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1 Introduction

In modern industrial countries, live expectancy has increased due to improved
medical standards, hence, a whole pallete of organ abnormalities, disorders or
trauma can be cured [1, 2]. However, organ maldevelopment and injury of the
genitourinary tract and especially the ureters and urethras can result in severe
complications that may badly influence quality of life. Reconstructive surgery and
tissue replacements like tubularized intestine segments for ureter reconstruction
often bring about for example stricture formation, fistula, stenosis, obstruction,
metaplasia, hydro-(neoureter) nephrosis, mucous production and/or chronic
inflammatory reactions [3, 4].

Furthermore, there is a demand for developing alternative reconstruction
methods in the field of urology. Novel promising techniques in reconstructive
surgery deal with Tissue Engineering (TE) procedures on which for example
autologous cells, taken from bladder biopsies, are seeded on tubular scaffolds to
create bio-artificial tissue constructs [5–7]. In addition, a bioreactor may be a
promising technology to generate also an almost functional tissue substitute in
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mimicking the physiological surrounding of the tissue of interest [8] in which the
bioreactor gives a stimulus to the cells to copy the nature. For urological TE
purposes, Qiang Fu et al. demonstrated that mechanical extension stimulation can
improve the viability of adipose derived stem cells (ADSCs) induced to differentiate
into SMCs and form a muscular tube of urethral TE [9]. However, a cellular
alignment in both circular and longitudinal directions could not yet be achieved.

Moreover, computational growth modelling is often adopted to predict the
tendency of cell growing or atrophying under loading conditions. For soft tissue
growth, density is mostly considered to be constant, meanwhile changes take place
in volume. The decomposition of the total growth deformation into a growth part
and an elastic part, applied to a material characterized by a 3D (three-dimensional)
simple Fung-type potential [10]. Moreover, the multiplicative decomposition of the
deformation gradient into elastic deformation and growth part for isotropic, trans-
versely isotropic and orthotropic biomaterials were presented in the framework of
finite deformation [11]. The idea for isotropic growth for an isotropic material was
then realized by [12] with their algorithmic realisation in a finite element setting in
which the isotropic stretch ratio is introduced as internal variable at the integration
point level. Subsequently, this idea was applied to analyse the isotropic growth for
arterial walls and in-stent restenosis related to atherosclerosis [13]. However, the
material describing the arterial wall is the neo-Hookean which is not realistic
because arteries are anisotropic [14]. In this paper, we first investigate the smooth
muscle cells in a tubular fibrin scaffold by mechanical stimulation and then com-
putational growth modelling is analysed with two growth models, which are iso-
tropic growth and transversely isotropic growth for isotropic muscle cells in order to
accurately simulate and observe behaviour of cells.

2 Mechanical Stimulation

2.1 Materials and Methods

2.1.1 Cell Isolation

Smooth muscle cells were isolated from porcine bladders that were obtained from a
local abattoir, dissected and sliced into pieces of about 1 mm3 as in [15]. Tissue
samples (20) were placed in T75 flasks (Nunc, Germany) and incubated with a
standard cell culture medium (provided by Invitrogen and Sigma Aldrich,
Germany). Medium was changed regularly after three to four days and cells were
passaged up to four times, before they were applied in fibrin scaffolds.
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2.1.2 Fibrin Gel Preparation

Fibrinogen from human plasma (Merck Millipore, Germany) was prepared as
described in [16]. Fibrinogen was dissolved in double distilled water (ddH2O) at
25 mg/mL, before it was dialyzed over night against Trizma buffered saline (TBS),
using a dialysis membrane with a cut off of 6000–8000 MW (Carl Roth, Germany).
After sterile filtration, the fibrinogen concentration was determined with a spec-
trophotometer (Jasco, Germany) at 280 nm and an extinction coefficient of 1.55
[17].

