
Eq. (1) is further decomposed into pure efficiency change and scale efficiency
change. Consequently the Malmquist productivity change index can eventually be
written as:

MO
FGLRðxtþ 1; ytþ 1; xt; ytÞ ¼

Dtþ 1
0;v ðxtþ 1; ytþ 1Þ
Dt

0;v xt; ytð Þ � ½D
t
0;v xt; ytð Þ

Dt
0;c xt; ytð Þ =

Dtþ 1
0;v ðxtþ 1; ytþ 1Þ

Dtþ 1
0;c ðxtþ 1; ytþ 1Þ

�

� ½ð D
t
0;cðxtþ 1; ytþ 1Þ

Dtþ 1
0;c ðxtþ 1; ytþ 1Þ

Þð D
t
0;c xt; ytð Þ

Dtþ 1
0;c xt; ytð ÞÞ�

1=2

ð2Þ

where the first term on the right-hand side stands for pure efficiency change
(hereinafter PEC), the second term represents scale efficiency change (hereinafter
SEC) and the last term captures technical change (hereinafter TC).

To sum up, total productivity factor (hereinafter TFP) change can be defined as a
product of pure efficiency change, scale efficiency change and technical change,
representing the evidence of catching up, scale fitness and innovation, respectively.

3.2 Non-parametric Approach of Calculating
Productivity Change

The output-oriented distance function is the reciprocal of the value of the
output-oriented technical efficiency defined by Farrell (1957), namely:

Dt
0 xkt; yktð Þ ¼ ½Ft

oðxkt; yktÞ��1 ð3Þ

where Fo
t (xkt, ykt) denotes the output-oriented Farrell efficiency measure that cap-

tures the maximum possible expansion of output y for firm kat time t. Suppose there
are k = 1, …, K number of firms which produce m = 1, …, M kinds of products,
employing n = 1, …, N types of inputs, at each period t, where t = 1, …, T. Under
such assumptions, Fo

t (xkt, ykt) can be calculated by linear programming as follows:
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Ft
oðxkt; yktÞ ¼ maxd

Subject to

dym;kt �
Xk

k¼1

zktym;kt

xn;kt �
Xk

k¼1

zktxn;kt

zkt � 0

ð4Þ

Making use of Eq. (3) and (4), the six distance functions in Eq. (2) can be
calculated and the value of productivity change can be obtained. In addition, to
measure changes in scale efficiency, we can calculate Eq. (4) under variable returns
to scale by adding the constraint

Pk
k¼1 zkt ¼ 1.The scale efficiency in period t is

then calculated as the ratio of the distance function under various returns to scale
(hereinafter VRS) to the distance function under constant returns to scale (here-
inafter CRS). Consequently the scale efficiency changes are obtained as the ratio of
scale efficiencies at periods t and t + 1.

3.3 Parametric Approach of Decomposing Productivity
Change in the Case of Production Function

Needless to say, Solow (1957) lays the foundation for calculating productivity change
using the econometric method. However, from the viewpoint of components of
productivity change, Solow’s measurement of productivity change is just technical
change under assumptions of constant returns to scale and full technical efficiency
(i.e. assuming technical efficiency equals one). By mitigating assumptions regarding
constant returns to scales imposed on technology, Denny et al. (1981) decompose
productivity change into technical change and scale efficiency change. Furthermore,
under constant returns to scale assumption and production frontier framework,
Nishimizu and Page (1982) decompose productivity change into technical efficiency
change and technical change. Finally, Kumbhakar et al. (2000) succeed in decom-
posing productivity change into technical efficiency change, technical change and
scale effects and illustrate, with panel data sets, the developed theoretical framework
in the case of production function, cost function and profit function, respectively.

Suppose that a stochastic frontier production function can be expressed as:

yit ¼ f ðx0
it ; t; bÞ expðvitÞ expð�uitÞ ð5Þ
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where yit denotes the output of the ith firm (i = 1, …, N) in period t (t = 1, …, T),
f(�)represents the production technology, xit stands for the vector of input variables,
t is the time trend and vit is the error term. uit captures non-negative time-varying
inefficiency, i.e. measuring the proportion by which actual yit falls short of maxi-
mum possible output (f ðx0

it
; t; bÞ expðvitÞ, known as stochastic frontier output).

Technical efficiency is then calculated by yit=f ðx0
it
; t; bÞ expðvitÞ ¼ expð�uitÞ� 1.

Incorporating time trend into the production function enables the existence of
exogenous technical change, which could shift the production frontier. By taking
log and then derivative of production frontier with respect to time t, the rate of
exogenous technical change (hereinafter, TC) could be measured.

Since inefficiency term uit is assumed to be time varying, the overall productivity
change is also affected by the change in technical efficiency among different periods
with given input quantities (Kumbhakar and Lovell 1999). In order to measure this
change, we take log derivative of Eq. (5) with respect to time, and then obtain the
following formulation.

lnðyitÞ
@t

¼ TCit þð� @uit
@t

Þ ð6Þ

where (� @uit
@t ) represents technical efficiency change, either negative or positive.

Productivity change defined in Eq. (6) assumes input quantities unchanged. If,
however, input quantities are also changeable, TFP change (hereinafter, TFPC) can
be defined as6:

T _FP ¼ _y�
X

j

wjxjP
j wjxj

_xj ¼ _y�
X

j

Saj _xj ð7:1Þ

where wj denotes the price of input xj.
Differentiating Eq. (5) provides:

_y ¼ @ ln y
@t

¼ @ ln f ðx0
; t; bÞ

@t
þ

X

j

@ ln f ðx0
; t; bÞ

@ ln xj

� @ ln xj
@xj

� dxj
dt

� @u
@t

¼ @ ln f ðx0
; t; bÞ

@t
þ

X

j

ej _xj � @u
@t

ð7:2Þ

where
P

j ej ¼
P

j
@ ln y
@ ln xj

is the measure of returns to scale and ɛj is the jth input

elasticity defined at the production frontier, f ðx0
it
; t; bÞ expðvitÞ. Making use of

6Subscripts i and t are omitted to avoid notational clutter.
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formulation (7.1) and (7.2), we finally get the equation proposed by Kumbhakar
et al. (2000).

T _FP ¼ @ ln f ðx0
; t; bÞ

@t
� @u

@t
þð

X

j

ej � 1Þ
X

j

kj _xþ
X

j

ðkj � Sa
j
Þ _x

¼ TCþ TECþð
X

j

ej � 1Þ
X

j

kj _xþ
X

j

ðkj � Sa
j
Þ _x

ð8Þ

where kj ¼ ej=
P

j ej. In Eq. (8), TFP change is decomposed into four parts: the rate
of technical change, the rate of technical efficiency change, the rate of scale
economy change and the rate of allocative efficiency change.

3.4 Parametric Approach of Calculating Productivity
Change

For estimating and decomposing productivity change, a combination between
production function or cost function, or profit function and Cobb-Douglass, or
translog functional form is necessary. In the case of translog form production
function, which will be used in this paper, productivity can be estimated using the
following specification:

ln Yit ¼ b0 þ
XK

n¼1

bnlnxn;it þ
1
2

XK

n¼1

XK

m¼1

bmnlnxn;itlnxm;it

þ
XK

i¼1

bntlnxn;ittþ
1
2
bttt

2 þ bttþVit � Uit

ð9Þ

Using Eq. (6)–(8), we get the formula to calculate subcomponents of TFP
change for ith DMU between t and t − 1 period, this is:

TCit ¼ @lnyit
@t

¼
XK

i¼1

bitlnxn;it þ
1
2
btttþ bt with t ¼ 2; . . .T ð10:1Þ

However, given that the technology change in non-parametric methodology is
calculated as geometric mean of technology change between t and t − 1 periods
(see Eq. (2)), to maintain comparability between two methods, we follow the
definition used in Coelli et al. (2003, p. 33), namely:

TCit ¼ 1
2
ðTCit þ TCit�1Þ with t ¼ 2; . . .T ð10:2Þ
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Technical efficiency change in two periods can be calculated as:

TECit ¼ �ðuit � uit�1Þ
t � ðt � 1Þ ¼ uit�1 � uit ¼ ln TEit � ln TEit�1 ð10:3Þ

In order to calculate the scale efficiency change, we need the elasticity of inputs,
which can be obtained by:

en;it ¼ @lnyit
@lnxn;it

¼ bn;t þ
XK

m¼1

bnmlnxm;it þ bntt ð10:4Þ

Then the scale efficiency change between t and t − 1 periods can be calculated
by:

SECit ¼ ð
X

n

en;t � 1Þ
X

n

½ðen;t=
X

n

en;tÞðlnxn;it � lnxn;it�1Þ� ð10:5Þ

Using Eqs. (10.1)–(10.5), productivity change between t and t − 1periods can
be calculated and decomposed into three components in the case of the translog
form stochastic production frontier model.

4 Data Selection and Model Specification

4.1 Model Specification

In the model specification for the power generation sector, our literature review
shows that in most of the recent studies generated power is used as an output
variable, while labour, capital stock and consumed fuel are used as input variables.
However, as far as China’s power generation sector is concerned, researchers have
been confronted with a data compatibility problem which will be detailed as fol-
lows. First of all, since there are no panel data for labour input in individual
provincial administrative regional power generation sectors it is, in most of the
studies concerning China, replaced by labour input in the generation and trans-
mission (including both low voltage distribution and high voltage transmission) of
heating and electric power sectors (data published by China Statistics Yearbook
periodically). Given that labour input in the generation and transmission sectors are
highly positively related with labour input in the power generation sector, which
includes not only the thermal or fossil power generation sub-sectors but also nuclear
power, hydroelectric power and renewable resource power, including solar power
generation sub-sectors, it follows that this proxy variable is incompatible with
labour input in thermal power generation sub-sectors (although some researchers,
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e.g. Bai et al. (2009) used this in a mismatched way). Second, the amount of coal
consumed by the thermal power generation sub-sector is published at individual
provincial administrative regional levels. However, by definition, it is not com-
patible with the amount of power generated by the whole sector. One may attempt
to use this variable as the proxy of the amount of fuels consumed by the whole
power generation sector on the assumption that electric power generated by dif-
ferent sub-sectors accounted for a similar share across sample regions. The fact is
that the share of the thermal power sub-sector in the whole power that is generated
varies significantly across regions. For example, the share in Shanghai is about
100% during the sample period, while it is about 30% in Qinghai province and 50%
in the Guangxi autonomous region. As a result, even serving as a proxy, the amount
of coal consumed by the thermal power generation sub-sector is still not compatible
with the amount of power generated by total sub-sectors. Given that the objectives
we intend to achieve in this study make the amount of power generated by all types
of sub-sectors absolutely necessary and that we have access to corresponding labour
input and capital inputs, we decided to exclude fuels consumed from input variables
because neither direct data on fuels consumed nor a suitable proxy variable for them
are attainable.

Excluding fuels consumption from input means that we assume that there was no
difference in the impact of fuel consumption on productivity across DMUs over the
sample period.7 it is a slightly strong and pragmatic assumption. However, based on
the reasons listed below, this was the best option available. First, both total factor
productivity and partial productivity are used to estimate the DMUs’ performance.
The latter method is, however, often criticised due to its bias in ranking individual
performance (Toby and Boaz 2008). Exclusion of fuels input may change estimates
for individual DMUs since the true impact of fuels consumption on productivity
across DMUs over the sample period is different. However, as our objective is not
to compare and rank individual performance, the result of this assumption in our
case is consequently not so problematic. Second, what we are most concerned
about, however, is whether our treatment will lead to a systematic bias in the
average value of the performance, which is the key in our attempt to explain power
shortage. The preliminary performing of the model shows that results related to
levels of productivity and efficiency from both methods under such treatment
(namely, excluding fuels consumption from input) are lower than the maximum
average value and higher than the minimum value of the relevant existing empirical
studies, rather than an unacceptably high or low value (see Table 3 in Sect. 5). This
means that our treatment of excluding fuels consumption from input does not
change the average values of productivity and efficiency essentially and does not
lead to a systematic bias. Third, the objective of this study is to reveal reasons for
the power shortage, instead of an accurate estimation of the performance of the

7The same treatment is employed by other empirical studies concerning performance estimation
for the Chinese power generation sector, e.g., Yang and Yu (2008), Zhang and Xia (2011) and Li
and Zou (2012).
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Chinese power generation sector. Consequently, as long as the estimated perfor-
mance is neither too high, e.g. more than 90%, which means power shortage is
hardly caused by low performance, nor too low, e.g. less than 50%, which means
that low performance is the only, or at least the primary, cause of the power
shortage, our final conclusion on the reasons for the power shortage will not be
affected by modest changes in the levels of performance estimation.

For performance estimation, we need to specify the stochastic production
frontier function model, originally developed by Aigner et al. (1977) and Meeusen
et al. (1977), and further extended by many researches such as Pitt and Lee (1981),
Schmidt and Sickles (1984), Battese and Coelli (1992, 1995), and Greene (2005).
Since we intend not only to calculate the TFP change, but also to identify factors
influencing the technical efficiency of power plants in China, we decide to choose
the model developed by Battese and Coelli (1995) by which one can achieve the
aforementioned research objectives simultaneously. Accordingly, the translog form
specification of Battese and Coelli (1995) used in this study can be written as:

ln Yit ¼ b0 þ b1 ln Lit þ b2 lnKit þ b3tþ
1
2
b4ðln LitÞ2

þ 1
2
b5ðlnKitÞ2 þ b6 ln Lit lnKit

þ 1
2
b7t

2 þ b8t ln Lit þ b9t lnKit þVit � Uit

ð11Þ

Uit ¼ d0 þ d1GDPit þ d2auxiit þ d3coaleffiit þ d4utilit þ d5struit þ d6regit ð12Þ

with uit � iddðzitd;r2uÞ and vit � iddð0; r2vÞ:
whereYit, Lit and Kit represent generated power, labour input and installed capacity
of power generation of i province at t period, respectively. Equation (12) is used to
identify factors that affect technical inefficiency of power plants8; GDPit is used to
reflect the regional economic development level which may affect efficiency from
the demand side, auxiit stands for the ratio of auxiliary power to power generated9;
coalefficiit represents fuel consumption, being also used to capture the efficiency of
installed generator sets; utilit represents the utilisation rate of thermal power
installed capacity and struit represents the share of power generated by fuelling coal
to total power generated in observations (both these variables may impact efficiency
from the supply side). regit is a DMUmy intended to capture the impacts of the
“coal-power price linkage scheme” which has been implemented since 2005.

8We will not offer any analysis on factors that impact technical inefficiency of power plants in this
paper.
9Auxiliary power is consumed by the power plants during their production process, capturing the
technical efficiency of installed generator sets.
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4.2 Data Description

Our empirical study uses a panel data covering 27 provinces, autonomous regions
and municipalities during 2000–2010. In line with Lam and Shiu (2004), each
provincial region is taken as a decision making unit in the output-oriented
non-parametric method. Electric power generated by power plants is considered the
output variable,10 and labour and capital are two inputs used in the power gener-
ation process. As noted above, labour input is the number of employees working in
generation and transportation (including both distribution and transmission) in the
heating power and electric power sectors, and capital is measured with installed
generating capacity. The detailed information on data collection and processing is
shown in Table 1, while Table 2 provides a summary of statistics of the variables
used in the study. GDP is adjusted for inflation using the GDP index and measured
in 2000 Chinese RMB.

As can be seen in Table 2, being consistent with Chinese GDP growth during
the sample period, the average annual power generated per province increased from
48.5 billion kWh in 2000 to 150.1 billion kWh in 2010. The increase in power
demand pulled up investments in power generating equipment, as reflected in the
variable of installed capacity (Kit), which rose from 113.1 million kW in 2000 to
342.3 million kW in 2010. However, as far as the labour input is concerned, it
increased slightly from 99.6 thousand per province on average to 107.6 thousand.

Table 1 Data description and source

Variable Description Unit Data sources

Yit Power generated 108 kW China Power Yearbook

Lit Labour input 105 Person China Labour Statistics
Yearbook

Kit Installed capacity 105 kW China Power Yearbook

GDPit Provincial GDP 109 RMB China Statistics Yearbook

auxiit Power consumed % China Power Yearbook

coaleffiit Fuel consumption g/kWh China Power Yearbook

utilit Utilisation rate of thermal power
installed capacity

% China Power Yearbook

struit Power generation structure % China Power Yearbook

regit Policy DMUmy 0 or 1

10The environmental issue, especially the relationship between efficiency (and/or productivity) and
emission reduction is a hot issue in researches on the Chinese power generation industry (Yang
and Pollitt 2009; Bi et al. 2014). However, since the production function model can only deal with
multi-inputs and single output, consequently adding undesirable output to the DEA model will
raise the problem of incomparability in estimated results obtained from the SFA and DEA models;
furthermore, the designated objective of this study is to find out reasons for power shortages during
the last decade in China, so exclusion of undesirable output may not impact our analysis
materially.
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Taking all those variables into consideration, it is safe to argue that investments in
installed capacity were highly capital and/or technologically intensive, which
brought about technical progress in the power industry of China, as will be shown
in Sect. 5. Another variable that is worth noting is the utilisation rate of installed
capacity, ranging from 0.50 to 0.61, and being clearly lower than expected. Given
that China was in a state of power shortage during this period, the low utilisation
rate is especially conspicuous and worth thinking about. We will come back to this
problem in Sect. 5.

5 Estimation Results and Analysis

5.1 Technical Efficiency

Table 3 shows the comparison of the estimated results on the performance of the
Chinese power generation sector from different empirical studies. The current
present study shows that the efficiency scores from DEA the minimum and the
maximum value among the 297 observations are 51% and 1, and the annual average
value ranges from 83 to 88%, with a sample period mean of 85%. For efficiency
scores from SFA, the corresponding values are 37, 99, 67–79 and 73%. When
compared with existing studies, our DEA-based means of efficiency scores are
slightly lower than those found in Lam and Shiu (2001, 2004), and Yang and Pollitt
(2009), and higher than those of Bai and Song (2009). As to SFA-based means, our
results are lower than Li (2009), higher than Zhang and Xia (2011), and similar to
Li and Zou (2012).

More detailed distribution patterns of efficiency scores from the present study
can be found in Figs. 1 and 2. As shown in Figs. 1 and 2, estimates from the
non-parametric method with an average value of 85% are higher than those from
the parametric method with an average value of 73%. The difference in estimates
may largely result from different benchmarks against which the efficiency levels of
the other DMUs are evaluated. More specifically, take the efficiency score for
Province A in the year 2000 as an example. Under the DEA method, the 27
provinces in 2000 constitute a sub-sample within which the efficiency score of
Province A is estimated against the best performance in these 27 observations.11

Similarly, the efficiency scores of other individual provinces in other years are also

11The other way to estimated efficiency levels of individual provinces under the DEA method is to
regard the whole sample as a whole and estimate each individual against the best performance in
this sample, just like under the SFA method. However, doing it in such a way means that the panel
structure of the data is neglected and assumes that there is no technological progress over eleven
years of the sample period (see Fried et al. 2007 for more detailed explanations). Given that the
power generation sector is a capital- and technical-intensive industry and with the vast investments
of China’s power generation in the sample period, we think our treatment is more appropriate in
taking the background of this research into account than the alternative.

5 Revisiting Reasons for Ten Years of Power Shortages in China 127



T
ab

le
3

C
om

pa
ri
so
n
of

re
le
va
nt

em
pi
ri
ca
l
st
ud

ie
s
on

th
e
C
hi
ne
se

po
w
er

ge
ne
ra
tio

n
se
ct
or

Sa
m
pl
e
pe
ri
od

R
es
ea
rc
h
m
et
ho

d
R
es
ea
rc
h
ta
rg
et

(D
M
U
)

M
ax
im

um
va
lu
e

M
in
im

um
va
lu
e

R
an
ge

of
m
ea
n

T
FP

(T
C
)

P
re
se
nt

st
ud

y
20

00
–
20

10
D
E
A
-T
E

SF
A
-T
E

Th
e
w
ho

le
se
ct
or

(p
ro
vi
nc
e)

1 0.
99

0.
51

0.
37

0.
83

–
0.
88

0.
67

–
0.
79

2.
23

(1
.9
5)

0.
97

(0
.8
0)

L
am

an
d
Sh

iu
(2
00

1)
19

95
–
19

96
D
E
A
-T
E

T
he
rm

al
po

w
er

(p
ro
vi
nc
e)

1
0.
69

0.
89

–
0.
90

L
am

an
d
Sh

iu
(2
00

4)
19

95
–
19

96
;

19
98

-2
00

0
D
E
A
-T
E

T
he
rm

al
po

w
er

(p
ro
vi
nc
e)

1
0.
73

0.
91

–
0.
94

2.
1
(2
.2
)

Y
an
g
an
d
Po

lli
tt

(2
00

9)
20

02
D
E
A
-T
E

C
oa
l-
fi
re
d
(p
la
nt
)

1
0.
60

0.
88

–
0.
95

L
i
et

al
.
(2
01

5)
20

02
–
20

11
SF

A
-C
E

T
he
rm

al
po

w
er

(p
la
nt
)

1
0.
21

0.
32

–
0.
86

C
he
n
et

al
.
(2
01

5)
19

99
–
20

11
SF

A
-C
E

(B
ay
es
ia
n)

Fo
ss
il-
fu
el

(p
la
nt
)

0.
84

–
0.
96

Y
an
g
an
d
Y
u
(2
00

8)
19

96
–
20

03
D
E
A
-T
E

T
he

w
ho

le
se
ct
or

(p
ro
vi
nc
e)

0.
92

–
0.
94

2.
1
(2
.2
)

B
ai

an
d
So

ng
(2
00

9)
20

04
D
E
A
-T
E

T
he
rm

al
po

w
er

(p
ro
vi
nc
e)

1
0.
16

0.
70

L
i
(2
00

9)
20

01
–
20

07
SF

A
-T
E

T
he
rm

al
po

w
er

(p
la
nt
)

0.
80

–
0.
98

Z
ha
ng

an
d
X
ia

(2
01

1)
20

03
–
20

09
SF

A
-T
E

T
he

w
ho

le
po

w
er

se
ct
or

0.
37

–
0.
53

L
i
an
d
Z
ou

(2
01

2)
20

00
–
20

09
SF

A
-T
E

T
he
rm

al
po

w
er

(p
ro
vi
nc
e)

0.
98

0.
36

0.
65

–
0.
79

128 H.-X. Wang et al.



estimated through the same way. By contrast, under the SFA method, the efficiency
score for Province A in the year 2000 is estimated against the best performance in
the whole sample which consists of 297 (the product of 27 provinces and 11 years)
observations. Since the best performance in sub-groups must be inferior or at best
equal to the best performance in the whole group, it follows that the estimated
efficiency score of the same observation under the DEA method must be no smaller
than those estimated under the SFA method.

Although results show that efficiency levels of the Chinese power generation
sector have room for improvement and may be one reason for the power shortage
during the sample period of 2000–2010, we cannot conclude that it is the main or
only cause of the power shortage. This is because compared with the pre-2000
efficiency levels when there was no power shortage (see Lam and Shiu 2001, 2004),
the efficiency levels for 2000–2010 were not significantly lower, and therefore
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Fig. 1 Technical efficiency of China’s power generation sector estimated from DEA
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Fig. 2 Technical efficiency of China’s power generation sector estimated from SFA
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cannot solely explain the increase in power shortages. When compared interna-
tionally, See and Coelli (2012) find that average technical efficiency scores for
public-owned and private-owned power plants in Malaysia are 68 and 88%
respectively, while Vaninsky (2006) shows that the technical efficiency of electric
power plants in the U.S. during 2000–2004 is 94%. Consequently, it is hard to say
that an average efficiency value of 73 or 85% in power plants in developing
countries like China is too low to bring out power shortages.

5.2 TFP Change and Its Sources

Table 4 shows the statistical summary of productivity change index and its
decomposition calculated by non-parametric DEA and parametric SFA methods. As
expected, there are considerable differences in both the TFP change index and their
components between two methods. For example, the average annual TFP growth
estimated from DEA is 2.23%, which is quite a bit higher than the 0.97% received
by the SFA. Further, the DEA method estimates a positive average scale efficiency
change over the sample period while the SFA shows a negative change.
Notwithstanding, there are some remarkable similarities between results from two
methods. First, they both estimate a positive growth in productivity change; second,
they both estimate that technical progress is the major contributor to productivity
growth; third, the Spearman’s rho between annual TFP change from two methods is
0.97, showing high consistency in tendency of annual TFP change. The results can
be explained by the fact of Chinese electric power industry regulatory reform. As is
known, technical progress means a shift in the production frontier, resulting mostly
from innovation, which could be embedded in new equipment investment. In 2002,
the State Power Corporation, which had been the vertical monopolist in the electric
power industry, was separated into five independent power generation group cor-
porations (see footnote 1). In order to acquire market share as soon as possible, the
top five corporations sharply increased their installed capacity simultaneously,
leading to a second investment rush in electricity generation (Zhao et al. 2012).12 Li
(2010) shows that there was a 98.3% growth in generation capacity in the whole
nation and 173% growth in the top five during the period from 2005 to 2009.
Innovations embedded in new generating units shifted the frontier and served as the
main sources of TFP change in the Chinese electric power industry, as is reflected
in Table 4.

The results from both methods related to pure efficiency change (PEC), while
another source of TFP change roughly reflected a trend of increase in technical
efficiency measurements during the first half of the last decade, and a trend of

12The first time an investment rush happened was in 1985, when the Chinese government began
allowing private investment in electricity generation in response to a serious supply shortage of
electric power.
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decrease for the second half. We argue that this tendency may be in line with the
situation of the Chinese electric power industry in the last decade. As mentioned
earlier, the vertical monopolist “The State Power Corporation of China” was dis-
mantled in 2002 and in its place five independent power generation group corpo-
rations were established, which compete in the power generation sector against each
other as well as against other existing little independent power plants. Market
pressure as well as relatively low efficiency during the monopoly period enabled the
improvement of the efficiency of the newly founded five corporations. Furthermore,
other existing power plants had to improve efficiency when faced with competition
from big rivals. All these facts contributed to technical efficiency gains from 2000
to 2005. However, it could be predicted that with an increasing number of idle staff
personnel and loss of motivation for managers to struggle with a bad business
environment due to the sharply increasing price of coal and low utilisation rates,
technical efficiency began changing from an upward tendency to a downward
tendency around the year 2004, as shown in Table 3.13

When compared with Lam and Shiu (2004) who report an average annual
increase of 2.1% in TFP over the period of 1995–1996 and 1998–2000, our findings

Table 4 Annual Productivity change index and its decomposition (%)

N-TCa P-TCb N-PEC P-PEC N-SEC P-SEC N-TFP P-TFP

2000–01 2.90 −0.20 −1.60 2.06 0.40 −0.13 1.70 1.73

2001–02 8.50 −0.04 −0.30 6.82 −0.10 −0.13 7.10 6.65

2002–03 6.90 0.13 1.10 6.39 −0.12 −0.23 6.80 6.29

2003–04 −2.50 0.35 4.70 3.05 2.60 −0.36 4.70 3.04

2004–05 1.30 0.61 0.70 −0.50 0.10 −0.48 2.20 −0.37

2005–06 −2.00 0.90 −0.40 −4.00 1.50 −0.67 −1.00 −3.77

2006–07 3.80 1.19 −0.21 −1.53 −1.40 −0.54 0.20 −0.88

2007–08 −3.90 1.45 −0.22 −5.02 4.10 −0.41 −2.20 −3.98

2008–09 0.50 1.71 0.10 −5.79 −4.00 −0.44 −3.40 −4.52

2009–10 4.00 1.94 −0.10 4.00 2.30 −0.45 6.20 5.49

Averagec 1.95 0.80 0.38 0.55 0.54 −0.38 2.23 0.97
aThe N—refers to indices calculated by non-parametric method
bThe P—refers to indices calculated by parametric method
cArithmetic means of individual indices

13Losses incurred by state-owned enterprises due to policy intervention are usually termed
”policy-induced losses”. Because of the information asymmetry problem between government and
enterprises, it is very hard for the state to distinguish between the policy-induced losses and the
enterprises’ operational losses. The managers of state-owned enterprises have an incentive to
ascribe all their losses like managerial slacks, on-job consumption and other agency problems—no
matter whether the losses are due to the policy burdens, their own incompetence or opportunistic
behavior—to state policy. We are unsure whether or not this phenomenon existed in state-owned
power plants in the last decade. If it did happen, this agency problem will be another reason for
negative technical efficiency changes.
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show that there is no TFP decrease during the sample period, and accordingly TFP
is hardly the reason for power shortages. In fact, TFP increased by 2.23% (DEA) or
0.97% (SFA) annually during this period. Taking estimated results of efficiency
levels as well as TFP change into consideration, it is hard to reach a conclusion that
low performance is the major cause of the power shortage that happened in the first
decade of the 21st century in China. There must be other reasons for the power
shortages.

5.3 Reasons for Low Utilisation Rates of Installed Capacity

Figure 3 offers information on utilisation rates of the installed thermal power
capacity during the sample period. Utilisation rates range from 0.27 to 0.76 with an
average rate of 0.55. Needless to say, this is a low rate level by any standard. The
co-existence of sufficient installed capacity, not-so-bad technical efficiency levels
and productivity growth rate of the power generation sector motivate us to inves-
tigate further the cause of the low utilisation rate which may directly lead to the
power supply shortage. The reason for running down the power plant may be due to
technical problem (maintenance), managerial decision (cost-benefit analysis) or
other reasons. After interviewing business leaders in the power sector and carefully
reviewing the literature, the second reason became especially attractive as the
potential candidate for the reason for the power shortage.

The literature review shows that Zhang and Chen (2011), Zhao et al. (2012) and
Wang et al. (2013) have all identified the coal-power conflicts between coal pro-
duction and power generation corporations. Conflicts are mainly due to the uneven
marketisation reform progress implemented in the coal and power generation
industries in China. More specifically, according to Li et al. (2015, p. 297), to
stabilise the electricity price and provide more incentive to coal mines to increase
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Fig. 3 Box plot of utilisation rate of thermal power installed capacity during the sample period
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output, China’s central government introduced the dual-track pricing scheme in the
coal industry in 1985, which requires qualified coal mines to sell a certain amount
of thermal coal to qualified thermal power plants (usually large state-owned power
plants) at a government-guided price. Output beyond the quota can be priced 50 or
100% higher and sold freely on the market. At the same time, the price for electric
power has been under the strict control of the National Development and Reform
Commission and cannot be changed accordingly with the market-oriented coal
price. As a result, when the gap between the government-guided price and market
price is big, coal production corporations are reluctant to increase the quantity of
coal sold at a government-guided price. The higher the coal market price, the more
serious the reluctance is. On the other hand, to satisfy the increasing need in coal
consumption resulting from the increasing need for electric power, thermal power
plants had to buy more and more coal at a market price. This creates profitability
problems for the thermal power producers, since the government-decided electric
power price14 is determined by using the government-guided coal price in the
electricity price formula.

Figure 4 presents the coal price index, soaring from 100 in 2002 to 179.78 in
2011, largely beyond the change of the Producer Price Index or PPI. Since
coal-purchasing costs account for about 70% of the total cost in coal-fired power
plants, continuously increasing the coal price brought serious financial problems to
the power generation industry [see e.g. Wang et al. (2013)]. It follows that the
mismatch between the market-oriented coal pricing mechanism and
government-guided power pricing scheme provided power plants with a serious
incentive to make themselves incompatible with the state’s demands: if they ran the
power plants in such a way that supply met the demand for electricity, they would
have incurred greater financial losses. In order to deal with this distorted institu-
tional arrangement and reduce their financial losses, the rational reaction is to
purposely reduce the quantity of thermal power generation, which is also shown as
a low utilisation rate of these plants, which can lead to less need for coal to be
bought at the market price (the dual-track pricing scheme in the coal industry
ensures that power plants can buy a certain amount of coal below the market price).

We also checked the possible impacts of variable renewable energy (VRE) such
as solar and wind on the utilisation rate of conventional capacity. According to The
National Economic and Social Development Statistical Bulletin of 2014, which is
issued by the National Bureau of Statistics of China, the total installed capacity in
2014 was 1.36 billion kW, of which thermal, wind and solar generation capacity
was about 0.92 billion, 95.81 million and 26.52 million kW, equalling to a share of
67.3, 7.0 and 1.9% respectively. Further, according to The 21st Century Economic
Report (5 February 2015), the total amount of power generated in 2014 was 5463.8
billion kWh, of which the amount of power generated by the thermal power, wind

14In order to link the benchmarking on-grid electric price with the coal price in the market, the
Chinese government introduced a coal-electricity price linkage scheme characterised by
cost-sharing between power plants and electricity users in 2004, while according to Li et al.
(2015), it served as a double-edged sword and hardly functioned as expected.
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power and solar power sectors was 4170, 156.3 and 23.1 billion kWh, equalling to a
share of 76.3, 2.9 and 0.4% respectively. That is to say, even after years of pro-
motion by the central government of the use of variable renewable energy, the share
of them in both installed capacity and generated power is still too low to signifi-
cantly influence the utilisation rate of thermal power installed capacity.

To summarise, one can conclude that low utilisation rates like the ones in
China’s power generation plants in the last decade are more likely to result from the
strategic decision of managers, rather than being the results of low demand for
electricity or equipment maintenance.

6 Concluding Remarks

In searching for causes for the ten years of power shortage that happened last
decade, we first analysed whether there was underinvestment in installed capacity.
Studies of Li (2010) and others show that it is safe to conclude that insufficient level
of generation capacity is not a cause of nationwide power shortages. Next we
examined the role of performance as a reason for power shortages by estimating
efficiency levels as well as productivity change and its sources in the power gen-
eration sector. Results show that the average efficiency score from DEA and SFA is
85 and 73%, respectively. Further, TFP increased by 2.23% (DEA) or 0.97%
(SFA) annually. Taking estimated results of efficiency levels as well as TFP change
into consideration, it is hard to reach a conclusion that low performance was the
major cause of the power shortage in the first decade of the 21st century in China.
Finally, we examined the role of managerial decisions as a cause of power short-
ages. We did this by interviewing business leaders and examining the existing
literature. According to these, there were incentive-related problems which origi-
nated originating from the relationship between the market-oriented coal pricing
mechanism, the government-determined electric power pricing regime and invalid
coal-electricity pricing linkage. That is to say, as the coal price rose, thermal power
plants began to slip into the red. To reduce operational losses, managers decided to
reduce coal use by artificially lowering the utilisation rate which eventually leads to
the phenomenon of power supply shortage.
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Fig. 4 The comparison of change between the coal price index and PPI
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From the perspective of policy implications, our study reflects difficulties faced
by transition economies in their shift from centralised-governance to
market-oriented mechanism. The problem is not that policy-makers in those
economies do not know what to do, but rather that achieving one policy intention is
often at the cost of sacrificing or harming the other objective, which is also pursued
by other policy designs, namely so-called transitional costs. For example, to sta-
bilise and even lower the price of electricity for macroeconomic reasons, the
Chinese government’s intervention in pricing could be justified. However, doing so
creates incentive problems in power plants when the coal price is in a state of
continuous increase. In 2012, the dual-track pricing policy was eventually abolished
and calculation formulas of the electricity price as well as the coal-power price
linkage scheme were also correspondingly adjusted.15 Given that both theory and
practices in developed economies show that the power supply sector is contestable
and should be subject to market mechanisms, a gradual removal of price controls on
electricity should be carried out. However, more attention should be paid to net-
work operations which are characterized by a natural monopoly. Finally, predicting
sources of productivity change in China’s electricity generation sector in the next
few years, we argue that productivity growth through technological progress
resulting from equipment investments may be hard to be achieved given the fact of
excessive installed capacity and the decreasing growth rate of the Chinese economy
from now on. If that is true, technical efficiency improvements will be and should
be the main source of productivity growth in the Chinese power generation sector.
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Chapter 6
Allocation Schemes and Efficiencies
of China’s Carbon and Sulfur Emissions

Zhongqi Deng, Ruizhi Pang and Yu Fan

1 Introduction

With the rapid development of global economies and societies, human survival is
encountering enormous challenges from environmental pollution and greenhouse
gas emissions (Currie et al. 2015). Reducing emissions and safeguarding the sus-
tainability of economic and social development have become critical concerns
around the word (Martin et al. 2014; Fowlie 2010), so understanding the most
efficient ways to reduce local pollution sources can significantly improve well-being
in both developed and developing countries (Greenstone and Hanna 2014). In
accepting pollution emissions as undesirable outputs, it is thus necessary to explore
production efficiency and allocation schemes.

Discussions during the 2009 Copenhagen Climate Change Conference (so-called
the “one last chance to save themankind”) covered both the promises of the first phase
of the Kyoto Protocol (2008–2012) and the global emissions reduction agreement in
the following phase (2012–2020). Thereafter, climate change summits in Cancun,
Durban, Doha, Warsaw, Lima, and Paris all focused global attention on environ-
mental and resource issues. Since the Chinese economic reforms of 1978, the total
energy consumption in China has witnessed a sharp increase, with China surpassing
the United States becoming the largest energy-consuming nation in 2010 (Statistical
Review of World Energy). In 2013, China consumed 3.75 billion tons of coal
equivalent energy, representing 22.4% of the total global amount. This enormous
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consumption of energy contributed respectively to 90 and 80% of Chinese SO2 and
CO2 emissions, thus encroached the threshold of ecological bearing capacity (Pang
et al. 2015a; UKCIP 2002).1 Consequently, energy conservation and emissions
reduction have become unavoidable tasks in China.

As one of the major economic powers in the world, China has taken enormous
efforts to conserve energy and reduce emissions. As part of the Twelfth Five-Year
Plan Work Program on the Emissions Reduction of Greenhouse Gases, the Chinese
government stated that “by the end of 2015, the national carbon intensity level
should decline by 17% from the end of 2010.” Every province (or city) was
assigned a specific carbon dioxide emission reduction target. In addition, in the
Twelfth Five-Year Plan Work Program on Integrated Energy Conservation and
Emissions Reduction, the Chinese government also stipulated sulfur dioxide
emission reduction target of 2015 for various provinces and cities.

These policy documents presented a rigid restraint to regional economic and
social development. However, based on the mid-term evaluation of China’s Twelfth
Five-Year Plan, it is apparent that “the economic indicators have been fulfilled
while the environmental indicators lag behind.” For example, energy consumption
intensity fell only 5.5% from 2011 to 2012, 11.5% away from the target value of
16%. The survey results for carbon intensity were also barely satisfied, with a total
decline of only 6.6% from 2011 to 2012. In addition, nitrogen oxide emissions
increased by 5.74% in 2011.2 In short, China has not achieved the projected
periodical targets for energy conservation and emissions reduction. What could be
the main reason for the failure to achieve the periodical targets? Is this phenomenon
reasonable or inevitable? Is the administrative allocation scheme that sets one target
to fit all provinces and cities economically reasonable? How does one distribute
provincial emissions quotas with the total national emissions remaining unchanged?
How does one balance fairness and efficiency when allocating emissions rights?

Reflecting on these questions, this paper aims to determine an optimal approach
for emissions control and allocation that does not rely on technological production
progress. An optimal allocation scheme is required to meet not only the emissions
reduction targets but also the potential requirements of provincial economic
development. These purposes can be realized through a zero-sum gain data
envelopment analysis (ZSG-DEA) approach. This approach is specifically oriented
to maximize the technical efficiency of reducing carbon and sulfur emissions in

1“Beijing’s skyscrapers receded into a dense gray smog Thursday as the capital saw the season’s
first wave of extremely dangerous pollution, with the concentration of toxic small particles reg-
istering more than two dozen times the level considered safe”, reported by Associated Press on
January 16, 2014.
2In the Twelfth Five-Year Plan Work Program on the Integrated Energy Conservation and
Emissions Reduction, the Chinese government stated that by 2015 the country’s total nitrogen
oxide emission should be controlled within 20.462 million ton, downward at least 10% from the
end of 2010.
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various provinces with fully utilizing potential emissions reduction ability. Under
the constraint of unchanged total emissions, the final target is to achieve the real-
location of provincial emissions.

2 Research Method and Data Processing

2.1 Existing Research on Allocation Mechanism

Resource allocation has been a recently trending topic in economics (Hsieh and
Klenow 2009; Asker et al. 2014). Barzel and Sass (1990) researched the allocation
of resources through voting and Ergin (2002) introduced a model of resource
allocation based on priorities to address the question how to allocate Pareto effi-
ciently. Additionally, Gollin et al. (2014) researched the misallocation of labor in
the agricultural sector, which is also based on the efficiency principle.

In terms of emission-right allocation, Bastianoni et al. (2004) discussed the
geographical approach, consumer responsibility approach, and carbon emission
added approach to assign the responsibility for greenhouse gas. Edwards and
Hutton (2001) used a computable general equilibrium (CGE) model to evaluate
the methods of allocating carbon permits within the UK. Ferng (2003) studied the
carbon emission allocation from the perspectives of benefit principle and eco-
logical deficit within Taiwan. Bohm and Larsen (1994) studied the allocation of
CO2 emissions in EU member countries on the basis that the marginal revenue of
emission reduction equals to its marginal costs. Besides, Burtraw et al. (2005)
and Palmer (2009) studied the allocation of gas emissions in electronical
industries under a trading mode, which is also available for the ZSG scheme of
this paper.

In general, the goal of allocation schemes is to optimize cost, profit, or efficiency
(Demailly and Quirion 2008). As a non-parametric method, DEA (data envelop-
ment analysis) has been widely applied to energy allocation (e.g., Korhonen and
Syrjänen 2003; Pang et al. 2015b). However, the application of DEA in an allo-
cation scheme can be subject to the limitation of a fixed sum in a particular input (or
output), which means that the gains from a DMU (Decision Making Unit) are equal
to losses elsewhere, that is, the so-called Zero-Sum Game. Under this condition,
traditional parametric and non-parametric methods usually cannot solve this allo-
cation problem. Lins et al. (2003) initially proposed the ZSG-DEA model and
applied it to evaluate the national award-winning efficiency in the Sydney Olympic
Games. Many scholars subsequently applied this model, including Gomes and Lins
(2007), Chiu et al. (2013), Wang et al. (2013), and Pang et al. (2015a). By using the
model, this paper intends to reallocate Chinese provincial carbon and sulfur
emissions in 2010 and 2015 to maximize overall efficiency, thus guiding the setting
of China’s emissions-reduction targets in the future.
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2.2 Zero-Sum Gain Model

This paper determines the input and output variables by considering technical
rationality in the production process. Population, capital stock and energy con-
sumption are designated as inputs, represented by X1, X2 and X3, respectively; gross
regional product (GRP), carbon-dioxide emission and sulfur-dioxide emission are
designated as outputs, represented by Y1, Y2, and Y3, respectively. To evaluate the
technical efficiency of undesirable outputs objectively, this paper adheres to the
basic viewpoints of Environmental Production Technology (EPT):

1. In actual manufacturing process, undesired outputs are inevitable (null-joint), so
good outputs cannot be produced without producing bad outputs.

2. All other things being equal, effort is required to “get rid of” an unwanted by
product, as required by regulation, so reductions in inputs and undesired outputs
will lead to a simultaneous reduction in desired outputs (weak disposability).

In addition to EPT, the following three lemmas should be noted before putting
the ZSG-DEA model forward:

Lemma 1 In a ZSG-DEA model, the incentive that moves a decision-making unit
(DMU) to an efficient frontier is equivalent to the incentive in a traditional DEA
model.

Lemma 2 All DMUs can achieve 100% efficiency after a proportional reallocation
of emissions, which is a sufficient but not necessary condition.

Lemma 3 No matter whether there exists internal competition or cooperation
among DMUs within an inefficient (efficient) set, the relationship between
ZSG-DEA efficiency and DEA efficiency is always valid.

These lemmas are derived by the authors, but the proofs of Lemma 1–3 refer to
Lins et al. (2003), Gomes and Lins (2007), and Pang et al. (2015a), respectively, so
they are not demonstrated forthwith. Lemma 1 indicates that the incentive distortion
of DMUs is not in existence under the ZSG-DEA model. Lemma 3 indicates that
the internal game among DMUs has no significance, internal behaviors can thus be
described as a “black box” to simplify the model analysis. The definitions of
inefficient and efficient sets will be given later. Lemma 2 indicates that even when
total emissions and technical levels remain the same, efficiency maximization and
Pareto improvement can be realized only by reallocating the (input or output)
factors; this is the theoretical foundation of this paper.

The basic model of DEA in Eq. (1) is different from the traditional models of
CCR and BCC. In Eq. (1), h1k and h2k are handled separately, which shows that to
become effective in technology a DMU can reduce Y2 and Y3 by different pro-
portions. Here, h1k and h2k are referred to as the emission efficiency of carbon
dioxide and sulfur dioxide, respectively, under the conditions of current population,
capital stock, and energy consumption. The objective function is the weighted sum
of h1k and h2k, which are endowed with equal weight in this paper (that is, 0.5),
Wang et al. (2013) also adopted a similar weight scheme. Different weights can also
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be set in various situations. kj represents DMUj’s contribution to the efficient
frontier and the restraint

P
k ¼ 1 shows that the return to scale is variable.

Min 0:5h1k þ 0:5h2k

s:t:
Xn

j¼1

kjXij �Xik; i ¼ 1; 2; 3;
Xn

j¼1

kjY1j � Y1k;
Xn

j¼1

kjY2j ¼ h1kY2k

Xn

j¼1

kjY3j ¼ h2kY3k;
Xn

j¼1

kj ¼ 1; kj � 0; j ¼ 1; 2; . . .; n

ð1Þ

Based on Eq. (1) and Lemma 1, this paper carries out a non-radial allocation
for the carbon dioxide emission (Y2) and sulfur dioxide emission (Y3), resulting
in a ZSG-DEA model oriented by undesired outputs, as indicated in Eq. (2). In
practice, all DMUs strive to reduce the emissions of carbon and sulfur. In
Eq. (2), the expressions Y2k 1� h1kð Þ and Y3k 1� h2kð Þ respectively represent the
carbon dioxide emission and sulfur dioxide emission that must be reduced by the
kth DMU. These reductions will be distributed to the other n� 1 DMUs through
a Proportional Reduction Strategy while maintaining the same total emissions of
carbon and sulfur. After the reallocation, all DMUs are mapped to a new efficient
frontier (see Lemma 2). At this point, the efficiencies of all the DMUs reach
100%, thus realizing Pareto Optimality. To maintain the same total emissions, a
portion of the undesired outputs must be distributed to efficient DMUs to
compensate for the lost undesired outputs of inefficient DMUs, thus the
ZSG-DEA efficient frontier will remain at a lower level than before. As for
Eq. (2), problems occur with existing literature such as Gomes and Lins (2007),
and Chiu et al. (2013), so this paper makes some corrections in the following
paragraphs.
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6
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2

6
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7
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If a regulatory authority is sufficiently effective and competent to influence
the decision-making process of the DMUs, then the abovementioned allocation
method is the most efficient. This allocation method not only ensures the real-
ization of the overall targets of emission reduction, but also stimulates all DMUs
to reach an efficient frontier. However, the calculation process of Eq. (2) is
rather complex and involves nonlinear programming. Therefore, this paper
engages in a step-by-step calculation: First, this paper calculates the h1k and h2k
values corresponding to each province and city with Eq. (1). Then, following
Gomes and Lins (2008) as well as Pang et al. (2015a), this paper solves h1k and
h2k with Eq. (3).

h1p ¼ h1p 1þ

P

p2w
Y2pð1� qkph1pÞ

P

p 62w
Y2p

2

6
4

3

7
5; h2p ¼ h2p 1þ

P

p2w0
Y3pð1� q0kph2pÞ

P

p62w0
Y3p

2

6
4

3

7
5 ð3Þ

In this equation qkp ¼ h1k=h1p and q0kp ¼ h2k=h2p (see Pang et al. 2015a).
Inefficient set w is the set composed of all DUMs in which h1k values are not equal
to 100%. The other inefficient set w0 refers to the set of DMUs in which h2k values
are not equal to 100%. According to Lemma 3, the relationship displayed by
Eq. (3) has nothing to do with the games inside the inefficient set (w or w0). In this
paper, h1k and h2k represent the ZSG addition coefficients of carbon and sulfur
emissions, respectively. Furthermore, by using Eq. (3), it is easy to calculate these
addition coefficients when all the provinces and cities reach the new ZSG frontier.
The provinces and cities whose ZSG addition coefficient of carbon emission sur-
passes 100% (implying advanced carbon-emission technology) could increase their
local carbon emissions; similarly, provinces and cities whose ZSG addition coef-
ficient of sulfur emission surpasses 100% could increase their local sulfur
emissions.