Fibrin gels (n = 14) were prepared with 3 mL fibrinogen (12.5 mg/mL), 2.1 mL
TBS that include 3 � 107 cells, 450 lL thrombin (40 IU/mL) and 450 lL calcium
chloride (50 mM). In the end, a fibrinogen concentration of 6.25 mg/mL was
achieved with a cell count of 5 � 106 cells/mL. Biohybrids were cultured with the
standard cell culture medium supplemented with 1 mM L-ascorbic acid
2-phosphate (Sigma Aldrich, Germany) to enhance the tissue and collagen secretion
and with 0.5 mg/mL tranexamic acid (Pfizer, Germany) to prevent fibrinolysis [18,
19].

2.1.3 Scaffold Preparation and Cell Seeding

Figure 1 shows a casting mould for the preparation of a tubular composite scaffold
made up of fibrinogen and polyvinylidene fluoride (PVDF). The PVDF mesh
(RWTH Aachen, Germany) formed the inner layer of the tubular structure. This
mould was produced out of Teflon and polyoxymethylene (POM) and was man-
ufactured at Aachen University of Applied Sciences, Germany.

Fig. 1 Casting mould for composite biohybrids consisting of: top (1), bottom (2), pins for
positioning (3), fittings (4), central rod (5), front cap (6), end cap (7), wing bolts/nuts (8)/(9) and
Luer adapters (10) [21]
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The fibrinogen solution and the cell suspension were injected into the mould by
a two-chamber application system (Medmix, Switzerland). The polymerization
inside the mould starts within several seconds and results in a 2 mm thick and
75 mm long tubular structure with an inner diameter of 6 mm. The biohybrid was
transferred into the bioreactor after 45 min of polymerization at room temperature.

2.1.4 Mechanotransduction

A kyphoplasty catheter (Joline, Germany) was inserted into the lumen of the bio-
hybrid in order to mimic a urine drop. The catheter was inflated by a syringe pump
and was pulled through the tube by a linear actuator. The mechanical experimental
stimulator system was partially manufactured by the HITEC Zang GmbH
(Herzogenrath, Germany). Subsequently, the catheter was deflated and pushed
forward, again. This mechanical stimulation was performed with a frequency of
0.015 Hz. The inflation of the catheter followed a sigmoidal waveform as it is
depicted in Fig. 2 with a maximal strain of 20% [20, 21].

2.1.5 Histological Analysis

Tissue fragments were fixed in Carnoy’s fluid for at least 8 h, before they were
dehydrated and embedded in paraffin. Dehydration, embedding, slicing in 5 lm
sections and haematoxylin and eosin (H&E) staining were performed.

Fig. 2 A sigmoidal waveform and a casting of scaffold [21]
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The analysis of the alignment of cells in histological cross sections and scanning
electron microscopic pictures from the outer surface of the tubes was performed
with LabVIEW (National Instruments, USA). Cellular and structural orientations
were analysed according to the size of the interquartile ranges.

2.1.6 Biochemical Analysis

Diffusion experiments were performed as previously described in [15]. Samples of
Krebs buffer with a volume of 1 mL were taken after 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8 h.
The sample volume was replaced by fresh buffer and the concentration of urea and
creatinine were then determined (Uniklinik RWTH Aachen, Germany).

2.1.7 Mechanical Properties

Mechanical properties were analysed by the rupture pressure of the tissue frag-
ments. A chamber was constructed for inflation test at bursting pressure (Aachen
University of Applied Sciences, Germany).

Five to ten cm long tubular structures were sliced longitudinally and were
arranged in the pressure chamber in a way that an increasing pressure was applied
onto the extraluminal surface of the biohybrids. A syringe pump was controlled and
the data acquisition were performed with an interface (HiTec Zang GmbH,
Germany).