This paper then expands the ZSG-DEA model of Eq. (2) into a multi-
dimensional situation and substitutes Eq. (3) into Eq. (2). Because 0:5h1k þ 0:5h2k
is independent for each DMU, minimizing each 0:5h1k þ 0:5h2k is equivalent to
minimizing the sum,

Pn
k¼1 0:5h1k þ 0:5h2kð Þ. Therefore, this paper obtains Eq. (4).

Because the allocation of carbon-dioxide and sulfur-dioxide emissions could be
viewed as a special trade between efficient DMUs and inefficient DMUs, this paper
places all originally inefficient DMUs into the inefficient set. DMUs in the ineffi-
cient set have redundant undesired outputs (carbon or sulfur emissions), so it is
possible to allocate these redundancies to the originally efficient DMUs. In this
manner, the final allocation results can be obtained with a single calculation, which
is a major innovation offered by this paper.
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In conclusion, the calculation steps can be summarized as follows:

1. Calculate Eq. (1) by using the original input and output data to identify the
efficient and inefficient DMUs.

2. Calculate Eq. (4) to solve the ZSG-DEA addition coefficients, h1k and h2k , for
various DMUs.

3. Multiply h1k and h2k with the corresponding original CO2 and SO2 emissions,
respectively, to obtain the emissions data after reallocation.

Finally, Eq. (1) can be recalculated with the reallocated emissions data, in which
case it is noted that all the DMUs will have 100% technological efficiency, thus
realizing the maximum of efficiency (see Lemma 2, and it will also be tested in the
empirical analysis section later).

2.3 Variable Selection and Data Sources

This paper selects 30 Chinese provinces and cities in 2010 and 2015 as samples.3

Relevant economic and energy data primarily come from China Statistic Yearbook
(2011–2014) and China Energy Statistic Yearbook (2011–2014). Using 2008 as the
base year, this paper adjusts all the nominal variables to a real price level. The
estimated values of 2015 primarily come from the Twelfth Five-Year Plan Work
Program on the Emissions Reduction of Greenhouse Gases [China’s National
Development and Reform Commission (2011), no. 41] and the Twelfth Five-Year

3These two years are selected because that 2010 and 2015 are the final year of China’s Eleventh
and Twelfth Five-Year Plan, respectively, so this paper can obtain relevant documents and reports.
Some data of 2015 are simulated values.
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Plan Work Program on Integrated Energy Conservation and Emissions Reduction
[CNDRC (2011), no. 26]. With considering technology rationality in the production
process based on ZSG Environmental Production Technology, this paper regards
population,4 capital stock5 and energy consumption in each province and city as
input variables, and regards provincial gross regional product and the emissions of
carbon dioxide and sulfur dioxide6 as output variables. Table 1 lists the summary
statistics of these variables and indicates that while the sulfur emission has declined
the other inputs and outputs have increased, particularly the capital stock, which has
more than doubled.

To estimate carbon dioxide emission in 2010, this paper uses various energy
consumption values as basic data, including 16 major energy sources: coal, fine
washed coal, other washed coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil,
liquefied LPG, coke oven gas, other gases, refinery gas, natural gas, thermal, and
electricity. All the energy consumption data come from the Regional Energy
Balance Sheet of the China Energy Statistic Yearbook. The conversion formula of
carbon dioxide emission refers to IPCC (2006):

CO2 ¼ 44
12

X16

i¼1

Ei � NCVi � CEFi � COFið Þ ð5Þ

where Ei denotes the consumption of different fuels; NCVi denotes net heat value;
COFi denotes the carbon emission factor of unit heat value; COFi denotes the
carbon oxidation rate; and 44/12 is the gasification coefficient of carbon dioxide.
The average net heat values of different forms of energy sources come from
Appendix 4 of the China Energy Statistical Yearbook; the carbon-emission factors
come from the 2006 IPCC Guidelines for National Greenhouse Gas Inventories
(Vol. 2, Chapter 1, Table 1.3). China’s Twelfth Five-Year Plan Work Program on
the Emissions Reduction of Greenhouse Gases clarifies the range of decline in
carbon dioxide emission per GRP (gross regional product) from 2010 to 2015, from
which the carbon density can be calculated. This value is then multiplied by the
estimated GRP in 2015 to estimate the CO2 emissions in each province and city in
2015. The rationality of the administrative allocation scheme and other schemes
will be discussed later.

4The population in 2015 are estimated based on the population of 2013 with using 0.72% as the
annual growth rate, because the Twelfth Five-Year Plan Work Program on National Population
Growth stipulated that “control the annual growth rate of population within 0.72%”.
5This paper uses Perpetual Inventory Method (PIM) to estimate the real capital stocks of various
provinces in 2010 and 2015. When estimating the capital stocks in 2015, this paper uses the
provincial capital stocks in 2013 as base, and assumes that the growth rate of Chinese material
capital stock is 14%.
6The regional sulfur-emission control plan in the Annex 4 of China’s Twelfth-Five Plan Work
Program on the Integrated Energy Conservation and Emissions Reduction provides the provincial
target of sulfur-dioxide emission, this paper uses it directly as the estimated value of administrative
allocation of 2015.
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3 Empirical Analysis

3.1 Comparison Between ZSG Allocation,
National Administrative Allocation,
and Actual Emissions in 2010

In the Eleventh Five-Year Plan, China encouraged the building of desulfurization
facilities in thermal power plants to ensure that sulfur-dioxide emission would be
reduced by 10% by the end of 2010 as a curb to acid rain. The government also
promulgated the Eleventh Five-Year Plan Work Program on the Emission Control
of Major Pollutants, in which the control plan of sulfur emission for each province
and city was specifically set. Because carbon-intensity control was not included in
the comprehensive evaluation system of economic and social development during
China’s Eleventh Five-Year Plan, this section primarily discusses the differences in
sulfur-dioxide emission between provincial administrative allocation, actual emis-
sion, and ZSG allocation in 2010 (refer to Table 2). The ZSG allocation of
provincial sulfur dioxide denotes the quota after reallocating the actual emission of
each province by using the optimized approach of this paper.

3.1.1 Twenty Provinces or Cities Were Assigned an Excessively
High Administrative Sulfur-Emission Quota

Based on the prescribed provincial reduction target, the government stressed
emission reduction in all provinces and cities (except for Hainan, Gansu, Qinghai,

Table 1 Summary statistics of input-output variables in 2010 and 2015

Variable Year Mean Std. dev. Min Max

Population (X1) (10,000) 2010 4436.12 2708.88 563.00 10440.96

2015 4571.96 2767.18 586.14 10797.83

Capital stock (X2) (100
million yuan)

2010 39963.33 26216.18 5192.27 108096.30

2015 80445.15 50216.62 12092.57 208646.20

Energy consumption (X3)
(10,000 ton of standard coal)

2010 15583.79 9521.93 1672.25 40345.02

2015 17777.40 10682.77 1934.11 45734.30

Gross Regional Product (Y1)
(100 million yuan)

2010 11517.94 9102.42 1063.79 37317.13

2015 20071.28 15070.42 1952.21 61215.20

Carbon dioxide emission (Y2)
(10,000 ton)

2010 41162.20 27669.44 5468.14 121160.50

2015 57290.57 36385.07 8160.16 162243.10

Sulfur dioxide emission (Y3)
(10,000 ton)

2010 72.83 41.15 2.88 153.78

2015 59.72 33.74 2.36 126.10

Note Both the capital stock and the gross regional product are measured by real price. There 30
samples in each year. Yuan is the unit of RMB
Source See the section of Variable Selection and Data Sources
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Table 2 Provincial administrative allocation actual emission and ZSG allocation of sulfur dioxide
in 2010 (10,000 ton)

SEE Admin. allocation Actual emission ZSG allocation

2010 Change 2010 Change 2010 Change

Beijing 1.00 15.20 −20.4 11.51 −39.7 36.66 91.9

Tianjin 1.00 24.00 −9.4 23.52 −11.2 74.94 182.8

Hebei 0.24 127.10 −15.0 123.38 −17.5 93.64 −37.4

Shanxi 0.07 130.40 −14.0 124.92 −17.6 25.84 −83.0

Inner Mongolia 0.06 140.00 −3.8 139.41 −4.3 28.63 −80.3

Liaoning 0.21 105.30 −12.0 102.22 −14.6 67.73 −43.4

Jilin 0.20 36.40 −4.7 35.63 −6.7 23.2 −39.3

Heilongjiang 0.18 49.80 −2.0 49.02 −3.5 27.47 −45.9

Shanghai 1.00 38.00 −25.9 35.81 −30.2 114.12 122.5

Jiangsu 1.00 112.60 −18.0 105.05 −23.5 334.77 143.8

Zhejiang 0.81 73.10 −15.0 67.83 −21.1 175.49 104.1

Anhui 0.18 54.80 −4.0 53.21 −6.8 31.02 −45.7

Fujian 0.28 42.40 −8.0 40.91 −11.3 36.42 −21.0

Jiangxi 0.14 57.00 −7.0 55.71 −9.1 24.92 −59.3

Shandong 0.54 160.20 −20.0 153.78 −23.2 262.53 31.1

Henan 0.27 139.70 −14.0 133.87 −17.6 116.66 −28.2

Hubei 0.22 66.10 −7.8 63.26 −11.8 44.13 −38.5

Hunan 0.18 83.60 −9.0 80.13 −12.8 44.75 −51.3

Guangdong 1.00 110.00 −15.0 105.05 −18.8 334.78 158.7

Guangxi 0.09 92.20 −9.9 90.38 −11.7 24.99 −75.6

Hainan 1.00 2.20 0.0 2.88 30.9 9.18 317.3

Chongqing 0.09 73.70 −11.9 71.94 −14.1 20.97 −74.9

Sichuan 0.15 114.40 −11.9 113.1 −12.9 53.23 −59.0

Guizhou 0.04 115.40 −15.0 114.88 −15.4 14.86 −89.1

Yunnan 0.13 50.10 −4.0 50.07 −4.1 20.55 −60.6

Shaanxi 0.11 81.10 −12.0 7.86 15.6 26.14 −71.6

Gansu 0.08 56.30 0.0 55.18 −2.0 13.98 −75.2

Qinghai 1.00 12.40 0.0 14.34 15.6 45.71 268.6

Ningxia 0.41 31.10 −9.3 31.08 −9.4 40.18 17.1

Xinjiang 0.09 53.56 0.0 58.85 9.9 17.29 −67.7

Note SEE denotes the sulfur-emission efficiency. The column of “change” is to measure the change
between the allocations of 2010 and the real emission of 2005 (unit is %)
Source The data of “ZSG allocation” are calculated by the authors. The data of “administrative
allocation” come from the Eleventh Five-Year Plan Work Program on the Emissions Control of
Major Pollutants [China’s National Development and Reform Commission (2006), no. 70]
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and Xinjiang, which retained the same sulfur emission in 2010 as in 2005). As for
the ZSG allocation, the quotas in various provinces and cities were not identical and
were in fact inconsistent with the administrative quotas. For example, the ZSG
quotas in 10 provinces and cities, including Guangdong, Jiangsu, Zhejiang,
Shandong, Shanghai, Tianjin, Qinghai, Beijing, Ningxia, and Hainan, surpassed the
administrative quotas, and the total increase of ZSG allocation surpassed 200%.

In terms of sulfur-emission efficiency, the top ten provinces and cities were
Beijing, Tianjin, Shanghai, Jiangsu, Guangdong, Hainan, Qinghai, Zhejiang,
Shandong, and Ningxia. However, the Chinese government set a relatively more
difficult emission-reduction target for these locales; for example, Beijing was
assigned a 20.4% reduction from 2005 to the end of 2010 (Shanghai 25.9%,
Jiangsu 18%, and Shandong 20%). Conversely, those with lower sulfur-emission
efficiency (lower than 0.2) had a relatively lower emission-reduction target; for
example, Anhui and Yunnan were required to reduce emission by only 4% (Inner
Mongolia 3.8%, Heilongjiang 2%). It seems that an unfair phenomenon of
“whipping the fast and hardworking” existed under the national administrative
allocation, similarly to the A-J effect in the price regulation field.

Achieving nationwide sulfur-emission-reduction target requires elevating sulfur
emission efficiency, which is a rigid restraint for the provinces and cities with lower
sulfur-emission efficiency. The ZSG allocation scheme of this paper is beneficial for
the provinces and cities with higher sulfur-emission efficiency but “punishes” those
with lower efficiency, thus conforming to the efficiency principle and incentive
requirement.

3.1.2 Significant Provincial Difference in the Completion
Degree of Sulfur-Dioxide-Emission Reduction

Although most provinces and cities met the administrative target (except for
Hainan, Qinghai, and Xinjiang), the degree of completion varied from province to
province (see Table 2). Areas, such as Beijing, Zhejiang, Jiangsu, Shanghai, and
Hubei, achieved an additional reduction of more than 4%, whereas the additional
reduction was less than 1% in Inner Mongolia, Guizhou, Ningxia, and Yunnan.
Based on the two indicators of sulfur-emission efficiency and completion degree of
the administrative target, this paper could roughly divide these 30 provinces and
cities into four categories (see Fig. 1).

The first category includes the provinces and cities with high efficiency and good
performance in sulfur reduction, represented by Beijing, Shanghai, Jiangsu, and
Zhejiang. Due to advanced reduction technology, these provinces and cities already
reached their best level under the current macroeconomic production framework
and could even surpass the administrative target.

The second category includes the provinces and cities with high efficiency but
poor performance in sulfur reduction, represented by Tianjin, Qinghai, and Hainan.
The sulfur-emission efficiency in these provinces and cities achieved 100%, but
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because of their economic development structure7 and/or the restraint of reduction
technology (such as Qinghai and Hainan), they could barely (or merely) reach the
administrative target.

The third category includes the provinces and cities with lower efficiencies but
good performance in sulfur reduction, represented by Shanxi, Hunan, and Shaanxi.
The sulfur-emission efficiency in these provinces and cities was lower than 0.2,
with Shanxi at only 0.06. Under the current population, energy consumption, and
capital input circumstances, although the actual sulfur emission was excessive, it
was not difficult to achieve the administrative target because the national
administrative target was too low and there was significant room for reducing
emission.

The fourth category includes the provinces and cities that performed poorly in
both efficiency and completion degree, represented by Guizhou, Inner Mongolia,
and Xinjiang. They encountered enormous challenge in energy conservation and
emission reduction. They should urgently address these issues and take measures
such as optimizing energy structure, raising sulfur-emission efficiency, and intro-
ducing advanced reduction technology, to reach the administrative target.

3.1.3 The Middle and Western Regions Should Shoulder More
Responsibilities in Terms of Reducing Sulfur Emission

The administrative scheme to allocate sulfur-emission right will lead to hardship in
the provinces and cities that have higher sulfur-emission efficiency (such as Tianjin,
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Fig. 1 Sulfur-emission efficiency and completion degree of administrative target (2010)

7In Tianjin, the industrial section accounts for an excessive proportion in economic structure
(being 48% in 2010), and the heavy industry accounts for 84% in the industrial section in 2010.
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Qinghai, and Hainan) in accomplishing their administrative reduction target, but
relief in the provinces and cities that have greater emission but lower efficiency
(such as Shanxi, Shaanxi, and Hunan). Moreover, the administrative allocation
could lead to backwardness in terms of energy conservation and emissions
reduction in the provinces such as Guizhou and Xinjiang.

Figure 2 shows the results in three major economic regions of China. The
government administratively prescribed that “by the end of 2010, sulfur emissions
in the eastern, middle, and western regions should be reduced by at least 16.3, 9.8,
and 8.7%, respectively.” These three major economic regions met this goal by the
end of 2010, realizing reduction of 20.2, 13.0, and 9.0%, respectively. As for the
completion degree, in the eastern region it was the best, followed by the middle and
western regions.

According to Fig. 2, actual emission of sulfur dioxide was greatest in the
western region, reaching 8.2 million ton and 37.4% of total emission nationwide;
after the ZSG allocation, this region received the lowest allocation of sulfur
emission right that is only 3.1 million ton. Most the provinces and cities in the
western region had lower sulfur-emission efficiency (including Guizhou, Inner
Mongolia, Shaanxi, and Xinjiang), but the protective administrative allocation in
this region might have aggravated this result. Similarly, the administrative alloca-
tion in the middle region was also greater than the ZSG allocation. To narrow the
gap between the eastern, middle, and western regions, it is necessary to utilize
incentives and punitive measures, enhance inter-regional negotiation and cooper-
ation on emissions-reduction technology and management mechanism, as well as
accelerate the spread of advanced technology and management concepts.
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Fig. 2 Administrative allocation, actual emission, and ZSG allocation of SO2 in the eastern,
middle, and western of China (2010). Source Calculated by the authors through the data in Table 2
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3.2 Comparison Between the ZSG Allocation
and Administrative Allocation in 2015

3.2.1 Under the ZSG Allocation Scheme, There Were 16 Provinces
and Cities in China that Must Lower Their Administrative
Quota of Carbon Emission

As shown in Table 3, among these 16 provinces or cities, Shanxi, Inner Mongolia,
Hebei, and Liaoning, where carbon emission efficiency was lower than 0.4, would
receive lower carbon emission quota under the ZSG allocation scheme. For
example, the ZSG allocation of Shanxi was reduced to 320.128 million ton from the
967.760 million ton original emission (a decreasing of 66.92%). The carbon
emission quota in Inner Mongolia also needed to decline by 559.750 million ton.
Under current economic structure, these resource-oriented provinces and cities
would have difficulty realizing the ZSG allocation target. Therefore, they could
purchase emission right from the areas with excess carbon emission quotas, which
is a tradeoff between environmental sustainability and economic development.

On the other hand, under the ZSG scheme, there were 14 provinces and cities
that obtained more carbon emission quotas, including economically developed
provinces and cities, such as Beijing, Shanghai, Jiangsu, and Guangdong. These
provinces and cities already had optimized scale of carbon emission (with carbon
emission efficiency of 100%; see Table 3 for details). For example, Guangdong was
administratively required to realize a carbon intensity of 1.22 ton/10,000 yuan;
under the ZSG scheme, it was permitted to increase emission by 872.250 million
ton—an increase of 99.46% in carbon intensity that reached 2.43 ton/10,000 yuan.
Because the energy consumption structure in Guangdong was dominated by
hydropower and nuclear power, the increased carbon emission would not neces-
sarily lead to a simultaneous growth in GRP. Therefore, Guangdong might choose
to “sell” its carbon-emission right of 872.250 million ton to other provinces.
Besides, other regions, such as Zhejiang, Fujian, Jiangxi, and Chongqing, could
also acquire more carbon-emission quotas under the ZSG scheme, thus lessening
the pressure to reduce their emission.

3.2.2 When Allocating Emission with an Administrative Scheme,
the Chinese Government Adopted a Unified Standard to Fit All
Regions

In the attachment to China’s Twelfth Five-Year Plan Work Program on the
Emissions Reduction of Greenhouse Gases, there are clear statements on the nec-
essary level of carbon intensity decline in 2015 for various provinces and cities.
This paper measures the decrease in carbon intensity from 2011 to 2015 under the
ZSG allocation scheme and compares it to the administrative scheme, thus
demonstrating that there is an enormous gap between the ZSG allocation target and
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Table 3 China’s provincial carbon-emission ZSG-allocation and carbon-intensity in 2015

CEE Estimated
emission

ZSG
allocation

Difference Rank Carbon
intensity

Admin. ZSG

Beijing 1.00 214.32 427.48 213.16 6 0.95 1.90

Tianjin 1.00 302.99 604.34 301.35 5 1.82 3.64

Hebei 0.29 1203.84 685.21 −518.63 28 3.68 2.10

Shanxi 0.17 967.76 320.13 −647.63 30 6.65 2.20

Inner
Mongolia

0.20 936.92 377.17 −559.75 29 4.82 1.94

Liaoning 0.31 1030.11 644.27 −385.84 27 3.29 2.06

Jilin 0.41 395.77 323.51 −72.26 18 2.64 2.16

Heilongjiang 0.35 504.09 347.33 −156.76 23 3.03 2.09

Shanghai 1.00 366.86 731.73 364.88 4 1.47 2.93

Jiangsu 1.00 1065.05 2124.35 1059.30 1 1.56 3.11

Zhejiang 0.81 655.28 1057.86 402.58 3 1.51 2.44

Anhui 0.39 523.74 403.23 −120.51 19 2.38 1.83

Fujian 0.60 378.39 456.06 77.68 9 1.50 1.81

Jiangxi 0.59 287.74 341.10 53.36 10 1.74 2.06

Shandong 0.46 1602.88 1474.62 −128.27 20 2.54 2.33

Henan 0.43 929.71 792.06 −137.66 22 2.50 2.13

Hubei 0.45 609.91 549.28 −60.63 16 2.14 1.93

Hunan 0.55 497.68 544.24 46.55 11 1.76 1.92

Guangdong 1.00 876.99 1749.24 872.25 2 1.22 2.43

Guangxi 0.57 297.83 340.91 43.08 12 1.79 2.05

Hainan 1.00 93.16 185.81 92.65 7 2.56 5.11

Chongqing 0.57 274.90 310.22 35.32 13 1.88 2.12

Sichuan 0.51 580.27 588.44 8.17 14 1.91 1.94

Guizhou 0.28 444.63 247.88 −196.74 24 4.81 2.68

Yunnan 0.35 431.32 298.82 −132.51 21 3.18 2.21

Shaanxi 0.31 573.10 359.34 −213.76 25 3.09 1.94

Gansu 0.39 293.62 226.74 −66.88 17 4.05 3.13

Qinghai 1.00 88.48 176.49 88.01 8 3.64 7.27

Ningxia 0.42 220.11 182.25 −37.86 15 7.43 6.15

Xinjiang 0.27 478.39 255.73 −222.66 26 4.95 2.65

Total – 17125.81 17125.81 0.00 – – –

Note The unit of emission (allocation) is million ton. The column of “difference” is obtained by
using the ZSG allocation to minus the estimated emission. The column of “Rank” is arranged in
descending order according to the “difference” quantity. The carbon intensity is referred to as the
carbon dioxide emission of unit GRP, and unit is ton/million yuan
Source The ZSG allocation is calculated by the authors. The carbon intensity data of administrative
allocation come from the Twelfth Five-Year Plan Work Program on the Emissions Reduction of
Greenhouse Gases [China’s National Development and Reform Commission (2011), no. 41]
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the administrative allocation target. Although the carbon-intensity reduction target
under the national administrative allocation scheme varies from province to pro-
vince, it remains at approximately 17% overall; see Fig. 3. However, under the
ZSG allocation scheme, the target has extreme ranges from −80% to 73%.

Comparing the two schemes, there are 14 provinces and cities in which the
administrative allocation target surpasses that of the ZSG quota. The most severe
gap between the two schemes lies in Qinghai province at 89.51%. Under the ZSG
allocation scheme, the carbon intensity in Beijing, Tianjin, Shanghai, Jiangsu,
Zhejiang, Guangdong, Hainan, and Qinghai in 2005 are permitted to go beyond
their 2010 level. Although the carbon intensity in Qinghai and Hainan provinces in
2010 was 4.049 and 2.879 ton/10 thousand yuan, respectively, their respective total
carbon emission was only 88.484 and 93.155 million ton; therefore, under the ZSG
allocation scheme, they were permitted to increase carbon emission. As for the
provinces and cities with high GRP, including Beijing, Shanghai, and Guangdong,
they could raise their carbon dioxide emission in 2015 under the ZSG allocation
scheme. There are 16 provinces or cities in which administrative control target is
less strict than ZSG control, including the major energy output provinces (Shanxi
and Inner Mongolia) and industrial provinces (Hebei and Liaoning), these areas
would face greater pressure of emission reduction under the ZSG scheme.

A statement in the Twelfth Five-Year Plan Work Program on Integrated Energy
Conservation and Emissions Reduction specifies emission target of sulfur dioxide
for various provinces and cities by the end of 2015. See Table 4 for their com-
parison with the sulfur-emission allocation under the ZSG scheme. Although
administrative control no longer enforces a unified degree of decline for sulfur
dioxide in all provinces and cities, there is an almost antipodal situation between the
administrative allocation and the ZSG allocation.8 In addition, the problem of
“whipping the fast and hardworking” but “rewarding the slow and freeloading” still
exists under the administrative allocation scheme. For provinces and cities with
higher sulfur emission efficiency such as Beijing, Jiangsu, Shanghai, Zhejiang, and
Guangdong, the government has greater expectation on sulfur-emission reduction,
whereas the less efficient areas such as Hebei, Shanxi, Liaoning, Shaanxi, and
Xinjiang are permitted to increase sulfur-dioxide emission.

3.2.3 Nationwide, 19 Provinces and Cities Were Being Granted
an Excessively High Administrative Sulfur-Emission Quota

Among these 19 provinces and cities, Inner Mongolia, Shanxi, Guizhou, and
Shaanxi must continue their emission reduction program. As for Hebei, Liaoning

8Shanghai, Guangdong, Beijing, Jiangsu, Tianjin, and Zhejiang need to lower emissions under the
administrative allocation scheme but increase emissions under the ZSG scheme. On the contrary,
Yunnan, Xinjiang, Gansu, Shaanxi, Jilin, Shanxi, Heilongjiang, Liaoning, Hebei, and Hubei need
to increase emissions under the administrative allocation scheme but reduce emissions under the
ZSG allocation scheme.
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and Henan, their secondary industry constitutes a major proportion in their indus-
trial structure, which needs to transform and upgrade. Provinces and cities such as
Shanxi, Inner Mongolia, and Guizhou are traditionally energy exporter. Based on
local resource reserve and economic structure, it is unrealistic to change their
energy consumption structure over a short period of time. Therefore, it is more
feasible for them to improve energy efficiency and take advantage of their local
strengths by exploiting emerging alternative energies such as solar and wind
energy.

On the other hand, there are 11 provinces and cities in the country that receive
higher quotas under the ZSG scheme than under the administrative control. There
are seven provinces and cities in which ZSG quotas increase by 266% relative to
the administrative quotas, namely Beijing, Shanghai, Jiangsu, Guangdong, Tianjin,
Hainan, and Qinghai. Because sulfur emission in these provinces and cities have
already met the optimal scale (the sulfur emissions efficiency being 100%), they
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Fig. 3 Reduction degree of carbon intensity under the two allocation schemes (%). Source
Negative reduction degree means increasing. The reduction degrees of carbon intensity under the
administrative allocation scheme come from the Twelfth Five-Year Plan Work Program on the
Emissions Reduction of Greenhouse Gases [China’s National Development and Reform
Commission (2011), No. 41], and the data of ZSG allocation scheme are calculated by Table 3
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Table 4 China’s provincial allocations of sulfur-dioxide emission in 2015

SEE Admin. allocation ZSG allocation Difference Rank

2015 Change 2015 Change

Beijing 1.00 9.00 −21.81 32.94 186.17 23.94 8

Tianjin 1.00 21.60 −8.16 79.05 236.10 57.45 5

Hebei 0.17 125.50 1.72 77.54 −37.15 −47.96 25

Shanxi 0.05 127.60 2.15 25.13 −79.88 −102.47 29

Inner Mongolia 0.06 134.40 −3.59 29.28 −79.00 −105.12 30

Liaoning 0.18 104.70 2.43 70.46 −31.07 −34.24 22

Jilin 0.17 40.60 13.95 25.38 −28.77 −15.22 14

Heilongjiang 0.15 50.30 2.61 27.11 −44.69 −23.19 16

Shanghai 1.00 22.00 −38.56 80.52 124.84 58.52 4

Jiangsu 1.00 92.50 −11.95 338.53 222.26 246.03 1

Zhejiang 0.66 59.30 −12.58 143.62 111.74 84.32 3

Anhui 0.17 50.50 −5.09 31.18 −41.41 −19.32 15

Fujian 0.28 36.50 −10.78 37.89 −7.39 1.39 11

Jiangxi 0.13 54.90 −1.45 26.66 −52.15 −28.24 19

Shandong 0.37 160.10 4.11 214.15 39.26 54.05 6

Henan 0.21 126.90 −5.21 96.03 −28.27 −30.87 20

Hubei 0.23 63.70 0.70 54.02 −14.61 −9.68 12

Hunan 0.22 65.10 −18.76 53.14 −33.68 −11.96 13

Guangdong 1.00 71.50 −31.94 261.67 149.10 190.17 2

Guangxi 0.14 52.70 −41.69 26.65 −70.52 −26.05 18

Hainan 1.00 4.20 45.83 15.37 433.72 11.17 10

Chongqing 0.12 56.60 −21.32 24.41 −66.06 −32.19 21

Sichuan 0.20 84.40 −25.38 60.79 −46.25 −23.61 17

Guizhou 0.05 106.20 −7.56 19.88 −82.69 −86.32 28

Yunnan 0.10 67.60 35.01 23.59 −52.89 −44.01 23

Shaanxi 0.09 87.30 12.12 27.99 −64.06 −59.31 27

Gansu 0.08 63.40 14.90 18.35 −66.75 −45.05 24

Qinghai 1.00 18.30 27.62 66.97 367.04 48.67 7

Ningxia 0.43 36.90 18.73 58.24 87.40 21.34 9

Xinjiang 0.08 72.70 23.53 20.45 −65.24 −52.25 26

Note SEE denotes the sulfur-emission efficiency. The column of “difference” is calculate by using
the ZSG allocation to minus the administrative allocation. Ranking is arranged in descending order
according to the “difference” quantity
Source Both the sulfur-emission efficiency and the data of ZSG allocation are calculated by the
authors with the original data introduced in the section of Variable Selection and Data Sources.
The data of administrative allocation come from the Twelfth Five-Year Plan Work Program on the
Integrated Energy Conservation and Emissions Reduction [China’s National Development and
Reform Commission (2011), no. 26]
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could choose to lease their extra emission right. Similarly, Zhejiang, Ningxia,
Shandong, and Fujian could possibly emit more sulfur dioxide in the ZSG allo-
cation scheme, but there is still room for them to reduce emission because their
sulfur emission efficiency is lower than 100%; see Table 4 for details. Therefore,
these four provinces still have an incentive to reduce sulfur emission by optimizing
their energy-usage structure and promoting desulfurization technology.

4 Conclusions

Under the framework of a macro total factor production function, this paper selects
relevant theories on environmental production technology as a starting point to
explore the allocations of carbon and sulfur emissions. An output-oriented model is
initially used to describe the total factor production process. We place carbon and
sulfur emissions into the production process in the form of undesirable outputs, a
ZSG efficiency distribution model is then established by combining the ZSG-DEA
approach and environmental production technology. Using mathematical software
to solve the programming problem, the distribution schemes of China’s carbon and
sulfur emissions are analyzed. This paper focuses on the calculation of ZSG effi-
ciency based on 2010 historical data, as well as evaluates and compares the dif-
ferences between administrative allocation, ZSG allocation, and actual emissions.
We also offer an optimal proposal for China’s carbon and sulfur emissions allo-
cation in 2015. The following conclusions are drawn.

First, China’s Central Government adopts an allocation scheme of “one size fits
all” to set emissions-reduction target, leading to a malpractice of “whipping the fast
and hardworking” but “rewarding the slow and freeloading.” Therefore, some
provinces (Tianjin, Qinghai, Hainan, and others with higher sulfur emissions effi-
ciencies) must struggle to fulfill their administrative targets, whereas other pro-
vinces (Shanxi, Shaanxi, Hunan, and others with greater emissions but lower
efficiencies) can easily meet their targets. This leads to provinces with significant
emissions (including Guizhou, Inner Mongolia, and Xinjiang) lagging further
behind. In contrast, the ZSG allocation scheme, based on the emissions efficiency of
all provinces and cities, emphasizes the overall Pareto optimal and simultaneously
considers economic, environmental, and energy factors, thereby leading to widely
ranging administrative allocation results. After the ZSG reallocation in 2015, 11
provinces obtain higher sulfur quotas than that in the administrative allocation,
whereas 19 other provinces continue their emissions reduction apart from their
administrative quotas. The latter are primarily resource-oriented provinces, so it is
more difficult for them to realize the ZSG reduction target under their present
economic structure; however, they can purchase emissions right from other
provinces.

Second, comparisons between the administrative allocation of China’s Central
Government and the ZSG allocation show that provinces and cities with high
emissions efficiency were generally assigned higher reduction targets by the
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government than that under the ZSG allocation, whereas provinces with lower
emissions efficiency were assigned lower administrative emissions reduction tar-
gets. As for regional distribution, the western region was the most inefficient in
terms of sulfur emission, but the government implemented an administrative pro-
tection that is not conducive to narrowing the gap between the east and west.
Therefore, the government should adjust the current administrative scheme and
offer necessary incentives. Based on the Pareto optimality of efficiency, this paper
introduces the allocation of carbon and sulfur emissions into a total factor pro-
duction framework to demonstrate that, although carbon and sulfur emissions are
inevitable with economic outcomes, they can be controlled more effectively and
reasonably than in the traditional administrative allocation scheme.

Because the allocation of emissions right involves many crucial issues in various
dimensions, such as resource reserve, energy consumption structure, emissions
reduction potential and industrial structure, a slight difference in the allocation of
the emissions right could lead to profound influence in various provinces and cities
in terms of the optimization of industrial structure, energy production and con-
sumption policies. This paper’s conclusions can offer some useful policy implica-
tions for future emissions reduction in China. To reduce carbon and sulfur
emissions more efficiently, China must focus on the middle and western provinces
that hold the greater capacity for emissions reduction. The government should also
strive to build inter-regional cooperative industrial platforms and encourage
enterprises with greater efficiency to offer technological support to those who are
lacking to narrow the gap between the western and eastern regions. When pre-
scribing the emissions control for different provinces and regions, the government
should simultaneously consider fairness and efficiency. Finally, it is essential to
improve the performance of pilot projects in which carbon and sulfur emissions are
sold and/or traded, perfect the design of national carbon and sulfur trading mech-
anisms, and add environmental evaluation to the assessment of local government
performance.
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Chapter 7
Carbon Productivity and Carbon Shadow
Price in China’s Power Industry:
An Endogenous Directional Distance
Function Approach

Yujiao Xian and Ke Wang

1 Introduction

China’s economy has experienced a rapid growth along with fast-paced
urbanization and industrialization. However, the great achievement of economic
development has led to some increasing environmental pressure, such as energy
resource overshoot, air pollution, and greenhouse gas (GHG) emissions. How to
control the energy-related GHG emissions, which is mainly CO2 emissions, has
become one of the most urgent challenges that need to be addressed in China. In
2013, the statistics of International Energy Agency shows that the power industry
sector produces nearly 50% of China’s carbon emission (IEA 2015). Therefore,
controlling CO2 emissions of China’s power industry sector should be regarded as
priority for national carbon emission reduction. The evaluation of carbon perfor-
mance (e.g., carbon efficiency, productivity and shadow price) makes the effort of
environmental protection accountable and helps to prioritize actions and formulate
policies for economic growth, energy saving, and CO2 emissions control. In this
regard, it is essential for China to improve the carbon performance in power
industry sector.

When measuring the carbon efficiency with the consideration of both intended
and unintended outputs (e.g., pollutants), the directional distance function
(DDF) based nonparametric DEA technique is considered an effective approach that
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can expand intended outputs and control unintended outputs or inputs simultane-
ously (Chambers et al. 1996; Managi and Jena 2008; Chang and Hu 2010; Wang
et al. 2013). The techniques for estimating efficiency scores and shadow prices of
pollutants through DDF can be divided into the parametric technique (e.g.,
Stochastic Frontier Analysis, SFA) and the non-parametric technique (e.g., DEA).
The former usually requires a specific assumption on production function such as
the quadratic directional distance function (Kumbhakar and Lovell 2000).
Examples of its applications can be found in Chambers (2002), Färe et al. (2006),
Wei et al. (2013) and Molinos-Senante et al. (2015). While the latter does not need
any assumption on production function and is based on the data construction of all
observed inputs and outputs. It has been widely utilized to the issues of energy and
environmental such as Watanabe and Tanaka (2007), Zhou et al. (2008), Wang
et al. (2012), Lin et al. (2013), Shortall and Barnes (2013), Li and Lin (2015). In
this paper, we will use the non-parametric DEA technique for the carbon efficiency
and productivity evaluation.

In the empirical applications of DDF based on the DEA model, the directional
vector is usually selected directly by the researchers in advance. This selection is
arbitrary and could not guarantee to capture the largest distance to the efficient
frontier. Thus, some researchers introduced an endogenous DDF method based on
the DEA model to identify the largest efficiency improvement potentials (Färe et al.
2013; Zofio et al. 2013; Hampf and Krüger 2015; Wang et al. 2016a; Lee 2014,
2016). In our paper, we will use the endogenous DDF technique to estimate carbon
efficiency without market prices. In addition, previous studies of endogenous DDF
method based on the DEA model mainly focus on the theory development and
efficiency evaluation. In this study, we develop the dual form of the endogenous
DDF technique which is further utilized to estimate the shadow price of CO2

emissions in China’s power industry sector.
Regarding the carbon efficiency and productivity change, Malmquist produc-

tivity index, Malmquist-Luenberger productivity index and Luenberger productiv-
ity indicator are the most common indexes, and they are equivalent in principle.
When calculating these indexes, there are usually three disadvantages:
(i) non-circular; (ii) possible infeasible situation; and (iii) different measures for
cross-period units (Färe and Grosskopf 1996). In order to solve these problems,
Pastor and Lovell (2005) developed a Malmquist index under a global frontier that
is composed with the data in all periods under investigation. It satisfies circularity
and is immune to infeasible solution, as well as can generate a single measure for
cross-period units. Many studies had employed the global frontier in empirical
analysis (e.g., Kumar 2006; Asmild and Tam 2007; Herrala and Goel 2012; Fan
et al. 2015). Thus, in this study, we also employ the global Luenberger indicator to
analyze the efficiency change of power industry sector of China’s 30 provinces and
four areas (i.e., north-eastern area, eastern area, central area and western area).

It is also important to explore the contribution of the sources to carbon pro-
ductivity change. In our study, the global carbon Luenberger productivity indicator
is decomposed into three compositions: best practice gap change (BPC), pure
efficiency change (PEC) and scale efficiency change (SEC). Therefore, it can help to
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identify the effects of technical progress, catch-up and scale management in carbon
productivity growth.

The remaining part of this chapter is organized as follows: Sect. 2 describes the
endogenous directional distance function model, presents the estimation method of
shadow price of unintended outputs, and introduces the global Luenberger pro-
ductivity indicator and its decomposition. Section 3 shows our data source.
Section 4 first analyzes the carbon productivity change among the power industry
sector of China’s 30 provinces and their corresponding four areas; then it provides
an empirical estimation and the convergence analysis of the relative shadow price of
CO2 emissions among areas and provinces. Section 5 shows the conclusions and
provides several policy implications.

2 Methodologies

2.1 Endogenous Directional Distance Function

Assuming we observe n (j = 1, 2, …, n) DMUs with m (i = 1, 2, …, m) inputs x,
s (r = 1, 2, …, s) intended (or good) outputs y and h (f = 1, 2,…, h) unintended (or
bad) outputs u. The corresponding production possibility set then can be denoted
by:

T ¼ x; y; uð Þ 2 Rmþ sþ h
þ : x can produce y; uð Þ� � ð1Þ

It is often assumed to satisfy several technically and economically reasonable
characteristics including: (i) Convexity (Shephard 1970); (ii) Free disposability of
inputs and intended (or good) outputs (Färe and Primont 1995); (iii) Weak dis-
posability of unintended (or bad) outputs associated with intended (or good) outputs
which implies any proportional reduction of intended and unintended outputs
together is feasible in the production possibility set (Färe and Grosskopf 2004); and
(iv) Null-jointness of intended (or good) and unintended (or bad) outputs which
indicates intended outputs and unintended outputs are simultaneously generated.

To identify the production possibility set based on the empirical data, we use
non-parametric directional distance function approach in this study. In contrast to
parametric approach, the non-parametric approach does not need a specific form of
the production function or any assumption on the inefficiency distribution.

The output-oriented DDF can be defined as:

~D x; y; u;~gð Þ ¼ max b : x; yþ b~gy; u� b~gu
� � 2 T

� � ð2Þ

in which b (> 0 or = 0) is the inefficiency score and ~g ¼ ~gy;�~gu
� �

is the direc-
tional vector.

In most applications for evaluating efficiency and productivity, the directional
vector is arbitrarily pre-selected by the researchers. However, there may be some
disadvantages in this arbitrary selection process. First, intended and unintended
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outputs are usually assigned the same weight associate with the pre-selected
direction, and thus, they do not have any trade-offs in production process. Second,
the inefficiency scores may be underestimated when some non-zero slacks exist on
outputs (Fukuyama and Weber 2009). Third, there may be a downward-sloping
segment on the efficient production frontier when utilizing the weak disposability
characteristic mentioned above, i.e., the frontier may have a segment with negative
slope (Picazo-Tadeo and Prior 2009; Chen and Delmas 2012). Therefore, some
inefficient units located on this part may be misclassification as efficient units along
with these arbitrary directions. In order to solve these problems, Färe et al. (2013)
proposed a technique to obtain an endogenous directional vector by maximizing the
inefficiency score of the unit under evaluation. Hereafter, Hampf and Krüger (2015)
developed a more general model to obtain the direction along which each unit can
identify the furthest distance to the efficient production frontier. The associated
output-oriented model for the under evaluation decision making unit, DMUj0, can
be shown as follows:

max
b;kj;arj0 ;dfj0

b

s:t: xij0 �
Xn

j¼ 1

xijkj; i ¼ 1; 2; . . .;m

yrj0 þ barj0 yrj0 �
Xn

j¼1

yrjkj; r ¼ 1; 2; . . .; s

ufj0 � bdfj0ufj0 ¼
Xn

j¼1

ufjkj; f ¼ 1; 2; . . .; h

Xs

r¼1

arj0 þ
Xf

f¼1

dfj0 ¼ 1

b; kj; arj0 ; dfj0 � 0; j ¼ 1; 2; . . .; n; r ¼ 1; 2; . . .; s; f ¼ 1; 2; . . .; h:

ð3Þ

In Model (3), kj represents the intensity variable, whereas arj0 and dfj0 are the
weight variables for intended output r and unintended output f, respectively.
Moreover, the non-negative restriction on a and d means that only the directions
~g ¼ ~gy;�~gu

� �¼ a� y;�d� uð Þ that do not reduce intended outputs or increase
unintended outputs can be obtained. Note � denotes the Hadamard product of two
vectors.

2.2 Shadow Price Estimation of Unintended Output

Obviously, Model (3) is a nonlinear programming problem which can be trans-
formed into a linear programming problem by introducing two new variables,
b1 ¼ b� a and b2 ¼ b� d. The linear model then can be read as:
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max
b1r ;b2f ;kj

Xs

r¼1

b1r þ
Xh

f ¼1

b2f

s:t: xij0 �
Xn

j¼1

xijkj; i ¼ 1; 2; . . .;m

yrj0 þ b1r yrj0 �
Xn

j¼1

yrjkj; r ¼ 1; 2; . . .; s

ufj0 � b2f ufj0 ¼
Xn

j¼1

ufjkj; f ¼ 1; 2; . . .; h

b1r; b2f ; kj � 0; j ¼ 1; 2; . . .; n:

ð4Þ

In Model (4), b1r and b2f are the inefficiency scores for the intended output r and
the unintended output f, respectively.

Let v, l and x be the decision variables indicating the dual multipliers of the
constraints of inputs, intended outputs and unintended outputs in Model (4). We can
transfer Model (4) to Model (5), which is the dual form of Model (4).

min
mi;lr ;xf

Xm

i¼1

xij0mi �
Xs

r¼1

yrj0lr þ
Xh

f¼1

ufj0xf

s:t:
Xm

i¼1

xijmi �
Xs

r¼1

yrjlr þ
Xh

f¼1

ufjxf � 0; 8j

Xs

r¼1

yrj0lr � 1;

Xh

f¼1

ufj0xf � 1;

mi; lr � 0; i ¼ 1; 2; . . .;m; r ¼ 1; 2; . . .; s:

ð5Þ

Considering vi, lr and xf as the shadow price for inputs i, intended output r and

unintended output f, respectively. We treat
Ps

r¼1
yrjlr as total revenue for DMUj, and

Pm

i¼1
xijmi þ

Ph

f¼1
ufjxf as total cost for DMUj. Then we define the negative profit for

each DMUj as
Pm

i¼1
xij0mi �

Ps

r¼1
yrj0lr þ

Ph

f¼1
ufj0xf , and thus, Model (5) seeks to

minimize the negative profit of each DMUj. This optimization is based on dual
shadow prices. As it stands, in Model (5), the first constraint means that the efficient
profit from inputs and outputs must be positive. It is crucial to note here that the
value of dual variables of unintended outputs can be considered as a cost with the
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constraint that they are positive. Following Hailu (2003), or Førsund (2009) in
considering positive dual price for the unintended output, it indicates that the
revenue from the intended outputs has to at lest compensate the cost of inputs and
the unintended outputs (i.e., the negative revenue). The economic implication of
this result is relevant and intuitive: if the dual prices of the unintended outputs are
negative, obviously, the producers’ revenue then will be from both intended and
unintended outputs are no longer ‘bad’ in the economic sense.

Consequently, the relative shadow price of unintended output f, puf , associated
with the intended output r can be obtained as follows:

puf ¼
pyr � xf

lr
ð6Þ

where pyr is the market price of intended output r. Thus, on the one hand, puf can be
considered as the relative market price of unintended output f. On the other hand,
the relative shadow price can be considered as the opportunity abatement cost
regarding the corresponding economic benefits, and it therefore represents the
marginal abatement cost of unintended outputs which means the trade-off between
generating intended outputs and unintended outputs.

2.3 Global Luenberger Productivity Indicator

As mentioned above, the global production technology can overcome the weak-
nesses of traditional productivity indexes in computing carbon productivity change.

Assume we observe T (t = 1, 2, …, T) time periods, a global benchmark tech-
nology TG hence can be defined as TG

V ¼ T1
V [T2

V [ . . .[TT
V and TG

C ¼
T1
C [T2

C [ . . .[TT
C (Pastor and Lovell 2005). The subscribe V and C represent the

technology exhibiting variable returns to scale (VRS) and constant returns to scale
(CRS).

Consequently, the global Luenberger productivity indicator (GLPI) can be
defined on CRS as follows:

GLPIGC xt; yt; ut; xtþ 1; ytþ 1; utþ 1
� � ¼ ~DG

C xt; yt; utð Þ � ~D
G
C xtþ 1; ytþ 1; utþ 1
� �

¼ bGC xt; yt; utð Þ � bGC xtþ 1; ytþ 1; utþ 1� � ð7Þ

where ~DG
C x; y; uð Þ ¼ max b : x; yþ ba� y; u� bd� uð Þ 2 TG

C

� �
is the directional

distance function, and similarly, � denotes the Hadamard product of two vectors.
Specifically, GLPIGC [ 0 indicates the productivity growth; GLPIGC ¼ 0 indicates
the productivity remains at the same level; and GLPIGC\0 indicates the productivity
decline. Following Färe et al. (1994b), we can decompose GLPI into pure efficiency
change (PEC), scale efficiency change (SEC) and best practice gap change (BPC) as
follows:
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PEC ¼ btV xt; yt; utð Þ � btþ 1
V xtþ 1; ytþ 1; utþ 1� � ð8Þ

SEC ¼ btC xt; yt; utð Þ � btV xt; yt; utð Þ� �

� btþ 1
C xtþ 1; ytþ 1; utþ 1

� �� btþ 1
V xtþ 1; ytþ 1; utþ 1

� �� � ð9Þ

BPC ¼ bGC xt; yt; utð Þ � btC xt; yt; utð Þ� �

� bGC xtþ 1; ytþ 1; utþ 1
� �� btþ 1

C xtþ 1; ytþ 1; utþ 1
� �� � ð10Þ

Here, technical efficiency captures the movement towards to (or away from) the
efficient production frontier, and thus, PEC measures technical efficiency change
under VRS; Scale efficiency denotes the deviation from the optimal production scale
that generates the largest marginal benefit and the observed production scale, and
thus, SEC measures the change of this deviation between two adjacent periods; Best
practice gap is the distance between the global production frontier and each period
production frontier, and thus, BPC measures the change of technological gap
between two adjacent periods.

Obviously that the sum of PEC, SEC and BPC equals to GLPL:

GLPIGC xt; yt; ut; xtþ 1; ytþ 1; utþ 1� � ¼ PECþ SECþBPC ð11Þ

Note that the positive values of these three components respectively indicates
pure efficiency improvement, scale efficiency increase, and technical progress,
while the negative values of these three components respectively indicates pure
efficiency deterioration, scale efficiency decrease, and technical regress; zero values
on these three components indicate no change.

3 Data

We apply the endogenously non-parametric DDF model and the global carbon
Luenberger productivity indicator to the power industry sector in China’s 30 pro-
vinces during the 12th Five-Year Plan period (2011–2015). Hong Kong, Macau,
Taiwan and Tibet are not included in this sample because some of their data are
missing and these regions are not involved in China’s polices for energy saving and
carbon emissions reduction.

Three inputs, one intended output and one unintended output are used in our
calculation. The intended output and unintended output are defined as the gross
electricity generation and total CO2 emissions, respectively. Each province is
considered as generating these outputs by using employee, fuel consumption and
electricity generation installed capacity. The data on the employee is obtained from
the China Industry Economy Statistical Yearbook, while the data on the fuel
consumption, the installed capacity and the gross electricity generation are obtained
from the Wind database. CO2 emissions are calculated from the fuel consumption.
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Specifically, we use the carbon emission factors for combusting coal, oil and natural
gas to calculate the fuel consumption related CO2 emissions, and these factors are
obtained from the National Greenhouse Gas Inventories of IPCC Guidelines. In
addition, electricity prices are the feed-in tariffs which are obtained from the Price
Division of National Development and Reform Commission of People’s Republic
in China. The specifically descriptive statistics are presented in Table 1.

4 Empirical Analyses

How to improve carbon productivity and reduce carbon emissions abatement cost is
an important issue to control CO2 emissions. In this section, we first provide an
analysis of carbon productivity change and its decomposition, and then we show
the relative shadow prices of CO2 emissions for each area and specific regions.

4.1 Carbon Productivity Change Analysis

In order to identify the sources of GLPI change for four areas, the decomposition of
average GLPI into BPC, PEC and SEC is reported in Table 2. The last column
presents the GLPI, BPC, PEC and SEC of each area during the entire study period.
It can be seen that only western area shows the increase in GLPI, while all the other
three areas show the decrease in GLPI. Furthermore, the technical progress is the
primary driving force for the growth of GLPI during 2011–2015, while pure effi-
ciency deterioration always provides negative contribution on the growth of GLPI.
It implies that, on average, all areas are away from the efficient production frontier
in our study period. In addition, scale efficiency increases in central area and
western area, whereas it decreases in eastern area and north-eastern area during the
entire study period. This finding implies that the eastern and north-eastern areas in
China have both failed in moving toward more optimal scales of generating elec-
tricity and emitting CO2 during 2011–2015.

Table 1 Descriptive statistics

Inputs and outputs (units) No. of
observations

Mean Std.
Dev.

Min. Max.

Employee (thousand persons) 150 94.29 51.42 9.20 212.35

Fuel consumption (million ton coal
equivalent)

150 52.04 32.49 4.90 140.01

Installed capacity (million kW) 150 42.06 24.28 4.25 104.02

Electricity (billion kWh) 150 1715.85 1079.25 169.07 4651.43

CO2 emissions (million ton CO2) 150 131.19 100.04 10.48 417.67
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In conclusion, policies focused on developing new technologies of electricity
generation, energy utilization and carbon control among areas might not be enough,
more efforts are required to encourage technical efficiency catching-up and eco-
nomic scale management in improving carbon productivity in China’s power
industry.

In order to obtain a better understanding of carbon productivity change and its
decomposition, we additionally compare these indicators among China’s 30 pro-
vinces. Figure 1 illustrates the average GLPI and its decomposition indicators

Table 2 Decomposition of global carbon productivity indicator for each area

Areas Indicators 2011–
2012

2012–
2013

2013–
2014

2014–
2015

2011–
2015

Eastern area GLPI −0.065 0.086 −0.041 0.014 −0.005

BPC −0.079 0.124 0.015 0.003 0.064

PEC −0.024 −0.010 −0.059 0.058 −0.035

SEC 0.038 −0.028 0.003 −0.047 −0.034

Central area GLPI −0.045 0.105 −0.084 −0.103 −0.128

BPC 0.022 −0.016 0.145 −0.066 0.085

PEC −0.095 0.085 −0.222 −0.031 −0.264

SEC 0.028 0.036 −0.006 −0.006 0.051

Western area GLPI 0.039 0.042 0.046 −0.061 0.066

BPC 0.084 −0.068 0.120 −0.026 0.111

PEC −0.019 0.045 −0.075 −0.049 −0.098

SEC −0.026 0.066 0.001 0.013 0.053

North-eastern
area

GLPI −0.043 0.013 0.009 −0.024 −0.045

BPC 0.031 −0.025 0.096 0.034 0.136

PEC −0.059 0.011 −0.073 −0.032 −0.153

SEC −0.014 0.027 −0.014 −0.027 −0.027
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Fig. 1 Carbon productivity indicators and their decomposition for specific regions
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(BPC, PEC and SEC). It can be seen that about 40% regions whose GLPI range
from 2.3 to 65.7% experience carbon productivity growths. Among these regions,
Yunnan shows the highest growth rate (65.7%), followed by Shandong (51.4%),
Beijing (31.1%), Sichuan (17.9%) and Xinjiang (17.7%). Their carbon productivity
growths are almost driven by pure efficiency increase and technical progress
(i.e., the reduction on best practice gaps). Hence, promoting the progress on
technology of energy utilization and CO2 emissions control is an efficient way for
carbon productivity growth. On the contrary, there are 17 regions present carbon
productivity decrease (range from −1.2 to −33.5%) and in which, the primary
driving force for productivity decline of about 70% regions is pure efficiency
decrease. Accordingly, policies focused on encouraging technical efficiency
catching-up among regions are still very important in improving carbon produc-
tivity among regions.

4.2 Relative Shadow Price of CO2 Emissions

In addition to the carbon efficiency and productivity evaluation, we further estimate
the relative shadow prices of CO2 emissions for the power industry sector in
China’s 30 provinces. The relative shadow price can be considered as the oppor-
tunity abatement cost regarding to economic electricity generation, and it therefore
represents the marginal abatement cost of CO2 emissions which means the trade-off
between producing electricity and emitting CO2 emissions. The larger relative
shadow price represents it is more expensive to control additional carbon emissions.

Figure 2 depicts the weighted average shadow prices for four areas during 2011–
2015. It can be seen that the dynamic trends of the relative shadow prices of CO2

emissions show great disparity among areas, but all of them are characterized by a
rising trend during the 12th Five Year Plan period. In specific, the CO2 emissions
abatement cost of China’s power industry sector fluctuates with a range from 494 to
965 yuan/ton during 2011–2015. The lowest 5-year price appears in the eastern
area with a range from 390 to 620 yuan/ton, and the highest price appears in the
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north-eastern area with a range from 668 to 1389 yuan/ton. The CO2 emissions
abatement cost of power industry sector in central area is relatively stable around
780 yuan/ton during 2011–2015, and the cost in western area has been the highest
one since 2014. The results indicate that China has made some efforts to build an
environmental-friendly and energy-efficient society since the beginning of the 12th
Five-Year Plan, and the stricter policies and regulations implemented to reduce
carbon emissions had begun to gradually increase the costs of additional emissions
reduction.

In order to present a further insight into the relative shadow prices comparison,
we apply the ANOVA test to identify the price difference, which assumes the mean
value between different groups (areas and years) have no significant difference. The
test results for four areas and five years are listed in Table 3. The second row is the
test result among four areas, while the third row is the test result among five years.
It can be found that there is significant difference (at 0.05 levels) in the relative
shadow prices among different years and areas. This finding indicates that there is
still obviously unbalanced level of CO2 emissions abatement costs among China’s
areas, indicating the utilization of electricity generation and emission control
technologies are inequitable.

Figure 3 depicts the annual average shadow prices for each region in terms of
the regional electricity generation during the study period. It can be found that,
among the power industry sector of China’s 30 provinces, Fujian evidences the
lowest annual average shadow prices of CO2 emissions, while Chongqing has the

Table 3 ANOVA analysis of shadow prices

df F P-value

Area 4 2.214 0.003

Year 5 3.301 0.013

H0: There is no difference among groups

Fig. 3 Annual average shadow prices for specific regions
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highest CO2 emissions abatement cost. In specific, the annual average shadow
prices of CO2 emissions of Chongqing, Sichuan, Shanghai are ranked top three
among 30 regions which are all above 2000 yuan/ton; while the annual average
shadow prices of CO2 emissions of Fujian, Hainan, Tianjin and Jiangsu are all
below 300 yuan/ton and ranked bottom among 30 regions. The CO2 emissions
abatement cost is significantly different between specific regions, implying that the
level of economic production scale and electricity generation technology among
China’s regions is obviously unbalanced and inequitable. Since the relative shadow
price is significantly various across provinces, one suggestion is that the Chinese
government should give more impetus to the implementation of regional carbon
emissions trading scheme (Wang et al. 2016b). The government has set some
targets of CO2 emissions intensity reduction in the 12th Five Year Plan, and
assigned them to different provinces. Through the regional carbon emission trading,
the regions whose relative shadow prices are higher can acquire abatement cost
savings. In specific, these regions can decide whether to implement an emissions
abatement strategy or to purchase allowances from the regions with lower relative
shadow prices in carbon emissions trading market. Hence, the difference on relative
shadow prices of CO2 emissions among provinces and areas will provide a
necessity and possibility in CO2 emissions abatement cost savings from the regional
carbon emissions trading in China’s power industry sector.

In order to provide a further insight into the difference of relative shadow prices
between areas and provinces, we apply the analysis of sigma (r) convergence and
beta (b) convergence. r convergence is sufficient but not necessary for b conver-
gence. The r convergence is to explore the trend of the static measure of shadow
prices dispersions among areas and provinces, and the b convergence is to test the
negative relationship between initial shadow price and its growth rate (if
0 < b < 1). Figure 4 presents the r convergence and Table 4 shows the b con-
vergence across all areas and provinces. On the one hand, there has been a clear
increase in the dispersions of shadow prices distributions both among areas and

Fig. 4 r indicator of areas
and provinces
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among provinces and thus evidence for sigma non-convergence. It suggests that the
gaps of relative shadow prices among areas and among provinces become larger
during the 12th Five Year period in China. On the other hand, the b indicator
among areas and provinces are 0.72 and 0.73 respectively, which suggest the
existence of beta convergence over the study period. Hence, most areas or pro-
vinces, which have the low initial shadow price, have relatively high growth rate of
shadow price on average. One possible reason is that the reduction potentials of
shadow price is less in the areas and provinces with low shadow prices, and thus,
the growth rate would be higher.

5 Conclusions and Policy Implications

GHG emissions abatement is considered one of the most urgent problems, as China
and the rest of world all are facing serious challenges from global warming and
environmental degradation. Although China’s pilot CO2 emissions trading market
has been in place for a few years, its market operation has not yet reached
expectation. If the environmental policies and carbon trading market were efficient,
a price on carbon emission permit or a carbon tax would equal the marginal
abatement cost. As the largest sector of China’s carbon emissions, the power
industry sector is critical in saving energy and controlling CO2 emissions.
Evaluating carbon efficiency and productivity, and estimating the CO2 emissions
abatement cost for the power industry sector in China are necessary for understand
the current CO2 emissions performance and CO2 abatement cost, which could
provide valuable policy making supports for further mitigation efforts.

In this study, we apply an endogenously developed DDF method to evaluate the
carbon efficiency and productivity of the power industry sector of China’s 30
provinces and their corresponding four areas during 2011–2015. In addition, the
relative shadow prices (i.e., the marginal abatement costs) of CO2 emissions of the
power industry sector for these 30 provinces and the corresponding four areas
during this period are estimated.

On the one hand, the results of carbon productivity evaluation indicate that:

(i) Only the average GLPI of the western area shows an increase during our
study period, indicating the carbon productivity growth of the power industry
sector only appears in China’s western area during the 12th FYP period.

(ii) On the average of four areas, the primary driving force for carbon produc-
tivity increase can be attributed to technical progress (i.e., the decrease of
best practice gaps), while the primary driving force for carbon productivity

Table 4 b indicator of areas
and provinces

b indicator P-value

Area 0.72 0.01

Year 0.73 0.00
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decrease can be attributed to the lack of catch-up effect (i.e., pure efficiency
deterioration). Moreover, scale efficiency increase promotes the carbon
productivity growth in central area and western area, whereas scale efficiency
decrease drags the carbon productivity growth in eastern area and
north-eastern area.

(iii) There are 12 regions performed growth whereas 17 regions performed
decline in carbon productivity. In general, the pure efficiency decrease pro-
vides the greatest contribution in carbon productivity decline for most
regions.

(iv) At the current stage, developing new technologies of electricity generation,
energy utilization and carbon control might not be enough, while encour-
aging technical efficiency catching-up and economic production scale man-
agement will play a more important role in improving the carbon
productivity of China’s power industry sector. In addition, promoting some
clean and renewable energy projects may help to reduce the over dependence
on traditional fossil fuel consumption so as to realize the carbon efficiency
improvement and abatement cost reduction in this industry.

On the other hand, the results of relative shadow prices estimation indicate that:

(v) On the weighted average of all 30 regions, the CO2 emissions abatement
cost of China’s power industry sector increases during the 12th Five Year
Plan period from 494 to 965 yuan/ton.

(vi) There is statistically significant shadow prices difference between China’s
areas and provinces. The highest weighted average CO2 emissions abate-
ment cost appears in the north-eastern area with a range from 668 to
1389 yuan/ton, while the lowest weighted average CO2 emissions abate-
ment appears in the eastern area with a range from 390 to 620 yuan/ton.

(vii) The average CO2 emissions abatement cost of Chongqing is highest, and
that of Fujian is lowest. There is still obviously unbalanced and inequitable
levels of economic production scale, electricity generation and carbon
abatement technologies among China’s regions. The large gap on CO2

emissions abatement cost in power industry sector among different regions
provide a necessity and possibility to reduce the national total carbon
abatement cost through regional and national carbon emissions trading
schemes.

(viii) The shadow prices are sigma non-convergence and beta convergence
among areas and provinces. It suggests that although the initial shadow
price and its growth rate are negatively correlated on average, both the gaps
of relative shadow prices among areas and among provinces become larger
during the 12th Five Year period.

174 Y. Xian and K. Wang



Acknowledgements We gratefully acknowledge the financial supports from the National Natural
Science Foundation of China (grant Nos. 71471018, 71521002 and 71761137001), the Social
Science Foundation of Beijing (grant No. 16JDGLB013), the National Key R&D Program (grant
No. 2016YFA0602603), the Joint Development Program of Beijing Municipal Commission of
Education, Fok Ying Tung Education Foundation (161076) and International Clean Energy Talent
Program (2017) from Chinese Scholarship Council (No. 201702660030).

References

Asmild, M., Tam, F., 2007. Estimating global frontier shifts and global Malmquist indices. Journal
of Productivity Analysis. 27(2): 137–148.

Chambers, R., 2002. Exact nonradial input, output, and productivity measurement. Economic
Theory. 20: 751–765.

Chambers, R., Färe, R., Grosskopf, S., 1996. Productivity growth in APEC countries. Pacific
Economic Review. 1:181–190.

Chang, T. P., Hu, J. L., 2010. Total-factor energy productivity growth, technical progress, and
efficiency change: An empirical study of China. Applied Energy. 87(10): 3262–3270.

Chen, C. -M., Delmas, M.A., 2012. Measuring Eco-Inefficiency: A New Frontier Approach.
Operations Research. 60(5): 1064–1079.

Fan, M.T., Shao, S., Yang, L.L., 2015. Combining global Malmquist-Luenberger index and
generalized method of moments to investigate industrial total factor CO2 emission
performance: A case of Shanghai (China). Energy Policy. 79:189–201.

Färe, R., Primont, D., 1995. Multi-Output Production and Duality: Theory and Applications.
Boston/ Kluwer Academic Publishers.

Färe, R., Grosskopf, S., 1996. Intertemporal Production Frontiers: With Dynamic DEA. Kluwer
Academic Publishers, Boston.

Färe, R., Grosskopf, S., 2004. New Directions: Efficiency and Productivity. Boston: Kluwer
Academic Publishers.

Färe, R, Grosskopf, S., Norris, M., Zhang, Z., 1994b. Productivity growth, technical progress and
efficiency change in industrialized countries. The American Economic Review. 84(1):66–83.

Färe, R., Grosskopf, S., Weber, W. L., 2006. Shadow prices and pollution costs in U.S. agriculture.
Ecological Economics. 56: 89– 103.

Färe, R., Grosskopf, S., Wittaker, G., 2013. Directional Output Distance Functions: Endogenous
Constraints Based on Exogenous Normalization Constraints. Journal of Productivity Analysis.
40: 267–269.

Fukuyama, H., Weber, W. L., 2009. A directional slacks-based measure of technical inefficiency.
Socio-Economic Planning Sciences. 43: 274–287.

Førsund, F., 2009. Good modeling of bad outputs: pollution and multiple-output production.
International Review of Environmental and Resource Economics. 3:1–38.

Hampf, B., Krüger, J. J., 2015. Optimal Directions for Directional Distance Functions: An
Exploration of Potential Reductions of Greenhouse Gases. American Journal of Agricultural
Economics. 97: 920–938.

Hailu, A., 2003. Non-parametric productivity analysis with undesirable outputs: reply. American
Journal of Agricultural Economics. 85 (4): 1075–1077.

Herrala, R., Goel, R. K., 2012. Global CO2 efficiency: Country-wise estimates using a stochastic
cost frontier. Energy Policy. 762–770.

IEA. CO2 Emissions from fuel combustion highlights. International Energy Agency. 〈http://www.
iea.org/media/statistics/co2highlights.pdf〉; 2015 [accessed 04.25.17].

Kumar, S., 2006. Environmentally sensitive productivity growth: a global analysis using
Malmquist–Luenberger index. Ecological Economics. 56 (2): 280–293.

7 Carbon Productivity and Carbon Shadow Price … 175

http://www.iea.org/media/statistics/co2highlights.pdf
http://www.iea.org/media/statistics/co2highlights.pdf


Kumbhakar, S.C., Lovell, C.A.K., 2000. Stochastic Frontier Analysis. Cambridge, UK: Cambridge
University Press.

Lee, C.-Y., 2014. Meta-data envelopment analysis: Finding a direction towards marginal profit
maximization. European Journal of Operational Research. 237: 207–216.

Lee, C.-Y., 2016. Nash-profit efficiency: A measure of changes in market structures. European
Journal of Operational Research. 255: 659–663.

Li, K., Lin, B., 2015. Metafroniter energy efficiency with CO2 emissions and its convergence
analysis for China. Energy Economics. 230–241.

Lin, E. Y., Chen, P., Chen, C., 2013. Measuring the environmental efficiency of countries: a
directional distance function metafrontier approach. Journal of Environmental Management.
134–142.

Managi, S., Jena, P.R., 2008. Environmental productivity and Kuznets curve in India. Ecological
Economics. 65:432–440.

Molinos-Senante, M., Hanley, N., Salagarrido, R., 2015. Measuring the CO2 shadow price for
wastewater treatment: A directional distance function approach. Applied Energy. 144:
241–249.

Pastor, J.T., Lovell, C.A.K., 2005. A global Malmquist productivity index. Economics Letters.
88:266–271.

Picazo-Tadeo, A. J., Prior, D., 2009. Environmental Externalities and Efficiency Measurement.
Journal of Environmental Management. 90: 3332–3339.

Shephard, R.W., 1970. Theory of Cost and Production Functions. Princeton, NJ: Princeton
University Press.

Shortall, O. K., Barnes, A. P., 2013. Greenhouse gas emissions and the technical efficiency of
dairy farmers. Ecological Indicators. 29:478–488.

Wang, K., Wei, Y. M., Zhang, X., 2012. A comparative analysis of China’s regional energy and
emission performance: Which is the better way to deal with undesirable outputs? Energy
Policy. 46:574–584.

Wang, K., Wei, Y. M., Zhang, X., 2013. Energy and emissions efficiency patterns of Chinese
regions: a multi-directional efficiency analysis. Applied Energy. 104:105–116.

Wang, K., Xian, Y., Wei, Y. M., Huang, Z. M., 2016a. Sources of carbon productivity change: A
decomposition and disaggregation analysis based on global Luenberger productivity indicator
and endogenous directional distance function. Ecological Indicators. 66: 545–555.

Wang, K, Xian, Y., Zhang, J., Li, Y., Che, L, 2016b. Potential carbon emission abatement cost
recovery from carbon emission trading in China: An estimation of industry sector. Journal of
Modelling in Management, 11(3), 842–854.

Watanabe, M., Tanaka, K., 2007. Efficiency analysis of Chinese industry: A directional distance
function approach. Energy Policy. 35 (12): 6323–6331.

Wei, C., Loschel, A., Liu, B., 2013. An Empirical Analysis of the CO2 Shadow Price in Chinese
Thermal Power Enterprises. Energy Economics. 40: 22–31.

Zhou, P., Ang, B. W., Poh, K. L., 2008. A survey of data envelopment analysis in energy and
environmental studies. European Journal of Operational Research. 189:1–8.

Zofio, J. L., Paster, J. T., & Aparicio, J., 2013. The directional profit efficiency measure: On why
profit efficiency is either technical or allocative. Journal of Productivity Analysis, 40(3):
257–266.

176 Y. Xian and K. Wang



Chapter 8
The Context-Dependent Total-Factor
Energy Efficiency of China’s Regions

Jin-Li Hu and Tzu-Pu Chang

1 Introduction

This chapter applies the context-dependent total-factor energy efficiency
(CD-TFEE) to find the levels of frontiers of China’s regions. CD-TFEE is an
approach that combines context-dependent data envelopment analysis (CD-DEA)
by Seiford and Zhu (2003) and total-factor energy efficiency (TFEE) by Hu and
Wang (2006). The levels of frontiers from CD-TFEE are determined by a
decision-making unit’s (DMU’s) efficiency in using energy, while those from
CD-DEA are determined by the overall technical efficiency (OTE). Since a DMU
may have different efficiency levels in different inputs, the levels of frontiers
decided by CD-TFEE may not be the same as those resulting from CD-DEA.

Ever since the economic reforms starting in 1978, China has been experiencing
rapid economic growth with a rising need for imported energy. Although China’s
total coal consumption is structurally declining, its imported oil is basically
increasing. SO2 emissions are a serious problem for air pollution, especially as
industrial clusters are the main source for SO2 emission (Myllyvirta 2016).
Consequently, efficient energy use at the regional level is now an urgent task for
China as it targets to save energy and reduce emissions at the same time.
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2 Methodology

Professor Joe Zhu personally describes CD-DEA as an ‘onion-peeling’ approach.
DMUs can be categorized by different levels of efficiency frontiers. Hu and Wang
(2006) define total-factor energy efficiency (TFEE) as a ratio of target energy input
to actual energy input:

TFEE = Target Energy Input/Actual Energy Input ð1Þ

The target energy is the projected amount found by a DEA model. Since the
target energy input is never greater than the actual energy input, a TFEE score is
between zero and one—that is, since 0� target energy input � actual energy
input, then 0� TFEE � 1 must hold. A TFEE score of one implies full energy
efficiency, while a TFEE score of zero implies extremely inefficient use of energy.

The relation between overall technical efficiency (OTE) and TFEE can be
described as follows:

TFEE = 1� Total Input Slack/Actual Input

¼ 1� Non - radial + Radial Slacksð Þ=Actual Input
� 1� Radial Slack/Actual Input

= Overall Technical Efficiency OTEð Þ

ð2Þ

It is noteworthy that the above inequality is based on Farrell efficiency, which
incorporates proportional adjustments of all inputs. However, Färe and Lovell
(1978) consider that Russell efficiency is better behaved with less assumptions and
higher discriminating power than Farrell efficiency. Therefore, this chapter calcu-
lates both CD-DEA and CD-TFEE by using Russell efficiency measures that relax
all inputs to be proportional contracted with the same ratio.

The CD-DEA was proposed in 2003 and since then many studies have applied or
extended it in many research fields. In terms of energy and environment field, Wu
et al. (2016) use the CD-DEA technique to calculate the reduction targets of CO2

emission and energy consumption for industrial sectors in China. Bi et al. (2014)
treat CD-DEA as a clustering approach and further evaluate the environmental
performance of regions in China. To our best knowledge, there is no literature
combine CD-DEA technique with TFEE framework. Although the idea of Wu et al.
(2016) who used CD-DEA rank frontier levels of regional CO2 emission and energy
intensity in China may be somewhat close to this chapter, the chapter is the first one
to formally compare CD-DEA and CD-TFEE.

3 Context-Dependent DEA and TFEE

According to Seiford and Zhu (2003), the CD-DEA procedure is as follows:
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(1) Run the DEA model on all observations in the same year.
(2) Eliminate the DMUswhose overall technical efficiency (OTE) equals 1,making the

remaining (OTE-inefficient)DMUs forma new second-levelOTE-efficient frontier.
(3) Repeat the procedure to remove the new second-level OTE-efficient frontier,

and then a third-level OTE-efficient frontier is formed.
(4) If required, repeat above procedure until all DMUs are OTE-efficient.

The CD-DEA procedure determines the levels of frontiers by their OTE scores
found by a DEA model.

By replacing the efficiency concept of OTE with TFEE, the CD-TFEE procedure
is as follows:

(1) Run the DEA model on all observations in the same year.
(2) Eliminate the DMUs whose TFEE equals 1, making the remaining

(TFEE-inefficient) DMUs form a new second-level TFEE-efficient frontier.
(3) Repeat the procedure to remove the new second-level TFEE-efficient frontier,

and then a third-level TFEE-efficient frontier is formed.
(4) If required, repeat above procedure until all DMUs are TFEE-efficient.

In other words, in the CD-TFEE procedure the levels of frontiers are determined
by their TFEE scores instead of OTE scores. Moreover, as mentioned above,
CD-DEA and CD-TFEE may produce different levels of efficiency frontiers. From
policymakers’ perspectives, CD-TFEE should be more relevant to find out
benchmarks of energy efficiency.

4 Russell-Based Directional Distance Function (RDDF)
with Undesirable Outputs

According to the procedures of CD-OTE and CD-TFEE introduced above, we use a
Russell-based directional distance function (RDDF) model to calculate the efficient
frontiers. First, suppose that there are K DMUs using M inputs, X¼ðx1k;
x2k;...;xmkÞ2RM

þ , to jointly produce N desirable outputs, Yg¼ðyg1k;yg2k;...;ygnkÞ2RN
þ ,

and J undesirable outputs, Yb¼ðyb1k;yb2k;...;ybjkÞ2RJ
þ . In line with the assumptions

of Färe et al. (1996), the DEA technology can be expressed as follows:

T ¼ fðX; Yg; YbÞ :
XK

k¼1

kkxmk � xm; m ¼ 1; 2; . . .;M

XK

k¼1

kky
g
nk � ygn; n ¼ 1; 2; . . .;N

XK

k¼1

kky
b
jk ¼ ybj ; j ¼ 1; 2; . . .; J

kk � 0; k ¼ 1; 2; . . .;Kg:

ð3Þ
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Here, kk state the intensity variables representing the weight of each DMU.
With respect to computing the efficient frontier with undesirable outputs, the

literature commonly uses the distance function (DF) and directional distance
function (DDF) (Hu and Chang 2016a). Aside from those two approaches, this
article applies a more flexible method, the Russell-based directional distance
function, which allows us to expand desirable outputs and contract both inputs as
well as undesirable outputs at different proportions simultaneously.

As for the linear programming problem of RDDF, we define DDF as (Chung
et al. 1997):

D
!ðX; Yg; Yb; gX ; gYg ; gYbÞ ¼ maxfb : ðX � bgX ; Y

g þbgYg ; Yb � bgYbÞ 2 Tg; ð4Þ

where the non-zero vector ðgX ; gYg ; gYbÞ denotes the directions in which inputs and
desirable and undesirable outputs are adjusted by an equal scale. Note that

D
!ðX; Yg; Yb; gX ; gYg ; gYbÞ� 0 and D

!ðX; Yg; Yb; gX ; gYg ; gYbÞ ¼ 0 if and only if
ðX; Yg; YbÞ is on the production frontier. However, some inputs, such as labor and
capital, may not be freely adjusted in the short run. Therefore, Hu and Chang
(2016a) consider that the quasi-fixed inputs assumption proposed by Ouellette and
Vierstraete (2004) is closer to reality.

In this RDDF with the quasi-fixed inputs model, we assume that the energy input
(e) can be adjusted, while all other M-1 inputs are quasi-fixed. That is, the energy is
only adjustable input in this DEA model to shift an inefficient DMU to the effi-
ciency frontier, hence providing a higher discriminative power on TFEE scores
(Chang 2013). Both desirable and undesirable outputs can be adjusted by different
scales, meaning that there is no unique direction. Letting
ðgX ; gYg ; gYbÞ ¼ ðX; Yg; YbÞ, the RDDF with quasi-fixed inputs for the oth DMU
can be expressed by the following linear programming problem:

D
!ðX; Yg;YbÞ ¼max

1
1þNþ J

ðbe þ
XN

n¼1

bgn þ
XJ

j¼1

bbj Þ

s:t:
XK

k¼1

kkek �ð1� beÞeo;

XK

k¼1

kkxmk � xmo;m ¼ 1; 2; . . .;M � 1

XK

k¼1

kky
g
nk �ð1þ bgnÞygno; n ¼ 1; 2; . . .;N

XK

k¼1

kky
b
jk ¼ ð1� bbj Þybjo; j ¼ 1; 2; . . .; J

kk � 0; be � 0; bxm � 0; bgn � 0; bbj � 0; k ¼ 1; 2; . . .;K:

ð5Þ
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According to Eq. (4), D
!ðX; Yg; YbÞ denotes the inefficiency level for the oth

DMU, implying that the oth DMU is efficient if and only if all bs are equal to zero.
Moreover, be, bgn, and b

b
j are the inefficiency level of energy input, desirable output,

and undesirable output, respectively.1

We note that be and bbj range from zero to unity, while bgn ranges from zero to
infinite. In order to ensure the upper bound of efficiency score is one, we define that

the OTE score found by the above DEA model is 1=½1þ D
!ðX; Yg; YbÞ�, while the

TFEE score is 1=ð1þ beÞ for DMUo.

5 Data Sources and Variables

Table 1 depicts the variables. Following Hu and Wang (2006) and Hu and Chang
(2016b), there are four input variables: capital, labor, energy, and farmland (as a
proxy for biomass energy). Two output variables are included: GDP (as a desirable
output) and SO2 (as an undesirable output). Regional data in 2014, including GDP,
SO2, labor, and farmland, are obtained from China Statistical Yearbook (National
Bureau of Statistics of China 2015). Regional energy consumption comes from
China Energy Statistical Yearbook.

Regional capital stocks are estimated by the following steps. First, Shan (2008),
one of the classic studies in the literature for estimating China’s regional capital
stocks, applies the perpetual inventory method from 1952 to 2006 for this data.
Second, based on Shan’s data, we extend regional capital stocks data from 2006
into 2014 by the same approach, i.e.:

Kt ¼ Kt�1 1� dð Þ þ It; ð6Þ

where Kt is capital stock; It is gross fixed capital formation in year t, and d is the
depreciation rate and assumed to be 10.96%. Note that GDP and capital stock are
converted into real variables at the 1978 price level.

6 Frontier Levels by CD-DEA and CD-TFEE

China’s regions can be categorized into three areas: east (E), central (C), west (W).
The average per capita income rankings for these three areas in China, from the
highest to the lowest, are east, central, and west (Lei 1996).

1Apparently, RDDF with the quasi-fixed inputs model is a non-radial DEA model. It is a more
generalized model than other non-radial DEA models (such as slack-based model). For details,
please refer to Färe and Grosskopf (2010).

8 The Context-Dependent Total-Factor Energy Efficiency … 181



T
ab

le
1

C
hi
na
’s

re
gi
on

al
ou

tp
ut

an
d
in
pu

t
da
ta

in
20

14

Id
N
am

e
A
re
a

G
D
P
(1
00

M
ill
io
n
R
M
B

in
19

78
)

SO
2

(1
0
k
to
n)

C
ap
ita
l
(1
00

M
ill
io
n
R
M
B

in
19

78
)

L
ab
or

(1
0
k

Pe
r-
so
ns
)

E
ne
rg
y
(1
0
k
to
n
of

st
an
da
rd

co
al
eq
ui
va
le
nc
e)

Fa
rm

ar
ea

(1
00

0
ac
re
s)

1
B
ei
jin

g
E

35
73

.2
8

7.
89

36
51

.4
8

11
56

.7
0

68
31

.2
0

19
6.
10

2
T
ia
nj
in

E
39

81
.7
6

20
.9
2

17
91

.8
2

87
7.
21

79
55

.0
0

47
9.
03

3
H
eb
ei

E
67

31
.8
8

11
8.
99

45
84

.5
5

42
02

.6
6

29
32

0.
21

87
13

.0
8

4
Sh

an
xi

C
26

55
.3
5

12
0.
82

13
22

.1
5

18
95

.7
0

19
86

3.
00

37
83

.4
3

5
In
ne
r

M
on

go
lia

W
36

06
.7
2

13
1.
24

69
14

.2
7

14
85

.4
0

18
30

9.
06

73
55

.9
6

6
L
ia
on

in
g

E
66

10
.1
1

99
.4
6

10
26

.1
2

26
26

.0
0

20
58

5.
67

41
64

.0
9

7
Ji
lin

C
28

71
.0
9

37
.2
3

19
41

.0
8

14
47

.1
7

84
83

.4
0

56
15

.2
9

8
H
ei
lo
ng

jia
ng

C
34

80
.5
2

47
.2
2

10
82

.0
2

21
82

.5
0

11
95

4.
90

12
22

5.
92

9
Sh

an
gh

ai
E

81
87

.5
2

18
.8
1

84
35

.3
3

13
65

.6
0

11
08

4.
63

35
6.
98

10
Ji
an
gs
u

E
16

42
3.
93

90
.4
7

12
21

2.
33

47
60

.8
3

29
86

3.
03

76
78

.6
2

11
Z
he
jia
ng

E
83

51
.2
2

57
.4
1

31
94

.0
2

39
02

.9
4

18
82

6.
00

22
74

.0
0

12
A
nh

ui
C

45
67

.6
0

49
.3
0

64
4.
64

43
11

.0
0

12
01

1.
02

89
45

.5
3

13
Fu

jia
n

E
46

98
.3
0

35
.5
9

11
10

.0
0

27
00

.9
3

12
10

9.
72

23
05

.2
4

14
Ji
an
gx

i
C

30
48

.8
6

53
.4
4

47
78

.3
4

26
03

.3
0

80
55

.4
0

55
70

.5
5

15
Sh

an
do

ng
E

12
52

6.
32

15
9.
02

73
28

.6
3

66
06

.5
0

35
36

2.
60

11
03

7.
93

16
H
en
an

C
71

72
.7
8

11
9.
82

64
07

.7
1

65
20

.0
0

22
89

0.
00

14
37

8.
30

17
H
ub

ei
C

59
18

.7
4

58
.3
8

24
88

.9
2

36
87

.5
0

16
32

0.
00

81
12

.2
6

18
H
un

an
C

44
22

.9
5

62
.3
8

99
2.
73

40
44

.1
3

15
31

6.
84

87
64

.4
7

19
G
ua
ng

do
ng

E
14

92
9.
59

73
.0
1

96
65

.6
4

61
83

.2
3

28
66

9.
57

47
44

.9
5

20
G
ua
ng

xi
W

25
17

.3
2

46
.6
6

15
83

.6
5

27
95

.0
0

95
15

.3
4

59
29

.9
4

21
H
ai
na
n

E
73

6.
32

52
.6
9

16
0.
88

54
3.
10

18
19

.9
3

85
9.
61

(c
on

tin
ue
d)

182 J.-L. Hu and T.-P. Chang



T
ab

le
1

(c
on

tin
ue
d)

Id
N
am

e
A
re
a

G
D
P
(1
00

M
ill
io
n
R
M
B

in
19

78
)

SO
2

(1
0
k
to
n)

C
ap
ita
l
(1
00

M
ill
io
n
R
M
B

in
19

78
)

L
ab
or

(1
0
k

Pe
r-
so
ns
)

E
ne
rg
y
(1
0
k
to
n
of

st
an
da
rd

co
al
eq
ui
va
le
nc
e)

Fa
rm

ar
ea

(1
00

0
ac
re
s)

22
C
ho

ng
qi
ng

W
28

86
.2
0

3.
26

91
5.
89

17
71

.3
3

76
93

.9
6

35
40

.3
5

23
Si
ch
ua
n

W
65

72
.1
2

79
.6
4

38
37

.4
1

48
33

.0
0

19
87

8.
10

96
68

.6
1

24
G
ui
zh
ou

W
14

67
.4
6

92
.5
8

68
4.
32

19
09

.6
9

97
08

.7
8

55
16

.4
6

25
Y
un

na
n

W
22

04
.9
0

63
.6
7

21
3.
03

29
50

.0
0

10
45

4.
83

71
94

.4
3

26
Sh

aa
nx

i
W

33
90

.8
7

78
.1
0

23
29

.0
8

21
49

.0
0

11
72

8.
08

42
62

.1
4

27
G
an
su

W
18

47
.0
8

57
.5
6

28
20

.6
8

15
19

.8
6

75
21

.4
5

41
97

.5
1

28
Q
in
gh

ai
W

36
0.
43

15
.4
3

38
3.
24

31
7.
30

39
91

.7
0

55
3.
70

29
N
in
gx

ia
W

39
3.
86

37
.7
1

31
6.
97

35
8.
70

49
46

.1
0

12
53

.1
6

30
X
in
jia
ng

W
14

01
.6
2

85
.3
0

13
67

.7
2

11
42

.0
0

14
92

6.
08

55
17

.6
3

N
ot
e
E
E
as
t,
C

C
en
tr
al
,
W

W
es
t

8 The Context-Dependent Total-Factor Energy Efficiency … 183



Tables 2 and 3 show the frontier levels found by CD-DEA and CD-TFEE for
China’s regions in 2014, respectively. Guanxi (W) and Gansu (W) are on level 5 by
CD-DEA, while they both are on level 1 by CD-TFEE. This is because Guanxi and
Gansu use energy efficiently, but use other inputs inefficiently, hence making the
frontier levels found by CD-DEA and CD-TFEE different.

Table 2 indicates that there are five levels of efficiency frontiers for the overall
use of resources in China. Only nine out of China’s thirty regions are on level 1 as
found by CD-DEA, showing that more than two-thirds of China’s regions still have
much room to improve their overall technical efficiency. Nine out of eleven western

Table 2 Levels of quasi-fixed DDF OTE frontiers of China’s regions in 2014

Id Name Area Level 1 Level 2 Level 3 Level 4 Level 5

1 Beijing E 1.000

2 Tianjin E 1.000

3 Hebei E 0.497 0.568 0.739 1.000

4 Shanxi C 0.376 0.429 0.518 1.000

5 Inner Mongolia W 0.212 0.434 1.000

6 Liaoning E 1.000

7 Jilin C 0.604 0.676 1.000

8 Heilongjiang C 0.628 1.000

9 Shanghai E 1.000

10 Jiangsu E 0.818 1.000

11 Zhejiang E 0.937 1.000

12 Anhui C 1.000

13 Fujian E 1.000

14 Jiangxi C 0.486 0.667 1.000

15 Shandong E 0.631 0.710 1.000

16 Henan C 0.542 0.618 0.818 0.891 1.000

17 Hubei C 0.677 0.823 1.000

18 Hunan C 0.735 1.000

19 Guangdong E 0.883 1.000

20 Guangxi W 0.529 0.595 0.754 0.818 1.000

21 Hainan E 1.000

22 Chongqing W 1.000

23 Sichuan W 0.616 0.701 0.909 1.000

24 Guizhou W 0.331 0.443 0.509 1.000

25 Yunnan W 1.000

26 Shaanxi W 0.546 0.584 0.753 1.000

27 Gansu W 0.333 0.394 0.664 0.711 1.000

28 Qinghai W 0.055 0.197 0.417 0.512 1.000

29 Ningxia W 0.025 0.167 0.317 0.406 1.000

30 Xinjiang W 0.068 0.209 0.394 0.476 1.000

Note E East, C Central, W West
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regions are on the fourth or fifth OTE frontiers, showing low overall efficiency
levels in resource use. This reflects the ‘double deterioration’ phenomenon in China
with both low economic development and low resource efficiency for some regions
(Hu et al. 2005).

Table 3 indicates that there are five levels of efficiency frontier for energy use in
China in 2014. Eleven regions in China are on level 1 of TFEE frontiers—that is,
almost two-thirds of China’s regions can find domestic benchmarks to improve
their energy efficiency. However, six out of the eleven western regions are on
efficiency levels 4 and 5 in energy use, while four out of them are on efficiency level

Table 3 Levels of quasi-fixed DDF TFEE frontiers of China’s regions in 2014

Id Name Area Level 1 Level 2 Level 3 Level 4 Level 5

1 Beijing E 1.000

2 Tianjin E 1.000

3 Hebei E 0.677 0.464 0.635 1.000

4 Shanxi C 0.468 0.392 0.410 1.000

5 Inner Mongolia W 0.687 0.509 1.000

6 Liaoning E 1.000

7 Jilin C 0.679 0.650 1.000

8 Heilongjiang C 0.776 1.000

9 Shanghai E 1.000

10 Jiangsu E 0.992 1.000

11 Zhejiang E 0.973 1.000

12 Anhui C 1.000

13 Fujian E 1.000

14 Jiangxi C 0.779 0.688 1.000

15 Shandong E 0.770 0.708 1.000

16 Henan C 0.503 0.830 0.864 0.948 1.000

17 Hubei C 0.898 0.800 1.000

18 Hunan C 0.764 1.000

19 Guangdong E 0.982 1.000

20 Guangxi W 1.000

21 Hainan E 1.000

22 Chongqing W 1.000

23 Sichuan W 0.719 0.661 0.912 1.000

24 Guizhou W 0.815 0.415 0.462 1.000

25 Yunnan W 1.000

26 Shaanxi W 0.865 0.589 0.802 1.000

27 Gansu W 1.000

28 Qinghai W 0.515 0.409 0.427 0.427 1.000

29 Ningxia W 0.595 0.354 0.353 0.353 1.000

30 Xinjiang W 0.646 0.393 0.424 0.424 1.000

Note E East, C Central, W West
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1 in energy use. This implies that the western regions may have relatively better
performance in energy use than their use of other inputs.

Among the eleven eastern regions, six are on the level 1 (Beijing, Tianjin,
Liaoning, Shanghai, Fujian and Hainan), three are on level 2 (Jiansu, Zhejiang, and
Guandong), one is on level 3 (Shandong), and one is on level 4 (Hebei) of TFEE
frontiers in 2014. Among the eight central regions, one is on level 1 (Anhui), two
are on level 2 (Heilongjiang and Hunan), three are on level 3 (Jilin, Jiangxi, and
Hubei), one is on level 3 (Jiangxi), one is on level 4 (Shanxi), and one is on level 5
(Henan) of TFEE frontiers in 2014. Among the eleven western regions, two are on
level 1 (Yunnan and Gansu), one is on level 3 (Inner Mongolia), three are on level 4
(Sichuan, Guizhou, and Shaanxi), and three are on level 5 (Qinhai, Ningxia, and
Xinjiang) of TFEE frontiers in 2014. The CD-TFEE results hence show that east
area is the benchmark for the central and west area to improve their energy
efficiency.

The reasons why the eastern regions in China have higher energy efficiency are
multiple, usually referring to higher levels of income, value-added, technology,
education, urbanization, equipment, transportation, residential environment, etc.
(Liu et al. 2012; Wei and Liao 2016) In summary, the key driving force for
improving energy efficiency is still economic development which includes eco-
nomic, social, and environmental aspects.

7 Concluding Remarks

This chapter demonstrates how to apply the CD-TFEE procedure to categorize
China’s regions into levels of frontiers. The results found by CD-DEA and
CD-TFEE are typically different since CD-TFEE highlights the energy efficiency
benchmarking instead of overall efficiency benchmarking. It is found that more than
half of the eastern regions are on the level 1 of TFEE frontiers, being energy
efficiency benchmarks for other regions in China. The CD-TFEE procedure can be
applied to regions or sectors in other economies, in order to find benchmarks for a
DMU to improve its energy efficiency.
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Chapter 9
Was Economic Growth in China
Environmentally Friendly? A Case Study
of the Chinese Manufacturing Sector

Sung Ko Li and Xinju He

1 Introduction

The Chinese economy has experienced fast economic growth since the inception of
economic reforms started in late 1970s. The real GDP per capita of China increased
2240% from 1978 to 2016, compared with a 183% increase in the US during the
same period.1 However, after three decades of successful reform, many problems
still exist. Aware of the importance of efficient production and environmental
protection, the Chinese central government decided to address these two issues. In
regard to production, the Thirteenth Five-year plan emphasized using reform to
“improve the market environment and mechanisms to encourage fair competition
and survival of the fittest” and policies must aim at “improving the quality and
efficiency of the supply system” (National Development and Reform Commission
2016, Chap. 5). Regarding the environment, the plan listed “green development” as
one of the five focus areas for the period 2016–2020 (National Development and
Reform Commission 2016, Part 1). This paper separates these two issues in the
efficiency analysis of the Chinese manufacturing sector.

A large literature has emerged to evaluate China’s productivity and efficiency
performance using data of different levels, including firm (Jefferson et al. 1996,
2003), industry (Lam and Shiu 2001), city (Wu 2000) and province (Zheng et al.
1998, 2003). These early studies ignored the environmental costs of China’s
industrial growth. Despite increased government efforts to protect against air and
water pollution, concentrations of pollutants continued to be among the highest in
the world (Li and Zhang 2014). The environmental costs in terms of premature

S. K. Li (&) � X. He
Hong Kong Baptist University, Kowloon Tong, China
e-mail: skli@hkbu.edu.hk

1Computed from the series of GDP per capita (2010 constant US$) downloaded from the
“Indicators” webpage, World Bank. (https://data.worldbank.org/indicator/NY.GDP.PCAP.KD).
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death due to pollution-related illness were also large. A study projected that the
cumulative losses of human life could be large through 2020 if the trend is not
contained (Zhao et al. 2013).

Environmental efficiency has been widely studied in recent literature. However,
the concept of environmental efficiency has not been clearly distinguished. Many
studies adopt a measure that simultaneously expands desirable outputs and con-
tracts undesirable outputs. Some treat the measurement as technical efficiency (Färe
et al. 1989). Others treat it as environmental efficiency (Hua et al. 2007; Park et al.
2016). Two recent research efforts are: (i) separating the production of undesirable
outputs from the production of desirable outputs (Malikov et al. 2015); (ii) sepa-
rating the treatment of undesirable outputs from the production process of desirable
and undesirable outputs (Wu et al. 2015).

In this paper, we believe that desirable and undesirable outputs should be included
in the same production process because they are produced simultaneously. Further,
the treatment of undesirable outputs after production is not considered because it is a
different issue from evaluating performance during the production process. We adopt
Kuosmanen’s (2005) empirical production technology that production set is convex
with weak disposability in undesirable outputs. We think that economic performance
and environmental performance in production are two different concepts and should
be treated differently. So two types of efficiency are then defined according to dif-
ferent objectives. Our study provides answers to the following questions: First, in the
presence of undesirable outputs, has the economic performance of the manufacturing
sector improved over the studied period? Second, has the manufacturing sector
become environmentally friendly over the studied period? Third, has the manufac-
turing sector given up the environment to achieve more profits?

In Sect. 2, we discuss two types of technical efficiency. Section 3 explains the
method of measurement. Then we apply the method in Sect. 3 to measure efficiency
in the Chinese manufacturing sector in Sect. 4, where Chinese city-level data are
utilized to estimate the two types of technical efficiency. Their dynamic changes are
discussed, too. Section 5 explores the policy choices faced by different provinces.
By investigating the changes over time, we also evaluate the effects of the Great
Western Development strategy. Section 6 concludes the paper.

2 Protecting the Environment Versus the Production
of Goods

Although China has been growing fast in the last several decades, the pollution
problem has become serious. For example, the smog in Beijing was so serious that
local authorities declared a five-day pollution “red alert” on December 16, 2016. As
most pollutants are undesirable outputs during the production of desirable outputs,
studying the efficiency of production must consider the undesirable outputs. This
paper studies the industrial production of Chinese cities from two angles.
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We consider three parties in our discussions: the firm owner, the manager of the
firm, and the policy maker. The objective of the firm owner is to maximize profits.
The manager is responsible for the production process and he may or may not aim
at profit-maximizing. The policy maker’s objective is to maximize social welfare.

Factories in the manufacturing sector utilize inputs to produce desirable outputs,
which are economic goods that can generate revenue for the producer. The
objective of the firm owner is to maximize profits. When desirable outputs are
inefficiently produced, inputs are underutilized in the sense that more desirable
outputs can be produced with the existing factor inputs. We say that the firm is
desirable output-oriented technically inefficient. The firm owner has an incentive to
eliminate such inefficiency to increase profits. Efficient production of desirable
outputs is consistent with the policy maker’s objective because society’s resources
can be better utilized. The existence of such inefficiency can be explained by
X-efficiency theory or principal-agent problem in the literature, see for example,
Frantz (1988). Efficiency can be achieved by replacing the current manager if the
manager does not improve or by forcing a long-lasting inefficient firm out of the
market if the firm does not improve. Such actions require a competitive market
environment in both the labor market and product market. Providing a competitive
market environment is the job of the policy maker. Such policy is market-oriented
in which the policy maker affects the market environment and allows the firm to
choose its optimal production plan.

Pollutants such as sulfuric acid, sooty particles, etc. are economic bads that come
with the production of desirable outputs. They are undesirable outputs of the
production process and their existence lowers society’s welfare. When excessive
undesirable outputs are produced during the production process, it is possible to
reduce them without decreasing the quantities of desirable outputs and increasing
the quantities of inputs. We say that the firm is environment-oriented technically
inefficient. To protect the environment, effective measures include disposing of
undesirable outputs once they appear or adopting production processes that gen-
erate less undesirable outputs. Both are costly to implement and will be detrimental
to the profit level. Private firms have little or no incentive to get rid of undesirable
outputs but the policy maker wants to eliminate them. Hence a competitive market
environment cannot force a private firm to minimize undesirable outputs through
profit motive. In contrast, the policy maker can persuade private firms to generate
less undesirable outputs either by providing positive incentives (i.e., subsidy) or
negative incentives (i.e., punishment). This requires direct government intervention
in the production process. This type of policy is government-oriented in which the
optimal choice of the firm’s production plan is directly influenced by the policy
maker through affecting the revenue and costs of the firm.

We argue that the above two inefficiencies should be treated differently. If both
inefficiencies appear, the objective of a party determines its response. Firm owners
care about desirable outputs only. They will push managers to eliminate desirable
output-oriented technical efficiency to generate higher revenue without increasing
costs. The existence of undesirable outputs is not on the agenda of firm owners.
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In contrast, more desirable outputs and less undesirable outputs are both objectives
of the policy maker. The exact target depends on the relative importance of
desirable and undesirable outputs.

3 Technical Efficiency Measures with Undesirable
Outputs

Denote inputs, desirable outputs, and undesirable outputs by x 2 R
N
þ , g 2 R

M
þ , and

b 2 R
L
þ , respectively. The production set is = :¼ x; g; bð Þ : x can produce g; bð Þf g.

This set consists of all feasible production activities (x; g, b). When production
does not take place on the production frontier, technical inefficiency appears. In the
literature of gauging the performance of production units in the presence of
undesirable outputs, efficiency measures are based on different orientations. Some
typical examples are:

1. E1 ¼ mink k : kx j; b j; g jð Þ 2 =f g. See Färe et al. (1996), Yaisawarng and Klein
(1994), and Hailu and Veeman (2001).

2. E2 ¼ mink k : x j; kb j; g jð Þ 2 =f g. See Tyteca (1997).
3. E3 ¼ maxb b : x j; b j � bb j; g j þ bg jð Þ 2 =f g. See Färe et al. (1989) and Ball

et al. (2001).

In previous studies, the authors chose the orientations arbitrarily without justi-
fying why we should choose a particular orientation. In the above examples, E1 is
not related to environmental efficiency because the reduction of undesirable outputs
is not considered in the measure. E2 deals with environmental efficiency but
technical efficiency is not involved. E3 expands desirable outputs and contracts
undesirable outputs simultaneously. Environmental efficiency cannot be isolated.

We separate the two types of efficiency and name the measures we use as
follows:

1. Desirable output-oriented measure of technical efficiency:

Eg ¼ 1=max
h

h : x; hg; bð Þ 2 =f g:

2. Environment-oriented measure of technical efficiency:

Eb ¼ min
k

k : x; g; kbð Þ 2 =f g:

The value of each measure ranges from 0 to 1. A larger value means higher
efficiency and the value of 1 identifies operation on the frontier. Thus, the desirable
output-oriented measure of technical efficiency expands desirable outputs only and
captures the inefficient behavior of managers to produce desirable outputs. On the
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other hand, the environment-oriented measure of technical efficiency contracts
undesirable outputs only and reflects the inability of avoiding undesirable outputs.
These two types of efficiencies are treated separately. Which one to use depends on
whether the objective is environmental protection or economic performance. In later
discussions, we say Eg and Eb measure the economic performance and environ-
mental performance of the firm respectively.

These two measures are computed using an empirical piecewise linear produc-
tion frontier constructed from the data. To model undesirable outputs in the pro-
duction process, early applications treated pollutants as undesirable outputs and
estimated their shadow prices (Pittman 1983). Some later researchers treated the
undesirable outputs as inputs (Liu and Sharp 1999; Hailu and Veeman 2001;
Dyckhoff and Allen 2001). A popular method was initiated by Färe et al. (1989)
who used weak disposability to model undesirable outputs. Kuosmanen (2005)
modified the model of Färe et al. (1989) to introduce an empirical production
technology that is convex with strongly disposable inputs and desirable outputs but
undesirable outputs are weakly disposable.

Suppose there are K firms. The observed production data for firm k is
xk; gk; bk
� �

; k ¼ 1; . . .;K: To evaluate the efficiency of a firm (x0; g0, b0), we adopt
Kuosmanen’s (2005) empirical production technology because it is consistent with
the convexity assumption in other DEA models. Under variable returns to scale, the
two measures are:

Eg
� ��1 ¼ max

h;l;z

h :
PK

k¼1
zkgk = hg0;

PK

k¼1
zkbk ¼ b0;

PK

k¼1
zk þ lkð Þxk 5 x0;

PK

k¼1
zk þ lkð Þ ¼ 1; zk = 0 for k ¼ 1; . . .K

8
>>><

>>>:

9
>>>=

>>>;

:

Eb ¼ max
k;l;z

k :
PK

k¼1
zkgk = g0;

PK

k¼1
zkbk ¼ kb0;

PK

k¼1
zk þ lkð Þxk 5 x0;

PK

k¼1
zk þ lkð Þ ¼ 1; zk = 0 for k ¼ 1; . . .K

8
>>><

>>>:

9
>>>=

>>>;

:

4 Data and Results

We use the analytical framework proposed above to analyze the efficiency and
pollution problems of China. The data of industrial production for 312 Chinese
cities from 2003 to 2014 are published in the China Environmental Statistical
Yearbook. After discarding observations with missing values during the investi-
gated period, 294 prefecture level cities are available for further analysis. The
desirable output is gross industrial output value. The three undesirable outputs used
in the analysis are: waste dust emission, waste gas and waste water. The inputs
used in the analysis are: fixed assets, labor, water used and energy consumption.
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The fixed assets here refer to the total value of durable equipment, machines,
building and land for production. All published data are the aggregate of all firms in
the city. Since the firm number is available, we use the firm average data of each
city in the computation. Thus, each observation is an average firm of the city. The
estimated frontier is closer to the production technology of a typical firm and the
efficiency scores reflect firms’ behaviors. The descriptive statistics of our data set of
2003, 2009 and 2014 are reported in Table 1.

The efficiency scores of various measures were computed. The geometric means
of desirable output-oriented and environment-oriented efficiency for each year are
reported in Table 2. The two measures Eg and Eb are those discussed in the pre-
vious section and their empirical technologies consist of undesirable outputs. TEo is
the inverse of Farrell output-oriented measure of technical efficiency in which the
data consist of desirable outputs and inputs only.

Both measures Eg and TEo are the technical efficiency in the direction of
desirable outputs. The difference is that undesirable outputs are included in the
estimation of Eg but not in TEo. Thus the empirical production frontier of Eg better
reflects the “true” production process. The values of TEo were about 20% smaller
than Eg during the studied period.

Result 1 When the production process includes both desirable and undesirable
outputs, ignoring undesirable outputs in the empirical production frontier under-
estimates the economic performance of the firm.

The above result shows that, excluding undesirable outputs, firms are perceived
to be less efficient in the use of TEo than their actual behavior. Hence undesirable
outputs should be included in the modeling of the empirical production frontier.

Levels of Efficiency

The Chinese government has implemented many policies to encourage market
competition and environmental protection. One major issue is to investigate the
seriousness of technical inefficiency in the manufacturing sector during the studied
period in the production of desirable and undesirable outputs. If the answer is
“Yes”, then nothing should be done with respect to technical inefficiency. In
contrast, if the answer is “No”, there is high potential to increase desirable outputs
and decrease undesirable outputs, so something must be done.

For each measure reported in Table 2, a larger value means improvement in
efficiency and a value of 1 means that the firm is technically efficient in the cor-
responding orientation. We can see that on average both Eg and Eb are far from 1
with scores less than 0.81 and 0.33 respectively. This indicates that the production
of manufacturing goods and the jointly produced pollutants were far from the
production frontier during 2003–2014. It is possible that, without adding resources,
firms in the manufacturing sector could produce more desirable outputs and less
undesirable outputs. Compared with best practice firms, the potential of reducing
undesirable outputs was much larger. Furthermore, the value of Eg was much closer
to 1 than the value of Eb. This means that the firm was closer to the frontier in the
direction of desirable outputs and far from the frontier in the direction of
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undesirable outputs. This is expected because undesirable outputs are byproducts of
the production process and are costly to dispose of. Once appearing, the firm has no
motive to dispose of them.

Result 2 The production of desirable and undesirable outputs in the Chinese
manufacturing sector was highly inefficient during 2003–2014. The production
activity was farther from the production frontier in the direction of undesirable
outputs.

Result 2 shows that both desirable output-oriented technical efficiency and
environment-oriented technical efficiency are low so that there is much room for
improvement of both economic and environmental performance in the manufac-
turing sector.

Dynamic Changes of Efficiency

Another concern is the dynamic changes of the two types of technical efficiency.
If one type of technical efficiency has been improving during the studied period,
then the policy during the period was on the right track and need not be changed.
Otherwise, low efficiency prevailed over time. New policies must be implemented
to address the issue of inefficiency.

We can see that the values of both Eg and Eb in 2014 were much higher than
those in 2003 (from 0.59 to 0.78 for Eg and 0.12 to 0.27 for Eb). However, Eg shows
an increasing trend which, allowing for fluctuation, was not destructed throughout
2003–2014. However, the value of Eb increased continuously from 0.12 to 0.33
from 2003 to 2010 and dropped to 0.27 in 2014. To investigate the existence of
time trend and the possibility of a break in 2010, define variables Dt = 1 for
t = 2010, 2011, 2012, 2013, 2014 and Dt = 0 otherwise, and TIMEt = t − 2002 for
t = 2003, …, 2014. We confirm this pattern by running the following two
regression equations:

Table 2 Geometric mean of
different oriented efficiency
from 2003 to 2014

Year Eg Eb TEo

2003 0.59 0.12 0.44

2004 0.61 0.14 0.50

2005 0.69 0.15 0.55

2006 0.67 0.17 0.55

2007 0.71 0.23 0.56

2008 0.75 0.26 0.58

2009 0.76 0.27 0.62

2010 0.76 0.33 0.61

2011 0.75 0.29 0.59

2012 0.79 0.26 0.63

2013 0.81 0.32 0.65

2014 0.78 0.27 0.63
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ln Egt
� � ¼ a0 þ a1Dt þ a3TIMEt þ a4Dt � TIMEt þ et ð1Þ

ln Ebtð Þ ¼ b0 þ b1Dt þ b3TIMEt þ b4Dt � TIMEt þ lt ð2Þ

Let Period 1 be the time from 2003 to 2009 and Period 2 from 2010 to 2014. In
the above two regression models, a3 is the growth rate of Eg during Period 1 and
(a3 + a4) the growth rate of Eg during Period 2. Similarly, the growth rates of Eb

are b3 during Period 1 and (b3 + b4) during Period 2. The regression results are
listed in Table 3.

All individual coefficients are significant at the 1% level in both Models (1) and
(2). Using the Chow test, the coefficients of D and (TIME�D) are jointly and
significantly different from zero for each regression equation. This confirms the
existence of a break in 2010. The estimated coefficients of the slope dummy
(TIME�D) in both models are highly significant. Hence the growth rates of Eg and
Eb are different before and after 2010. Model (1) indicates that the average growth
rate of the technical efficiency of desirable outputs (Eg) was 4.27% in Period 1 and
1.13% (= 4.27% − 3.14%) in Period 2. Both are significantly different from zero.2

We can conclude that Eg has been improving over time throughout the whole
studied period of 2003–2014 although the growth rate fell after 2010. In Model
(2) the growth rate of the environment-oriented technical efficiency (Eb) was 14% in
Period 1. This growth rate became −2.2% (= 14.0% − 16.2%) after 2010. This
result is summarized as follows:

Result 3 The technical efficiency of the manufacturing sector improved over time
in the directions of producing more desirable outputs and less undesirable outputs

Table 3 The regression of
time trend for Eg and Eb

(1) (2)

VARIABLES ln(Eg) ln(Eb)

D 0.192*** 1.238***

(0.0617) (0.209)

TIME 0.0427*** 0.140***

(0.00353) (0.0119)

TIME*D −0.0314*** −0.162***

(0.00688) (0.0233)

Constant −0.560*** −2.242***

(0.0158) (0.0534)

Observations 3540 3540

R-squared 0.078 0.077

Standard errors are in parentheses. “***”, “**” and “*” indicate
significance at 1%, 5% and 10% levels respectively

2The terms a3 and (a3 + a4) in Model (1) are significantly different from zero at 5% level of
significance by the t-test and Wald test respectively.
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up to 2010 during the studied period. After 2010, the trend of improvement con-
tinued for the desirable output-oriented technical efficiency but the environment-
oriented technical efficiency became stagnant.

Results 2 and 3 show that the problem of inefficient production of undesirable
outputs is more serious than that of desirable outputs.

Convergence Between Environmentally Friendly and Unfriendly Cities

We explore Results 2 and 3 further in detail by different groupings. We believe
that some groups of cities are more environmentally friendly than others. The issue
is whether such difference converges over time. Three groupings were considered:

Grouping 1: Green cities versus non-green cities

In China, 47 cities are named “environmentally friendly city”. These environ-
mentally friendly cities have more restrictions on pollution and put more effort into
environmental protection. We expect that green cities do a better job of environ-
mental protection compared with non-green cities.

Grouping 2: Industrial cities versus non-industrial cities

In China, 124 cities are named “industrial city”. These industrial cities set up
industrial zones and many polluted industries centralize into them. We expect that
industrial cities perform worse than non-industrial cities in environmental protection.

Grouping 3: Eastern versus non-eastern cities

From the empirical data, it is observed that eastern cities are more efficient in the
production of both desirable and undesirable goods. The behaviors of other regions
are similar. Hence non-eastern cities are grouped together.

The geometric averages of the two types of efficiency scores of each group are
listed in Table 4.

Table 4 Geometric mean of efficiency for different groups from 2003 to 2014

Grouping 1 Grouping 2 Grouping 3

Year Eg Eb Eg Eb Eg Eb

2003 0.75(0.56) 0.28(0.11) 0.55(0.62) 0.10(0.15) 0.67(0.54) 0.19(0.10)

2004 0.81(0.58) 0.36(0.12) 0.58(0.63) 0.11(0.17) 0.74(0.54) 0.23(0.11)

2005 0.81(0.67) 0.37(0.13) 0.68(0.70) 0.12(0.19) 0.78(0.64) 0.25(0.12)

2006 0.81(0.64) 0.39(0.15) 0.63(0.69) 0.12(0.22) 0.76(0.62) 0.28(0.13)

2007 0.84(0.69) 0.46(0.20) 0.68(0.74) 0.18(0.28) 0.79(0.67) 0.31(0.20)

2008 0.84(0.72) 0.47(0.23) 0.74(0.75) 0.23(0.28) 0.81(0.71) 0.33(0.22)

2009 0.83(0.74) 0.47(0.24) 0.73(0.78) 0.22(0.31) 0.79(0.74) 0.36(0.23)

2010 0.85(0.75) 0.54(0.30) 0.73(0.79) 0.28(0.37) 0.81(0.73) 0.42(0.28)

2011 0.84(0.73) 0.41(0.27) 0.72(0.77) 0.25(0.31) 0.81(0.71) 0.33(0.27)

2012 0.85(0.77) 0.39(0.25) 0.76(0.80) 0.23(0.29) 0.82(0.76) 0.31(0.24)

2013 0.85(0.80) 0.45(0.30) 0.77(0.83) 0.27(0.36) 0.84(0.79) 0.40(0.29)

2014 0.82(0.77) 0.37(0.26) 0.74(0.81) 0.22(0.33) 0.83(0.74) 0.35(0.24)
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Note that in Table 4, Grouping 1 means the green cities versus non-green cities,
Grouping 2 means the industrial cities versus non-industrial cities, and Grouping 3
means the eastern cities versus non-eastern cities. The numbers without brackets are
the geometric means of green cities, industrial cities and eastern cities, whereas the
numbers in brackets are the geometric means for non-green cities, non-industrial
cities and non-eastern cities. From the table, it is observed that the groups with the
expectation of being environmentally friendly were more efficient in reducing
undesirable outputs compared with other cities which are expected to be less
environmentally friendly during 2003–2014. This justifies the three groupings.
Further, they were more efficient in the production of desirable outputs, too.

Since the patterns of these three groupings are similar, we discuss Grouping 1
(green and non-green cities) only. The geometric means of output-oriented tech-
nical efficiency and environment-oriented technical efficiency are shown in Fig. 1.

In Fig. 1, the trends of all series show the pattern identified in the previous
discussion. Both the desirable output-oriented efficiency and environment-oriented
efficiency are improving over time for green and non-green cities. However, it gives
us additional information. We observed that the gap between output-oriented
technical efficiency was narrower over time from 2003 to 2014. On the other hand,
the gap between environment-oriented technical efficiency first widened. Although
it finally narrowed, this gap remained wide in 2014. To investigate the convergence
issue, we ran the following two regression equations.

Let diff it ¼ Ei;green
t � Ei;non�green

t be the difference between the geometric means
of the technical efficiency of green and non-green cities related to i at time t, i = g
(output-oriented), b (environment-oriented), and t = 2003, …, 2014. We refer to
diffi as a i efficiency gap. If this difference has a time trend for each group, then

diff gt ¼ a0 þ a1TIMEt þ et ð3Þ

Fig. 1 Efficiencies of different orientations of green and non-green cities
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diff bt ¼ b0 þ b1TIMEt þ lt ð4Þ

where TIMEt is defined as before. In our sample, diff > 0 for both orientations.
When the coefficient of TIME is negative, the value of diff falls and the gap narrows
over time. Similarly, if the coefficient of TIME is positive, the gap widens over
time. The regression results are presented in Table 5.

From Table 5, the coefficient of TIME is significantly negative for each model.
This means that the desirable output-oriented efficiency gap and the
environment-oriented efficiency gap between green and non-green cities were
narrower over time during the studied period. However, b1 is less than a1 in
absolute value. So the convergence between green and non-green cities was slow in
environment-oriented technical efficiency. The same conclusion holds for the other
two groupings.

Result 4 The gap between environmentally friendly cities and unfriendly cities has
been narrowing over time. But the convergence speed was much faster in output-
oriented technical efficiency than the environment-oriented technical efficiency.

Recall the discussion in Sect. 2 that market-oriented policies are more suitable
for dealing with desirable output-oriented technical efficiency and
government-oriented policies are better for environment-oriented technical effi-
ciency. Combining Results 2, 3 and 4, we arrive at the followings:

a. The market mechanism works well for the manufacturing sector of China.
Although Result 2 shows that the production of undesirable outputs was far
from the production frontier, such type of inefficiency has been improving over
time (Result 3), and the efficiency gap between green and non-green cities
became very small at the end of the studied period (Result 4).

b. Government policies through positive and negative incentives are necessary to
protect the environment. It is because the environment-oriented technical effi-
ciency was very low (Result 2), and it did not improve over time (Results 3 and 4).

Table 5 Regressions of
convergence between green
and non-green cities

(3) (4)

VARIABLES diffg

(output-oriented)
diffb

(environment-oriented)

TIME −0.0137*** −0.00958**

(0.00180) (0.00356)

Constant 0.214*** 0.262***

(0.0133) (0.0262)

Observations 12 12

R-squared 0.853 0.421

Standard errors are in parentheses. “***”, “**” and “*” indicate
significance at 1%, 5% and 10% levels respectively
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5 The Environmentally Unfriendly Provinces

From Result 2, we know that there is much room for improvement for the manu-
facturing sector in the production of desirable and undesirable outputs. Although
firms are improving over time, they are still far from the production frontier,
especially for the lower rank cities. For example, out of the 294 cities in 2014, 112
and 80 cities were on the frontier in the direction of desirable outputs and in the
direction of undesirable output respectively. However, the geometric means of Eg

and Eb are 0.78 and 0.27 respectively. Thus, cities at the bottom badly performed
for both orientations. Pushing them to the production frontier is crucial in creating a
clean environment. In this section, we investigate the characteristics of the most
inefficient provinces.

We first computed the average output-oriented technical efficiency and average
environment-oriented technical efficiency for each province and for each year. Then
they were classified according to these two types of efficiency. For each year and each
type of efficiency, the top 10 most efficient provinces fell within the “above average”
group; the bottom 10 most inefficient provinces fell within the “below average
group”; other provinces fell within the “average” group. The following table shows
the pattern of provinces according to the classification for the period 2012–2014.3 In
this table, moving from left to right across a row signals deterioration in
environment-oriented technical efficiency, and moving down a column means dete-
rioration in output-oriented technical efficiency. Thus, cities in the upper left cell of
the table are the best performing in terms of both type of efficiency, whereas cities in
the lower right cell are the worst performing. And we group the 30 provinces (ex-
cluding Tibet, Hong Kong, Macau, and Taiwan) into four regions: Eastern region (E),
North-Eastern (NE), Middle region (M) and Western region (W).

By grouping the 30 provinces (excluding Tibet, Hong Kong, Macau, and
Taiwan) into four regions: Eastern region (E), North-Eastern (NE), Middle region
(M), and Western region (W), we summarize the patterns in Table 6 as follows:

Group A: Efficiency in both desirable outputs and undesirable outputs

This group contains the cities in the most upper left cell of the table. There are
eight provinces in this group. All of them, except Jilin, are in the eastern region.
These provinces did well in both producing desirable outputs and avoiding unde-
sirable outputs. Cities in these provinces were relatively close to the production
frontier. Further improvements are likely through technological changes: increasing
the productivity of producing desirable outputs and the ability of disposing of
undesirable outputs.

3When a province is in the same group in two years during 2012–2014, it is classified as that
group. Five provinces are in three different groups during 2012–2014. We consider their grouping
in 2011 to determine their categories.
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Group B: Efficiency in desirable outputs but inefficiency in undesirable outputs

This group includes cities, Guangxi and Jiangxi, in the second and third cells in
the first row. They did relatively well in the production of desirable outputs but
produced excessive unnecessary undesirable outputs. Thus, decreasing undesirable
outputs but leaving desirable outputs more or less unchanged is a suitable direction
for improvement. Since firms usually have no incentive to dispose of undesirable
outputs, government-oriented policies are needed to push firms to reduce undesir-
able outputs produced during the production process for further improvement.

Group C: Efficiency in undesirable outputs but inefficiency in desirable outputs

The first column on the left excluding the first cell in the table belongs to this
group. Only one province, Liaoning, is in this group. Liaoning did environmentally
well in keeping undesirable outputs at a low level. Emphasis should be put on
increasing desirable outputs. As discussed in Sect. 2, this indicates problems in
market force and the incentive system of managers. Market-oriented policy to
encourage more competition is one way to force firms to make further
improvements.

Table 6 Categories of provinces for 2012–2014

Environment-oriented technical efficiency (Eb)

Above
average

Average Below average

Output-oriented
technical efficiency
(Eg)

Above
average

E-Beijing
E-Guangdong
E-Jiangsu
E-Hainan
E-Shanghai
E-Shangdong
E-Tianjin
NE-Jilin

(M-Jiangxi)
(W-Guanxi)

Average (NE-Liaoning) (E-Hebei)
E-Zhejiang
(M-Henan)
(M-Hubei)
(M-Hunan)
(W-Chongqing)
W-Xinjiang
W-Inner
Mongolia

E-Fujian

Below
average

(M-Anhui)
(W-Sichuan)
W-Shaanxi

NE-Heilongjiang
M-Shanxi
W-Gansu
W-Guizhou
W-Ningxia
W-Qinghai
W-Yunan
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Group D: Inefficiency in both desirable outputs and undesirable outputs

The cell in the center and the three lower right cells belong to this group which
consists of cities with low scores in both desirable output-oriented technical effi-
ciency and environment-oriented technical efficiency. In Table 6, a low average
score means inefficient performance. Thus, provinces in this group have high
potential to produce more desirable outputs and less undesirable outputs. These are
highly inefficient provinces. For improvement, increasing desirable outputs only,
reducing undesirable outputs only, or simultaneously doing both are feasible. As
simultaneously increasing desirable outputs and reducing undesirable outputs may
be difficult, these provinces face a tradeoff between economic growth
(output-oriented improvement) and environmental protection (environment-oriented
improvement). Most of the provinces in this group are in the middle or western
regions. In particular, the lower right cell is the worst. Most provinces in this cell are
in the western region. Special attention should be paid to them.

Several observations emerge from the preceding discussions. First, in terms of
both types of efficiency, Middle and Western China lag behind other regions. The
western region was worse than the middle region during 2003–2014. From the
Central Government’s point of view, China needs to choose appropriate policies to
remedy the regional imbalance. Second, our model derives different improvement
directions for provinces, which is not found in other studies. For example, pro-
vinces in Group A were close to the frontier, so a strategy of promoting innovation
of new technology is appropriate. On the other hand, Guangxi, Jiangsu and
Liaoning need to concentrate on one direction only. Finally, provinces in Group D
have potential to produce more desirable outputs and less undesirable outputs
without adding new resources. Innovation of the latest technology is not urgent.

Result 5 Eastern provinces were more efficient in the production of desirable
outputs and were more environmentally friendly during the studied period. Western
provinces lagged far behind eastern provinces and middle provinces in terms of the
production of both desirable and undesirable outputs.

Western provinces were not always the worst in terms of output-oriented and
environment-oriented technical efficiency. We follow the same rules of the above
table to categorize all provinces for 2003–2005. The results are presented in
Table 7. Provinces which improved their relative positions from 2003 to 2005 are
expressed in parentheses whereas provinces which deteriorated in their relative
positions are underlined. Although eastern provinces dominated the upper left cell
in both periods 2003–2005 and 2012–2014, the relative performance between
middle provinces and western provinces has changed. From 2003 to 2005, all six
middle provinces were in the lower-right three cells. In particular, three out of five
provinces in the worst lower-right cell were from the middle region. In contrast,
there were only two western provinces. The middle region was the worst per-
forming region. On the other hand, from 2012 to 2014, all middle provinces except
one improved in at least one orientation. In contrast, five out of seven provinces in
the worst lower-right cell were from the West during the same period. Although
some western provinces did improve, in general the manufacturing sector in the
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western region has fallen to the bottom in both production of desirable and unde-
sirable outputs.

Result 6 During the growth of the manufacturing sector from 2003 to 2014, the
following were found:

1. Eastern provinces were consistently performing the best.
2. Middle provinces improved relative to western provinces.
3. The western region became the worst performing region. Provinces are lagging

behind other provinces in both output-oriented technical efficiency and envi-
ronment-oriented technical efficiency.

In the first two decades after the economic reforms in China since 1978, eco-
nomic policies were biased toward the coastal region. This has been successful for
the industrial sector as seen from Results 5 and 6. However, such policy has further
worsened regional income inequality. To achieve balanced regional growth, the
central government adopted the “Great Western Development” (GWD) strategy in
1999. In the second 10 years (2009–2018) of GWD, the focuses were infrastructure
improvement, environmental protection, and social development, which have been
formally incorporated into China’s 12th Five-year Program for National Social and
Economic Development (2011–2015). The infrastructure development is aimed at
stimulating economic growth in the western region through strengthening the link

Table 7 Categories of provinces for 2003–2005

Environment-oriented technical efficiency (Eb)

Above
average

Average Below average

Output-oriented
techncial efficiency
(Eg)

Above
average

E-Beijing
E-Jiangsu
E-Guangdong
E-Hainan
E-Shangdong
E-Shanghai
E-Tianjin
E-Zhejiang
NE-Jilin
W-Xinjiang

Average E-Fujian
(NE-Liaoning)
NE-Heilongjiang
W-Inner
Mongolia
W-Yunan

(W-Guanxi)
(E-Hebei)
(M-Hubei)
(M-Henan)
(W-Chongqing)

Below
average

M-Shanxi
W-Gansu
W-Guizhou
W-Qinghai
W-Shaanxi

W-Ningxia
(W-Sichuan)
(M-Anhui)
(M-Hunan)
(M-Jiangxi)
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between this region and other regions. A necessary condition for shortening the gap
between the western and eastern regions is efficient production of desirable outputs
with minimum byproducts that hurt the environment. The above result shows that,
for the manufacturing sector, the GWD strategy has yet to achieve its goal.

6 Conclusion

In this paper, we analyzed the productive performance of the Chinese manufac-
turing sector during 2003–2014. We measured the desirable output-oriented tech-
nical efficiency and environment-oriented technical efficiency and argued that they
reflect economic and environmental performance. The policies to deal with them
are market-oriented for the former and government-oriented for the latter.

Our study shows that the sampled cities were in general very inefficient in regard
to the two efficiencies discussed in Sect. 2. Some groups of cities are more efficient
than others in both efficiencies. For example, green cities are more efficient than
non-green cities. The market force worked well. On the one hand, there was a trend
of improving desirable output-oriented technical efficiency during the studied
period and there is no evidence that the trend will stop. On the other hand, the gap
of desirable output-oriented technical efficiency between green and non-green cities
was large at first but converged fast. Such gap was narrowed to a very low level by
the end of the studied period. This shows that the desirable output-oriented tech-
nical inefficiency can be cured by the current market mechanism. This may be
evidence of the success of market reform in China.

Our study also shows that the production of the manufacturing sector was not
environmentally friendly. Although there was a trend of improving environment-
oriented technical efficiency, such trend stopped significantly in the last several
years of the studied period. Further, the gap of environment-oriented technical
efficiency between green and non-green cities was large throughout the studied
period. Although there was indication of convergence, it was slow. By the end of
the studied period, the environment-oriented technical efficiency remained at a very
low level and the gap between green and non-green cities was still wide. Therefore,
new actions from the government must be taken.

We also found that the performance of the manufacturing sector in the western
region was not very bad at the beginning of the studied period. However, several
western provinces have improved their relative position but more fell to the bottom
by the end of the same period.4 As the Great Western Development strategy
(GWD) has been implemented since 1999 to promote balanced regional growth in
China, our results lead to the following conclusion: (i) The improving provinces,
Guangxi, Sichuan, and Chongqing, are relatively more developed provinces in the

4These provinces did improve during 2003–2014. They fell to the bottom because other provinces
improved much faster.
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western region. If the manufacturing sector was affected by the GWD, then it
suggests that more developed provinces gained from the GWD strategy. (ii) The
western provinces at the bottom are less developed. The GWD strategy was not
strong enough to make the manufacturing sector in the less developed provinces
more competitive in terms of both environmental protection and productivity
improvement.

If our study of the manufacturing sector reflects more or less the whole economy,
then the government must be more active in protecting the environment while the
market reform continues.
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Chapter 10
Environmental and Energy Efficiencies
Using the Stochastic Frontier Cost
Function Type

Sangmok Kang

1 Introduction

Recently, it is recognized that the increase of CO2 emission as a main factor of
greenhouse gas emission is a phenomenon raised from fossil fuel use by most of
environmental economists. As fossil fuel is a chief factor of CO2 emission, it is an
important time to reduce use of fossil fuels, preparing for increase of greenhouse
gases. Thus, this paper is to measure simultaneous performance considering CO2

emission and fossil fuel use, and apply empirical test to measure it. As the data of
fossil fuels and CO2 emission as usage data is available for the OECD countries, the
environment efficiencies for CO2 emission and the energy efficiency for fossil fuel
are measured at the same time.

As the literature review shows, the measure of environmental efficiencies
appears to have a certain limit to premise the assumption of weak disposability and
strong disposability, or null-jointness between desirable outputs and undesirable
outputs. Namely, the existing studies use the unrealistic assumptions that desirable
outputs and undesirable outputs make a change given the constant state of input
directly connected with pollutants, or use labor and capital stock with pollutants
directly.1

There are other types of studies which measure environmental efficiencies based
of stochastic frontier analysis (SFA). These studies are Reinhard et al. (1999, 2000,
2002), Gang and Felmingham (2004), Herrala and Goel (2012), and Lansik and

S. Kang (&)
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1Färe et al. (1989), Färe et al. (1996), Chung et al. (1997), Zofio and Prieto (2001), and Färe et al.
(2007) assume the weak disposability of pollutants, and null-jointness among good outputs and
bad outputs. They connect pollutants with labor forces and capital stocks unrelated directly or
assume frontier considering only good outputs and bad outputs without inputs.
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Wall (2014). Reinhard et al. (1999) measured environmental efficiency of dairy
farms using SFA, and Reinhard et al. (2000) estimated environmental efficiency of
the same dairy farms using SFA and DEA (data envelopment analysis), based on
output and input approaches. Reinhard et al. (2002) attempted to have a two-stage
approaches, which measured environmental efficiency first, and regressed it with
some impact factors. Gang and Felmingham (2004) measured environmental effi-
ciencies and its impacting factors in the Australian irrigation industry using
input-oriented approach such as Reinhard et al. (2002).2 Their environmental effi-
ciencies were based on estimates of technical efficiency. They additionally esti-
mated the potential reduction of the environmentally detrimental salt emissions
resulting from the improvement of environmental inefficiency in addition.

Herrala and Goel (2012) measured the environmental efficiencies for 170
countries making use of stochastic cost frontier analysis. They used CO2 emission
as dependent variable, and GDP, population, and national land as independent
variables. Lansik and Wall (2014) introduced several methods such as ecological
efficiency and material flow balance approach as frontier approach explaining
environmental efficiencies.

However, these studies on stochastic frontier analysis excepting Herrala and
Goel (2012) take desirable output as a dependent variable, and pollutants as
independent variables of inputs, when estimating environmental efficiency.3

Differentiating from previous studies, the current research uses pollutant as a
dependent variable, and simultaneously measures environmental efficiency and
energy efficiency for fossil fuel. This is distinguished from the previous studies in
that this article use stochastic cost frontier analysis, and simultaneously estimate
environmental efficiency and energy efficiency for fossil fuel in the one model,
which influences pollutants.

The remainder of the paper is organized as follows. Section 2 introduces theo-
retic model on environmental efficiency and energy efficiency. Section 3 explains
the descriptive statistics data in OECD countries, and empirical test results.
Section 4 draws final conclusions.

2In the input approach, the pollutant should be reduced with other inputs such like labor forces,
energy inputs, and capital stocks, whereas the pollutant should be decreased by itself in the output
approach, Two approach are common in that they intent to minimize a pollutant. The strong point
of input approach is that it may minimize one more pollutants simultaneously. But the output
approach can do not so, because we can put only one pollutant as dependent variable. For more
information on this, please refer to Kang (2015).
3Here, these studies mention Reinhard (1999, 2000, 2002), and Gang and Felmingham (2004).
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2 Theoretic Model

Environmental efficiency is measured as minimum pollutant over actual pollutant as
a harmful pollutant needs to minimize. There are two methods in estimating the
environmental efficiency based on the definition of environmental efficiency. First,
pollutants are considered to be inputs, and minimized in the production function.
Second, pollutants are defined as outputs, and minimized in the cost function. And
then, a majority of studies considered pollutants as inputs, especially in the case of
using desirable outputs and undesirable outputs at the same time. Alternative
approach that treats pollutants as outputs and minimize them in the cost function
will be used to measure the environmental efficiency. The stochastic cost frontier
model in the theoretic model is introduced. This article particularly divides the
types of efficiencies into environmental efficiency and energy efficiency for fossil
fuels in the one single model. The model for measuring two efficiencies together
will be introduced.

First, environmental efficiency is defined as follow;

EEZ ¼ min h : h � Z 2 T(y, Z)f g
¼ min h : h � Z�Z�f g
¼ min h : h�Z�=Zf g
¼ Z�=Z

ð1Þ

where, Z: actual pollutant, Z*: minimum pollutant, h: environmental efficiency.
Environmental efficiency has a value less than 1. A pollutant is considered as a
dependent variable, but also it is treated as a byproduct to be minimized.

Meanwhile, as Herrala and Goel (2012) defined, y is desirable outputs vector,
and Z is pollutants vector to be minimized in production possibility set (T).
However, differentiating from Herrala and Goel (2012), this article do not use
environmental efficiency decided by regulation policy, but use environmental
efficiency defined on the cost frontier, which is measured as minimum pollutants
over actual pollutants. The basic model here premises the production technology
such that pollutants are explained by desirable outputs and inputs. That is,

Z� T(y, x) ð2Þ

where, pollutant Z is the function of desirable outputs (y) and inputs (x). Namely, a
production function uses x and produce y and Z simultaneously. Equation (2)
means that Z should be minimized in producing given y. Thus, Min (Z) = T(y, x).

Combined Eqs. (1) with (2), environmental efficiency based on stochastic cost
frontier is defined as
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expð�uitÞ ¼ minðZitÞ=Zit ð3Þ

Now, stochastic frontier cost function including random error and environmental
inefficiency error is expressed as

Zit ¼ Tðyit; xit : bÞ � exp ðvitÞ � exp ðuitÞ ð4Þ

where, pollutants (Z) as a dependent variable is the function of y, x, random error
(v), and environmental inefficiency error (u). Equation (4) can be transformed into
the logarithm type of translog stochastic cost frontier function as

ln(Zit) = b0 þ b1 ln yit þ b2 lnKit þ b3 ln Lit þ b4 ln ffit þ b5 ln nfit

þ 1=2 b6 ln
2 yit þ 1=2 b7 ln

2 Kit þ 1=2 b8 ln
2 Lit þ 1=2 b9 ln

2 ffit þ 1=2 b10 ln
2 nfit

þ b11 ln yit � lnKit þ b12 ln yit � ln Lit þ b13 ln yit � ln ffit þ b14 ln yit � ln nfit
þ b15 lnKit � ln Lit þ b16 lnKit � ln ffit þ b17 lnKit � ln nfit
þ b18 ln Lit � ln ffit þ b19 ln Lit � ln nfit þ b20 ln ffit � ln nfit
þ vit þ uit

ð5Þ

where, inputs are classified into capital stock, labor forces, fossil fuels, and
non-fossil fuels. As already mentioned, a type of stochastic cost frontier function is
used because a pollutant should be minimized. So, the environmental inefficiency
error term shows plus (+) sign different from the case of production function. We
can estimate environmental efficiency from Eq. (5).

First of all, let’s introduce energy efficiency of fossil fuel as one of factors
affecting to environmental efficiency. We need to analyze the relation between
energy efficiency of fossil fuel and environmental efficiency. The energy efficiency
of fossil fuel is defined as

EEff ¼ min d : d � ff 2 T(y, Z)f g ð6Þ

following the definition of energy efficiency, the energy efficiency is also defined as
follow;

EEff ¼ minðffitÞ=ffit ð7Þ

where, EEff: energy efficiency, min(ff): minimum fossil fuel, ff: actual fossil fuel.
Energy efficiency is also defined as minimum fossil fuel over actual fossil fuel. If

both of environmental efficiency and energy efficiency are efficient in the Eq. (5),
we need to substitute fossil fuel (ff) into d∙ff, and put environmental inefficiency
error term (uit) = 0. The stochastic frontier cost function satisfying these conditions
is expressed as
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ln(Zit) = b0 þ b1 ln yit þ b2 lnKit þ b3 ln Lit þ b4 ln ffit þ b5 ln nfit

þ 1=2 b6 ln
2 yit þ 1=2b7 ln

2 Kit þ 1=2b8 ln
2 Lit þ 1=2 b9 ln

2 d � ffit þ 1=2 b10 ln
2 nfit

þ b11 ln yit � lnKit þ b12 ln yit � ln Lit þ b13 ln yit � ln d � ffit þ b14 ln yit � ln nfit
þ b15 lnKit � ln Lit þ b16 lnKit � ln d � ffit þ b17 lnKit � ln nfit
þ b18 ln Lit � ln d � ffit þ b19 ln Lit � ln nfit þ b20 ln d � ffit � ln nfit
þ vit

ð8Þ

Thus, Eq. (5) should be equalized with Eq. (8) in order to accomplish overall
efficiency including two efficiencies. Namely, to achieve the best practices of two
efficiencies, the next condition should be satisfied:

1
2 b9ln

2d + (b4 + b13ln yit + b16lnKit + b18ln Lit
+ b20ln nfit) � ln d� uit ¼ 0

ð9Þ

This is a quadratic formula expressed by lnd, which can be solved. For sim-
plification, Let’s put the coefficient of second item as b. Namely,

b4 þ b13ln yit þ b16lnKit þ b18ln Lit þ b20ln nfit ¼ b ð10Þ

in the Eq. (9), lnd can be solved as

In d ¼ �b� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 2b9ð�uitÞ
p

b9
ð11Þ

thus, inserting the coefficients estimated by Eqs. (5) into (11), we derive the value
of d. The d is energy efficiency for fossil fuel, and exp(−u) is environmental
efficiency for the pollutant. As a result, we can get environmental efficiency (h) in
the Eq. (5) and energy efficiency (d) in the Eq. (11), respectively.

The translog cost function is estimated by maximum likelihood estimation
(MLE). Based on Stevenson (1980), the following distribution assumption is
assumed as:

(1) vi � iid Nð0;r2
vÞ, vi (random error) is normal distribution.

(2) ui � iid Nþðl;r2
uÞ, u (cost inefficient error) is nonnegative half normal.

(3) vi와 ui are distributed independently of each other and of the regressors.

The truncated normal distribution is assumed for ui. As mean of this distribution
is not 0, but random l, the truncated normal distribution allows the normal dis-
tribution to have a nonzero mode. That is, the truncated normal distribution pro-
vides a more flexible pattern of efficiency than half normal distribution. In addition,
The panel model of time varying cost efficiency such like Battese and Coelli (1992)
is considered in the next empirical test.
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3 Empirical Test Results

The proposed theory model is applied to a sample of OECD countries for 1996–
2009. The sample data include labor forces, capital stock, fossil fuel, non-fossil
fuel, CO2 emission, and GDP for 27 OECD countries. We use labor forces by
OECD statistics, and estimate capital stocks of OECD countries by the perpetual
inventory method, which is derived from new investment for OECD countries in
the Penn World Table 1. The fossil fuel and non-fossil fuel data, which are marked
by ton of oil equivalent, also come from OECD statistics. CO2 emission comes
from United Nations Framework Convention on Climate Change (UNFCCC). The
money value data such as capital stock and GDP are transformed into constant
value based on 2005 year (2005 = 100). We use per capita variables, which are
divided by population.4 We use a type of stochastic frontier cost function as an
estimation method, and estimate two efficiencies with 378 observations for
14 years. Of the 14 years, 4 years results (1996, 2000, 2005, and 2009) repre-
sentively are presented due to limited space. The summary of statistics for OECD
countries is listed in Table 1.

The per capita mean of OECD for 1996–2009 is 10.3 ton (CO2 emission),
31,002 dollar (GDP), 77,408 dollar (capital stock), 0.49 person (labor forces),
166.5 ton (fossil fuel), and non-fossil fuel (46.8 ton). We can classify Luxembourg,
United States, Australia, and Canada as high level countries in terms of per capita
fossil fuel use.

As we do not use production function, but use stochastic frontier cost function in
the empirical test, this results may be different from those of the production function
in the existing studies. The estimation equation of per capita CO2 emission by the
type of stochastic frontier cost function is illustrated in Table 2. As is shown, per
capita CO2 emission is mostly significant for per capital fossil fuel, but not signif-
icant for other explainable variables. However, total variance (r2), gamma (ϒ), and
environmental inefficiency error term (l) are all significant at the one percent level,
and over 60% of composite-error terms results from environmental inefficiency error
terms. The time-varying environmental inefficiency (eta) is not significant.

While log likelihood value of maximum likelihood estimation (MLE) is 277.9,
the value of ordinary least square (OLS) is 212.7, and the LR test shows 130.5.
Thus, the null hypothesis, which there are no environmental inefficiency and no
change of environmental inefficiency, is rejected in one percent level (threshold
value: 9.21) through v2 distribution. So, we confirm environmental inefficiency
exists. Using the estimated coefficients of the stochastic frontier cost function, we
additionally estimate energy efficiency (d) in Eq. (11).

Meanwhile, Table 3 shows the elasticity of CO2 emission for GDP and fossil
fuel, which is derived from the estimation equation of stochastic frontier cost
function. The annual average elasticity of CO2 emission for GDP is 0.193,

4If we use total variables, this will be more advantageous to high income countries. Per capita
variables are applicable to every countries equitably.
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inelastistic for 1996–2009. Namely, one percent increase of GDP causes the
0.193% increase of CO2 emission, implying that the increase of income do not
much impact on the increase of CO2 emission. Whereas, the annual average elas-
ticity of CO2 emission for fossil fuel is 0.950, close to 1. Namely, the one percent
increase of fossil fuel causes 0.95% increase of CO2 emission, showing that the use
of fossil fuel is closely connected with CO2 emission. The countries that elasticity
of CO2 emission for GDP is high fall on Poland, Luxembourg, Netherlands, and
Ireland. On the other hand, of the countries that show very low elasticity of CO2

emission for GDP, Iceland, Ireland, and Greece specially display minus (−) sign of
elasticity, implying that nonetheless of income increase, these countries reduced
CO2 emission effectively.

Table 1 Descriptive statistics (1996–2009)

CO2/P GDP/p K/p L/p FE/p NFE/p

Australia 18.2 35,673 88,409 0.51 278.4 9.4

Austria 8.8 34,651 94,837 0.49 131.8 50.7

Belgium 11.8 32,045 88,635 0.43 224.1 17.3

Canada 17.7 34,489 73,376 0.53 294.7 123.5

Denmark 10.9 33,316 81,875 0.53 172.2 14.2

Finland 11.9 29,924 81,803 0.50 166.9 57.2

France 6.8 30,815 71,353 0.46 107.4 34.1

Germany 10.6 30,879 81,814 0.48 161.3 13.1

Greece 9.5 22,400 59,260 0.43 132.3 4.8

Hungary 5.8 14,568 33,572 0.41 97.4 5.4

Iceland 9.9 38,583 101,780 0.57 146.7 313.2

Ireland 11.0 35,702 81,829 0.47 165.8 4.3

Italy 8.0 28,958 82,407 0.41 132.7 9.0

Japan 9.8 30,607 107,586 0.53 159.7 16.2

Korea, South 10.5 20,573 66,589 0.48 166.2 9.0

Luxembourg 22.1 67,934 150,598 0.65 354.7 4.7

Mexico 3.7 10,774 24,817 0.38 60.8 3.8

Netherlands 10.8 35,580 79,434 0.52 252.8 4.7

New Zealand 8.3 24,910 50,035 0.52 146.8 70.1

Norway 9.4 46,492 118,271 0.52 144.2 268.2

Poland 8.5 12,517 23,081 0.45 110.6 1.0

Portugal 6.0 19,550 56,190 0.51 95.1 13.6

Spain 7.5 26,823 71,483 0.46 122.9 15.8

Sweden 6.1 31,421 62,619 0.51 100.0 107.3

Switzerland 6.1 36,648 115,660 0.60 92.4 62.0

UK 9.2 31,612 56,328 0.49 159.0 7.0

United States 19.1 39,610 86,385 0.50 317.6 22.8

Mean 10.3 31,002 77,408 0.49 166.5 46.8

Unit: ton, dollar, person, ton
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In case of elasticity of CO2 emission for fossil fuel, Canada, United States,
Luxembourg, Australia, and Netherlands show higher elasticity over one, while
Mexico, Switzerland, Portugal, France relatively display lower elasticity of CO2

emission. In these countries, the impact of fossil fuel on CO2 emission is less
sensitive. In conclusion, the impact of fossil fuel on CO2 emission is more sensitive
than that of income.

Table 4 shows the trend of fossil fuel efficiency for 1996–2009, which is derived
by estimating Eq. (11). Here, the efficiency of fossil fuel is driven in the stochastic

Table 2 The estimation results of Stochastic Frontier cost function

Coefficient Standard deviation t value

Constant −1.332 1.173 −1.135

ln(GDP/p) −0.054 0.547 −0.099

ln(K/p) 0.015 0.504 0.030

ln(L/p) 0.110 0.280 0.391

ln(FE/p) 0.352*** 0.225 1.562

ln(NFE/p) 0.146 0.498 0.292

1/2ln(GDP/p)2 −0.098 0.176 −0.558

1/2ln(K/p)2 −0.050 0.307 −0.164

1/2ln(L/p)2 0.199 0.582 0.341

1/2ln(FE/p)2 0.478* 0.174 2.746

1/2ln(NFE/p)2 0.009 0.022 0.408

ln(GDP/p)*ln(K/p) 0.118 0.214 0.551

ln(GDP/p)*ln(L/p) 0.082 0.519 0.158

ln(GDP/p)*ln(FE/p) 0.056 0.292 0.192

ln(GDP/p)*ln(NFE/p) −0.099 0.071 −1.384

ln(K/p)*ln(L/p) −0.123 0.545 −0.227

ln(K/p)*ln(FE/p) −0.229 0.240 −0.951

ln(K/p)*ln(NFE/p) 0.075 0.064 1.173

ln(L/p)*ln(FE/p) −0.055 0.278 −0.198

ln(L/p)*ln(NFE/p) 0.313*** 0.192 1.626

ln(FE/p)*ln(NFE/p) 0.048 0.044 1.100

sigma2 0.027* 0.004 6.156

gamma 0.606* 0.065 9.308

mu 0.256* 0.056 4.596

eta 0.009 0.009 1.005

Log likelihood 277.911

LR test 130.457

Number of sample 27

Observation 378

Note LR of log likelihood test is estimated by −2(L(H0) − L(H1))
*Significant at 1% level
***Significant at 10% level
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frontier cost function. The energy efficiency is defined as minimum energy over
actual energy. Annual average efficiency of fossil fuel in the OECD countries for
1996–2009 lied from 0.813 to 0.837, and the level of efficiency had been improved.
The improved energy efficiency represents that the gaps of fossil fuel among OECD
countries had been reduced gradually. Netherlands, Mexico, Canada, United States,
New Zealand, United Kingdom, and Switzerland show higher energy efficiencies.
But, the reasons showing high efficiency are different from these countries. High
efficiency reflects that actual fossil fuel use comes close to minimum fossil fuel use,
whereas low efficiency implies actual use are far away from minimum use in given
output condition. So, even though Netherlands, Canada, and United States show
high per capita fossil fuel, their fossil fuel uses come close to minimum use of

Table 3 Elasticity of CO2 emission

Elasticity for GDP Elasticity for fossil fuel

1996 2000 2005 2009 Mean 1996 2000 2005 2009 Mean

Australia 0.279 0.289 0.300 0.329 0.296 1.158 1.182 1.180 1.119 1.170

Austria 0.099 0.083 0.104 0.095 0.096 0.883 0.865 0.894 0.845 0.876

Belgium 0.226 0.220 0.225 0.215 0.222 1.108 1.111 1.091 1.037 1.096

Canada 0.005 0.016 0.035 0.050 0.029 1.386 1.392 1.373 1.261 1.360

Denmark 0.338 0.240 0.195 0.208 0.238 1.086 0.972 0.909 0.845 0.964

Finland 0.117 0.083 0.089 0.110 0.096 1.037 0.997 0.982 0.940 1.019

France 0.089 0.090 0.102 0.110 0.096 0.842 0.847 0.823 0.755 0.823

Germany 0.257 0.243 0.229 0.212 0.235 0.949 0.933 0.933 0.895 0.935

Greece 0.301 0.320 0.291 0.281 0.309 0.811 0.866 0.873 0.837 0.854

Hungary 0.256 0.256 0.235 0.217 0.250 0.847 0.803 0.848 0.767 0.824

Iceland −0.045 −0.063 −0.058 −0.096 −0.066 1.007 1.023 0.993 0.912 0.997

Ireland 0.373 0.351 0.331 0.278 0.338 0.860 0.938 0.903 0.834 0.902

Italy 0.248 0.248 0.267 0.239 0.255 0.822 0.842 0.840 0.767 0.828

Japan 0.246 0.251 0.254 0.260 0.253 0.876 0.880 0.877 0.830 0.873

Korea, South 0.301 0.284 0.279 0.293 0.288 0.926 0.947 0.970 0.990 0.957

Luxembourg 0.432 0.375 0.405 0.402 0.400 1.102 1.106 1.216 1.123 1.147

Mexico 0.219 0.226 0.250 0.272 0.246 0.629 0.656 0.637 0.612 0.637

Netherlands 0.393 0.371 0.326 0.307 0.355 1.115 1.097 1.127 1.111 1.110

New Zealand 0.005 0.020 0.042 0.043 0.031 1.070 1.097 1.063 0.987 1.070

Norway −0.062 −0.085 −0.070 −0.038 −0.061 0.957 0.959 0.973 0.941 0.961

Poland 0.445 0.434 0.395 0.328 0.405 0.937 0.851 0.860 0.884 0.874

Portugal 0.152 0.204 0.272 0.201 0.208 0.704 0.781 0.735 0.698 0.741

Spain 0.166 0.195 0.220 0.195 0.194 0.752 0.850 0.881 0.790 0.839

Sweden −0.002 −0.042 −0.043 −0.024 −0.030 0.950 0.878 0.846 0.746 0.867

Switzerland 0.104 0.084 0.103 0.090 0.091 0.679 0.678 0.655 0.618 0.663

UK 0.254 0.252 0.246 0.250 0.250 1.040 1.004 0.984 0.897 0.986

United States 0.176 0.197 0.213 0.213 0.201 1.350 1.320 1.271 1.197 1.287

Mean 0.199 0.190 0.194 0.187 0.193 0.959 0.958 0.953 0.898 0.950
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frontier curve, and they show high fossil fuel efficiencies. While, Mexico and
Switzerland relatively have low per capita fossil fuels but, they also come close to
minimum use of frontier curve, and also have high efficiencies.

However, Finland, Greece, Korea, Poland, Germany, and Japan display most
low efficiencies of fossil fuels. Finland, Korea, and Greece show similar levels of
per capital fossil fuel uses and per capita CO2 emission. Especially, Germany,
which shows higher proportion of manufacturing in the overall industry, reports
that the average per capita fossil fuel is 161 ton. Then that of France is 107.2 ton.
So, the per capita fossil fuel and CO2 emission of Germany considerably show high
levels. Poland’s fossil fuel is relatively large but, the sizes of per capital GDP and
per capita capital stock are small. So, Poland show low efficiency of fossil fuel.

Table 4 Energy efficiency (1996–2009)

1996 2000 2005 2009 Mean

Australia 0.766 0.776 0.789 0.800 0.783

Austria 0.756 0.765 0.777 0.785 0.771

Belgium 0.856 0.862 0.869 0.875 0.866

Canada 0.921 0.925 0.930 0.934 0.928

Denmark 0.782 0.787 0.796 0.806 0.793

Finland 0.722 0.730 0.743 0.755 0.737

France 0.788 0.796 0.807 0.815 0.802

Germany 0.751 0.759 0.768 0.776 0.764

Greece 0.725 0.736 0.748 0.758 0.742

Hungary 0.846 0.853 0.861 0.866 0.856

Iceland 0.836 0.843 0.852 0.858 0.847

Ireland 0.770 0.780 0.792 0.799 0.785

Italy 0.804 0.812 0.822 0.827 0.816

Japan 0.754 0.763 0.773 0.781 0.768

Korea, South 0.729 0.740 0.755 0.765 0.747

Luxembourg 0.770 0.778 0.791 0.800 0.785

Mexico 0.925 0.929 0.933 0.937 0.931

Netherlands 0.981 0.982 0.983 0.983 0.982

New Zealand 0.864 0.871 0.879 0.885 0.875

Norway 0.820 0.826 0.835 0.844 0.832

Poland 0.742 0.754 0.764 0.772 0.758

Portugal 0.784 0.797 0.812 0.816 0.802

Spain 0.792 0.802 0.814 0.821 0.808

Sweden 0.825 0.830 0.839 0.847 0.835

Switzerland 0.866 0.870 0.877 0.881 0.873

UK 0.865 0.871 0.878 0.884 0.875

United States 0.905 0.910 0.916 0.920 0.913

Mean 0.813 0.820 0.830 0.837 0.825
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Table 5 shows the results of environmental efficiency for CO2 emission. The
annual average environmental efficiency of OECD countries for 1996–2009 is
0.750, less than that of energy efficiency (0.850). The distribution of annual
environmental efficiency in the OECD countries for the same period lie from 0.737
to 0.762. This mean that in case of the CO2 emission, the CO2 emission of indi-
vidual country is farther away from the performance of the best practice than that of
fossil fuel use. Namely, it implies the CO2 emission has more possibilities to reduce
than fossil fuel. As the energy efficiencies year by year have been improved, the
environmental efficiencies show the same trend. It means that the gaps of envi-
ronmental efficiencies among countries have also gradually reduced. Netherlands,
Mexico, Canada, The United States, New Zealand, United Kingdom, and

Table 5 Environmental efficiency (1996–2009)

1996 2000 2005 2009 Mean

Australia 0.663 0.673 0.685 0.695 0.679

Austria 0.657 0.668 0.680 0.690 0.674

Belgium 0.792 0.799 0.807 0.813 0.803

Canada 0.897 0.900 0.905 0.908 0.902

Denmark 0.682 0.692 0.703 0.713 0.698

Finland 0.615 0.626 0.640 0.650 0.633

France 0.709 0.718 0.729 0.737 0.723

Germany 0.640 0.650 0.663 0.673 0.657

Greece 0.612 0.623 0.637 0.647 0.630

Hungary 0.795 0.801 0.809 0.816 0.805

Iceland 0.778 0.785 0.794 0.801 0.789

Ireland 0.664 0.674 0.686 0.696 0.680

Italy 0.715 0.724 0.735 0.743 0.729

Japan 0.636 0.647 0.660 0.670 0.653

Korea, South 0.619 0.630 0.643 0.654 0.636

Luxembourg 0.643 0.654 0.667 0.676 0.660

Mexico 0.904 0.907 0.911 0.914 0.909

Netherlands 0.971 0.972 0.974 0.975 0.973

New Zealand 0.826 0.832 0.839 0.844 0.835

Norway 0.752 0.760 0.769 0.777 0.764

Poland 0.655 0.665 0.678 0.687 0.671

Portugal 0.707 0.716 0.727 0.735 0.721

Spain 0.710 0.719 0.730 0.738 0.724

Sweden 0.768 0.776 0.785 0.792 0.780

Switzerland 0.802 0.809 0.816 0.822 0.812

UK 0.812 0.818 0.825 0.831 0.822

United States 0.866 0.871 0.876 0.880 0.873

Mean 0.737 0.745 0.755 0.762 0.750
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Switzerland show very high efficiencies as such like the energy efficiency. This is
an anticipated result because CO2 emission generally has a significant connection
with fossil fuel.

On the contrary to this, Greece, Finland, Korea, Japan, Germany, Luxembourg,
and Poland show very low performance of environmental efficiency. Of these
countries, the rank of environmental efficiency for Luxembourg somewhat remains
behind more than the rank of energy efficiency, even though Luxembourg reports
very high per capita fossil fuel and per capita CO2 emission. Japan, and Germany
report similar levels of per capita fossil fuel use with Korea, but a little higher level
of per capita CO2 emission than Korea. And then, Poland use more per capita fossil
fuel than these countries, but emit less per capita CO2 emission (8.5 ton) than
Finland (11.9 ton), Korea (10.5 ton), and Greece (9.5 ton).

As a result, there are a bigger chance to reduce CO2 emission because the
environmental efficiency of OECD countries is lower than the energy efficiency of
fossil fuel.5

4 Conclusions

This paper estimated energy efficiency and environmental efficiency together in one
single model using a type of stochastic frontier cost function. As Herrala and Goel
(2012) tried, stochastic frontier cost function is available to measure environmental
efficiency of pollutants in terms of minimization of pollutants. The statistic data of
OECD countries were used for the estimation of two simultaneous efficiencies.

The empirical test results showed the existence of environmental inefficiency,
and over 60% of composite-error terms results from environmental inefficiency
error terms. The time-varying environmental inefficiency (eta) is not significant.
The impact of fossil fuel change on CO2 emission is more sensitive than that of
income.

Annual energy efficiency of fossil fuel in the OECD countries for 1996–2009
lied from 0.813 to 0.837, and the energy efficiency level had been improved. The
improved energy efficiency represents that the gaps of fossil fuel among countries
had been reduced gradually. The annual average environmental efficiency for 1996–
2009 is 0.750, less than that of energy efficiency (0.850). This means that the CO2

emission for individual country is farther away from the best practice than that of
fossil fuel. Eventually, this means that there is a significant possibility to reduce not
only fossil fuel use but also CO2 emission.

As empirical results were shown, fossil fuel use is closely related with CO2

emission, and the increase of fossil fuel efficiency results in improvement of
environmental efficiency. Hence, to get the high performance, the effort to reduce

5In this paper, environmental efficiency is defined as minimum CO2 over actual CO2. So, reducing
actual CO2 emission, we can improve environmental efficiency.
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CO2 emission is needed itself, and more basically, the additional effort to transform
fossil fuel use into renewable energy should be accompanied. We should make
efforts to introduce low-carbon energy system and go technological innovation side
by side.
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Chapter 11
Evaluating Performance of New
Energy—Evidence from OECD

Ching-cheng Lu, Jin-chi Hsieh, Yung-ho Chiu and Zhen-sheng Lin

1 Introduction

Human civilization has been accompanied by energy development, and energy is
closely linked with the progress of human life, science, technology, economy, etc.
ever since the Industrial Revolution in the 19th century. Easy access to energy
sources has driven the rapid growth of the global economy, resulting in excessive
consumption and low efficiency of energy. It also has led to an acceleration in the
depletion of limited fossil energy sources as well as the emergence of global climate
change, the greenhouse effect, and other environmental issues. This has impacted
the global environment and endangered the existence and sustainable development
of future generations. Therefore, it is a pressing issue to reduce the use of fossil
energy and improve energy efficiency by actively developing new forms of green
energy.

Many leaders of countries around the world gathered in Paris to attend the
United Nations Framework Convention on Climate Change’s Twenty-first
Conference of the Parties in 2015 to discuss how to handle the issue of climate
change, energy savings, and carbon reduction. Countries are now actively pro-
moting high efficiency and low carbon economies with low carbon emissions, so as
to improve the deteriorating environmental quality and achieve the goal of sus-
tainable development. As traditional fossil energy is concentrated in unstable
regions, its prices and supply fluctuate greatly and also threaten investments and
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energy security. All countries must seek alternative energies to replace traditional
fossil energy and to present opportunities to create a green economy.

The problem of energy demand and environmental protection is an important
issue for industrial development. As energy demand continues to grow, carbon
dioxide emissions continue to increase, which have a negative impact on climate
change. Therefore, attention should be paid in how to balance environmental
protection and economic development, improve energy efficiency, and maintain
energy security and energy prices. Many countries have set significant policy
objectives to reduce carbon emissions and energy use and to improve energy
efficiency. The goal is to create a sustainable environment for economic growth and
greenhouse gas emission reduction. The fastest way to reduce energy demand is by
improving energy efficiency, as it can cut pollution and carbon dioxide emissions
due to economic and demographic growth. However, fossil energy will still be used
up, and new energy will quickly be developed in all countries of the world, but the
costs are still higher than fossil energy, and so the future price of energy will be
affected by the efficiency of new energy sources. The development of new energy
technologies must exhibit high performance, high efficiency, low cost, and low
pollution as necessary conditions, if they are expected to accelerate into the era of
new energy use.

Environmental and energy performance assessments make up a good tool in
energy development, as the results can help us to discover inefficient consumption,
improve it in order to maintain high performance, and reduce energy costs to
improve the energy use ratio. A review of the environmental and energy efficiency
literature shows that it mostly focuses on using structural equation models to
explore the two efficiencies. However, many studies used decision-making units
(DMUs) in the same period with the DEA method and did not consider the
input-output process across multiple periods in assessing national energy envi-
ronmental efficiency, such as Dritsaki and Dritsaki (2014), Goto et al. (2014),
Sueyoshi and Goto (2015), and Yang et al. (2015). In recent years, some studies
have also included time variables in dynamic DEA or two-stage DEA to achieve a
dynamic performance evaluation, but they have ignored the progress of energy
technologies and the differences in input variables under periods and regions of new
energy.

This paper therefore employs the Meta-frontier Dynamic DEA (MFD-DEA)
method to assess the performance of energy environmental efficiency in
Organization for Economic Co-operation and Development (OECD) countries, in
order to investigate the effect of energy environmental efficiency in different regions
and to observe the effects of input and output variables and carryover multiple
periods in OECD members’ energy consumption. The results can help countries
take the energy strategy reference and enhance their energy efficiency, develop
renewable energy, and reduce carbon emissions. We assess the energy environ-
mental efficiency performance of OECD members in this study by investigating
(1) the energy environmental efficiency value, (2) the effects of renewable energy
development, (3) the effects of different regions, (4) and strategies for improving
energy efficiency.
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This study’s DMUs are 34 countries of OECD members in this study. The
regions are divided into North Western Europe (NWE) (14 countries): United
Kingdom (GB), Netherlands (NL), Belgium (BE), Ireland (IE), Luxembourg (LU),
Iceland (IS), France (FR), Switzerland (CH), Norway (NO), Germany (DE),
Denmark (DK), Sweden (SE), Finland (FI), and Austria (AT); South Eastern Europe
(SEE) (11 countries): Estonia (EE), Italy (IT), Greece (GR), Hungary (HU), Tokelau
(TK), Spain (ES), Poland (PL), Slovenia (SI), Portugal (PT), the Czech Republic
(CZ), and Slovakia (SK); America (4 countries): United States (US), Canada (CA),
Mexico (MX), and Chile (CL); and others (5 countries): South Korea (KR), Japan
(JP), Israel (IL), New Zealand (NZ), and Australia (AU). The goal is to assess their
performances of energy environmental efficiency for the period 2008–2012.

The remainder of this paper is organized as follows: Section 2 is Literature
Review. Section 3 is Research Method. Section 4 is Empirical Results and
Discussion. Section 5 is Conclusions.

2 Literature Review

The main research of new energy performance has focused on improving energy
efficiency and reducing power generation and operating costs in energy applications
(such as Yang et al. 2015; Meng et al. 2014, etc.). However, issues concerning the
protection of environment are more important, as the phenomenon of global
warming is threatening the living environment of all creatures and human beings.
Many studies have begun to explore how to reduce greenhouse gas and carbon
emission, in order to create a sustainable environment. This study researches OECD
member countries and summarizes the empirical literature as follows.

Output is divided into desirable and undesirable categories to evaluate envi-
ronmental efficiency through the DEA approach. Goto et al. (2014) proposed a
balance between industrial pollution and economic growth to attain a sustainable
society in the world. With the DEA method, they separated outputs into desirable
and undesirable categories to assess the operational efficiency, unified efficiency
under natural disposability (UEN), and unified efficiency under natural and man-
agerial disposability (UENM) of various organizations in 47 prefectures’ manu-
facturing and non-manufacturing industries of Japan. They found that the DEA
method has an analytical capability to quantify the importance of investment on
capital assets for technology innovation and confirms the validity of the Porter
hypothesis in Japan’s manufacturing industries. They also presented that the
emission of greenhouse gases is a main source of unified inefficiency in the two
groups of industries. That study suggested those industries need to make better
efforts to reduce greenhouse gas emissions and air pollution substances by investing
in capital assets for technology innovation. Sueyoshi and Goto (2013, 2015) also
proposed desirable and undesirable outputs and used the non-radial DEA model to
measure unified and scale efficiencies in coal-fired power plants of the U.S.
northeast region. They compared the operational and environmental performances
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of fossil fuel power plants in Pennsylvania-New Jersey-Maryland Interconnection
and California Independent System Operator (2012) and measured the unified
efficiency of Japan’s fossil fuel power generation during the period 2004–2008
(2011).

Wang et al. (2014) proposed a very important green image for corporate sur-
vivability in a global market, stating that the operators of companies need to
consider both economic prosperity and pollution prevention in their operations, as a
green image is an important strategy for corporate sustainability. They used the
DEA method to assess environmental performance, with the variables focusing
upon research and development (R&D) strategies as well as technology innovation
and selection for the reduction of undesirable outputs (e.g., CO2 emissions). They
applied the proposed approach to 153 observations on S&P 500 corporations of U.
S. industrial sectors in 2012 and 2013. Their empirical results confirm that investors
pay more serious attention to a company’s green image and the reality for a long
run sustainability than profitability in a short run concern.

Egilmez and Park (2014) used a two-step hierarchical methodology for an
integrated application of the economic input output life cycle assessment
(EIO-LCA) and DEA approaches to quantify the transportation-related carbon,
energy, and water footprints (FP) of U.S. manufacturing sectors and to evaluate the
environmental and economic performances based on eco-efficiency scores.
EIO-LCA was employed to quantify the environmental impacts associated with the
activities among 276 manufacturing sectors, and DEA approaches assessed the
performance of the overall environmental and economic benefit tradeoff by
determining the eco-efficiency value of each sector. They found that the vast
majority of U.S. manufacturing sectors are inefficient (eco-efficiency <1), with
only tobacco manufacturing being eco-efficient; the U.S. average was 0.5; the
results indicated that inefficient U.S. manufacturing sectors need to reach an
average reduction of 50% on the carbon, energy, and water FP impacts to reach
the 100% eco-efficiency frontier. Yago et al. (2015) assessed the eco-efficiency of
a group of 113 wastewater treatment plants (WWTPs) in regions across Spain, also
used the method to combine life cycle assessment (LCA) and DEA, and found that
the effects of their efficiency are contained in the size of the facility, the climatic
influence, the influent load, and the over- or underuse of the plant.

Filippini and Wetzel (2014) employed a stochastic frontier panel data model to
analyze the cost efficiency of 28 electricity distribution companies in New Zealand
for the period between 1996 and 2011. They estimated a total cost function and a
variable cost function in order to evaluate the impact of ownership unbundling on
the level of cost efficiency. They found that the ownership separation of electricity
generation and retail operations from the distribution network has a positive effect
on the cost efficiency of distribution companies in New Zealand, and the estimated
effect of ownership separation suggests a positive average one-off shift in the level
of cost efficiency by 0.242 in the short run and 0.144 in the long run. Xie et al.
(2014) proposed that the environmental efficiencies of electric power industries in
different countries may serve as a benchmark to evaluate their emission reduction
efforts, used the slack based measure data envelopment analysis (SBM-DEA)
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model to investigate the environmental total factor productivity (TFP) index of
electric power industries in 26 OECD (Organization for Economic Cooperation and
Development) and BRIC (Brazil, Russia, India, and China) countries from 1996 to
2010, and employed the Tobit regression model to analyze the influence of related
factors on TFP and its decompositions. They found that the dynamic environmental
efficiency or TFP provides a good perspective for evaluating emission reduction
efforts of electric power industries in different countries, and that taking the energy
structure and affordability into consideration, environmental TFP may indicate
climate change mitigation efforts to a large extent. Galán and Pollitt (2014) pre-
sented an extension of dynamic stochastic frontier models that accounts for
unobserved heterogeneity in inefficiency persistence and in the technology. High
inefficiency persistence and heterogeneity in the Colombian distribution sector are
found to be important criteria in inefficiency persistence, customer density, and
consumption density for regulatory purposes.

Yang et al. (2015) used the super-efficiency DEA method to assess environ-
mental efficiency and evaluated DMUs in 30 provinces of China in 2000–2010. The
results showed that Beijing and Shanghai have better environmental efficiency, and
Qinghai has worse performance. They showed that east areas are more efficient in
production, while the west areas rank last, with central areas ranking in between
during the period studied. They suggested that policies should be established to
further promote production efficiency. Meng et al. (2014) studied inefficiency and
congestion in 16 Asia-Pacific Economic Cooperation (APEC) countries by using
the two-stage DEA approach for the period 1996–2011. They found that energy is
congested due to fossil energy in the 16 APEC countries; moreover, the APEC
countries should take some useful measures to control the congestion coming from
non-fossil energy. There are many studies on environmental and energy issues such
as Sueyoshi and Goto (2012), Shrivastava et al. (2012), Amirteimoori and
Kordrostami (2012), Shabani et al. (2014), Kuo et al. (2014), Wang and Feng
(2015), Sueyoshi and Wang (2014), etc.

Some research studies in recent years have focused on the issue of renewable
energy, such as Hong et al. (2013) who assessed the possible contribution of the
12th Five Year Plan for China’s future energy system and identified factors (in the
period 2011–2015) that might influence its impacts. The current status of renewable
energy development in China was first reviewed. They next used an energy system
analysis plan to simulate several energy scenarios on an hourly basis and proposed
to improve the efficiency of renewable energy technologies and sectors as an
important policy in China’s energy system. Woo et al. (2015) also used DEA to
evaluate the dynamic environment efficiency of renewable energy in OECD; labor,
capital, and renewable energy supply are the input items, while the output items are
the desirable output of Gross Domestic Product (GDP) and the undesirable output
of carbon emissions. They also used the Malmquist productivity index (MPI) to
estimate the average efficiency change in the period 2004–2011 and found results
that showed geographical differences in environmental efficiency in OECD. Fagiani
et al. (2013) analyzed the effects of investors’ risk aversion on the performances of
support schemes and compared two policy options of a feed-in tariff mechanism
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and a certificate market system. Their results showed that while a tariff mechanism
could obtain better results than a certificate market, its performance is strictly
dependent on regulator choices. Menegaki and Gurluk (2013) compared the
renewable energy performance of Turkey and Greece, showing that Turkey spends
efforts to tacitly comply with European Union legislation and sets ambitious
renewable energy targets. Greece, on the other hand, is afflicted by an economic
crisis that threatens to retard its renewable energy developments unless it uses
renewable energy sources as a means to escape the crisis.

The DEA methods have also been utilized to evaluate energy and environ-
mental efficiency. More scholars are dealing with multiple inputs and outputs at
the same time, trying to find the reasons for efficiency and inefficiency and arriving
at efficiency goals of input and output items. Energy performance is a complex
issue encompassing power plants, fuel energy, hybrid energy, transportation
energy, industrial energy consumption, d technology efficiency, etc. and may also
include the effects of unintended output pollutants such as CO2, etc. and the
relationships of carbon dioxide (CO2) emissions between areas and countries. The
inputs and outputs of the above literature are more focused on the same period, but
input items of labor, capital, energy consumption, etc. and output items of GDP,
carbon dioxide emissions, etc. may arise across multiple periods when one is
evaluating energy environmental efficiency. This study considers multi-period
production processes and the effect of meta-frontier problems in different regions,
uses the meta-frontier dynamic DEA approach to evaluate energy environment
efficiency, and observes the impact of environmental and energy efficiency over
time.

3 Research Method

3.1 DEA Model

The DEA approach is based on the Pareto optimal solution concept using linear
programming techniques to evaluate the relative efficiency of a DMU. DEA is an
effective evaluating efficiency method to make decisions as to the priority of
strategies in a multi-oriented environment. To use it, one has to establish an effi-
ciency index. The efficiency index is formed by the linear programming method
with the input and output variables of each DMU efficiency meta-frontier,
depending on the frontier-shift between each DMU to determine the relative effi-
ciency of individual DMUs. This concept began with the DEA model of Farrell
(1957) and developed into the CCR model of Charnes et al. (1978), with Banker
et al. (1984) extending it to the BCC model. However, the CCR and BCC methods
mainly focus on the input and output items of the same periods, whereas energy
environmental efficiency usually runs across multiple periods.
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3.2 Dynamic DEA

The Dynamic DEA (D-DEA) method was started by Klopp (1985), who proposed a
window analysis of the D-DEA approach. Färe et al. (1994) followed and proposed
the Malmquist index (MPI), but neither analyzed the interaction effect for two
carry-over periods. In order to deal with the issue of efficiency for multiple
carry-over periods, Färe and Grosskopf (1996) proposed to put the effect of internal
linkages into D-DEA. Studies that ensued include Bogetoft et al. (2008), Chen
(2009), Kao (2014), Nemoto and Goto (1999, 2003), Park and Park (2009),
Sueyoshhi and Sekitani (2005), Chang et al. (2009), etc.

Tone and Tsutsui (2010) extended the model to the Slack-Based Measures
(SBM) D-DEA model. Tone and Tsutsui (2014) next proposed the weighted SBM
D-DEA model. They used carry-over as the dynamic period link and classified as
desirable (good), undesirable (bad), discretionary (free), non-discretionary (fixed),
etc. The D-DEA model is divided into input-oriented, output-oriented, and
non-oriented types.

We assess the overall efficiency (OE) and term efficiency (TE) with the
non-oriented SBM D-DEA approach in this study. Each period has independent
input and output in every DMU, and there is a carry-over link from period t to t + 1
so as to find the change across two periods. Figure shows the structure of DN-DEA
in this study.

This model sets up n DMUs (j = 1, 2,…, n) over T periods (t = 1, 2,…, T). The
DMUs have multiple different and independent inputs and outputs in each term,
with the z good as a carry-over from period t to period t + 1 herein. The carry-over
is guaranteed by Eq. (1):

Xn

j¼1

zaijtk
t
j ¼

Xn

j¼1

zaijtk
tþ 1
j 8; t ¼ 1; . . .; T � 1ð Þ ð1Þ

Here, the symbol a shows good (bad, free, fix, etc.), the non-oriented overall
efficiency (d*) is calculated by Eq. (2), and xt and xi are weights to term t and the
input.
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The non-oriented term efficiency (q*) follows as Eq. (3) (Fig. 1).
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3.3 Meta-Frontier DN-DEA

Ruttan et al. (1978) defined the meta-frontier as a development curve of all groups,
allowing different groups to measure efficiency across a common basis. Battese and
Rao (2002) and Battese et al. (2004) proposed that the technical efficiency (TEE) of
different groups can be compared with each other through a meta-frontier model.
Thanassoulis and Portela (2008) presented the concept of convex meta-frontier and
found that groups using advanced technology to produce a product, even under the
exchange of technology, will do so due to enhanced technology, leading to more
outward expansion and improved business performance during a time period.
O’Donnell et al. (2008) set up a meta-frontier model that can accurately calculate
the group and meta-frontier technical efficiencies. However, the traditional DEA
usually assumes that all producers have the same level of technology, but the
assessed DMUs are often in different geographical locations, national policies,
socio-economic conditions, etc., which cause different technology levels. Therefore,
based on the Tone and Tsutsui (2010) SBM DN-DEA, O’Donnell et al. (2008)
meta-frontier model, and the weighted SBM Meta-frontier D-DEA (MFD-DEA)
model, we set up the model as follows.

3.3.1 Meta-Frontier (MF)

Under different factors of management type, resources, regulation, environment
etc., we assume all units (N) are composed of DMUs in g groups
(N = N1 + N2 + ��� + NG); xij and yrj indicate input item i (i = 1, 2,…, m) of item j
(j = 1, 2, …, N) and output item r (r = 1, 2, …, s) of item j (j = 1, 2, …, N) under
the meta-frontier; the k of DMU can choose the most favorable final output weight,
so that it get the maximum efficiency value; and the meta-frontier k of DMU
efficiency can be solved by the following linear programming (LP):

term
t 

term
t+1

Input
t

Input
t+1 

Carry-over
t 

Output 
t

Output
t+1 

Carry-over
t+1

Fig. 1 The structure of dynamic DEA (Tone and Tsutsui 2010)

230 C. Lu et al.



Min: q�

s:t:
XG

g¼1

Xn

@¼1

Zijtgk
t
jg ¼

XG

g¼1

Xn

@¼1

Zijtgk
tþ 1
jg vijt ¼ 1 i� 1ð Þ ð4Þ

ktjg � 0; S�it � 0; Sþ
it � 0; Sgoodit � 0

Xiot ¼
XG

g¼1

Xn

@¼1

Xijtgk
t
jg þ Sit i ¼ 1 � � �m; t ¼ 1 � � � ið Þ

Yiot ¼
XG

g¼1

Xn

@¼1

Yijtgk
t
jg � Stit i ¼ 1 � � � s; t ¼ 1 � � � ið Þ

Zgood
iot ¼

XG

g¼1

Xn

@¼1

Zgood
ijtg ktjg � Stit i ¼ 1 � � � ngood; t ¼ 1 � � � ið Þ

XG

g¼1

Xn

@¼1

ktjg ¼ 1 t ¼ 1 � � � ið Þ

ð5Þ

Using Eqs. (3), (4), and (5), we can find the overall technical efficiency (MFOE)
value of all DMUs under the meta-frontier.

3.3.2 Group-Frontier (GF)

We divide all DMUs into g groups. Each DMU under the group frontier chooses the
most favorable final output weighted, so that the efficiency of the DMUs under the
group frontier can be solved by the following equation:
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Xn

j¼1

ktj ¼ 1ðt ¼ 1; . . .; TÞ

ktj � 0; s�it � 0; sþit � 0; sgoodit � 0

ð9Þ

3.3.3 Technology Gap Ratio (TGR)

Since the meta-frontier contains the group frontier of g groups, the technical effi-
ciency of the meta-frontier (MFE) will be less than the technical efficiency of the
group frontier (GFE). The ratio value, called the technical efficiency gap ratio (or
technology gap ratio, TGR), is shown as:

TGR ¼ q�

q�go
¼ MFE

GFE
ð10Þ

4 Empirical Result and Discussion

This study focuses on the performance of using new energy in OECD countries. At
present, there are 7 major industrial countries and EU members among the 34
OECD member countries. We consider the integrity of using energy data and thus
use data for the period 2008–2012 to assess the energy environment performances
of OECD members. In this study we use the SBM MFD-DEA model to evaluate the
energy environment performances of 34 OECD member countries over 2008–2012.
The input variables are gross capital (GC), manpower (MP), renewable energy,
other energy usage costs (RE), etc.; the output variable is the non-intended output of
carbon dioxide emissions (CO2). Because CO2 is a non-intended output, we have to
use the translation method with the CO2 output data to a negative value, add a
constant so that the maximum negative value becomes 1, and let the data be
adjusted, with the GDP as a carry-over across periods. Because the regional
geography and environmental conditions of countries are different, when coupled
with GC, MP, RE, etc., the input items, the CO2 output item, and GDP carry-over
variables in the SBM MFD-DEA model can be observed under different energy
environment efficiency values. Table 1 lists the variables’ definition of inputs,
output, and carry-over.

Table 2. shows the descriptive statistics of input and output variable data results
and as follows: (A) MP: The average value is 29,058,000 people from 2008 to
2012. The U.S. had the most people employed in 2012 at 159,330,000; on the other
hand, IS had the least people employed in 2011 at 186,000. The standard deviation
value is 29,058,000 people. (B) GC: The average value is 280.826 billion USD in
2008–2012. The U.S. had the maximum value in 2012 at 3.126 trillion USD, while
IS had minimum value in 2010 of 1.837 billion USD. The standard deviation value
is 514,216 billion USD. (C) RE: The average value is 50,024 kW in 2006–2013.
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The U.S. had a maximum value in 2011 of 470,793 kW, while IL had a minimum
value in 2008 of 25 kW. The standard deviation value is 91,524. (D) CO2: The
average value of each year increased 5918 million tons; the maximum value was for
the U.S. at 6333 million tons in 2008, while the minimum value was 1 million tons.
The standard deviation value is 1024 million tons.

We find that the average value of labor (MP) for the 34 OECD member countries
changed little within the range 17,513,000–17,811,000 people in 2008–2012, but the
GC values significantly increased from 242.672 to 303.243 billion USD in 2009–
2012. RE also significantly increased from 47,228 to 54,096 kW in 2008–2011, and
GDP significantly grew from 1,224 to 1,378 billion USD in 2009–2011. This shows
there was significant performance from using capital investment and using renew-
able energy to enhance GDP over these years. However, the performance of
reducing CO2 emissions was not significant (5,903 to 5,931). This is an important
issue that all OECD members must face together to solve the problem (Table 3).

This study uses the SBM MFD-DEA method to evaluate the energy environ-
mental efficiency of 34 OECD countries for the period 2008–2012. Table 4 shows
the results. It showed polarization distribution in meta-frontier overall efficiency
(MFOE) of energy environmental efficiency, the effective countries had GB, NL,
BE, LU, IE, IS and EE (efficiency value is 1) etc. KR, FI, TK, AU, CA, ES, PL, SI,
NZ, PT, CZ, SK, MX, and CL have smaller MFOE values than the average value
(0.792), meaning their energy environmental efficiency needs improvement. The

Table 1 Variables’ definition in this study

Variable Unit Definition

Inputs MP Thousand
people

The number of indirect or direct manpower required
for energy production

GC Million
USD

The funds, equipment, and related costs that must be
invested in energy production

RE kW Energy producers use energy from nature, such as solar,
wind, hydrogen, etc.

Outputs CO2 Million
Ton

The amount of carbon dioxide (CO2) emissions from the
production of energy

Carry-over GDP Million
USD

The total value of all final goods and services produced by
the use of factors of production over a period

Source Authors’ arrangement

Table 2 Descriptive statistics of input and output variables

Variable Standard deviation Average Maximum Minimum

Input variables MP 29,058 17,643 159,330 186

GC 514,216 280,826 3,126,140 1837

RE 91,524 50,024 470,793 25

Output variable CO2 1024 5918 6333 1

Data source Authors’ collection
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value of meta-frontier efficiency (MFE) is below the average value of all members
of OECD for ES, CA, MX, PL, AU, FI, PL, CZ, NZ, SK, and SI, indicating these
countries need specific energy strategies to improve energy environmental effi-
ciency. The MFE values of AT and GR are lower than the average value in 2008–
2009, but above the average value in 2010–2012, showing that they attach
importance to the issues of energy use and the environment.

We want to understand the impact of geographical location conditions on energy
efficiency, and so we divide the full sample into North Western Europe (NWE),
South Eastern Europe (SEE), the Americas, and others. NWE contains GB, NL,
BE, IE, LU, IS, FR, CH, NO, DE, DK, SE, FI, and AT. SEE contains EE, IT, GR,
HU, TK, ES, PL, SI, PT, CZ, and SK. The Americas contains US, CA, MX, and
CL. The others contain JP, KR, IL, NZ, and AU. We shall compare the differences
in meta-frontier efficiency (MFE), group frontier efficiency (GFE), and technology
gap ratio (TGR) variables among the 3 groups of NEW, SEE, and Americas.

Table 5 shows the MFE, GFE, and TGR values of the 14 countries in new,
Table 6 shows them for SEE, and Table 7 shows them for the Americas. We see
that the average value of MFE is 0.8525 in the NWE group, which is larger than the
Americas (0.5968) and SEE (0.4491) groups over 2008–2012. It indicates that
NWE countries develop their economies at the same time that their implementation
of environmental protection efforts are more efficient.

The average value of GFE is 0.9764 in the SWE group, which is larger than that
for the Americas (0.6171) and SEE (0.7578) groups over 2008–2012. The average
value of TGR is 0.9753 in the SWE group, which is larger than that for the
Americas (0.9739) and SEE (0.9046) groups over 2008–2012. We also find that
TGR has the lowest value of 0.6963 by AT in 2009; this value is lower than 0.9 that
it was contained SE (2008, 2011 and 2012) and AT (2008 and 2009) etc., and the
TGR value of many countries close or equal to 1. This indicates that these coun-
tries’ energy environmental efficiency is relatively more stable than that of the
Americas and SEE. TGR has the lowest value of 0.4108 for TK (2011) in the period
2008–2012 for the SEE group; this value was less than 0.9 that it was contained GR
(2008, 2009), TK (2008, 2011, 2012), PL (2008–2012), SI (2008–2012) and CZ
(2008, 2009, 2012). It shows that energy environment efficiency performance needs
to improve in the SEE group. The TGR value is larger than 0.9 in all countries of
the Americas in 2008–2012, meaning that energy environmental efficiency is
greatly influenced by geographical location.

Table 3 The AVE values of
input, output, and carry-over
variables for 2008–2012

Year Variables

GC MP RE CO2 GDP

2008 301,281 17,513 47,228 5903 1,307,460

2009 242,672 17,595 48,143 5931 1,223,556

2010 265,053 17,733 50,543 5916 1,283,517

2011 291,879 17,811 54,096 5922 1,378,142

2012 303,243 17,560 50,540 5920 1,352,293

Data source Authors’ collection
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Table 4 Energy environmental efficiency of OECD countries over 2008–2012

DMU Overall
efficiency

Rank Term efficiency

2008 2009 2010 2011 2012

US 0.9319 16 0.7344 0.9993 0.9985 0.9992 0.9999

JP 0.9998 12 0.9994 0.9999 0.9999 0.9999 0.9999

DE 0.9499 14 0.9993 0.9994 0.946 0.8278 0.9776

DK 0.9999 8 0.9999 0.9999 0.9999 0.9997 0.9998

GB 1 1 1 1 1 1 1

IT 0.946 15 0.955 0.9979 0.9994 0.8559 0.9223

ES 0.5738 26 0.5541 0.5667 0.5971 0.6032 0.5479

CA 0.6088 25 0.5765 0.5891 0.6216 0.6312 0.6258

MX 0.4235 33 0.4161 0.4283 0.4166 0.4411 0.4161

AT 0.8801 17 0.708 0.6962 1 1 1

KR 0.7642 21 0.6681 0.7045 0.7769 0.6906 0.9999

NL 1 1 0.9999 1 1 1 1

TK 0.6619 23 0.4474 1 1 0.4108 0.47

PL 0.5692 27 0.5775 0.5868 0.5346 0.5694 0.578

FR 0.9999 8 0.9999 0.9999 0.9999 0.9999 0.9999

BE 1 1 1 1 1 0.9999 1

SE 0.8236 19 0.7118 0.9857 0.9749 0.7263 0.7192

CH 0.9999 8 0.9999 0.9999 0.9999 0.9999 0.9999

AU 0.6464 24 0.6413 0.6347 0.6327 0.6532 0.6705

NO 0.9999 8 0.9999 0.9999 0.9999 0.9999 0.9999

GR 0.8523 18 0.6038 0.661 1 1 1

FI 0.6631 22 0.6382 0.6706 0.6799 0.6858 0.641

IE 1 1 0.9999 1 1 0.9999 1

PT 0.488 30 0.4855 0.4839 0.4693 0.5257 0.4747

CZ 0.4391 31 0.4198 0.4367 0.4398 0.4742 0.4207

IL 0.9779 13 0.8898 1 1 1 1

CL 0.4084 34 0.4024 0.4169 0.4082 0.4174 0.3982

HU 0.7941 20 0.5106 0.9841 0.7459 0.807 0.9228

NZ 0.5338 29 0.4981 0.5085 0.5469 0.5695 0.5482

SK 0.437 32 0.4181 0.4497 0.4452 0.4465 0.4255

LU 1 1 1 1 1 1 1

SI 0.5547 28 0.3791 0.395 0.7587 0.6061 0.6281

IS 1 1 1 1 1 1 1

EE 1 1 1 1 1 1 1

Average 0.792 NA 0.7422 0.7998 0.8233 0.7924 0.8055

Maximum 1 NA 1 1 1 1 1

Minimum 0.4084 NA 0.3791 0.395 0.4082 0.4108 0.3982

Standard
dev.

0.2181 NA 0.2397 0.2376 0.2252 0.2228 0.2357

Source Authors’ collection
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We also study the effects of energy environmental efficiency in order to focus on
the issue of using RE and find that the average MFE value of 0.8921 for the top 10
countries is larger than the 0.6334 of the bottom 10 countries over the period 2008–
2012. The results are in Tables 8 and 9. The MFOE value is the lowest in CA
(0.6088) and the largest in NO, FR, and CH (0.9999). The average value is 0.8906
in the top 10 countries when using RE. The MFOE value is the lowest in CL
(0.4084) and the largest in IL (0.9779); the average value is 0.6331 in the bottom 10
countries when using RE. These results indicate that energy and environmental
efficiency has a direct impact on using RE; therefore, the governments of all
countries in OECD should formulate better policies to encourage using RE.

We use the Wilcoxon test method to understand the effect of energy environ-
mental efficiency with the geography differences among the NWE, SEE, and
Americas groups of OECD, with the results shown in Table 10. We find that the

Table 8 The MFE values of the top 10 countries using RE

Country 2008 2009 2010 2011 2012 MFOE

CA 0.5765 0.5891 0.6216 0.6312 0.6258 0.6088

US 0.7344 0.9993 0.9985 0.9992 0.9999 0.9319

NO 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

JP 0.9994 0.9999 0.9999 0.9999 0.9999 0.9998

FR 0.9999 0.9999 0.9999 0.9997 0.9998 0.9999

DE 0.9993 0.9994 0.946 0.8278 0.9776 0.9499

SE 0.7118 0.9857 0.9749 0.7263 0.7192 0.8236

CH 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

IT 0.955 0.9979 0.9994 0.8559 0.9223 0.946

AT 0.6413 0.6347 0.6327 0.6532 0.6705 0.6464

average 0.8617 0.9206 0.9173 0.8693 0.8915 0.8906

Source Authors’ collection

Table 9 The MFE of the bottom 10 countries using RE

Country 2008 2009 2010 2011 2012 MFOE

SI 0.3791 0.395 0.7587 0.6061 0.6281 0.5547

CL 0.4024 0.4169 0.4082 0.4174 0.3982 0.4084

PL 0.5775 0.5868 0.5346 0.5694 0.578 0.5692

CZ 0.4198 0.4367 0.4398 0.4742 0.4207 0.4391

NZ 0.4981 0.5085 0.5469 0.5695 0.5482 0.5338

GR 0.6038 0.661 1 1 1 0.8523

KR 0.6681 0.7045 0.7769 0.6906 0.9999 0.7642

HU 0.5106 0.9841 0.7459 0.807 0.9228 0.7941

SK 0.4181 0.4497 0.4452 0.4465 0.4255 0.437

IL 0.8898 1 1 1 1 0.9779

Average 0.5367 0.6143 0.6656 0.6581 0.6921 0.6331

Source Authors’ collection

11 Evaluating Performance of New Energy—Evidence from OECD 239



Table 10 The Wilcoxon test on AVE of TGR

Test variable Classification MFE AVE of TGR Wilcoxon Test (p value)

Using RE Top 10 0.8906 0.0124*

After 10 0.6331

Group NWE 0.9753 0.0084**

SEE 0.8460

NWE 0.9753 0.6793

Americas 0.9739

SEE 0.8460 0.0425*

Americas 0.9739

*p < 0.05, **p < 0.01, ***p < 0.001
Source Authors’ collection

average value of TGR exhibits significant differences in NWE and SEE
(p = 0.0084**), and there are significant differences in each year from 2008 to
2012, where the p value is respectively 0.0014**, 0.0014**, 0.0014**, 0.0066**,
and 0.0291*. The average value of TGR is not significantly different within NEW
and Americas (p = 0.6793), and there are no significant differences in each year
from 2008 to 2012. The average value of TGR is significantly different within SEE
and Americas (P = 0.0425*), and there are significant differences in 2008 and 2010,
where the p value is respectively 0.0405*and 0.0419*; the other years do not
present any significant correlation. Therefore, energy environmental efficiency is
greatly influenced by geographical factors, and each country must develop relevant
strategies based on specific environmental conditions to improve energy environ-
mental efficiency. Energy environmental efficiency is significantly correlated within
before and last 10 of using RE, where the p value is 0.0124*.

From the empirical results of this study, we find that equipment investment and
output costs are much higher than traditional energy to develop new energy. The
costs of the SEE group are due to historical factors in the past under the Soviet
Union, and because the growth of economies and technology is slower than those of
Western countries; thus, their use of energy efficiency is relatively backward.
Although EE and IT are also good in the performance of MFE in this group for the
period 2008–2012, the energy performance of other countries in this group is
relatively poor, such that MOFE is relatively poor compared with other groups.
The MOFE values of NWE and the Americas are significantly better than SEE,
because of their strong economic and technological conditions. While the Americas
area is a region of large energy consumption, this situation is also shown in its TGR
value being higher than the other groups, which is close to 1.

5 Conclusions

We employ the MFD-DEA approach herein to explore the performance of energy
environmental efficiency in 34 countries of OECD for the period 2008–2012.
Because the demands of energy are sustained and increase with economic
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development, we hope the results of the study can provide a reference for these
countries to develop an energy environmental policy in the future, to use the
concepts of minimum inputs and maximum outputs under limited resources, and to
understand the important issues of greenhouse gas emissions and climate change.
We divide the sample into three groups from 2008 to 2012, made up of NWE, SEE,
and Americas. The MFE, GFE and TGR values are calculated to understand the
different energy environmental efficiency changes with geographical environmental
conditions, and the Wilcoxon test method helps verify the differences among the
groups in this study.

We find that the efficiency values of GB, NL, BE, LU, IE, IS, and EE are 1 in
2008–2012. KR, FI, TK, AU, CA, ES, PL, SI, NZ, PT, CZ, SK, MX, and CL have
smaller MFOE values than the average value (0.792), showing that their energy
environmental efficiency needs improvement. ES, CA, MX, PL, AU, FI, PL, CZ,
NZ, SK, and SI need specific energy strategies to improve energy environmental
efficiency, because their MFE is below the average value. The average value of
MFE of the NWE group is larger than those of the Americas and SEE groups in
2008–2012, indicating that NWE countries developed their economies at the same
time as they implemented environmental protection efforts that are more efficient.

The TGR values of many countries in the NWE group are close or equal to 1,
meaning that these countries’ energy environmental efficiency is relatively more
stable than the Americas and SEE. The TGR value is larger than 0.9 for all
countries of the Americas in 2008–2012, showing that energy environmental effi-
ciency is greatly influenced by geographical location. Energy environmental effi-
ciency has a direct impact on using RE, and therefore governments of all countries
in OECD should formulate better policies to encourage using RE. The average
value of TGR shows significant differences in NWE and SEE, and there are sig-
nificant differences in each year from 2008 to 2012 with the Wilcoxon test method.
The average value of TGR has no significant difference within NEW and the
Americas. The average value of TGR has a significant difference within SEE and
the Americas, and there are significant differences in 2008 and 2010; other years do
not show any significant correlation. Energy environmental efficiency is greatly
influenced by geographical factors, and each country must develop relevant
strategies based on its own specific environmental conditions to improve energy
environmental efficiency. From the management strategy point of view, each
country should develop energy strategies based on differences in geographical and
environmental conditions, like economic, culture, technology, environment,
nationality etc., in order to increase energy environmental efficiency by improving
energy technology and thus encourage using RE.
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Part III
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Chapter 12
Factor Price Distortion, Technological
Innovation Pattern and the Biased
Technological Progress of Industry
in China: An Empirical Analysis Based
on Mediating Effect Model

Xuejie Bai and Shuang Li

1 Introduction

Structural contradictions, including the imbalance between supply and demand as
well as the mismatch of production factors, occur during China’s current economic
development. In order to mitigate these problems, Chinese government imple-
mented a “Supply-side Structural Reform” strategy, and unlike the previous reform
strategies, the supply-side structural reform stresses the decisive role of market in
resources allocation and the function of technological innovation to optimize factor
allocation. In the economic field, the factor price distortion is common due to the
imperfect market mechanism. Factor price does not always equal to the marginal
output: in terms of labor price, the economic blue book “Analysis on the Prospect of
China’s Economy (2014)” states that China’s per capita GDP has increased by 31.1
times from 1985 to 2012, while the average wage of workers has increased by only
25.85 times, which is far behind the growth rate of per capita GDP. The proportion
of laborers’ remuneration in GDP continues to decline. In terms of capital price, in
order to support the development of capital-intensive industries, the government has
adopted financial restraint policies on long term basis to reduce capital price, so as
to lower the capital threshold for enterprises1 (Chen and Lin 2012), which is against
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China’s comparative advantages. Changes in the relative prices of factors will in
turn affect the innovation factor allocation of enterprises at micro-level, demon-
strating the non-neutral characteristics of technological progress. Meanwhile,
China’s current technological innovation pattern is steered to technology intro-
duction seriously. With the deepening of economic development, this pattern,
which was vitally important to China’s technological progress, is suffering from
bottleneck effect. Therefore, China’s supply-side structural reform is confronted
with two challenges, namely, the defective factor price mechanism and the par-
ticularly technology-introduction-biased technological innovation pattern. In the
following parts, this paper will study the effects of factor price distortion and
technological innovation pattern on the biases of technological progress in China’s
industry, and the mediating role of technological innovation pattern under this
influencing mechanism, so as to find a more reasonable direction and path of
technological progress for Chinese industries.

2 Literature Review

Biased technological progress is one of the prevailing economic phenomena in any
countries and is considered to be one of the causes of wage disparities (Zhang et al.
2012). As early as the 1930s, Hicks (1932) discovered the non-neutral characteristics
of technological progress, pointing out that “the change in the relative price of a
factor is the driving force behind the technological invention and it promotes the
specific technological invention”. David and Klundert (1965) firstly used Constant
Elasticity of Substitution (CES) production function to predict the direction of
technological progress in America between 1899 and 1960, and the results showed
that technological progress was generally biased towards capital. Acemoglu (2002)
applied technological progress to any factor. If the technological progress is more
conducive to improving the marginal output of factor “S”, then it is called the
“S-biased technology progress”. In recent years, scholars have been successively
using standardized systems approach (Klump et al. 2007, 2008), TFP index
decomposition method (Barros and Weber 2009) and other new methods to estimate
the technological progress bias in the United States, Japan, Europe and other
developed countries and regions. The technological progresses in these places were
found to be biased towards capital. Cruz (2015) analyzed the implications of this
non-constant sectoral biased technical change for structural change and developed a
multi-sectoral growth model where TFP growth rates across sectors are non-constant.
Khaled (2017) used both additional theoretical information and appropriate statistical
techniques to alleviate problems of estimation and inference with small samples. In
china, Dai and Xu (2010), Deng (2014), Chen and Wang (2015) et al. measured and
analyzed the provincial technological progress bias of industries and that of industries
within manufacturing sector in China with standardized system method; Wang and
Hu (2015), Wang and Qi (2015) studied the technological progress bias in Chinese
industries with TFP index decomposition method. In conclusion, the researches of
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overseas scholars are mostly limited to the technological progress bias in developed
countries, which is not in line with developing countries where factor prices are more
distorted and the market mechanism is less mature. Chinese scholars have measured
the technological progress bias in China empirically, but they lack relevant theoretical
analysis. As pointed out by Hicks, changes in relative factor price are the driving
force of technological progress. It is prevalent that it is difficult for factor prices to
accurately reflect the number of factor endowments that have been distorted and their
distortion degree; therefore, though there is certain connection between factor price
distortion and technological progress bias, this connection is rarely established by
past studies.

In the past, researches on factor price distortion were limited to the estimation of
distortion degrees and the effects of distortions on R&D expenditure, export
behavior and so on. When measuring and calculating the degree of factor distortion,
Zhang et al. (2011), Yang et al. (2015) estimated the degrees of distortions of
provincial factor prices indirectly in China based on the “China Marketization
Process Index Report”, Shi and Xian (2012), Li and Ji (2014), Huang and Zhang
(2014) and others used CD production functions to measure the factor price dis-
tortions in different provinces (or the industries). When studying the effects of factor
price distortion on R&D expenditure of enterprises, Zhang et al. (2011), Huang and
Zhang (2014), Zheng and Liu (2013) have come to the conclusion that factor price
distortion will inhibit the independent innovation of enterprises; and factor price
distortion is often inversely related to R&D expenditure of enterprises. These
researches indicate that factor price distortion will further affect the technological
innovation pattern of a country, and the technological innovation pattern may be the
way through which factor price distortion affects technological progress bias. Based
on the perspective of industry factor intensity, this paper aims to explore the exact
intrinsic links among the factor price distortion, technological innovation pattern
and technological progress bias of subdivision industries in China. This paper
provides the objective fact-based reasons for optimizing the direction of China’s
industrial technological progress. The definition of technological innovation pattern
refers to the proportion of technology introduction to its independent research in a
country’s technological innovation system. Former scholars’ researches mainly
focused on the comparison of the effects of technology introduction and indepen-
dent research on technological progress and economic development. According to
Lin et al. (1999), Lin and Zhang (2006), Lin and Su (2012), the new structural
economists believe that technology introduction has cost advantage over indepen-
dent research; therefore, it is possible for developing countries, who are usually
short of funds, to catch up by increasing technology introduction to make the most
of the “backward advantage”. On the other hand, researchers like Cooper (1994),
Kim and Inkpen (2005) claim that most of the technologies are extremely sensitive
to the environment. Only by possessing the appropriate attracting capability and
increasing the resource investment in both materials and personnel can the enter-
prises in developing countries realize the value of these advanced technologies.
Yang (2004) points out that, developing countries can introduce technology, but
cannot easily imitate the advanced institutions of developed countries.
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Disconnection between technology and institution tends to undermine the long-term
economic development and create the so-called “backward disadvantage”. Thus, it
can be seen that, there is no consensus about technological innovation pattern
choices in academic society, and different technological innovation pattern can lead
to extremely diversified allocation results of different factor resources. In this way,
the technological innovation pattern will affect its technological progress direction
through factor resources allocation. This paper will explore these effects with
mediating effect model.

To sum up, it has become a consensus among scholars that during the current
stage of China’s industrial development, technological progress is biased towards
capital. However, previous scholars have only used provincial data to study the
degree to what extent Chinese industry factor prices are distorted and technological
progresses are biased, but barely studied the differences between factor price dis-
tortions and technological progress biases in different industries and their relevant
reasons. More importantly, factor price distortion, an institutional derivative during
China’s economic transition period, has profound impacts on many economic
issues in contemporary China, and technological progress bias is one of them.
However, previous researches often split these two elements, possibly resulting
from the failure to establish an effective transmission mechanism between them.
Based on the analysis made earlier in this paper, technological innovation pattern
may be an important mediator variable between the two. Therefore, these are the
major advances achieved by this paper: (1) Use the standardized system method and
the production function method to calculate the degrees of technological progress
biases and factor distortions of different sectors in China’s industries. (2) Use the
mediating effect model to estimate the direct effects of factor price distortion on
China’s industrial technological progress bias and the effects of technological
innovation pattern. The latter is an important innovative indicator and works as a
mediator between the two. (3) Establish the complete relation system between
factor price distortion and technological progress bias, so as to provide an objective
reference for optimizing the direction of China’s industrial technology progress and
realizing the development of mode transformation.

3 Mechanism Analysis of How Factor Price Distortion
Affects Industrial Technological Progress Direction

The effects of factor price distortion on China’s industrial technological progress
bias are realized through both direct and indirect ways. Specifically, the direct effect
mechanism means that the relative distortion degrees of capital and labor prices
determine the bias of technological progress. And the indirect effect mechanism of
factor price distortion on technological progress bias means that factor price dis-
tortion could influence the technological progress bias through the technological
innovation pattern.
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3.1 Direct Effect Mechanism of Factor Price Distortion
on Technological Progress Bias

3.1.1 Relative Distortion Degrees of Capital and Labor Prices
Determine the Bias of Technological Progress

When the capital and labor prices are negatively distorted, and if the degree of
distortion in capital price is higher than that of labor price, enterprises can replace
the labor force with capital to improve profit margins in their production processes.
Manufacturers who pursue maximized profit are bound to choose the capital biased
technology, and vice versa. When the capital and labor price are simultaneously
positively distorted, and if the degree of distortion in capital price is higher than that
of labor price, enterprises can replace the capital with labor force to improve profit
margins in their production processes. The manufacturers who pursue maximized
profit are bound to choose the labor force biased technology, and vice versa; when
the capital price is negatively distorted and the labor price is positively distorted,
enterprises will naturally choose the capital biased technological progress, and vice
versa. We can see that because the enterprises are the main bodies of factors
allocation choices, the direct effects of factor price distortion on technological
progress bias are still the choices of enterprises, which are made on the basis of the
price level after factor distortion so as to make the most of advantages and avoid
disadvantages. Since it is the ideal state that the prices of production factors fully
reflect the levels of supply and demand and the marginal output capacity, it is
inevitable to have technological progress biases.

3.1.2 Industrial Difference of Factor Price Distortion—Based
on the Law of Diminishing Factor Marginal Returns

If all industries are divided into capital-intensive ones and labor-intensive ones on
the basis of their factor intensities, and the law of diminishing factor marginal
returns suggests that the capital-intensive industries tend to have higher capital
intensity (or abundance) than labor-intensive industries; therefore, their marginal
capital output is usually lower than that of labor-intensive industries, and their
marginal labor output is usually higher than that of labor-intensive industries. Then,
when the capital price is negatively distorted, the lower marginal capital output
makes the gap between capital price and marginal output in capital-intensive
industries smaller than that of labor-intensive industries, and thus the capital price
in capital-intensive industries less negatively distorted than that of labor-intensive
industries; when labor prices are negatively distorted, higher marginal labor output
leads to a greater degree of distortion in the labor price of capital-intensive
industries than that of labor-intensive industries. Similarly, when capital prices are
positively distorted, the capital price surpasses marginal output is much greater than
that of labor-intensive industries, and thus leads to higher degree of positive
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distortion in capital price of capital-intensive industries than that of labor-intensive
industries; When labor prices are positively distorted, higher marginal labor output
makes the labor prices of capital-intensive industries less positively distorted than
that of labor-intensive industries. As to whether the industry’s technological pro-
gress is generally biased towards capital or labor, the determinative factors are the
type and relative size of factor price distortions in capital-intensive industries and
labor-intensive industries.

3.2 Indirect Effect Mechanism of Factor Price Distortion
on Technological Progress Bias

3.2.1 The More Factor Price Is Distorted, the More Technological
Innovation Pattern Is Biased Towards Technology Introduction

The indirect effects of factor price distortion on technological progress bias mainly
work through the technological innovation pattern. Here we define technological
innovation pattern as the proportional relationship between independent R&D and
technology introduction. When factor prices are negatively distorted, enterprises—
the main bodies at the micro-level that pursue profit maximization—will use cheap
capital and unskilled labor factors to compensate for the lack of technology with
low-cost advantage, or introduce materialized progress pattern which uses capital
intensively, that is, introduce advanced foreign machinery and production equip-
ment; however, these measures will make the enterprises lose the impetus of
independent research and development. Industries with highly distorted factors are
more likely to have low initiatives to undertake independent research and devel-
opment within the enterprises. Secondly, the underestimation of labor price will
directly lower the average living standards of social residents and inhibit average
families’ demands for developing education of future generations, which are not
conducive to the demands for high-tech commodities, nor the cultivation of human
capital and scientific and technological innovation ability. In the long term, these
consequences go against the R&D enthusiasm of enterprises and slow the supply of
high-tech talents. Therefore, negative distortion of both capital price and labor price
can lead to the preference for the pattern of technology introduction. In addition,
although both independent R&D and technology introduction require a lot of
capital investment, compared to the high risk of independent R&D and the “in-
novation rent” of possible research findings, the costs and benefits of technology
introduction are more certain. In China where the protection system for intellectual
property is not perfect and the risk for independent research and development is
extremely high, enterprises are more willing to introduce mature technologies from
other countries rather than enhance the production efficiency by doing independent
research and development. Relevant data show that, since reform and opening up,
China’s foreign technology dependence has been maintaining at a rate greater than
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50%. Although the percentage has declined in recent years, it is still far higher than
the average level of developed countries (10% or less). On the other hand, when
there is a positive distortion in factor prices, market prices of capital and labor are
both expensive, which will encourage enterprises to take the initiative to use
advanced technology to maximize the use of capital and labor, and to improve labor
productivity. However, the scarcity of capital may increase the shortage of funds
when enterprises import foreign technologies, forcing them to make great efforts to
carry out independent R&D activities, which alleviates their dependence on foreign
technology objectively. At the same time, the positive distortions of labor price
mean the substantial improvement of wages, which contributes to the cultivation of
skilled labor force and thus increases the demand for high-tech products. In the long
run, it would help to enhance the enthusiasm and innovation level of independent
research and development.

3.2.2 When the Factor Price Is Distorted, the Higher the Proportion
of Technology Introduction, More Capital-Biased
the Technological Progress Is—Based on “Transnational
Technology Diffusion Theory”

According to the theory of transnational technology diffusion, the technological
progress direction of countries that import technologies will be deeply affected by
the technology exporting countries. A large number of empirical studies have
shown that the direction of technological progress in developed countries is gen-
erally biased towards capital, in which case developing countries introduce tech-
nologies in large-scale will inevitably have capital-biased technological progress
(Acemoglu and Zilibotti 2001; Gancia and Zilibotti 2009). It can be seen that when
there are negative distortions of both capital and labor prices, the greater the degree
of distortions, the higher the proportion of technology introduction, so that the
technological progress of the country that imports technology is affected by the
country that exports technology to a greater degree. This finally leads to more
obvious capital bias in the technological progress of the country that imports
technologies. That is the indirect transmission mechanism in which factor price
distortion affects technological progress bias. On the contrary, the positive distor-
tion of factor price will limit the ability of enterprises to purchase advanced tech-
nology and equipment, meanwhile enhance the enthusiasm of independent research
and development, thereby weaken the capital bias characteristic of technological
progress. In other words, the magnitude of indirect impacts of factor price distortion
on technological progress bias through technological innovation pattern is inversely
proportional to the actual price level.

12 Factor Price Distortion, Technological Innovation Pattern … 253



3.2.3 Differences Among Industries: The Indirect Effects of Factor
Price Distortion on Technological Progress Bias
on Capital-Intensive Industries Are Bigger Than
that of Labor-Intensive Industries

In terms of industry characteristics, the introduction of both advanced production
equipment and technical patents require significant financial support, and
labor-intensive industries are usually more financially limited than capital-intensive
industries. Therefore, this paper argues that, in terms of feasibility, capital-intensive
industries are more equipped with financial resources to import technology in large
scale. Therefore, they tend to adopt importing foreign technology as their techno-
logical innovation pattern. Thus, the indirect effects of factor price distortion on
technological progress bias may be more pronounced in capital-intensive industries.
In summary, the factor price distortion affects the technological progress bias of
Chinese industry in both direct and indirect ways, and the distortion of capital price
and the distortion of labor price have different effects on technological progress
bias. The magnitude of direct effects and indirect effects varies among industries
different in factor intensities.

4 Empirical Methods and Variable Description

The mechanism analysis in this paper will focus on the dual effect of factor price
distortion on technological progress bias. And, the empirical analysis part will use
the mediating effect model to test this dual effect.

4.1 Calculation Method of Industrial Technological
Progress Bias

In present academia, there are two major methods to measure technological pro-
gress bias: one is the “TFP index decomposition method” (Färe et al. 1997), which
further decomposes the pure technological progress in TFP into three parts: the
scale technological progress, input-biased technological progress and output-biased
technological progress, so as to determine the contribution rate of input factors to
technological progress. The advantage of this approach is that there is no need to set
a specific form for the production function; however, it is impossible to identify the
exact factor towards which the technological progress is biased and to what extend
it is biased. The other method is called the “standardized system method”, which
sets production function into standardized CES function, and calculates the tech-
nological progress bias index by combining the production function and the
demand function; however, systematic bias in each equation is inevitable. In order
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to overcome this shortcoming, Lu (2013) et al. have modified standardized system
method with mathematical derivation such as Taylor expansion, and considerably
reduced the risks of systematic bias. With this method this paper will estimate the
technological progress bias indexes in different industries. And the method works
like this.

Set the standardized CES production function as follows:

Yit ¼ a Ait � Kitð Þr�1
r þ 1� að Þ Bit � Litð Þr�1

r

h i r
r�1 ð1Þ

in which Yit, Kit, and Lit represent the industrial added value, capital stock and labor
force in industry i and during the period of t; Ait and Bit are capital efficiency and
labor efficiency respectively. It is assumed that factor-enhanced technological
progress is growing exponentially, and cKit; cLit are the growth rates of Ait and Bit,
then

Ait ¼ Yit
Kit

ritKit=Yit
/

� � r
r�1

¼ Ai0 � ecKit ¼ Yi0=Ki0 � ecKit ð2Þ

Bit ¼ Yit
Lit

1� ritKit=Yit
1� /

� � r
r�1

¼ Bi0 � ecLit ¼ Yi0=Li0 � ecLit ð3Þ

put (2), (3) into (1) to get the derivation and simplify it2, and change ratio of the
capital-labor output, which is equal to technological progress bias index,

Dit ¼ d MPKit=MPLitð Þ
dt

¼ r� 1
r

cKit
� cLit

� � ð4Þ

It can be seen that, in order to calculate Dit, it is necessary to calculate the factor
replacement elasticity r and growth rates of factor efficiency cKit

; cLit . When the
factor replacement elasticity is less than 1 and the growth rate of capital efficiency is
less than the growth rate of labor efficiency, the value of Dit is greater than 0. It
means that the direction of technological progress is capital-biased. And the greater
the value of Dit, the more obvious of the bias. And then we use Kmenta approxi-
mation method (León-Ledesma et al. 2010) to estimate the factor replacement
elasticity r. The basic principle of this method is to develop the CES production
function in Taylor expansion on the datum point (Yi0, Ki0, Li0), so as to obtain an
equation that can be directly measured:

2Due to limited space, the detailed derivation process has been omitted.
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Through the regression analysis of (5), we can get the estimated values of the
coefficient a, b, c, and solve the factor replacement efficiency cK ; cL; then use (2),
(3) and (4) to find the factor efficiency growth rate and technological progress bias
index of each industry in each year. Compared with similar researches, the
improvement in this paper mainly lies in considering the parameters in production
function as representing the relative importance of capital and labor in production
process. It varies with the factor intensities in different industries. The relative
importance of capital and labor will differ a lot in capital-intensive industries and
labor-intensive industries. Therefore, based on the generally estimated parameters,
this paper classifies all the industries into capital-intensive ones and labor-intensive
ones according to the level of per capita capital stock (industries whose per capita
capital is higher than the average has been classified as capital-intensive industries,
otherwise labor-intensive industries3). Furthermore, this paper will also measure the
parameters in capital-intensive industries and labor-intensive industries, so as to
accurately depict the technological progress bias indexes in different industries.

3Capital-intensive industries include (according to per capita capital in descending order): the
production and supply of electricity, steam hot and water; petroleum and natural gas exploitation;
petroleum refining and coking; coal gas production and supply; tap water production and supply;
chemical fiber manufacturing; tobacco processing industry; ferrous metal smelting and rolling
processing; non-ferrous metal smelting and rolling processing; chemical raw materials and
products manufacturing; food manufacturing; paper and paper products; beverage manufacturing;
ferrous metal mining; transportation equipment manufacturing; non-metallic mineral products;
non-ferrous metal mining industry; pharmaceutical manufacturing; labor-intensive industries
include (according to per capita capital in ascending order): leather, fur, down and relative
products; clothing and other fiber products manufacturing; cultural, educational and sporting goods
manufacturing; furniture manufacturing; instrument, meter, cultural and office machinery; wood
processing and bamboo, rattan, palm products; general equipment manufacturing industry; metal
products industry; electrical machinery and equipment manufacturing; special equipment manu-
facturing; plastic products industry; textile industry; food processing industry; rubber products
industry; electronic and communication equipment manufacturing; record media reproduction of
printing industry; non-metallic mining industry; coal mining industry.
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4.2 Calculation Method of Factor Price Distortion Degree

This paper draws on the practice of most scholars in the past, using the production
function method to measure the degree of factor price distortion. The basic idea is
that: as the factor price distortion degree refers to the extent to which the market
price of the factors deviates from their marginal output (i.e., the real price), it is
necessary to assume the specific form of production function and estimate its
coefficients to obtain the marginal output of the factors. And then this paper will
compare the real price with the marginal output of the factors. If the ratio is less
than 1, the real results of the factor is less than the due return of the factor, which
means the factor price is negatively distorted; conversely, if the factor price is
positively distorted, the closer the ratio is to 1, the lower the degree of distortion.
When choosing function form, this paper abandons the most commonly used CD
production function in previous studies, and uses the fixed substitution effect
(CES) production function for mainly two reasons. Firstly, in the process of esti-
mating the technological progress bias, this paper uses the CES production function
to deduce the standardized system of technological progress bias. In order to
maintain the consistency of the empirical methods, we choose to use CES function
to estimate the degree of distortion. Secondly, as the general form of the CD
production function,4 the CES production function is more in line with the eco-
nomic reality; therefore, the estimation is no less accurate than that of CD pro-
duction function.5

The specific steps are as follows: First, let the production function be

Y ¼ A aK
r�1
r þ 1� að ÞLr�1

r

h i r
r�1
, a be the output elasticity of the capital, and r be

the factor replacement elasticity between K and L. Take the partial derivatives of K
and L at two sides of the equation, and the marginal outputs of capital and labor are

MPK ¼ aY

aþ 1�að Þ L
Kð Þr�1

r

h i
K
; MPL ¼ 1�að ÞY

a K
Lð Þr�1

r þ 1�að Þ
h i

L
respectively. Then, use the

Kmenta approximation to estimate the CES production function6 and substitute the
estimation of a, r into the marginal output expression, so the marginal outputs of
capital and labor can be obtained. Finally, the marginal outputs values of the factor
are substituted into the expressions of factor price distortion distK ¼ r=MPK and
distL ¼ w=MPL, and we get the price distortion degrees of capital and labor, so
as to estimate the general distortion degrees in different industries
dist ¼ distKð Þa distLð Þ1�a. In order to examine the effects of factor intensity on

4It can be proved that, CD production function is the special form of CES production function
when q ! −∞ or q ! 0 and its factor replacement elasticity is kept at 1.
5In order to testify the robustness of estimated results derived by CES function, this paper adopts
CD production function to predict a, r simultaneously, and estimations derived from both pro-
duction functions have little difference.
6Due to space limitation, the specific steps of the Kmenta approximation are omitted. See above for
the derivation of technological progress bias, or refer to Wang et al. (2006).
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factor price distortion, the degrees of distortion of factor prices in capital-intensive
industries and labor-intensive industries are measured separately after estimating
the general industrial degree of factor price distortion.

4.3 Design of Regression Model—Mediating Effect Model

In the regression analysis process, if the relationship between the dependent variable
Y and the independent variable X meet the following requirements: X not only affects
the Y directly, but also affects Y indirectly through the mediator variable M, then it is
suitable to use the mediating effect model to estimate variable relationship. According
to the mechanism analysis which has been done previously, factor price distortion
affects the technological progress bias of Chinese industries through the dual
mechanism with both direct and indirect effects. Therefore, this paper constructs the
following mediating effect model to analyze the relationship between the two:

Dit ¼ a0 þ a1distit þ a2C1it þ e1it ð6Þ

Pit ¼ b0 þ b1distit þ b2C2it þ e2it ð7Þ

Dit ¼ c0 þ c1distit þ c2Pit þ c3C1it þ e3it ð8Þ

Pit is the mediator variable—the technological innovation pattern; eit is the
random error term, and Cit is the control variable. The coefficient a1 in Eq. (6)
measures the total effects of factor price distortion on China’s industrial techno-
logical progress bias. b1 in Eq. (7) measures the influence of factor price distortion
on technological innovation pattern. c1 in Eq. (8) represents the direct effects of
factor price distortion on technological progress bias. Substituting Eq. (7) into
Eqs. (8), and (9) can be got:

Dit ¼ c0 þ c2b0ð Þþ c1 þ c2b1ð Þdistit þ c3C1it þ c2b2C2it þ e1it ð9Þ

Among them, the coefficient c2, and b1 represent the indirect effects of factor
price distortion on technological progress bias. It can be seen that the direct effects,
indirect effects and total effects of factor price distortion on technological progress
bias can be obtained by estimating Eqs. (6–8). This model involves five control
variables, the control variables of Eq. (6) include the factor endowment structure
and the proportion of state-owned economy. The control variables in Eq. (7)
include industrial R&D intensity, R&D personnel and governmental R&D support.
The five control variables are described separately as follows:

Factor Endowment Structure According to the basic principles of economics,
while other conditions remain unchanged, the value of a factor is in direct
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proportion to its scarcity; combined with the theory of comparative advantage, a
country’s technological progress direction is closely related to the country’s factor
endowment structure, and its optimal direction of technological progress should be
biased towards the country’s relatively abundant factor resources. Therefore, this
paper constructs the proxy variable of the factor endowment structure—per capita
capital stock to control the influence of factor scarcity levels on the technological
progress bias.

The Proportion of State-owned Economy As a result of the long-term preferential
policies government issued to China’s state-owned economy in forms of financial
subsidies and tax relief, and the fact that bank loans are also more inclined to
large-scale, low-risk state-owned enterprises, the cost of capital use of state-owned
enterprises is generally lower than that of other types of enterprises. According to Shi
and Zhao (2007), the capital cost of the state-owned economy is about 15–20%
lower than that of the non-state economy, which makes the state-owned enterprises
more inclined to adopt capital-biased technologies. Therefore, this paper argues that
the higher the proportion of state-owned economy in the industry, the greater the
distortion degree of capital bias of its technological progress.

R&D Intensity and Personnel These two indicators represent the material capital
and human resource input of the technological innovation of an industry, which
reflect the strength and enthusiasm of technological innovation activities in the
industry. In general, the higher the R&D intensity and the number of R&D per-
sonnel, the more the industry is inclined to achieve technological progress through
independent R&D rather than technology introduction. Therefore, this paper argues
that the higher the R&D intensity and the number of R&D personnel, the more
biased this industry is towards independent innovation.

Governmental R&D Support This paper uses the proportion of government funds
in industrial R&D internal expenditure to measure the degree of governmental R&D
support. It is an important means of government incentives. This approach will
influence the technological innovation of enterprises at the micro level and the
industrial technological progress pattern as a whole. The more the government sup-
ports, the more it is supportive to independent R&D behavior, and then the proportion
of technology introduction will be reduced. However, according to the former analysis
of scholars, the incentive function of government subsidies on companies’ techno-
logical innovation activities will be greatly reduced by the existence of “crowding out
effect” (Busom 2000). Therefore, this paper argues that the impact of governmental
R&D support on technological innovation pattern may not be significant.

4.4 Description of Variables and Data

This paper takes the classified industries in China as research objects. According to
the latest revision of the “Classification of National Economy Sectors” in 2011,
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there are 41 secondary industries in China’s industry, excluding mining assistance
industry, other mining industry, other manufacturing, comprehensive utilization of
waste resources and metal products, machinery and equipment repair industry
because of the serious lack of data. The research objects of this paper contain a total
of 36 secondary industries in China. According to the data availability of the
important indicators involved in this study, the survey period was determined as the
period from 1996 to 2013, and the data were from the China Statistical Yearbook,
China Industrial Statistical Yearbook, China Statistical Yearbook on Science and
Technology and China Labor Statistical Yearbook in corresponding years. The
descriptions of variables involved in the empirical model in this paper are as
follows (Table 1).

5 Analysis of Measured Results of China’s Industrial
Technological Progress Bias and Factor Price Distortion

In this section, we will confirm the outputs of the used empirical model. And then
we will give their economic meaning.

5.1 China’s Current Industrial Technological Progress
Is Generally Biased Towards Capital

As the industry panel data is prone to be bothered by inter-group heteroskedasticity
and intra-sequence sequence autocorrelation problems7, we use the feasible gen-
eralized least squares (FGLS) method to estimate the production function. 1996 is
set as the base period, and Y0, K0, L0 are industrial added value, capital stock and
labor force in 1996. Respectively we put them into Eq. (4) and estimate with FGLS,
and the four coefficients have all passed the significance test. The parameter esti-
mation results are shown as follows:

a ¼ 0:84
a ¼ a 1�að Þ r�1ð Þ

2r ¼ �0:09
b ¼ acK þ 1� að ÞcL ¼ 0:11
c ¼ a 1�að Þ r�1ð Þ

2r cK � cLð Þ2¼ �0:0008

8>><
>>:

)
r ¼ 0:44
cK ¼ 0:09
cL ¼ 0:19

8<
: ð10Þ

The results of, r; cK; cL are substituted into Eq. (4), and it can be achieved that
the general technological progress bias index of China’s industry is 0.13, which
indicates that the technological progress of China’s industry in the period from

7The modified heteroscedasticity Wald test and Wooldridge test were used to test the panel data. It
was found that there were intergroup heteroskedasticity and first order autocorrelation.
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Table 1 Definitions and descriptions of the variables

Variables Symbol Unit Description

Total output value Y 100
million
yuan

Represented with the “industrial added
valuea”, and adjusted to the price in 1996
according to the producer price index of
industrial producers

Capital stock K 100
million
yuan

Estimated by perpetual inventory methodb

Kit ¼ Ki t�1ð Þ 1� ditð Þþ Iit;
and adjusted to the price in 1996 based on the
fixed asset investment price index

Labor force L 10
thousand
people

Represented with “average number of
employees”

Capital price r 100
million
yuan

r = capital income/capital stock, where
capital income = industrial added value—
total remuneration of laborers = Y − wL

Labor price w yuan Represented with “average wage of
employees”, and adjusted to the price in 1996
according to the consumer price index

Technological
innovation pattern

P % Represented with the ratio of the technology
introduction funds of industry “i” in the year t
to the internal expenditure of R&D

Factor endowment
Structure

R yuan Represented with the relative scarcities of
capital and labor, expressed with the per
capita capital stock of industry “i” in year “t”

The proportion of
state—owned
economy

S % Represented with the proportion of the output
value of state-owned and state-holding
enterprises in the total output value of the
industry

R&D intensity F % Represented with the ratio of R&D internal
expenditure to the total industrial output
value of industry “i” in year “t − 1”c

R&D personnel H % Represented with the ratio of R&D personnel
to the total number of employees of industry
“i” in year “t − 1”

Governmental
R&D support

G % Represented with the ratio of governmental
funds in the total R&D internal expenditure
of industry “i” in year “t − 1”

Source Organized by the authors
aSince the statistical yearbooks after 2008 don’t include statistical industrial added value any
longer, this paper estimates industrial added value after 2008 on the basis of ratios of the industrial
output value to industrial added value from 1996 to 2007
bDepreciation rate dt = depreciation in this yeart/original value of fixed assetst − 1 = (cumulative
depreciationt − accumulated depreciationt − 1) /original value of fixed assetst − 1 = [(original value
of fixed as se tst-net value of fixed as set st) − (original value of fixed assetst − 1-net value of fixed
assetst − 1)] /original value of fixed assetst − 1; investment volume Iit is represent with newly
increased fixed assets, newly increased fixed as set st = original value of fixed as set st-original
value of fixed assetst − 1; the capital stock of the base period is represented with the original value
of fixed assets in 1986
cTaking into account the hysteretic nature of the effects of R&D activities on technological
progress bias, the data of R&D intensity, R&D personnel and governmental R&D support are
collected from the later year
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1996 to 2013 was generally capital-oriented. Various industries tend to achieve
technological progress by increasing capital input rather than labor input.
Technological progress has made the marginal output ratio of capital to labor
increases 13% annually.

From the point of the changing trend, the capital-biased feature of China’s
industrial technological progress has boosted at the turn of the century, but it has been
eased after 2007 (as shown in Fig. 1). The reason is that between the period of the
establishment of the PRC in 1949 and the implement of the reform and opening up
policy in 1978, China’s economy had long been underdeveloped and closed. The
domestic capital was deficient, and the technology was far from being advanced. It
was difficult for foreign capital and advanced technology to enter the country.
Industrial technological progress depended more on abundant labor resources. As the
production factor market was extremely closed, labor prices had long been low and
stable. After the reform and opening up, especially after the opening of economic
system after joining the WTO in 2001, the introduction of foreign trade and tech-
nology continued to grow. The technological progress pattern of China’s industry has
been increasingly affected by developed countries. Technological progress pattern,
with technology introduction as its main body, has significant impact on the tech-
nological progress pattern bias of Chinese industry, especially in capital-intensive
industries. However, after the global financial crisis in 2007, China’s industries are
facing fierce transition pressure. When the market is not optimistic, enterprises
usually invest cautiously; therefore, capital bias tends becomes stable.

5.2 Factor Prices in China’s Industries Is Seriously
Negatively Distorted and Have not Been Mitigated yet

From Table 2, we can see that the estimated results of a and r are 0.84 and 0.44,
respectively. Both of them have passed the significant test. By substituting them
into the expression of factor distortion degree, the price distortion degrees of capital,
labor and the overall price distortion degree can be achieved. Figure 2 depicts the
average value and changing trends of the factor price distortion of capital, labor
force, and the two factors combined in capital-intensive and labor-intensive
industries from 1996 to 2013. It can be seen that the values of distK, distL and dist

-0.1

0

0.1

0.2

0.3
D D1 D2

Fig. 1 The changing trend of China’s industrial technological progress bias, 1996–2013. Source
The author compiles the results according to the STATA software output
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in all years lie between 0.4 and 1, indicating that China’s industrial capital and labor
factor prices are negatively distorted, and the overall degree of distortion is nega-
tive. The prices of factors in all industries are generally underestimated.

In the case of changing trends, the negative distortions of capital prices were
mitigated between 1999 and 2013, but the negative distortions of labor prices were
deteriorating, leading to no significant improvement in overall distortion degrees.
The degree of distortion in the price of production factors is the deviation to its
relative marginal output ability. In recent years, due to the continuous upgrading of
production technology and equipment as well as the extensive use of modern
technology and management methods, the labor marginal output has been greatly
improved. This leads to the growth of labor marginal output ability is much faster
than that of wage rising. The results also show that in China’s labor market, the
labor suppliers are at disadvantaged status. They lack sufficient price negotiation
ability, and the improvement of labor productivity cannot necessarily bring increase
on the level of wage. In contrast, the pursuit of profits embedded in capital makes
leads it to flow freely. So, its marketization level is also relatively high. Meanwhile,
the negative distortion of labor price is more serious and has not been fundamen-
tally reversed. It can be seen that, after the reform and opening up, the
market-oriented reform of factors has played a positive role in capital market, but it
has achieved little effects in labor market. The problem of factor price distortion of
Chinese industries has not been fundamentally solved yet.

5.3 China’s Capital-Intensive Industrial Technological
Progress Is Strongly Biased Towards Capital

In its current technological progress pattern, China’s industrial technological pro-
gress is generally biased towards capital. The technological progress in

Table 2 The summary of estimated results of technological progress biases

Industry type All the
Industries

Capital—intensive
industries

Labor—intensive
industries

parameters being
estimated

a 0.84***(13.08) 0.87***(13.42) 0.60***(2.51)

a −0.09*(−2.13) −0.12***(−2.92) −0.22*(−1.8)

b 0.11***(7.85) 0.11***(8.03) 0.14***(5.27)

c −0.0008*(−2.13) −0.0008*(−2.08) −0.0006**(−2.4)

r 0.44 0.31 0.35

cK 0.09 0.10 0.12

cL 0.19 0.18 0.17

D 0.13 0.18 0.10

Note Numbers in the brackets are the t values correspond to the estimated results of the parameters,
*, **, and *** mean the results are significant at the test levels of 10, 5 and 1%, the same below
Source The author summarizes the results according to the STATA software output
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capital-intensive industries is more biased towards capital than that of
labor-intensive industries8. As shown in Table 2, the technology-oriented bias
indexes for capital-intensive and labor-intensive industries were 0.18 and 0.10. This
is because the technological bias of capital-intensive industries is affected not only
by the direct effects of factor price distortion as in labor-intensive industries.
Capital-intensive industries have more sufficient capital, coupled with the relatively
low cost of capital because of the negatively distorted capital price. These industries
are stimulated to enlarge their capital use and tend to adopt the technological
innovation pattern in which imports of machinery, equipment and mature tech-
nology are preferred. This pattern will strengthen the deepening of industry’s
capital. In other words, the indirect effects of factor price distortion on technological
innovation bias through technological innovation are more pronounced in
capital-intensive industries than those in labor-intensive industries.
Capital-intensive industries, with their advantage of relatively abundant and
low-price capital, have passively encouraged the advancement of technological
innovative pattern. Capital has not been invested into the field of independent
innovation. The result is that the materialized technological level in our
capital-intensive industries is not lower than but even higher than that of their
counterparts in some developed countries. However, the product innovation capa-
bility driven by technology and expertise is very low, which is the fundamental
problem for capital-intensive industries during industrial transition development.

5.4 Factor Intensity of an Industry Determines the Price
Distortion Degrees of Different Factors

Empirical studies show that the degree of labor price distortion in China’s
capital-intensive industries is greater than that in labor-intensive industries. The
degree of capital price distortion in China’s labor-intensive industries is greater than
that in capital-intensive industries (see Fig. 2). The reason is that the factor
endowment structure of each industry differs: according to the law of diminishing
marginal output, the capital of labor-intensive industries is scarce, and the marginal
output level of the unit capital is generally higher than that in capital-intensive
industries where capital factor is abundant, resulting in greater gap between capital
price and capital marginal output. While in capital-intensive industries, it is just the
opposite. Higher per capita capital stock allows companies to have more adequate
funds for personnel training, purchase of machinery and equipment, carrying out
technology R&D research and so on. It is conducive to promoting its labor

8According to the measured results of factor price distortion, the distortion degrees in
capital-intensive industries are lower than that in labor-intensive industries, but the gap is very
narrow. So the direct effects on the technological progress bias in these two types of industries
should not differ tremendously. The empirical results hereinafter validate this hypothesis.
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productivity and labor marginal output. As the wage level is sticky, it is bound to
aggravate the degree of labor price negative distortion. In addition, in recent years,
the change of China’s labor market structure and the increasingly strong protection
for the rights and interests of migrant workers and grassroots workers have alle-
viated the degree of labor price distortion in labor-intensive industries where
grass-roots labor force is abundant. It makes the labor price less distorted in
labor-intensive industries than that of capital-intensive industries.

6 Empirical Analysis of Mediating Effect Model

In this section, we will show the estimated results of the metering model and. And
then we will analyze their economic implications on this basis.

6.1 Estimate of the Benchmark Model

In order to investigate the effects of factor price distortion on the bias of techno-
logical progress, this paper first estimates the benchmark model of Eqs. (6–8).
Through the F-test and Hausman test, we can see that the individual effect of the
panel data is significant, and the error term and the explanatory variables are
correlated. Therefore, fixed effect model is chosen to estimate the benchmark model
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Fig. 2 The changing trends of the degrees of factor price distortion in China’s industries from
1996 to 2013. Source The author compiles the results according to the STATA software output
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of (6–8). Table 3 shows the estimated results of the fixed effect model before and
after the introduction of control variables9. It can be found through comparison that
the coefficient estimation and the significance of the model core variables have not
changed significantly before and after the introduction of the control variables. This
indicates that the model set is very robust. In terms of coefficient significance, the
regression coefficient estimations of the factor price distortion on the basis of
technological progress and technological innovation pattern have all passed the
significance test at the significance level of 1%, but in Eq. (8), the coefficient value
of the technological innovation pattern is not significant, which may be caused by
the endogenous problems of the variables.

Table 3 Estimated results of benchmark model parameters

Model

Variable (6) (7) (8)

dist −0.36*** −0.29** −1.98*** −2.30*** −0.32*** −0.26***

(−5.48) (−2.35) (−3.61) (−4.76) (−10.75) (−8.02)

P 0.0002 0.0006

(0.68) (1.35)

R 0.0070* 0.0081**

(1.95) (2.19)

S 0.03*** 0.11**

(6.10) (2.23)

F −9.57***

(−8.61)

H −2.63***

(−4.01)

G −0.33

(−1.15)

Individual Controlled Controlled Controlled Controlled Controlled Controlled

Year Controlled Controlled Controlled Controlled Controlled Controlled

Number of
observations

648 648 648 648 648 648

R2 0.65 0.66 0.68 0.71 0.71 0.74

Hausman
examination

189.52 201.45 225.71 263.15 267.94 288.42

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Note Numbers in the brackets are the t values correspond to the estimated results of the parameters,
*, **, and *** mean the results are significant at the test levels of 10, 5 and 1%
Source The author summarizes the results according to the STATA software output

9Due to space limitation, this paper omits the estimated results of the control variables which were
introduced gradually, and only lists the estimated results of the model after introducing all the
control variables. Readers interested in the estimated results in the process of estimations can
contact the author.
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The higher the proportion of capital in the factor endowment structure that
equals to higher per capita capital within the industry, the more capital-biased its
technological progress is, but the coefficiency is less than 1%. This indicates that
the impacts of resource endowment on technological progress are extremely weak,
which is consistent with the previous conclusions. The proportion of state-owned
economy is proportional to the capital bias of technological progress, indicating that
the higher the proportion of state-owned economy, the more capital-oriented its
technological progress is. This is mainly because of the governmental support to
state-owned economy in forms of financial subsidies, tax relief and other aspects of
preferential treatment. In addition, banks and other financial institutions adopt
discriminatory loan policies towards non-state economy. These lead to a significant
cost advantage of using capital factors in state-owned economy and a technological
advance biased more towards capital. In addition, the results from the sixth to
eighth lines show that industries with limited R&D funds and lack of staff are more
inclined to introduce foreign technologies, because independent R&D is a highly
risky activity with huge investment and long cycle. It has extremely high demand
for R&D funds and personnel. So, when the R&D funds and personnel are rela-
tively insufficient, companies tend to give up independent R&D and invest their
limited funds to technology introduction which is of low risk and quick returns.
Government R&D subsidies did not have a significant impact on the choice of
industrial technological innovation pattern. The results can be explained by the
“crowding out” effect of governmental subsidies on enterprises’ R&D investment.
Enterprises having access to governmental R&D subsidies often reduce their own
R&D investment, and thus the funds which have been used to do technological
innovation has not increased actually, so that the impact of governmental subsidies
on the technological innovation pattern of enterprises is invalid.

6.2 Endogenous Problems and the Regression
of Instrumental Variable 2SLS

It is known that technological progress bias may be counteractive to factor price
distortion through the relative price of the factor price, and it causes endogenous
problems because of two-way causal relationship. Instrumental variables are
introduced to solve this problem. First, Hausman endogeneity test has been applied
to test the existence of endogeneity. The test results show that the value of “p” is 0,
thus this result rejects the original hypothesis of “the exogenous explanatory
variables”; therefore, it is necessary to introduce instrumental variables.
Accordingly, we learn from the experience with factor price distortion regression

model gained by previous scholars, and construct Distit � Distit
� �3

as the instru-
mental variable of Distit (Lewbel 1997; Chen and Wang 2013). The advantage of
this instrumental variable is that it can satisfy the basic requirements associated with
the endogenous explanatory variables and are not related to the residuals in the
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model simultaneously without increasing the number of model variables. First, the
Sargan over-identification tests have been carried out for the models (1)–(3). All the
corresponding “p” values were greater than 0.1, indicating that the residuals were
not related to the explanatory variables. Second, from the estimated results of
under-identification tests, all the values of p estimated by Anderson canon. corr.
LM was 0.0000, indicating that the original hypothesis that “instrumental variable
is unrecognizable” should be rejected. Finally, from the results of weak instru-
mental variable test, the statistics of the Cragg-Donald Wald F were much larger
than 16.38, which is the critical value of the stock-Yogo test at the 10% level. So,
the original hypothesis of the “weak instrumental variable” can be rejected. In
summary, the instrumental variables constructed in this paper are reasonable.

Table 4 Estimated parameters results of model 2SLS

Model

Variable (6) (7) (8)

dist −0.16*** −0.18** −1.98*** −1.98*** −0.13*** −0.16***

(−6.59) (−8.21) (−3.61) (−3.95) (−8.74) (−8.04)

P 0.0235 0.0210

(3.16) (1.82)

R 0.0085* 0.01**

(11.75) (2.42)

S 0.07*** 0.12***

(12.16) (6.85)

F −13.48**

(−2.33)

H −1.9***

(−1.99)

G −0.16

(−1.22)

Individual Controlled Controlled Controlled Controlled Controlled Controlled

Year Controlled Controlled Controlled Controlled Controlled Controlled

Number of
observations

648 648 648 648 648 648

Sargan statistic 0.38 0.41 0.65 0.58 0.29 0.34

[0.5869] [0.5856] [0.7459] [0.7603] [0.6025] [0.5748]

Anderson
canon. corr.
LM statistic

189.20 196.15 148.28 155.69 167.21 159.83

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Cragg-Donald
Wald F statistic

166.75 208.52 211.45 207.71 157.26 161.45

{16.38} {16.38} {16.38} {16.38} {16.38} {16.38}

Note Numbers in the brackets are the t values correspond to the estimated results of the
parameters, *, **, and *** mean the results are significant at the test levels of 10, 5 and 1%
Note {} are the corresponding Stock-Yogo test thresholds of Cragg-Donald Wald F statistics (at
10% significance level), the same below
Source The author summarizes the results according to the STATA software output
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The economic implications of the estimated results of each parameter will be
analyzed by the regression results of the instrumental variable 2SLS after the
introduction of the control variables. As shown in Table 4, the regression coeffi-
cients of the factor price distortion to the technological progress bias and the
technological innovation pattern are estimated to be −0.18 and −1.98 respectively.
Both of them have passed significant test at the test level of 1%. This shows that the
factor price distortion has significant impact on the direction of technological
progress and technological innovation pattern. The closer the factor distortion
coefficient is to 1, which equals lower level of distortion in factor prices, the less
capital-biased the direction of technological progress is, and the less the techno-
logical innovation depends on external resources. The general effect of factor price
distortion on industrial technological progress bias is a1= −0.18, which means
when the negative distortion level of factor price increases by one unit. The bias of
industrial technological progress towards capital increases by 0.18 unit. The direct
effect of factor price distortion on industrial technological progress bias i
c1 = −0.16, and it has statistical significance at the test level of 1%. It means that
when the actual price of the factor is lower than its marginal output by one unit, the
bias of industrial technological progress towards capital increases by 0.16 unit.
According to the above derivation, the indirect effect is b1c2 = −1.98 � 0.0210 =
−0.0416. It means that when the factor price is distorted for one more unit, the bias
of industrial technological progress towards capital works through technological
innovation pattern increases by 0.16 unit. It can be seen that the indirect effects of
factor price distortion on technological progress bias through technological inno-
vation pattern do play an important role in the relationship between factor price
distortion and technological progress bias.

6.3 Examination of the Mediating Effect

In order to fully demonstrate that the indirect effects of factor price distortion do
exist and they work on industrial technological progress bias through technological
innovation pattern, the significance of mediator variable “P” needs to be examined.
This paper uses the method introduced by Wen and Ye (2014) to test the mediating
effect. In the first step, we can see from Table 3 that: (1) The coefficient a1 of the
Eq. (1) is significantly not 0, which indicates that the point should be made
according to mediating effect. In the second step, with the information gained from
Table 3, the coefficient b1 of Eq. (2) and the coefficient c2 of Eq. (3) are both
significant at the test level of 1%, which means there are indirect effects between
models. In the fourth step, the estimation of coefficient c1 in Table 3 is significant at
the test level of 1%, which means that there are indirect effects between models and
direct effects. In the fifth step, by comparing the signs of c2b1 and c1, we can know
that the signs of the two are the same. This indicates that the model has partial
mediating effect, and the proportion of the mediating effect accounting for the total
effect is c2b1/a1 = −0.0416/0.18 = 0.23. To sum up, the technological innovation
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pattern does play an important mediating role between the negative price distortion
and the technological progress bias. This mediating effect accounts for 23% of the
total effects of the factor price negative distortion on the basis of technological
progress.

6.4 Analysis of Estimated Results Based on Characteristics
of Industries

Through the previous measure and estimation of the degrees of distortion in factor
price and the biases of technological progress, we can find that there are some
differences between factor price distortion and technological progress biases in
industries with difficult factor intensities. In order to verify whether there is a causal
relationship among these differences, the panel data of capital-intensive industries
and labor-intensive industries are respectively regressed with mediating effect
model containing instrumental variables, and their coefficients will be compared in
this paper.

As shown in Table 5, the direct effects of factor price distortion on technological
progress bias in capital-intensive industries and labor-intensive industries are almost
identical and are consistent with the industry-wide estimations, which are −0.15 and
−0.12 respectively. The effects of factor price distortions on technological inno-
vation pattern of the two types of industries are −1.98 and −2.01 respectively. The
results are consistent with the whole industry as well; however, the coefficients of
the effects of technological innovation pattern on technological progress bias are
quite different between the two types of industries. The coefficient value of
capital-intensive industry is 0.0696 and that of labor-intensive industry is only
0.0136. Thus, the indirect effects of factor price distortion in the two types of
industries on technological progress bias are −0.1378 and −0.0273 respectively.
This difference leads to a significant gap between the effects of factor price dis-
tortion on technological progress bias in capital-intensive industries and
labor-intensive industries. The effects of the former are significantly greater than
that of the latter. It can be seen from Table 2 that when the factor distortion degree
in capital-intensive industries increases by one unit, the bias of industrial techno-
logical progress towards capital increases by 0.13 unit. While when the factor
distortion degree in labor-intensive industries increases by one unit, the bias of
industrial technological progress towards capital increases by 0.10 unit. In sum-
mary, the direct effects of factor price distortion on technological progress bias will
not differ in industries with different factor intensities, but the indirect effects of
factor price distortion on technological progress bias are clearly influenced by
industry capital intensity. Capital-intensive industries tend to prefer technology
introduction, making its technological progress direction more biased towards the
capital.

270 X. Bai and S. Li



7 Conclusion and Perspective

This paper can be summarized as follows through the mechanism analysis and
empirical test of China’s industrial factor price distortion degrees, technological
progress bias indexes and the relationship between them:

First, the market-oriented reform of China’s industrial factor prices requires
long-term hard work. The empirical results of this paper show that the distortions of
factor price in Chinese industries during recent years have not been effectively
mitigated as expected, especially the deteriorated distortion of labor prices.

Table 5 Comparison of estimated results between capital-intensive industries and labor-intensive
industries

Model

Variable Capital-intensive industries Labor-intensive industries

(6) (7) (8) (6) (7) (8)

dist −0.16*** −1.98*** −0.15*** −0.13*** −2.01** −0.12***

(−5.16) (−7.33) (−11.27) (−5.15) (−2.24) (−6.65)

P 0.07*** 0.014**

(2.79) (2.11)

R 0.0076*** 0.0090** 0.0080*** 0.01**

(3.66) (2.13) (10.76) (2.22)

S 0.04** 0.03*** 0.06*** 0.05**

(2.08) (7.57) (7.81) (2.35)

F −9.82*** −6.98**

(−3.48) (−2.41)

H −1.97* −2.34*

(−1.90) (−1.85)

G −0.12 −0.15

(−1.14) (−0.98)

Individual Controlled Controlled Controlled Controlled Controlled Controlled

Year Controlled Controlled Controlled Controlled Controlled Controlled

Number of
observations

324 324 324 324 324 324

Sargan
statistics

0.50 0.48 0.36 0.35 0.69 0.70

[0.3691] [0.3905] [0.5996] [0.5763] [0.2991] [0.2795]

Anderson
canon. corr.
LM statistic

306.28 285.25 256.32 228.41 201.48 196.03

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Cragg-Donald
Wald F statistic

148.12 156.23 314.25 296.57 259.68 248.17

{16.38} {16.38} {16.38} {16.38} {16.38} {16.38}

Note Numbers in the brackets are the t values correspond to the estimated results of the parameters,
*, **, and *** mean the results are significant at the test levels of 10, 5 and 1%
Source The author summarizes the results according to the STATA software output
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Through careful analysis it can be found that the emergence of this phenomenon
has its profound institutional roots. With the establishment of the domestic capital
market, the deepening market-oriented reform of interest rates and the influx of
foreign capital, the marketization level of capital pricing is increasingly improving.
While governmental interventions of capital prices are decreasing, so that the
underestimation problem of capital price has been relieved to some extent. But in
labor market, with the continuous improvement of technological level, China’s
industrial labor productivity is rising continuously as well. But because of the
structure which mismatches the labor force supply and demand and the lack of trade
unions, the vast number of workers are at disadvantages and cannot effectively
protect their own rights and interests, leading to the widening gap between actual
wage level and the marginal labor output, and the deterioration of labor price
distortion. Thus, the market-oriented reform of the factors is not only to reduce the
administrative intervention of the factor market. The government should also be
committed to the adjustment of personnel training structure, the maintenance of
market order, the protection of the legitimate rights and interests of workers, and the
feasibility of technological progress and economic growth to benefit the public.
Only in this way can the goals of boosting domestic demand and changing the
mode of economic development can be achieved.

Second, the degree of factor price distortion and technological progress bias
indexes are affected by industrial factor intensity. Based on the law of diminishing
factor marginal returns and the differences of factor intensities in different indus-
tries, there are differences between the capital and labor marginal outputs of the
capital-intensive industries and the labor-intensive industries. This results in greater
distorting degree of labor price in capital-intensive industries than that in
labor-intensive industries, which leads to the differences of factor price distortion
degree in two kinds of industries. Thus, even if the direct effect coefficients of factor
price distortion on technological progress bias in the two types of industries are
almost equal, the actual sizes of the direct effect are significantly different. In terms
of the differences of technological progress bias, since the capital-intensive
industries are generally more abundant in capital than labor-intensive industries,
there are significant differences in financial resources and initiatives to introduce
technologies between the two types of industries. Therefore, the indirect effects of
factor price distortion on technological progress bias in capital-intensive industries
are markedly greater than that in labor-intensive industries. To sum up, the
industrial factor intensity characteristics have significant impacts on factor price
distortion degree and technological progress bias.

As concluded above, we can expect that guided by the innovation-driven
development strategy, China’s industrial technological progress pattern is expected
to be upgraded to labor-biased pattern in the future. First of all, in the empirical part
of this paper, it has been verified that the technological innovation pattern is playing
an important mediating and conducting role when factor price distortion affects
industrial technological progress bias. The implementation of innovation-driven
development strategy and the deepening of the supply-side structural reform come
down to change the previous factor-driven growth mode, to change the

272 X. Bai and S. Li



technological innovation pattern, to reduce the dependence on other countries, so as
to achieve technological progress. Therefore, it is foreseeable that in the future, with
the improvement of independent innovation capability, the distance between
China’s industrial technological level and international forefront technological level
will be shortened. The introduction of foreign technology will shrink, and the
technological innovation pattern will be changed fundamentally. The original
conducting chain will be broken, the capital-biased progress made by technology
introduction will be naturally weakened. Secondly, according to Li Yining’s dis-
cussion on the “old and new demographic dividend” (2013), a country can adapt to
its human resource advantages at all stages of economic development. When the
country approaches or becomes a middle-income country, the advantage of cheap
labor and the “old demographic dividend” will disappear, then the country should
strive to create skilled labor force advantage by increasing personnel investment,
expanding vocational and technical training, strengthening professional ethics
education and so on, to cultivate a” new demographic dividend”. It can be inferred
that the technological progress bias generally follows the evolutionary trend of
“non-skilled-labor-biased type ! capital-biased type ! skilled-labor-biased
type”. Then, with the improvement of independent innovation ability and the for-
mation of “new population dividend”, Chinese direction of technological progress
in industry is expected to be upgraded to skilled-labor-biased technological pro-
gress under the condition that the labor supply structure is continuously optimize,
and the factor market reform continues to be deepened. Thus, it contributes to the
realization of inclusive economic development in line with its own factor endow-
ment structure.

This paper only explores the one-way influence of factor price distortion on the
bias of industrial technological progress, and does not analyze the counteraction of
factor price distortion on industrial technological progress. In addition, the impact
of factor price distortion on industrial technological progress can be seen not only in
the technological progress bias at the industry level, it can also be found in several
aspects concerned with innovation activities and performances at micro-level,
including its effects on enterprises R&D expenditure, technological innovation
efficiency and so on, which could be further explored in future researches.
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Chapter 13
Environmental Innovation and Green
Transformation of Economic Growth
Pattern: Evidence from China

Xie Rong-hui

1 Introduction

Since the reform and opening-up policy implemented at the end of 1970s, China
has achieved remarkable economic growth rates. However, the traditional com-
parative advantages, such as the Demographic Dividend, are disappearing, which
causes a slowdown of Chinese economy. Especially after the global financial crisis
breaking out in 2008, many internal structural flaws in the economic growth are
exposed. On one hand, China only embedded mostly on the low-end sector of the
global value chain, and locked at the lower process level, and lower value added
activities. On the other hand, China’s growth model has turned out to be unsus-
tainable and extensive, which favors exports and investment over domestic con-
sumption, and the economic growth over the environment quality. As a result, such
growth pattern leads to great amount of energy consumption and pollution emis-
sions. Undoubtedly, Chinese economy is stepping to a critical stage of structural
transforming and upgrading.

Some scholars and policy makers point out that innovation and technological
progress are the essential impetus of economic transformation (Tong 2013; Peng
et al. 2014). However, in the book, The Limits to Growth published in 1972, the
Club of Rome claims that many traditional technologies innovated after the
Industrial Revolution accelerate the damage to the environment. Therefore, we
mainly focus on the environmental technologies. Moreover, we will employ a
province-level panel dataset for the 2000–2012 period to find out empirical evi-
dence on the relationship between environmental innovations and the green
transformation of Chinese economy, and compare the promoting effect driven by
environmental innovations with traditional innovations.
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The remainder of this paper is structured as follows. Section 2 reviews the
relevant literature. Section 3 describes the specifications of empirical model and
variables. Section 4 presents our empirical results and robustness analysis. The last
section is our conclusions.

2 Literature Review

Since the phrase of green transformation was first proposed by OECD in one of
their working papers (Harrison 1995), it has stimulated a large body of academic
research. A large body of literature gives a definition as the transformation from the
extensive growth model depended heavily on material inputs to the intensive model
with dependence on innovation and technological progress, from the heavy
dependence on emissions and environmental damage to green development, from
the unsustainable pattern to a sustainable pattern (Research Group of Institute of
Industrial Economics CASS 2011; Chen and Golley 2014). Peng and Li (2015)
claim that the core connotation of green transformation focuses on the process from
the high carbon and high pollution emissions to cleaner production and pollution
abatement. Based on those studies, we can conclude that the common point about
the green transformation emphasizes the “win-win” situation between economic
growth and the environmental quality. But how can we achieve this “win-win”
situation? Lin (2004) points out that the transformation of economic growth model
has been mainly driven by innovation and technological progress. This view of
point has been supported widely (Liu 2006; Lin and Zhang 2009; He and Zhang
2015).

Cai and Guo (1996), however, claim that with regard to environment, techno-
logical innovation can be divided into two different types: one is the
environmentally-friendly type, while the other is the environmentally-harmful type.
By reading the environment history since the Industrial Revolution, we can con-
clude that the traditional technological innovation is the main cause of environ-
mental pollution to a great extent, and creates a “Gray” Civilization (Clapp 1994).
On the other word, the traditional technological innovation is mainly environ-
mentally harmful. The major objectives of traditional innovation are to expand the
scale of production, to enhance productivity and eventually gain extra profit, but fail
to consider the impact on environment. As a result, tradition technological progress
leads to large amount of consumption of fossil energy and serious environmental
damage. Nowadays, more and more policy makers and scholars realize that it is
time to create a “Green” Civilization instead of the “Gray” one. Further, it is the
environmental innovation that plays the critical role, rather than the traditional
innovation. Braun and Wield (1994) propose the concept of “clean technology” for
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the first time1. OECD (2009) provides a standardized statement about the definition
of green innovation as “the implementation of a new or significantly improved
product (good or service), or process, a new marketing method, or a new organi-
zational method in business practices, workplace organization or external relations
that results in a reduction of environmental impact, no matter whether that effect is
intended or not”. We can summarize two unique features of green innovation: fewer
adverse effects on the environment and more efficient use of resources (Hojnik and
Ruzzier 2015). However, environmental effect is not the primary reason for green
innovation, but to potentially affect the entire trajectory and paradigm of corporate
innovation (Aghion et al. 2015; Amore and Bennedsen 2016), then further the
transformation of economic growth pattern (Lan and Han 2012).

However, as we summarize from the existing literature that a majority of pre-
vious studies emphasize the environmental goals of green innovation, only several
focus on its effect on the transformation of economic growth pattern. Furthermore,
these several studies mainly adopt methodology of descriptive statistical analysis
(Research Group of Institute of Industrial Economics CASS 2011; Guo et al. 2013),
while lack of empirical evidence. Finally, most previous literature focuses on highly
developed economies, but lacks of research on developing countries, such as China.
But in practice, China is experiencing its critical stage of economic transformation
and upgrading, as well as suffering serious environmental damages. Therefore, it is
of fundamental importance to analyze how environmental innovation affects eco-
nomic green transformation. Our study attempts to fill these gaps.

3 Empirical Model and Variables

3.1 Specifications of Empirical Model

We begin our empirical analysis by defining an equation which relates an indicator
of green transformation of economic growth pattern to an indicator of environ-
mental innovation, and to an indicator of traditional innovation. The empirical
model is specified as following dynamic panel data model:

GTi;t ¼ a0 þ a1GTi;t�1 þ a2ERDi;t þ a3NERDi;t þ a4Zi;t þ ei;t ð1Þ

where GTi;t is the dependent variable, an indicator of green transformation for
industry i in period t. GTi;t�1 is the lagged dependent variable as one of independent
variables. ERDi;t indicates the environmental R&D, while NERDi;t indicates the
traditional R&D. Zi;t denotes a vector of control variables. The subscripts i and
t denote industry and year. ei;t is the disturbance term.

1The terms of eco-innovation, green innovation, and environmental innovation in this paper are
used interchangeably, while terms of clean technology, green technology and environmental
technology are interchangeable as well.
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When there exists an endogenous problem, the OLS estimate or the fixed effects
estimate will yield biased and inefficient estimators. In order to overcome potential
endogeneity, we adopt the system GMM approach initiated by Arellano and Bover
(1995) and fully developed by Blundell and Bond (1998). The system GMM can
control the issue of endogeneity by using lagged levels of the endogenous variables
as instruments. Normally, the valid instruments for endogenous variables are two
lags and above (Roodman 2009).

In order to obtain robust results, two standard statistical tests must be proceeded
after system GMM estimation. One is the Arellano-Bond (AR) test. This test checks
whether there is serial autocorrelation in the residuals of the specification which
leads to inconsistent estimators. In order for estimators to be consistent, the first
order autocorrelation of the residuals (AR(1) test) needs to be rejected; and the
second order autocorrelation (AR(2) test) needs to be accepted (Iwamoto and
Nabeshima 2012). The other is the Sargan test of overidentification to check out if
the applied instruments are jointly valid.

3.2 Variables and Data Sources

3.2.1 The Indicator of Green Transformation of Economic
Growth Pattern

The essence of economic transformation is to increase the contribution of pro-
ductivity growth to economic growth (Wu 2008; Chen 2012; Li et al. 2013). In
order to take the environmental impact into account, we employ the environmental
TFP to construct the indicator of green transformation. Specifically, we regard the
contribution of environmental TFP to total industrial output value (TIV) growth
calculated by dividing the environmental TFP growth rate by the TIV growth rate as
the indicator of green transformation (GT). Moreover, this paper uses a
slacks-based measure (SBM) and Luenberger Productivity Index, accounting for
energy consumption and undesirable outputs, to evaluate the industrial environ-
mental productivity growth rates of China’s 30 provinces. There includes two
outputs corresponding to a desirable output (given by total industrial output value)
and an undesirable output (given by CO2 emissions), and three inputs corre-
sponding to capital, labor and energy consumption.2

3.2.2 Environmental R&D and Traditional R&D

Owing to limitation of data, we employ the method developed by Hamamoto
(2006) to calculate the values of environmental R&D and traditional R&D. We first

2Details for calculating techniques of environmental TFP growth rates are provided in Xie et al.
(2017).

280 X. Rong-hui



develop the following log-log form fixed effects panel data model (results of esti-
mation see Appendix A.) and the estimated coefficient can be interpreted as the
elasticity with respect to R&D:

lnRDi;t ¼ b1 lnREGi;t�1 þ b2Hi;t�1 þ vi þ tþ ei;t ð2Þ

where RDi;t denotes the total R&D expenditure. REGi;t�1 is a proxy for regulatory
stringency. REG is constructed by the data of emissions of waste water, sulfur
dioxide, smoke and dust, and solid waste to measure the level of pollution abate-
ment [details see Yuan and Xie (2014)]. When an environmental regulation is
implemented, firms need time to reset the strategies and to carry out R&D activities.
Therefore, following Jaffe and Palmer (1997), we allow one-year lag in the variable
of regulation stringency. Hi;t�1 indicates a vector of control variables, including a
scaling variable (SCALE), foreign direct investment (FDI), an indicator of human
capital (HC), export intensity (EXP), and an indicator of marketization level
(MARKET). All of the control variables are lagged one year to avoid two-way
causation with R&D expenditures (Rubashkina et al. 2015). vi captures unob-
servable industry characteristics, t is a trend variable, and ei;t is a residual error term.

The coefficient of REGi;t�1 represents the elasticity of R&D expenditures with
respect to environmental regulation. Following Hamamoto (2006) we regard the
increased R&D induced by environmental regulation as the environmental R&D,
while the remainder as the traditional R&D. Therefore, the environmental R&D
(ERDi;t) and the traditional R&D (NERDi;t) can be calculated by Eqs. (3) and (4).3

ERDi;t ¼ b̂1 �
DREGi t;t�1ð Þ
REGi;t�1

� �
� RDi;t ð3Þ

NERDi;t ¼ RDi;t � ERDi;t ð4Þ

3.2.3 Control Variables

Three control variables of interest for our investigation are included. Firstly, the
structure of factor endowments (CAL) is one of the most essential factors impacting
economic transformation. We use the capital-labor ratio as a proxy. Secondly, an
indicator of marketization level (MARKET) is defined by the output shares of
non-state-owned enterprises. Finally, an indicator of human capital (HC) is inclu-
ded, using education level of employees as a proxy.

Table 1 summarizes the descriptive statistics of key variables. The
province-level panel data during the period 2000–2012 is obtained from the data-
base of the National Bureau of Statistics of China.

3When the values of ERDi;t appear to be negative, they will be treated as zero to avoid the case
that predicted values of traditional R&D exceed the actual values of total R&D expenditures.
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4 Empirical Results and Discussions

4.1 Effect on the Green Transformation of Economic
Growth Pattern

In this section, we employ the system GMM approach to examine the relationship
between environmental innovation and the green transformation of economic
growth pattern, and further to make comparative analysis with traditional innova-
tion. The results of two statistical tests for the system GMM estimation are reported
in Table 2. The AR test rejects the null hypothesis of the first order autocorrelation
with the p-value of the AR(1) test being 0.0620, but accepts the null hypothesis of
the second order autocorrelation with the p-value of the AR(2) test being 0.1530.
Meanwhile, the Sargan test of over identification shows the applied instruments are
jointly valid as the null hypothesis is not rejected with the p-value being 1.0000. It
implies that the estimations in Table 2 are robust.

Results in Table 2 show that the coefficient of ERDi;t equals to 0.0162 and
highly significant at the 1% level, which confirms that ERDi;t appears to be

Table 1 Descriptive statistics of key variables

Variable Obs Mean S.D. Minimum Maximum

GT 390 0.1791 0.4949 −5.1246 3.9024

RD 390 134.3185 203.6111 0.8306 1287.862

REG 390 0.6395 0.3705 0.0522 2.2882

CAL 390 19.4338 11.5112 6.1925 82.2344

MARKET 390 0.4973 0.2140 0.0615 0.8949

HC 390 8.7417 1.1843 6.1120 13.31

Table 2 Results of effects of environmental innovation on the green transformation

Variables System GMM model

GTi;t�1 −0.3202***(0.0182)

ERDi;t 0.0162***(0.0014)

NERDi;t −0.0003**(0.0001)

CALi;t −0.0049***(0.0007)

HCi;t 0.1314***(0.0161)

MARKETi;t −0.0438(0.1234)

Constant −0.7871***(0.2047)

AR(1) test −1.8662*(p = 0.0620)

AR(2) test −1.4292(p = 0.1530)

Sargan test 22.6793(p = 1.0000)

Obs 359

Notes to the table (a) Figures in parentheses are standard error. (b) ***, **, * indicate that the
levels of significance are 1%, 5% and 10%, respectively

282 X. Rong-hui



positively related to GTi;t. However, traditional innovation has a negative effect on
green transformation with coefficient being −0.0003 and significant at the 5% level.
The empirical results provide evidence that environmental innovation is an essential
impetus to promote economic green transformation, but traditional innovation
impedes the process of green transformation. It is mainly because the traditional
innovation mainly aims at enhancing the efficiency and productivity, and expanding
the scale of production, however, is not able to take the environmental objectives
into account. The traditional technological progress leads to a rapid increase in
energy consumption, and consequently a sharp increase in pollutant emissions.

Crucially, environmental technologies include not only the end-of-pipe tech-
nologies, but also cleaner production technologies, new energy technologies and
recycling technologies. Generally, there are two ways for environmental innovation
to affect firms to upgrade and go “green”. First of all, firms can remain their original
types and structures of products, while only upgrade their traditional and
pollution-intensive technologies to environmental technologies. By this means,
firms will achieve cleaner production and enhanced productivity simultaneously.
Secondly, firms could implement environmental innovation and switch to a new
line, even a new area of product, and eventually upgrade to high value-added
sectors of the global value chain. The most typical example is the new-energy
automobile industry. On the foundation of the original technologies and patents,
firms of traditional automobile industry could research and develop environmental
and new-energy techniques, innovate and improve their manufacturing process, and
finally embed the product chains or industry chains of the new-energy automobile.
Therefore, the traditional industries could effectively transform to the clean and
high-end field.

In addition, the structure of factor endowments (CAL) is negatively related to
green transformation with the coefficient of −0.0049. Zhang (2002) claims that
China’s lasting industrialization programs initiated on the outset of reform lead to a
rising of capital-output ratio and excess production capacity. The over-investment
and capital deepening further hamper the productivity and hinder the dynamic
transformation of an economy (Young 1994; Kim and Lau 1994). The coefficient of
human capital (HC) is 0.1314 and highly significant at the 1% level, implying that it
is necessary to increase investments in human capital in order to promote China’s
economic green transformation. While the coefficient of the marketization level
(MARKET) is far from significant, indicating that China’s current level of mar-
ketization has little effect on economic green transformation.

4.2 Robustness Analysis

In order to examine if the estimated results above are robust, we further make a
robustness test for the empirical model of Eq. (1). As the China Environment Year
Book reports the data of environmental scientific research project funds (ENVRDi;t),
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we will choose this indicator to substitute the variable of ERDi;t in Eq. (1), and
further re-examine the relationship between ENVRDi;t and GTi;t by employing the
system GMM approach. The results are presented in Table 3.

First of all, the results in Table 3 are robust as they meet two standard conditions
for the system GMM estimation. Moreover, the coefficient of ENVRDi;t is positive
(0.0001) and highly significant at the 1% level, which is consistent with the results
in Table 2. Therefore, our estimated results in Table 2 have been confirmed to be
robust.

5 Conclusions

As the economic growth rate of China is slowing down after 2008, many serious
issues of the economy have been exposed gradually. Most obviously, the growth
model has turned out to be unsustainable and extensive, and lead to increasingly
severe environmental pollution. Therefore, China’s economy is urgent to transform
and upgrade to a more advanced, cleaner growth pattern. The State Council of
China has issued the “China manufacturing 2025” strategy in 2016. This strategy
sets the “innovation driven” and “green development” as the basic principles of
China’s manufacturing in the future for the first time. Therefore, it is of great
importance to focus on environmental innovation and its effect on the green
transformation of China’s economic growth pattern. Based on this background, this
paper chooses the perspective of environmental innovation, and then examines the
relationship between environmental innovation and green transformation of
Chinese economic growth pattern. By employing a panel dataset of China’s 30
provinces during 2000–2012 and the system GMM approach, we draw some
interesting conclusions. The environmental innovation has a positive effect on

Table 3 Results of the robustness analysis

Variables System GMM model

GTi;t�1 −0.3679***(0.0172)

ENVRDi;t 0.0001***(3.20*10−6)

CALi;t −0.0174***(0.0007)

HCi;t 0.1549***(0.0046)

MARKETi;t −0.6343***(0.0396)

Constant −0.5458***(0.0563)

AR(1) test −1.9417*(p = 0.0522)

AR(2) test −1.1079(p = 0.2679)

Sargan test Chi2(57) = 26.2967(p = 0.9998)

Obs 300

Notes to the table (a) Figures in parentheses are standard error. (b) ***, **, * indicate that the
levels of significance are 1%, 5% and 10%, respectively

284 X. Rong-hui



economic green transformation, but traditional innovation impedes the process of
green transformation. It is because environmental innovation includes not only
innovation of end-of-pipe techniques, but also of cleaner production, new-energy
and recycling techniques. Therefore, it is able to achieve cleaner production and
enhanced productivity at the same time. However, traditional innovation mainly
aims at expanding the scale of production, while fails to consider the environmental
impact.

What calls for special attention is that environmental innovation has significant
positive externality which would leads to market failure (Li 2005). If there lacks of
exogenous rigid constrains, firms who pursue the maximization of profit will not
engage in environmental R&D activities initiatively. Therefore, it is necessary for
Chinese government to make reasonable and stringent environmental policies to
regulate firms’ behavior, as well as to incentive them innovate environmental
technologies. Moreover, China should establish a system of rewards and punish-
ments to stimulate environmental innovation and offer certain support for the
leading firms who have advantages in environmental R&D activities.
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Appendix A. The Estimated Results of Eq. (2)

See Table 4.

Table 4 The estimated results of Eq. (2)

Variables Fixed-effect panel data model

lnREGi;t�1 0.2310***(3.14)

lnSCALEi;t�1 1.5594***(6.59)

lnHCi;t�1 5.1965***(12.02)

lnEXPi;t�1 0.3559***(4.99)

lnFDIi;t�1 −0.3806***(−5.35)

lnMARKETi;t�1 0.9726***(10.00)

Constant −4.3008***(−4.22)

Time fixed-effect test Fixed

Individual fixed-effect test Random

Hausman test Chi-Sq. = 2.28(P = 0.9429)

Adjusted R2 0.7831

F-statistics 1217.07***

Notes to the table (a) Figures in parentheses are t-values. (b) ***, **, * indicate that the levels of
significance are 1%, 5% and 10%, respectively
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Chapter 14
Study of Regional Efficiency in China:
Perspectives of FDI and Green
Development

Yang Li, Chao-Ling Guo, Xiaoying Guo and Yu-Hsuan Liao

1 Introduction

Since the launch of the economic reform in 1978, China has, on average, experi-
enced a 10% economic growth rate, which attracts many scholars’ attention (Sun
et al. 2002; Hsiao and Shen 2003; Wijeweera et al. 2010). Many studies found that
foreign direct investment (FDI) has contributed positively to China’s economic
growth. However, pollution haven hypothesis suggests that FDI might result in
environmental deterioration. The Blacksmiths Institute (2007) indicated that two of
the top ten polluted cities of the world are located in China. This may imply that in
order to pursue economic development, China, like other transitional and less
developing countries, has excessively exploited its natural resources, which has
resulted in environmental disasters. In addition, the United Nations Commission on
Sustainable Development suggests that sustainable development should consist of
four dimensions: economic, environmental, social, and institutional. Because
regions in a country should establish a similar institutional framework, we evaluate
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the regional sustainable development of China from the perspectives of economic,
environmental, and social dimensions.

In the initial stage of its reforms, China faced serious insufficiency of capital and
exhibited technology lags. In an effort to accelerate the pace of industrialization
based on FDI, China opened up 14 coastal cities and established four special
economic zones and three major economic regions in order to promote national
efficiency and productivity (Li and Chen 2010). According to the 2010 World
Investment Report published by United Nations Conference on Trade and
Development (UNCTAD), FDI inflow into China hit US$95 billion in 2009,
making China the second largest host of FDI in the world only behind the U.S.

Sun et al. (2002) and Hsiao and Shen (2003) found that FDI has contributed
positively to China’s economic growth. Although FDI may benefit the host coun-
try’s economic development, the pollution haven hypothesis suggests that foreign
investment might result in environmental deterioration, especially in transitional
and less developing countries. Developing countries in general have laxer envi-
ronmental regulations, which attract pollution intensive foreign capital seeking a
“pollution haven” to avoid paying costly expenditures domestically (He 2006).
Lucas et al. (1992) and Birdsall and Wheeler (1993) indicated that the pollution
intensity in developing countries reach its peak when OECD countries formulate
strict environmental regulations, which is consistent with the pollution haven
hypothesis. A report by the Blacksmiths Institute (2007) showed that Linfen of
Shanxi and Tianying of Anhui in China are two of the top ten polluted cities in the
world. Hence, a fairly evaluation of China’s regional developments should not only
include FDI, but also incorporate the environmental dimension.

China’s FDI policy has a strong effect on the location choice of FDI, as the
policy is mainly concentrated in the eastern coastal regions. As a result, the eastern
coastal area regions has been the top choice for FDI after the reforms and opening
up policy. According to the department of Foreign Investment Administration,
Ministry of Commerce of the People’s Republic of China, the 11 eastern coast
provinces received 80% of total FDI inflow, whereas 12 provinces in the western
regions only accounted for less than 5%. As time goes by, due to the imbalanced
regional economic developments, the gaps in incomes and unemployment rates
widened among different areas. In addition, as economic development grows, the
price level starts to increase the living standards of people in lower-developed areas,
making it more serious than those in higher-developed areas (Groot et al. 2004).
Facing such unbalanced development, Chinese authorities have devoted a lot of
money and effort to promote the western regions to foreign investors. Furthermore,
China established the State Council Leading Group on Western Development to
implement the Great Western Development.

Previous literature only focused on economic and/or environmental dimensions
to evaluate regional development in China, but the United Nations Commission on
Sustainable Development indicates that sustainable development should include
economic, environmental, social, and institutional dimensions. Because regions in a
country should establish a similar institutional framework, this study analyzes
regional sustainable development of China from the perspectives of economic,
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environmental, and social dimensions. In addition, Crespo and Fontoura (2007)
claimed that the FDI spillover effect is usually determined by the absorptive
capacity of local corporations and the technology gap between local and foreign
firms. Buckley et al. (2002) argued that FDI from oversea Chinese regions (Hong
Kong, Macau, and Taiwan) are mainly motivated by resource seeking, while
non-overseas Chinese regions are more market-oriented. Hence, we also investigate
the effect of the origins of FDI on regional sustainable development in China.

This study is organized as follows. Sections 2 and 3 provide the research
hypotheses and methodology, respectively. Section 4 consists of data sources, vari-
able description, empirical results, and discussions. Section 5 concludes this study.

2 Hypotheses

FDI not only brings capital and promotes employment directly to host countries, but
also indirectly creates productivity spillovers, which embody the fact that MNEs
(multinational enterprises) own technology and are interpreted in a broad sense to
include products, processes, distribution technology, and as management and mar-
keting skills, which can be transferred to domestic firms and thereby raise their
productivity level. Many countries, especially transition economies and developing
countries, adopt preferential policies in order to attract foreign investors and thus
gain spillover effects of FDI (Blomström and Kokko 1996; Sinani and Meyer 2004).

Spillovers may occur in several ways. First, demonstration effects allow local
firms to learn by observing multinational enterprises (MNCs) operating at a higher
level of technology. Second, local employees trained by MNCs may move to jobs
in domestic firms, taking with them their upgraded human capital. Third, spillovers
from backward and forward linkages occur through business transactions between
foreign affiliates and both domestic suppliers and their customers (Sinani and Meyer
2004). However, some studies show that FDI may not contribute positively to host
countries due to market-stealing and skill-stealing effects (Haddad and Harrison
1993; Aitken and Harrison 1999). The market-stealing effect means that FDI may
draw demand away from local firms and force them to cut production. The
skill-stealing effect means that FDI might attract the best workers away from local
firms, leaving them with less-skilled workers.

The spillover, however, is not automatic and requires the recipient enterprise to
have the capacity to absorb and adopt such technology (what technology? This is
the first mention). Crespo and Fontoura (2007) stated that the spillover effect of FDI
is usually determined by the absorptive capacity of the local firms and the tech-
nology gap between local companies and multinational enterprises. Lapan and
Bardhan (1973) pointed out that an enterprise needs to have a certain level of
absorptive capacity in order to benefit from the technologies developed by other
enterprises. The contribution of the spillover effect on the technology or produc-
tivity of enterprises in the host country depends on the technological absorptive
capacity of local enterprises. When the absorptive capacity of the host country is
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strong, it can benefit more from the spillover effect or make the spillover effect more
pronounced (Hsu and Chuang 2014; Sánchez-Selleroet et al. 2014; Zhang et al.
2010).

Since the beginning of its reforms China has attracted FDI in order to speed up
industrialization and upgrade its industries. Many studies found that FDI is posi-
tively related to the economic growth of China (Chen et al. 1995; Wei and Liu
2001; Sun et al. 2002; Hsiao and Shen 2003; Blonigen 2005). Although FDI has
contributed significantly to China’s economic growth, a series of reforms and
preferential policies have strong area tendency, resulting in unharmonious regional
development. The economic development of China started from south to north and
then from east to west. The earlier-developed regions enjoyed higher economic
growths and have experienced better infrastructures and absorptive capacities.
Hence, the spillover effects are uneven across regions of China.

The countries investing in China can be generally divided into two groups: the
overseas Chinese regions (Hong Kong, Macau, and Taiwan) and the non-overseas
Chinese regions (Buckley et al. 2002, 2007; Wang et al. 2009). Both types of FDI
have different objectives and characteristics, as well as productivity advantages.
Buckley et al. (2002) argued that the overseas Chinese regions (Hong Kong,
Macau, and Taiwan) are mainly motivated by resource seeking, while the
non-overseas Chinese regions are more market-oriented. FDI from the overseas
Chinese regions do not view China as the main market and consider it as a
production base to export products to overseas customers (Buckley et al. 2002;
Sun et al. 2002; Wang et al. 2009). They are mainly labor-intensive and
export-oriented (Buckley et al. 2007).

The main advantages of FDI from the non-overseas Chinese regions are intan-
gible assets, such as advanced technology, branding, marketing network, man-
agement capability, etc. (Buckley et al. 2002; Buckley et al. 2007; Lin et al. 2009;
Wang et al. 2009). Their investment motive is to access the market in China, so as
to pursue market growth in the long term, and mainly invest in advanced and
complex technology and capital-intensive industries.

All of this evidence imply that different origins of FDI may carry distinctive
spillover effects to the local companies and thus have different impacts on various
regional developments of China. Therefore, we present the first hypothesis.

H1 In China, the optimal demands for the origins of FDI defer in regions.
The economic development of a nation is sustained by mass consumption of

natural resources, particularly the utilization of energy (Lu and Ma 2004). For
regional development, energy is not only an important resource, but also a neces-
sary investment (Lee and Chang 2007). Ang (2008) indicated that the economic
development of a country is positively related to energy consumption.

Although energy consumption helps the development of a country, it also
endangers environmental quality. The pollution haven hypothesis argues that for-
eign investment transfers polluted industries to recipient countries and deteriorates
their environment. Lucas et al. (1992) and Birdsall and Wheeler (1993) found that
the pollution intensity in developing countries reach its peak when Organization for
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Economic Co-operation (OECD) countries formulate strict environmental regula-
tions, which consistent with the pollution haven hypothesis. He (2006) studied the
industrial SO2 emissions of China’s 29 provinces and indicated that when FDI stock
increases 1%, industrial SO2 emissions rise 0.098%.

Zeng and Zhao (2009) suggested that if environmental regulation is more
stringent in the receiving country of FDI, the pollution haven may not occur.
Grossman and Krueger (1995) analyzed the relationships between air quality and
economic growth for 58 countries and found that the increasing emissions of sulfur
dioxide accompany the economic growth of low-income level countries, while
reductions of pollutants accompany economic growth of high-income level coun-
tries. Selden and Song (1994) noted that the relation between pollutant emissions
per capita and per capita GDP exhibits an inverted-U shape. Groot et al. (2004)
investigated 30 provinces of China for period 1982–1997 and categorized pollu-
tants into three groups: waste water, waste gas, and solid waste. Their empirical
results indicated that regional developments are imbalanced and that the relation-
ships between pollutants and the level of income are distinctive. Due to the
imbalanced development in China, energy consumption also varies across regions
(Chontanawat et al. 2008). Hence, this study proposes the second hypothesis as
follows.

H2 The optimal energy consumptions vary in different regions of China.

3 Methodology

Data Envelope Analysis (DEA) is essentially a linear programming technique that
converts multi-outputs and multi-inputs into a scale measure of efficiency. It was
initially proposed by Charnes et al. in 1978, based on the concept of technical
efficiency (TE) by Farrell (1957). The efficiency of a decision making unit
(DMU) is calculated by transforming inputs into outputs in relation to its peer
group. However, conventional DEA treats production as a “black box” that trans-
forms inputs into outputs (Fӓre and Grosskopf 2000). One way to open this black
box is to divide the production process into sub-processes—for instance, some
intermediate products are both the outputs of one sub-process and the inputs of
another sub-process. Fӓre and Grosskopf (1996, 2000) and Fӓre et al. (2007)
proposed several network models to decompose production processes. Although
there exists some mathematical relationship between sub-processes, they only offer
overall efficiency while lacking the efficiencies of the sub-processes. Fukuyama and
Webber (2010) used a slacks-based inefficiency measure of a two-stage network
model to estimate the performance of Japanese banks.

Seiford and Zhu (1999) decomposed the bank production process into two
stages: profitability and marketability. The first stage measures a bank’s ability to
generate revenue and profitability from labor, assets, and capital stock, while the
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second stage evaluates a bank’s performance in the stock market in terms of the
revenue and profitability it generates. Decomposition of the production process is
useful for identifying the sources of inefficiencies, but the efficiencies of the first
stage, the second stage, and the whole production process are evaluated by three
independent DEA models. In other words, this approach treats the whole produc-
tion process and the sub-processes as independent, while not dealing with the
potential conflicts between the two stages arising from intermediate measures,
which are the first-stage inputs and the second-stage outputs (Chen et al. 2010).

Kao and Hwang (2008) proposed a relational two-stage DEA model to take the
serial relation of two sub-processes into account when calculating efficiencies.
Assume that there are H DMUs, where DMU h employs N inputs x

� h
¼

x1h; . . .; xNhð Þ to produce D outputs q
� h

¼ q1h; . . .; qDhð Þ in the first stage. These

D outputs become inputs in the second stage to generate M outputs y
� h

¼
y1h; . . .; yMhð Þ: Define the efficiencies of the first-stage h1h and those of the
second-stage h2h to be:

h1h ¼
PD

d¼1 /d qdhPN
n¼1 vn xnh

ð1Þ

h2h ¼
PM

n¼1 umymhPD
d¼1

~/d qdh
; ð2Þ

where vn, um, /d , and ~/d are unknown non-negative weights. Kao and Hwang
(2008) set both /d and ~/d to be equal. The output-oriented overall efficiency hh,
defined as the product of h1h and h2h, can then be solved by the following model:

Min
u1; . . .; uM ; v1; . . .; vN

/1; . . .;/D

XN
n¼1

vnxnh ð3Þ

s:t:
XM
n¼1

umymh ¼ 1

XD
d¼1

/dqdj �
XN
n¼1

vnxnj � 0; j ¼ 1; 2; . . .;H

XM
n¼1

umymj �
XD
d¼1

/dqdj � 0; j ¼ 1; 2; . . .;H

/d � 0; d ¼ 1; . . .;D; vn � 0; n ¼ 1; . . .;N; um � 0;m ¼ 1; . . .;M
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The optimal weights ðu�1; . . .; u�M ; v�1; . . .; v�N ;/�
1; . . .;/

�
DÞ obtained from Eq. (3) can

be used to construct the efficiencies h1h and h
2
h through Eqs. (1) and (2), respectively.

The reciprocal of the optimal objective value is the overall efficiency hh, which is
the product of h1h and h2h i.e., hh ¼ h1h � h2h.

The dual form of model (3) is:

Max
ah; k1; . . .; kH
p1; . . .; pH

ah ð4Þ

s:t:
XH
j¼1

kjxnj � xnh; n ¼ 1; 2; . . .;N;

XH
j¼1

pjymj � ahymh; m ¼ 1; 2; . . .;M;

XH
j¼1

ðkj � pjÞqdj � 0; d ¼ 1; 2; . . .;D;

kj; pj � 0; j ¼ 1; 2; . . .;H; ah is free:

Here, the optimal solution a�h is the reciprocal of the overall efficiency hh, i.e.,
hh ¼ 1

�
a�h. Note that if kj ¼ pj for all j, then model (4) is identical to the CCRmodel.

Chen et al. (2010) showed that the above relational two-stage DEA model
cannot project inefficient DMUs onto the DEA frontier. They thus created a set of
new intermediate measures q̂

� h
¼ q̂1h; � � � ; q̂Dhð Þ for DMU h to be determined in

order to constitute an efficient projection point under model (4). The constraintPH
j¼1 ðkj � pjÞqdj � 0 is then separated into two new constraints:

XH
j¼1

kjqdj � q̂dh; d ¼ 1; 2; . . .;D; ð5Þ

XH
j¼1

pjqdj � q̂dh; d ¼ 1; 2; . . .;D: ð6Þ

Equations (5) and (6) treat q̂dh as outputs and inputs, respectively. Model
(4) becomes:

Max
ah; k1; . . .; kH

p1; . . .; pH ; q̂1h; . . .; q̂Dh

ah ð7Þ
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s:t:
XH
j¼1

kjxnj � xnh; n ¼ 1; 2; . . .;N;

XH
j¼1

pjymj � ahymh; m ¼ 1; 2; . . .;M;

XH
j¼1

kjqdj � q̂dh; d ¼ 1; 2; . . .;D;

XH
j¼1

pjqdj � q̂dh; d ¼ 1; 2; . . .;D;

kj; pj � 0; j ¼ 1; 2; . . .;H; q̂dh � 0; d ¼ 1; . . .;D; ah is free:

Note that model (4) and model (7) generate the same efficiency score (Chen et al.
2010). However, model (7) not only measures the overall efficiency by taking into
account the serial relation of two sub-processes, but also provides the optimal
intermediate measures q

� h
¼ q̂1h; . . .; q̂Dhð Þ. In addition, these optimal intermediate

measures offer guidelines to DMUs in how to adjust intermediate measures in order
to reach the efficiency frontier.

Outputs sometimes can be classified into several groups according to their
characteristics. For instance, GDP is a desirable output, while waste or emissions
are ecologically undesirable. Different types of outputs should generally have dif-
ferent rates of adjustment to the frontier. Suppose that there are two types of
desirable outputs, y

�
¼ ðy1; . . .; yMÞ and z

�
¼ ðz1; . . .; zEÞ; and one type of unde-

sirable outputs b
�
¼ ðb1; . . .; bRÞ: Assume that all three types of outputs are equally

important. Equation (7) can then be extended as:

Max
ah; bh; ch; k1; . . .; kH

p1; . . .; pH ; q̂1h; . . .; q̂Dh

ah � bh þ ch ð8Þ

s:t:
XH
j¼1

kjxnj � xnh; n ¼ 1; 2; . . .;N;

XH
j¼1

pjymj � ahymh; m ¼ 1; 2; . . .;M;

XH
j¼1

pjbrj ¼ bhbrh; r ¼ 1; 2; . . .;R;

XH
j¼1

pjzej � chzkh; e ¼ 1; 2; . . .;E;
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XH
j¼1

kjqdj � q̂dh; d ¼ 1; 2; . . .;D

XH
j¼1

pjqdj � q̂dh; d ¼ 1; 2; . . .;D

kj; pj � 0; j ¼ 1; 2; . . .;H; q̂dh � 0; d ¼ 1; 2; . . .;D:

As suggested by Färe and Grosskopf (1996) and Chung et al. (1997), we impose
weak disposability in the undesirable outputs, represented by the equality sign in
the undesirable output constraints. The other outputs and inputs satisfy strong
disposability, characterized by an inequality sign in constraints.

4 Empirical Analysis

4.1 Data Sources and Input-Output Variables

The dataset, obtained from China Statistics Yearbook, consists of 30 regions (13
from eastern, 6 from middle, and 11 from eastern) in China for the period 2006–
2009. We exclude Tibet, because of missing data. Since we have a four-year period
of panel data, all nominal variables are deflated by the GDP deflator with 2005 as
the base year.

This study decomposes the production process of China’s provinces into two
sequent sub-processes. The first sub-process measures the performance for how
provinces magnetize production factors such as labor and capital, named the
attractiveness stage, while the second sub-process evaluates the efficiency of
development, consisting of economic, environmental, and social dimensions,
named the sustainable development stage. Infrastructures are key factors to promote
economic development. Regions with well-established infrastructures not only
stimulate productivity, but also magnetize investment effectively. Li and Chen
(2010) found that infrastructures offer a positive contribution to the efficiencies of
the Pearl River, the Yangtze River Delta, and BoHai Rim regions. In addition, Zhan
(1993) and Zhang and Felmingham (2002) argued that well-established infras-
tructures attract FDI. Hence, this study consists of three infrastructure variables as
inputs in the first stage: local government expenditures in education, science and
technology, medical and health care, and transportation (GOV); water supply
(Water); and area of paved roads (Road).

Intermediate measures are the outputs in the first stage and the inputs in the
second stage. We have five intermediate measures: number of employees (Labor),
energy consumption (Energy), capital stock (Capital), FDI stock from Hong Kong,
Macao, and Taiwan (HMT), and Other FDI stock (OF). The stocks of capital and
two types of FDI are estimated by the following steps. First, we assume that the
capital stock at time t is:
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Kt ¼ ð1� cÞKt�1 þ It; ð9Þ

where Kt and It are the capital stock and gross capital formation at time t,
respectively, and c is the depreciation rate and assumed to be 5%. Second, the
method proposed by Wu (2000) suggests the following formula to calculate the
stock of the first period (K1):

K1 ¼
Z1

�1
Itdt ¼ I0eh

h
; ð10Þ

where It ¼ I0eh t. Finally, we estimate I0 and h by OLS (Wu 2000):

ln It ¼ ln I0 þ h tþ et; ð11Þ

in order to obtain the estimate of K1. Because of data limitations, we assume that the
first period of capital stock is in 1982 and both types of FDI are in 1992.

We consider three types of outputs in the second stage: economic, environ-
mental, and social dimensions. The economic dimension consists of GDP per
capital (GDPP) and patents filed (Patent). All variables in the environmental
dimension are undesirable, containing SO2 emissions (SO2) and soot emissions
(Soot). The social dimension includes employment rate (EMP), daily disposal
capacity of sewage (DDCS), and the percentage of persons who graduated from a
senior high school or higher level over the total population (ECU). The definition
and descriptive statistics of all variables are presented in Tables 1 and 2,
respectively.

4.2 Empirical Results

This study employs the mathematical programming software LINGO 11.0 to cal-
culate the technical efficiencies of all three output dimensions and the optimal
intermediate measures. Due to the imbalanced regional developments, the incomes
and unemployment rates in the regions reveal considerable variations. In addition,
China’s FDI policy is mainly concentrated in the eastern coastal areas, which has
attracted over 80% of total FDI inflow. Therefore, efficiencies and optimal inter-
mediate measures among the eastern, middle, and western regions may have
structural variations. Moreover, the global financial tsunami in 2008 severely
impacted Chana as well as the rest of the world. Hence, there may exist structural
changes after the financial tsunami in 2008.

Table 3 shows that the mean efficiencies of the economic dimension in the
eastern region are higher than those in the western and middle regions over the
study period. Both the environmental and the social dimensions exhibit the same
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pattern as the economic dimension. In addition, the western region outperforms the
middle region in all dimensions over the study period. Although we find that the
eastern region has the highest efficiency and the middle region has the lowest value,
we cannot assert in these mean efficiencies that there do exist significant differences
until some appropriate statistical methods are performed to test them. Hence, we
employ a non-parametric test to examine whether or not the mean efficiencies are
significantly different among these regions.

The results of the Kruskal Wallis test shown in Table 4 indicate that all
dimensions are significant at the 5% level, except for the environmental dimension
during the period 2008–2009 with a p-value of 0.129. These empirical results
suggest that the mean efficiencies of different regions are notably different.
Nevertheless, the factor region consists of three categories. The conclusion inferred
from the Kruskal Wallis test can only be that these three mean efficiencies are not
all equal. We thus go a step further and determine where the differences are among
the mean efficiencies.

Table 5 contains pairwise comparisons among the eastern, middle, and western
regions based on the Mann-Whitney U test (Wackerly et al. 2008). Results show
that the mean efficiency of the eastern region is significantly larger than those of the
middle and western regions at the 10% level of significance. Furthermore, the
western region outperforms the middle region only in the economic dimension at

Table 1 Definitions of variables

Variable Definition

Inputs

GOV Education, science and technology, medical and health care, and transportation
expenditures over total expenditures (%)

Water Water supply (million tons)

Road Area of paved roads (million square meters)

Intermediates

Labor Number of employees (10,000 persons)

Capital Capital stock funds (100 million yuan)

Energy Energy consumption (million standard coal equivalent)

HMT FDI stock from Hong Kong, Macao, and Taiwan (100 million yuan)

NHMT Other FDI stock (100 million yuan)

Outputs

GDPP GDP per capita (yuan)

Patent Number of patents filed (number)

SO2 SO2 emissions (10,000 tons)

Soot Soot emissions (10,000 tons)

EMP Employment rate (%)

DDCS Daily disposal capacity of sewage (per 10,000 cubic meters)

EDU Percentage of persons who graduated from a senior high school or higher level over
the total population (%)
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Table 3 Mean efficiencies of different regions for various periods

Periods East Middle West

Econ. Dim. 2006–07 0.80642 0.30015 0.49593

2008–09 0.76428 0.29659 0.50342

Environ. Dim. 2006–07 0.80669 0.58075 0.65442

2008–09 0.77589 0.60014 0.66451

Social Dim. 2006–07 0.94638 0.74939 0.80357

2008–09 0.90094 0.72050 0.76566

Table 4 Kruskal Wallis tests of mean efficiencies for various regions

Econ. Dim. Environ. Dim. Social Dim.

v2 [d.f] p-value v2 [d.f] p-
value

v2 [d.f] p-
value

2006–
07

25.909*** [2] < 0.001 8.192** [2] 0.017 10.338*** [2] 0.006

2008–
09

22.424*** [2] < 0.001 4.090 [2] 0.129 8.277** [2] 0.016

Note *, **, and *** represent the 10, 5, and 1% levels of significance, respectively

Table 2 Descriptive statistics

Variable Mean Std. Dev. Minimum Maximum

Inputs

GOV 0.270 0.047 0.167 0.406

Water 169,866.04 164,144.38 15,641.00 993,218.00

Road 12,392.68 11,039.44 580.00 55,756.00

Intermediates

Labor 403.60 232.71 43.20 1055.00

Capital 21,992.62 15,637.84 2413.63 76,832.23

Energy 10,511.19 6596.86 900.77 30,828.21

HMT 1001.41 1606.15 14.19 9588.18

NHMT 1394.02 1771.81 28.37 8299.53

Outputs

GDPP 21,257.79 13,097.29 5,582.14 67,013.66

Patent 21,264.67 31,189.05 325.00 174,329.00

SO2 68.58 40.35 2.10 168.70

Soot 24.25 17.17 0.80 84.50

EMP 0.96 0.01 0.95 0.99

DDCS 361.89 310.46 13.50 1432.20

EDU 0.25 0.10 0.12 0.57

Note All nominal variables are deflated by the GDP deflator with 2005 as the base year
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the 5% level of significance, while the other two dimensions are insignificant at the
33% level of significance.

Table 6 presents the optimal intermediates. The results show that for all inter-
mediates, the eastern region has the highest optimal estimates among the three
regions and that the middle region has the second highest optimal values.
Moreover, all optimal intermediates have increased after the financial tsunami
except for labor in the eastern region. We further use non-parametric tests to
investigate whether these optimal intermediates do exhibit significant differences
among the three regions.

The Kruskal Wallis test results shown in the top part of Table 7 indicate that all
optimal intermediates are significant at the 1% level, suggesting that the optimal
intermediates of different regions are remarkably distinctive. Furthermore, the
Mann-Whitney U test results at the bottom part of Table 7 suggest that during the
study period, all optimal intermediates in the western region are significantly lower

Table 5 Mann-Whitney U tests of mean efficiencies for various regions

East versus Middle East versus West Middle versus West

Z p-value Z p-value Z p-value

Econ. Dim.

2006–07 −4.537*** <0.001 −3.529*** <0.001 −2.595*** 0.009

2008–09 −4.244*** <0.001 −3.143*** 0.002 −2.451** 0.014

Environ. Dim.

2006–07 −2.723*** 0.006 −2.097*** 0.036 −0.578*** 0.563

Social Dim.

2006–07 −3.355*** 0.001 −1.918* 0.055 −0.958 0.338

2008–09 −2.579*** 0.010 −2.205** 0.027 −0.727 0.467

Notes (1) *, **, and *** represent the 10, 5, and 1% levels of significance, respectively
(2) Since the Kruskal Walli Test for the period 2008–2009 is insignificant at the 10% level of
significance, it is not necessary to perform the Mann-Whitney U test

Table 6 Mean of optimal intermediates for various regions

Period East Middle West

Labor 2006–07 504.4943 469.9397 240.1388

2008–09 501.0712 494.1548 243.0013

Energy 2006–07 10,610.6086 9,489.1526 5,846.4162

2008–09 11,129.2505 9,950.8114 6,340.7490

Capital 2006–07 25,939.0545 22,091.3891 11,181.0264

2008–09 34,530.8578 27,961.2297 14,704.3836

HMT 2006–07 1,736.9962 1,176.1267 500.2681

2008–09 1,795.4678 1,423.8260 569.7545

NHMT 2006–07 2,725.9184 2,285.7091 963.4675

2008–09 3,634.1349 2,552.9975 1,218.7948
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than those in the eastern and the middle regions at the 1% level, while they are
insignificant between the eastern and the middle regions at the 47% level.

4.3 Discussion

In the beginning of its reforms, China proposed numerous policies to attract FDI in
order to overcome insufficiency of capital and lags of technology. Many studies
found that FDI contributed positively to China’s economic growth, while some
researchers proposed the pollution haven hypothesis, arguing that foreign invest-
ment might result in environmental deterioration. Hence, this study evaluates
regional sustainable development of China from the perspectives of economic,
environmental, and social dimensions.

Table 7 Non-parametric tests of optimal intermediates for various regions

Kruskal Wallis test

2006–07 2008–09

v2 [d.f] p-value v2 [d.f] p-value

Labor 20.775*** [2] <0.001 21.386*** [2] <0.001

Energy 14.246*** [2] 0.001 11.811*** [2] 0.003

Capital 2.191*** [2] <0.001 21.634*** [2] <0.001

HMT 19.257*** [2] <0.001 21.901*** [2] <0.001

NHMT 19.927*** [2] <0.001 22.208*** [2] <0.001

Mann-Whitney U test

East versus Middle East versus West Middle versus West

Z p-value Z p-value Z p-value

Labor

2006–07 −0.597 0.551 −3.952*** <0.001 −3.820*** <0.001

2008–09 −0.157 0.875 −3.890*** <0.001 −4.072*** <0.001

Energy

2006–07 −0.471 0.638 −3.249*** 0.001 −3.207*** 0.001

2008–09 −0.220 0.826 −2.959*** 0.003 −2.919*** 0.004

Capital

2006–07 −0.628 0.530 −3.952*** <0.001 −3.928*** <0.001

2008–09 −0.722 0.470 −3.993*** <0.001 −3.964*** <0.001

HMT

2006–07 −0.722 0.470 −3.952*** <0.001 −3.388*** 0.001

2008–09 −0.188 0.851 −4.304*** <0.001 −3.496*** <0.001

NHMT

2006–07 −0.220 0.826 −3.952*** <0.001 −3.604*** <0.001

2008–09 −0.911 0.362 −4.407*** <0.001 −3.279*** 0.001

Note *, **, and *** represent the 10, 5, and 1% levels of significance, respectively
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The main objective of this study is to investigate how different origins of FDI
influence the development of various regions in China. Table 8 shows that for all
regions during the study period, the optimal values of capital from the overseas
Chinese regions (Hong Kong, Macau, and Taiwan) are significantly lower than
those from the non-overseas Chinese regions at the 5% level. In addition, the
Kruskal Wallis test results exhibited at the top part of Table 7 disclose that during
the study period, the optimal values of both types of FDI (HMT and NHMT) are
notably different among three regions. These results support Hypothesis 1: In
China, the optimal demands for the origins of FDI defer in regions.

Table 6 reveals not only that the optimal values of FDI from the overseas
Chinese regions are lower than those from the non-overseas Chinese regions, but
also that their gaps are wider after the global financial tsunami of 2008, especially in
the eastern region. More precisely, the optimal values of HMT in the eastern region
are almost the same between before and after the financial tsunami, while they
increase about 32% for NHMT; for the middle and western regions, they are 21 and
13.8% respectively for HMT, and 11.69 and 26.48% respectively for NHMT. This
suggests that the contribution of FDI from the non-overseas Chinese regions is
higher than that from the overseas Chinese regions, especially in the east region
after the financial tsunami in 2008. Furthermore, the adjustments of intermediates
(optimal intermediates minus actual ones) shown in Table 9 reveal that all FDI
should increase except FDI from the overseas Chinese regions in the east region
after the financial tsunami in 2008. Hence, we may conclude that the eastern region

Table 8 Mann-Whitney U tests of optimal values for origins of FDI

2006–07 2008–09

Z p-value Z p-value

East −2.855*** 0.004 −4.278*** <0.001

Middle −2.944*** 0.003 −2.309** 0.021

West −2.418** 0.016 −2.723*** 0.006

Table 9 Adjustments of intermediates (optimal intermediates minus actual ones)

Period East Middle West

Labor 2006–07 −0.5326 31.5980 −1.5612

2008–09 −30.0750 45.3548 −8.2941

Energy 2006–07 −1,745.8844 −1,126.5050 −724.2719

2008–09 −2,405.0351 −2,206.5532 −1,402.4951

Capital 2006–07 −92.1423 4,193.7757 1,238.3056

2008–09 −18.5381 1,788.3932 321.0125

HMT 2006–07 128.8827 695.8213 329.7275

2008–09 −311.7412 744.5846 301.3701

NHMT 2006-07 327.4543 1,738.8292 750.3150

2008-09 629.2893 1,820.6963 911.6569
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should invite only FDI from non-overseas Chinese regions and that the better place
of FDI from overseas Chinese regions is in the middle region.

The Kruskal Wallis test results presented at the top of Table 7 suggest that the
optimal energy consumptions are significant at the 0.1% level; in other words, the
optimal energy consumptions of different regions are truly diverse, supporting
Hypothesis 2: The optimal energy consumptions are different in various regions. In
addition, the Mann-Whitney U test results revealed at the bottom part of Table 7
suggest that the optimal energy consumption in the western region is significantly
lower than those in the eastern and the middle regions at the 1% level, while they
are insignificant between the eastern and the middle regions at the 63% level.
Table 8 displays that the adjustments of energy consumptions are all negative,
indicating that China should reduce energy consumption nationwide, especially in
the eastern and middle regions.

The optimal intermediates have increased after the financial crisis in China
except for labor in the eastern region. In addition, the optimal value of labor in the
western region is almost the same between before and after the financial tsunami of
2008, and the optimal capital (local capital and both types of FDI) increases con-
siderable from 2006–07 to 2008–09. These may suggest that the economic devel-
opment of China should move forward more into capital intensive methods,
especially in the eastern region.

5 Conclusions

Since the beginning of its reform, China has adopted a series of policies to attract
FDI in order to accelerate industrialization. Although FDI has contributed signifi-
cantly to the country’s economic development, a series of reforms and preferential
policies have tended towards certain areas, resulting in unbalanced regional
development. Moreover, the pollution haven hypothesis argues that foreign
investment might result in environmental deterioration of the recipient countries,
especially in transitional and less developing countries. Therefore, this study has
analyzed regional sustainable development of China from the perspectives of
economic, environmental, and social dimensions.

The dataset, obtained from China Statistics Yearbook, consists of 30 regions of
China for the period 2006–2009. Empirical results indicate that the optimal values
for origins of FDI are different in these various regions. Similar phenomena also
exist in the optimal energy consumptions. Other findings include that: (1) the
eastern region should focus only on FDI from non-overseas Chinese regions; and
(2) FDI from overseas Chinese regions is better invested in the middle region;
(3) China should decrease energy consumptions nationwide, especially in the
eastern and middle regions; and (4) the economic development of China should be
moving forward to being more capital intensive, especially in the eastern region.
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Chapter 15
Emissions Cost and Value-Added Benefit
of Exports in China: An Analysis Based
on a Global Input-Output Model

Wencheng Zhang and Rui Wei

1 Introduction

China’s exports have shifted to a fast lane since China’s accession to the World
Trade of Organization (WTO) in 2001 (Fig. 1), and its export share in the world
increased from 4% in 2000 to 14% in 2009. As a result, China became the largest
exporter of commodities in the world in 2009. In fact, exports have long been a
powerful engine of China’s economic growth since China adopted the reform and
opening-up policy in 1978 (Chen and Feng 2000; Yu 1998). Large numbers of jobs
are created in China by the export production particularly via transferring China’s
huge rural surplus labor to manufacturing sectors (Arto et al. 2014; Chen et al.
2012; Feenstra and Hong 2010).

Exports induce domestic production in China which generates various air pol-
lutants as its by-product. While the production of exports creates substantial eco-
nomic benefit for China, it may also generate a great deal of emissions. Many
studies have examined emissions embodied in trade of China using input-output
models. Earlier studies estimated greenhouse gas (GHG) emissions embodied in
China’s exports and imports based on single region input-output (SRIO) models
(e.g., Chen and Zhang 2010; Li and Hewitt 2008; Lin and Sun 2010; Pan et al.
2008; Shui and Harriss 2006; Weber et al. 2008), in which national input-output
tables of China or one of its trade partner was used. One of the major disadvantages
for SRIO models is estimation bias of emissions embodied in imports due to
missing information on production technology of imported goods. As availability of
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input-output data improved, more and more studies used Multi-Regional
Input-Output (MRIO) models to examine emissions embodied in trade of China.
On the one hand, national input-output tables and emissions data of both China and
its major trade partners are widely used to reduce estimation bias of emissions
embodied in imports of China (e.g., Guo et al. 2010; Li et al. 2014; Liu et al. 2010;
Peters and Hertwich 2008; Tan et al. 2013). These models are also known as the
emissions embodied in bilateral trade (EEBT) models. On the other hand, thanks to
the development of international input-output databases (see Tukker and
Dietzenbacher 2013 for an overview), full MRIO models including many countries
and regions and covering the global economy were used to quantifying emissions
embodied in trade and consumption of China (e.g., Arto et al. 2014; Davis and
Caldeira 2010; Liu and Wang 2015; Peng et al. 2016; Peters et al. 2011; Su and
Ang 2014; Wiebe et al. 2012).1 MRIO analysis has been considered as a powerful
method to assess environmental impacts of trade and consumption (Wiedmann
et al. 2007; Wiedmann 2009). Besides the estimation of emissions embodied
China’s trade, some studies also explored factors determining the changes of
embodied emissions in China using structural decomposition analysis (SDA), a
widely used technique in the input-output literature (e.g., Su and Thomson. 2016;
Xu et al. 2011; Yan and Yang 2010; Zhang 2012).

Although both economic benefit and environmental cost are two important
factors for the sustainable growth of exports, few studies focused on analyzing
exports of China from both economic and environmental perspectives. Arto et al.
(2014), as an exception, analyzed both employment and GHG emissions generated
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1Peters (2008) and Kanemoto et al. (2012) have discussed in detail the differences between an
EEBT model and a full MRIO model applied to estimate emissions embodied in trade and
consumption of a country.

308 W. Zhang and R. Wei



in the production of exports in China based on a MRIO model. The present study
examined environmental burden of exports in China combining the analysis on
economic benefit in a consistent framework. In this paper, we use value-added
exports as an indicator for measuring economic benefit of exports which is coined
in the literature on value-added accounting of international trade (Daudin et al.
2011; Johnson and Noguera 2012; Koopman et al. 2014). While employment
created by exports may be different across countries in terms of skill level and
types, value-added exports in monetary unit is an arguably more comparable index
among countries. In addition, we estimate emissions embodied in exports of China
for 8 types of air pollutants as rough indicators (Giljum and Eisenmenger 2004;
Muradian et al. 2002; Peng et al. 2016) for measuring environmental cost of
exports. While most of previous studies focus on GHG emissions (e.g., Arto et al.
2014; Davis and Caldeira 2010; Peters et al. 2011; Su and Ang 2014; Wiebe et al.
2012)2, the air pollutants analyzed in this paper include 3 types of GHG emissions
(CO2, CH4, and N2O) and 5 types of non-GHG air pollutants (NOX, SOX, CO,
NMVOC, and NH3).

We carried out the analysis in three steps. First, we estimate value-added exports
and emissions embodied in exports for 8 types of air pollutants during 1995–2009
using a global input-output model. We compare value-added exports and emissions
embodied in exports between China and the other major exporters. Second, we
calculate the pollution intensity of value-added exports of China. that is, emissions
generated in China for per unit of value-added benefit. We analyzed the trend of
China’s pollution intensities of value-added exports and carried out cross-country
comparison. Thirdly, we identified factors determining the gaps in pollution
intensities of value-added exports between China and the other major exporters
using SDA technique.

2 Methodology

2.1 Measurement of Emissions and Value-Added
Created by Exports

Suppose there are m countries and regions in the world, the basic identity of a
global MRIO model can be written as

x1
x2
..
.

xm

0
BBB@

1
CCCA¼

A11 A12 � � � A1m

A21 A22 � � � A2m

..

. ..
. . .

. ..
.

Am1 Am2 � � � Amm

0
BBB@

1
CCCA

x1
x2
..
.

xm

0
BBB@

1
CCCAþ

P
i y1iP
i y2i
..
.

P
i ymi

0
BBB@

1
CCCA ð1Þ

2See Wiedmann (2009) for an overviews on earlier studies.
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where xr is output vector of country r,
P

i yri is vector of final products produced in
country r in which yrr are products used for domestic final demand and

P
i6¼r yri are

products exported to the other countries for their final demands. Asr ¼ Zsrðx̂rÞ�1 is
a coefficient matrix of inter-industry requirements for intermediate products, where
Zsr is a matrix of inter-industry deliveries of intermediates from country s to
country r in the input-output table. x̂r denotes the diagonalization of vector xr and
ðx̂rÞ�1 denotes the inverse of x̂r. Trade of final products between country s and
country r is reflected in vector ysr and yrs, while trade of intermediate products is
modeled in matrix Asr ðs 6¼ rÞ.3

A key exogenous variable in a input-output model is final demand. Using the
MRIO model, gross output in country r, xr, can be partitioned to m parts according
to final demands they support. Suppose xrs denotes output induced by final demand,
yrs, then xr ¼

P
s xrs. xrs can be calculated using the following operation

x11 x12 � � � x1m
x21 x22 � � � x2m

..

. ..
. . .

. ..
.

xm1 xm1 � � � xmm

0
BBBB@

1
CCCCA¼

I� A11 �A12 � � � �A1m

�A21 I� A22 � � � �A2m

..

. ..
. . .

. ..
.

�Am1 �Am2 � � � I� Amm
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1
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�1

�
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..

. ..
. . .

. ..
.

ym1 ym1 � � � ymm

0
BBBB@

1
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ð2Þ

Following previous MRIO studies (e.g., Arto et al. 2014; Peng et al. 2016;
Wiebe et al. 2012), emissions embodied in exports (EEE) are defined as

EEEr ¼ f 0r
X

s 6¼r
xrs ð3Þ

where fr is direct emissions intensity vector of country r, whose elements are
emissions per unit of output in each sector. According to Eq. (3), EEE of a country
r are emissions generated within country r in the production of exports satisfying
final demand outside country r, which reflects the environmental burden of export
production for country r.

MRIO model is also widely used in the literature on value-added accounting of
international trade (e.g., Daudin et al. 2011; Johnson and Noguera 2012; Koopman
et al. 2014). Besides emissions induced by exports, we also calculate the domestic
value-added created by export production, as known as value-added exports

3For more detailed introduction on MRIO models, see Chap. 3 in Miller and Blair (2009). For
similar applications of MRIO models to trade and emissions, see, e.g., Arto et al. (2014), Davis
and Caldeira (2010), Peng et al. (2016) and Wiebe et al. (2012).
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(VAE) in the value-added accounting literature. The VAE of country r can be
calculated by

VAEr ¼ v0r
X

s 6¼r
xrs ð4Þ

where vr is value-added ratio vector whose elements are ratios of value-added to
gross output value in each sector. Comparing Eqs. (3) and (4), we can see that
definitions of VAE and EEE are consistent in terms of system boundary.

To focus on the structural and technique effect of export production, we further
define the pollution intensity of value-added exports (PIVE) as the ratio of EEE to
VAE:

PIVEr ¼ EEEr

VAEr
ð5Þ

PIVE equals emissions generated to earn one unit of value-added from export,
which can reflect the environmental efficiency of export production.

2.2 Decomposition of Differences in PIVE Across Countries

We use SDA to compare more deeply PIVE of China to those of the other major
exporting countries. To begin with, we use a different expression of EEE and VAE.
For country s, xis can be calculated by the equation below

x1s
x2s
..
.

xms

0
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1
CCCA ¼
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. . .
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0
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1
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..
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0
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..
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yms

0
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1
CCCA ð6Þ

Calculating xis by rows in Eq. (6), output of country r induced by final demand
of country s can be obtained by

xrs ¼ Lrr

X
i6¼r

Arixis þ yrs
� �

¼ Lrrers ð7Þ

where Lrr � ðI� ArrÞ�1, and ers �
P

i6¼r Arixis þ yrs. ers are exports of country
r which satisfies the final demand of country s. Total exports of country r satisfying
foreign final demands are er ¼

P
s6¼r ers.

4 Therefore, EEE and VAE of country
r can be rewritten as

4Note er do not equal total exports of region r because they don’t include the exported products
which are re-imported after processing abroad to satisfy the final demand of region r itself.

15 Emissions Cost and Value-Added Benefit of Exports in China … 311



EEEr ¼ f 0rLrrer ð8Þ

VAEr ¼ v0rLrrer ð9Þ

PIVE of country r is rewritten as

PIVEr ¼ f 0rLrrer
v0rLrrer

¼ f 0rLrrer=ði0erÞ
v0rLrrer=ði0erÞ ¼

f 0rLrrsr
v0rLrrsr

ð10Þ

where sr � er=ði0erÞ, and i is a column summation vector. sr indicates the product
mix of exports of country r.

To compare PIVE across countries, we define a ratio, Rkh � PIVEk=PIVEh. The
larger ratio Rkh indicates the wider gap in PIVE between country k and country
h. Based on SDA technique, Rkh can be decomposed into four components,

Rkh ¼ f 0kLkksk=v0kLkksk
f 0hLkksk=v0kLkksk|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Rf

� f 0hLkksk=v0kLkksk
f 0hLkksk=v0hLkksk|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Rv

� f 0hLkksk=v0hLkksk
f 0hLhhsk=v0hLhhsk|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

RL

� f 0hLhhsk=v0hLhhsk
f 0hLhhsh=v0hLhhsh|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rs

ð11Þ

Components Rf , Rv, RL and Rs can be used to analyze respective contribution
from differences in direct emissions intensity, value-added ratio, input structure
and export structure to the gap in PIVE between country k and country
h. However, Eq. (11) is one polar form of decomposition, the other polar form of
decomposition is

Rkh ¼ f 0kLkksk=v0kLkksk
f 0kLkksh=v0kLkksh|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

R̂s

� f 0kLkksh=v0kLkksh
f 0kLhhsh=v0kLhhsh|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

R̂L

� f 0kLhhsh=v0kLhhsh
f 0kLhhsh=v0hLhhsh|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

R̂v

� f 0kLhhsh=v0hLhhsh
f 0hLhhsh=v0hLhhsh|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

R̂f

ð12Þ

Following Xu and Dietzenbacher (2014), the geometric average of two polar
forms of decomposition is used as the approximation of each component:

Rkh ¼ �Rf �Rv�RL�Rs ¼
ffiffiffiffiffiffiffiffiffiffi
Rf R̂f

q
�

ffiffiffiffiffiffiffiffiffiffi
RvR̂v

q
�

ffiffiffiffiffiffiffiffiffiffi
RLR̂L

q
�

ffiffiffiffiffiffiffiffiffi
RsR̂s

q
ð13Þ

To change product to summation, take the logarithm on two sides

lnRkh ¼ lnPIVEk � lnPIVEh ¼ ln �Rf þ ln �Rv þ ln �RL þ ln �Rs ð14Þ

Equation (14) is used to analyze factors determining the gap in PIVE between
China and the other countries. For example, the contribution from differences in
direct emissions intensity between countries k and h is estimated by
100� ln �Rf = lnRkh.
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3 Data

Both input-output data and emissions data used in this paper are from World
Input-Output Database (WIOD). 5 A comprehensive introduction of WIOD on its
contents, data sources and construction methods can be found in Timmer et al.
(2015). WIOD offers World Input-Output Table (WIOT) series for the years 1995–
2009. The WIOT covers 1435 sectors and 41 countries and regions. Emissions
accounts of the WIOT include 8 types of air pollutant emissions in each sector. To
compare value-added and emissions intensities in different years, we need to
express the value-added in constant prices. Therefore, WIOTs in current prices are
converted to tables in the price of 2002 (the middle year of the study period) using
double deflation method. Value-added in each sector is obtained by subtracting total
intermediate input in constant price from gross output in constant prices.

4 Main Results

4.1 Value-Added and Emissions Generated by Export
Production in China

As shown in the Table 1, VAE of China increased remarkably from 140.1 billion
US dollars in 1995 to 1054.8 billion dollars in 2009. The proportion of VAE in
Chinese GDP rose from 16.8 to 32.3% in this period, indicating that export pro-
duction is of great importance for the income creation in China. However, there
were also tremendous emissions generated by export production in China. For 8
types of pollutants, EEE increased by over 100% in China during 1995–2009. In
particular, EEE of CO2 and NOX increased by 232 and 211%, respectively. The
steep increase of EEE began in the year 2001 when China joined the WTO. The
proportion of EEE in total emissions from production in China also rose up greatly.
For example, the proportion of CO2 EEE in total production emissions increased
from 21.8% in 1995 to 31.7% in 2009. For the other pollutants, proportions of EEE
in production emissions rose up by 5–9 percentage points. In 2009, EEE accounted
22–35% of total emissions from production in China. For CO2, CO, and NMVOC,
proportions of EEE were over or close to the proportion of VAE in China’s
GDP. Therefore, China has borne significant environmental burden for gaining the
economic benefit from exports.

The environmental burden of exports in China looks more noteworthy when
compared to those of the other countries. Table 2 shows that share of China’s EEE
in the global EEE (summation of EEE for all economies) was significantly greater
than other major exporters, such as the US, Germany, Japan, etc. For instance,

5The database can be accessed at http://www.wiod.org/new_site/data.htm.
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China’s share of CO2 EEE reached 24.7% in 2007, while global shares of the US
and Germany was only 6.9 and 4%, respectively. Similar results can be observed
for the other pollutants. Meanwhile, the share of China’s VAE in the global
value-added exports was 10.4%, which was 3 percentage points lower than that of
the US (13.4%) and 2 percentage points higher than that of Germany. Therefore, the
gaps in EEE share between China and major developed exporters are much greater
than their gaps in VAE share. Table 2 shows that China generated much more
emissions than developed countries given the same amount of value-added obtained
from exports.

Except for CO and NMVOC, Fig. 2. Further shows that China’s shares of EEE
were much higher than the share of VAE in every year during 1995–2009. Before
2000, China’s share of VAE increased slightly while the shares of EEE for all
pollutants decreased. However, emission-intensive growth path of exports in China
was observed in the period 2000–2009 when both shares of VAE and EEE
increased quickly.

Table 1 Domestic value-added and emissions generated by production of exports in China

Value-added CO2 CH4 N2O NOX SOX CO NMVOC NH3

Billion US
Dollar

Mt 104

tonnes
104

tonnes
104

tonnes
104

tonnes
104

tonnes
104

tonnes
104

tonnes

1995 140.1 593.2 778.1 21.8 185.5 475.4 924.7 247.6 71.7

(16.8) (21.8) (18.7) (14.2) (20.8) (21.7) (25.8) (24.7) (13.2)

1997 169.4 577.1 714.3 18.9 185.0 433.7 869.9 246.9 59.9

(16.9) (20.9) (17.2) (12.5) (19.6) (20.7) (23.0) (21.9) (11.2)

1999 184.4 538.6 618.3 17.9 180.3 372.2 1421.3 290.6 55.0

(16.2) (19.1) (14.9) (11.1) (17.9) (18.9) (23.5) (21.4) (9.7)

2001 240.7 592.2 708.9 18.7 190.9 382.0 789.6 240.0 56.4

(18.0) (20.8) (17.1) (11.7) (19.7) (20.2) (23.1) (20.9) (10.0)

2003 378.7 909.8 998.6 26.3 293.5 569.2 1086.4 332.9 81.1

(23.0) (25.5) (21.8) (15.3) (24.4) (25.1) (28.6) (25.9) (13.4)

2005 590.7 1402.6 1362.8 36.1 377.8 705.0 2511.1 646.5 116.2

(27.9) (29.9) (25.5) (19.6) (23.5) (23.8) (40.5) (36.8) (17.7)

2007 837.9 1758.0 1556.6 42.7 464.6 859.4 2789.2 559.3 140.5

(30.0) (31.8) (26.6) (21.8) (25.0) (24.9) (43.2) (31.6) (20.1)

2009 1054.8 1971.2 1796.3 49.6 577.5 1119.9 2013.1 579.2 166.1

(32.3) (31.7) (27.4) (23.5) (28.0) (27.2) (34.5) (30.9) (22.0)

Note Value-added is in price of year 2002. For value-added (second column), value in the brackets is
proportion of value-added exports in Chinese GDP. For emissions (3rd–10th column), value in the
brackets is proportion of emissions embodied in exports in total production emissions in China
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Table 2 Shares of value-added exports and emissions embodied in exports for 41 economies in
2007 (%)

Value-added CO2 CH4 N2O NOX SOX CO NMVOC NH3

US 13.4 6.9 5.4 6.4 7.0 5.5 4.9 2.8 5.6

China 10.4 24.7 21.7 15.7 16.2 32.1 13.9 10.9 19.5

Germany 8.4 4.0 0.9 2.7 2.0 0.8 0.6 1.4 2.8

Japan 7.9 3.8 0.1 0.3 4.6 2.3 0.6 1.0 0.2

UK 4.6 2.0 0.6 1.0 2.5 1.6 0.2 0.6 0.7

France 4.1 1.3 1.0 2.6 1.1 0.6 0.6 0.5 3.3

Italy 3.0 1.7 0.5 0.9 1.2 0.6 0.2 0.4 1.3

Canada 2.8 2.6 3.1 2.4 2.0 3.0 0.7 1.0 2.5

Taiwan 2.7 2.4 0.1 0.2 2.3 2.9 1.2 0.7 0.1

South Korea 2.5 2.7 0.2 0.3 1.8 1.2 1.2 3.0 0.1

Mexico 2.1 1.0 0.6 0.8 1.1 0.9 0.7 0.9 0.9

Netherlands 1.9 1.3 0.7 1.5 1.1 0.5 0.1 0.1 1.5

Spain 1.6 1.2 0.6 0.8 1.2 1.1 0.2 1.1 1.8

India 1.5 3.3 5.0 3.7 2.7 3.6 2.2 3.2 4.1

Russia 1.3 7.6 14.3 1.3 5.1 0.5 3.3 3.1 0.7

Belgium 1.2 0.9 0.3 0.7 0.5 0.3 0.2 0.1 0.7

Sweden 1.2 0.4 0.1 0.3 0.7 0.3 0.0 0.1 0.3

Ireland 1.0 0.2 0.4 0.5 0.1 0.1 0.0 0.0 0.8

Austria 1.0 0.4 0.1 0.2 0.2 0.0 0.1 0.1 0.3

Poland 1.0 1.4 0.8 1.2 1.0 1.1 0.2 0.3 1.0

Australia 0.8 1.3 2.8 0.9 2.6 2.3 4.6 1.4 2.1

Brazil 0.8 0.8 6.0 7.3 2.3 1.6 1.9 2.0 6.9

Indonesia 0.7 1.4 2.2 1.8 1.2 1.5 1.5 1.8 1.8

Denmark 0.6 1.0 0.2 0.6 4.8 1.8 0.1 0.1 0.6

Turkey 0.6 0.7 0.2 0.2 0.6 0.6 0.2 0.5 0.8

Finland 0.6 0.4 0.1 0.3 0.4 0.2 0.0 0.1 0.2

Czech 0.5 0.7 0.3 0.4 0.4 0.3 0.1 0.1 0.3

Hungary 0.4 0.3 0.2 0.5 0.3 0.1 0.1 0.2 0.4

Portugal 0.3 0.3 0.2 0.2 0.3 0.3 0.0 0.2 0.2

Slovak Rep. 0.3 0.3 0.1 0.3 0.2 0.1 0.1 0.1 0.1

Greece 0.2 0.1 0.1 0.1 0.1 0.3 0.0 0.0 0.1

Romania 0.1 0.4 0.4 0.3 0.3 0.7 0.1 0.1 0.3

Slovenia 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1

Luxembourg 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Bulgaria 0.1 0.4 0.2 0.2 0.3 1.6 0.1 0.1 0.2

Lithuania 0.1 0.1 0.1 0.4 0.1 0.1 0.0 0.0 0.2

Estonia 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.1

Latvia 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1

Cyprus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(continued)
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4.2 Pollution Intensities of Value-Added Exports in China

As both the volume of EEE and their shares in total emissions from production in
China increased significantly in the study period, environmental efficiency of export
productions appears to be improving in China. As exhibited in Fig. 3, PIVE in
China for most air pollutants decreased significantly and steadily during 1995–
2009.6 For example, the PIVE for CO2, SOX, and CO decreased 55.9, 68.7, and
71.1%, respectively. Therefore, given the same amount of value-added obtained
from export production, emissions generated in China in the year 2009 were sig-
nificantly less than those in 1995.

As a significant decrease of PIVE was achieved in China during 1995–2009,
China’s PIVE for all types of air pollutants is rather high compared to most
countries, particularly developed countries. Figure 4 shows PIVE of CO2 in China
in 2007 is significantly higher than that in the other economies except Russia,

Table 2 (continued)

Value-added CO2 CH4 N2O NOX SOX CO NMVOC NH3

Malta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RoW 20.1 21.9 30.5 42.7 31.7 29.7 59.9 62.1 37.2

World 100 100 100 100 100 100 100 100 100

Note The share of an economy is the percentage of its value-added exports (or emissions embodied
in exports) in the global value-added exports (or global emissions embodied in exports)
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Fig. 2 Trend of China’s shares of value-added and emissions embodied in exports during 1995–
2009. Note The share of an economy is the percentage of its value-added exports (or emissions
embodied in exports) in the global value-added exports (or global emissions embodied in exports)

6Some high peaks of PIVE for CO and NMVOC have appeared in some year (1999, 2000, 2006).
They are likely caused by outliers in emissions data.
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Bulgaria and Romania. PIVE of CO2 in China was 209.8 kg per hundred US
dollars in 2007, which was six times larger than that in France, and four times larger
than that in Japan. China’s PIVE of the other pollutants is also greatly higher than
those of South Korea and G7 countries (Table 3). Therefore, the room for
improving environmental efficiency of export production in China is still very large.

4.3 Decomposition of Gaps in Pollution Intensities
of Value-Added Exports Across Countries

Export has long been one of the most important engines of economic development
in China, which contributes significantly to job and income creation. However, if
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Fig. 4 Pollution intensities of value-added exports in 41 economies (for CO2 in the year 2007)
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the PIVE is decreased, emissions cost from export can be reduced greatly while
exports continue to play a major role in income creation in China. Last subsection
showed that PIVE of China during 1995–2009 had declined significantly but were
still much greater than those of major developed exporters. Therefore, there is still
great potential for China to reduce further its PIVE. To realize such potential, we
first need to know why China has higher PIVE than that of the other countries.
According to Eq. (10), PIVE is determined by four factors: direct emissions
intensity, value-added ratio, input structure and export structure. In this subsection,
we analyze how the discrepancies in these four factors contribute to the gaps in
PIVE between China and the other major economies by decomposing the PIVE
ratio, Rkl, based on Eq. (14).

Table 4 shows PIVE of CO2 in China was significantly greater than those of 10
selected economies.7 Decomposition shows the gaps in PIVE are mainly caused by
the differences in emissions intensity, input structure and value-added ratio between
China and selected economies. However, differences in export structures narrowed
the gaps in PIVE between China and selected economies except the US. For
example, PIVE of China for CO2 emissions was four times higher than the PIVE of
Japan. The difference in direct emissions intensity between China and Japan con-
tribute 63.5% to the gap in PIVE of two countries, while the difference in input
structure contributes 27.4% to the gap. In addition, the difference in value-added
ratios between two countries contributes 16.9% to the gap. On the contrary, the

Table 3 Ratios of China’s pollution intensity of value-added exports to those of selected
economies in 2007

CH4 N2O NOX SOX CO NMVOC NH3

Russia 0.2 1.4 0.4 7.4 0.5 0.4 3.6

India 0.6 0.6 0.9 1.3 0.9 0.5 0.7

Taiwan 72.9 24.4 1.8 2.9 3.0 4.2 69.3

South Korea 25.5 12.9 2.2 6.8 2.8 0.9 33.9

US 5.2 3.2 3.0 7.5 3.7 5.1 4.5

Japan 164.3 35.8 2.7 10.6 17.3 8.6 98.4

Canada 1.9 1.7 2.2 2.8 5.2 2.9 2.1

Germany 18.8 4.7 6.6 31.0 19.2 6.4 5.7

UK 15.7 7.0 2.9 9.1 24.8 8.6 12.5

France 8.9 2.4 5.6 22.0 9.1 8.9 2.4

Note Ratios in Table 2 are results of China’s pollution intensity of value-added exports (PIVE)
divided by the PIVE of selected economies

7We select these 10 countries from two major considerations: first, they are all major exporting
countries like China in the world in terms of value-added exports, and second, they have much
lower PIVE than China and therefore may offer greater learning and cooperation opportunity for
China to further reduce its PIVE in the future.
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difference in export structure between China and Japan contribute −7.2% to the
gap, that is, narrow the gap in PIVE. In a word, Table 4 indicates that dirtier
production technology (higher direct emissions intensity and dirtier input structure)
in China compared to selected economies is the major cause of higher PIVE in
China, whereas cleaner product mix of export in China narrows the PIVE gaps.

Contributions of the four factors to the PIVE gap are different for different
country pair. For example, higher direct emissions intensity in China is the most
important factor to explain the gaps in PIVE between China and Germany (or
Japan/UK/France/Italy). However, more emissions-intensive input structure in
China is the most important factor to explain the gap in PIVE between China and
the US (or Canada/Korea). In addition, export structure in China is also more
emissions intensive than that of US due to the higher share of service exports in the
latter, contributing to the gap in PIVE between them. Similarly, the difference in
export structure between China and Mexico also contribute positively to the gap in
PIVE between two countries.

Figure 5 shows decomposition of gaps in PIVE between China and four most
important exporters for the other air pollutants. Major conclusion from the results is
similar to that from Table 4, that is, the higher PIVE of China compared to the other
countries mainly results from dirtier production technology, while relatively cleaner
export structure of China generally narrows these gaps. However, for some air
pollutants, the difference in export structure also contributes positively to the gaps
in PIVE between China and the US (or Japan).

Table 4 Factors determining the gaps in pollution intensity of value-added exports between
China and selected economies (for CO2 in 2007)

Gap (Rkh,
k = China)

Contribution from the difference of (%)

Direct emission
intensity

Value-added
ratio

Input
structure

Export
structure

US 4.6 22.6 21.9 50.9 4.6

Germany 5.0 57.5 16.9 42.1 −16.5

Japan 5.0 63.5 16.3 27.4 −7.2

UK 5.5 48.0 18.5 35.6 −2.1

France 7.3 68.2 10.4 31.0 −9.6

Italy 4.2 73.2 3.9 33.4 −10.6

Canada 2.6 37.7 34.9 59.9 −32.6

South
Korea

2.3 38.9 15.4 56.6 −10.9

Mexico 4.7 33.6 23.8 37.4 5.3

Brazil 2.4 69.8 17.4 30.6 −17.8

Note Gap in PIVE is reflected by ratios of China’s pollution intensity of value-added exports
(PIVE) value to the PIVE value of selected economies
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5 Conclusion and Policy Implications

In the present paper, we estimated simultaneously value-added and 8 types of air
pollutant emissions generated by China’s export production. The results show that
value-added exports in China increased significantly during 1995–2009. The pro-
portion of value-added exports in Chinese GDP increased from 16.8 to 32.3% in
this period. Meanwhile, substantial quantities of emissions were generated by
export production in China. In the study period, CO2 and NOX emissions embodied
in exports were tripled. For rest pollutants, emissions embodied in exports were also
doubled. Sharp increase of emissions embodied in exports is observed after China
joined the WTO in 2001. Proportion of emissions embodied in exports in total
production emissions in China rose up greatly. In 2009, emissions embodied in
exports accounted 22–35% of total production emissions in China.

We have compared the environmental burden of exports between China and the
other major exporters in multiple aspects. China’s share of value-added exports in
the global value-added exports reached 10.4% in 2007 which was the second largest
in the world. However, for most pollutants, the global share of emissions embodied
in exports of China was significantly greater than shares of the other countries and
much greater than the share of value-added exports. In the study period, pollution
intensities of value-added exports in China declined significantly for all pollutants.
But they were still much greater than those of developed countries and of some
developing countries in 2009. We use structural decomposition technique to ana-
lyze the factors determining the gaps in PIVE between China and the other major
exporting countries. Although there are some varieties in results for different air
pollutants or different country pairs, the decomposition analysis shows that the
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Fig. 5 Factors determining the gaps in pollution intensity of value-added exports between China
and 4 major exporters (for the other pollutants in 2007)
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PIVE gaps are mainly caused by the differences in direct emissions intensity, input
structure and value-added ratio between China and selected economies. On the
contrary, differences in export structures generally narrowed the gaps in PIVE. In
other words, the relatively higher PIVE of China mainly results from its dirtier
technology reflected by the higher direct emissions intensity of production and
more emissions-intensive input structure, while relatively cleaner product mix of
export in China generally reduces the gaps in PIVE between China and the other
major exporters.

It’s of great importance for China to properly balance the economic benefit and
environmental cost of export activities to realize sustainable development of trade
and the whole economy. The social cost of environmental degradation has been
overlooked or underestimated in China for a long time in process of pursuing the
economic growth, which might have helped the boom of exports in China. In recent
years, as the public pays increasing attention to environmental issues, also because
of climbing pressure of carbon mitigation faced by Chinese government, exports of
energy-intensive, pollution-intensive and resource-intensive goods are more strictly
constrained by the Chinese government. However, the present study shows that the
more prominent factor to blame is the relatively dirtier production technology in
China.

Our results indicate that major effective measure for reducing emissions cost of
export while make it continue to play an important role in income creation in China
is to further decrease the pollution intensity of exports. To further reduce PIVE in
China in the future, innovation and adoption of cleaner technology in the pro-
duction of exports are critical as indicated in our decomposition analysis.
Preferential policy can be arranged to promote innovation and adoption of clean
technology in economic sectors. Some efforts (e.g., tax preference) have been made
by Chinese government to promote the development and application of clean
energy technology (in the field of new energy automobile, in particular). In addi-
tion, coal-dominated energy structure is one of the major causes for the high direct
emission intensity for energy-relative emissions, such as CO2, SOX and NOX, due
to the fact that emissions factors of coal for these air pollutants are much greater
than the other energy (Peters et al. 2006). There is still more than half of energy
consumption in China coming from coal. Therefore, it’s important for China to
reduce emissions from export production by reducing the share of coal in the energy
mix in the long run. Besides domestic efforts, our results also indicate that better
results can be achieved by enlarging and deepening international cooperation. The
gaps in PIVE between China and developed countries are remains significant. There
are ‘late-mover advantages’ for China to improve its technology of production.
Chinese government could stimulate international transfer of cleaner technology
from developed countries to China. Facilitating and promoting international
cooperation in low-carbon technology and project, like Clean Development
Mechanism, can also help Chinese firms to reduce energy-related emissions.

Our decomposition also showed that difference in export structure generally
reduced the gaps in PIVE. Since exports of some energy-intensive products, such as
steel and metal products, are still large and the export share of service is relatively
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low, there is still much space for China to further clean up its export structure.
Therefore, another solution for decoupling the economic benefit from environ-
mental damage in China is to shift from exports of energy-intensive goods with
relatively low value-added ratio to the exports of clean goods with high value-added
ratio like high-tech products and services.
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