2.2 Results and Discussion

Figure 2 shows homogeneous, bubble free 75 mm long fibrin-VDF composite
prosthesis that polymerized for 45 min in the casting mould at room temperature
[22]. For mechanical stability, the rupture pressure revealed that there are no sig-
nificant differences between mechanically stimulated and unstimulated prosthesis.
Table 1 indicates that there was a tendency to increasing mechanical stability for
stimulated prostheses. A similar tendency was observed for extended incubation
periods. The rupture pressure increased after two weeks of incubation and with
mechanical stimulation. On cellular orientation, histological cross sections stained
with HE show an orientation of cells for stimulated prosthesis in comparison to
untrained prosthesis. This can be observed due to elongated cell morphologies, see
Fig. 3. Scanning electron microscopy from the outer tubular surface exposed that
mechanically stimulated tissues show a preferred orientation of cells along the
tubular structure of the prosthesis [8]. Obviously, the intensity of mechanical
stimulation is dependent on various parameters and different models: the applied cell
type, cell source, cell passage as well as in the experimental setup. Nevertheless, it is
seen to be stress level and cell type specific.
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Tissue engineering as multidisciplinary field in science might lead to new
technologies for the replacement of defect genitourinary tract organs. For that
reason, different cultivation methods as well as scaffold materials are continuously
tested and developed. The application of mechanical forces plays a crucial role for
the tissue generation and orientation of cells. Cells react on mechanical stresses and
control the remodelling of the tissues composition and mechanical properties [23–
26]. Smooth and continuous tubular composite biohybrids can be prepared reliable
and are useful for the application in the bioreactor. Even when the PVDF mesh
material is used as luminal structure that is not integrated in the tubular wall as seen
by others [27–29]. This was done in order to stabilize the tubular structure and to
prevent a damage of the gel by the kyphoplasty catheter. Up to date, bioreactors for
urological applications can be found nearly exclusively for bladder wall substitutes

Table 1 Bursting pressure[21]

Incubation period Puntrained [mbar] Ptrained [mbar]

One week 1210 ± 310 1530 ± 50

Two weeks 1450 ± 530 2120 ± 200

Fig. 3 Morphological appearance of mechanically unstimulated (left) and stimulated (right);
H&E staining [21]
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of planar scaffold materials. Studies on bladder wall substitutes show benefits with
increased cellular proliferation rates for dynamic cultivation conditions, mimicking
a physiological intravesical pressure situation [30, 31]. For that reason, planar
scaffold materials are deflected frequently. The presented study shows a novel
stimulation procedure mimicking a urine bolus in a seamless, tubular scaffold
material. Therefore, a kyphoplasty balloon catheter was used to simulate a physi-
ologic movement of a urine bolus. To our knowledge, no comparable bioreactor
system can be found in literature.

To date, tubular biohybrids are cultivated and trained in bioreactors, where the
cell culture medium is transferred by peristaltic pumps leading to increased intra-
luminal pressures and diameters [26, 32]. Another method is to stretch ring shaped
constructs with hooks [33]. Both methods lead to the same result with circularly
arranged cells and improved mechanical properties, which is comparable to the
situation in this study.

3 Computational Growth Modelling

The growth of cells in the fibrin tubular structure can be modelled and simulated by
using growth theory for soft tissue in which the density is mostly unchanged. In
general, growth can be described in different ways. For instance, growth can be an
added mass, which can occur through cell division (hyperplasia), cell enlargement
(hypertrophy), secretion of extracellular matrix, or accretion at external or internal
surfaces. Atrophy (negative growth) can occur through cell death, cell shrinkage, or
resorption. In most cases, hyperplasia and hypertrophy are mutually exclusive
processes [34]. Depending on the age of the organism and the type of tissue, one of
these two growth processes dominates. Furthermore, to fully investigate the tissue
growth, remodelling should be considered, especially for medical application such
as implants. The remodelling involves changes in material properties. These
changes, which often are adaptive, may be brought about by alterations in elastic
modulus, internal structure, strength, or mass density. For example, bone and heart
muscle may change their internal structures through reorientation of trabeculae and
muscle fibres, respectively. In addition, in a weightless environment, bone may lose
both stiffness and mass density. Remodelling of biological soft tissue consisting of
fibres embedded in a soft matrix (e.g. ureters, arteries and intestines) arises from
changes in mechanical properties due to variations in collagen content, reorienta-
tion, type of fibres and fibre thickness as well as variations in muscle dimension.
However, the model of growth in this paper does not take into account the
remodelling for simplification. Herein, the growth is modelled for account the
change in shape and mass, the material properties are considered to be only slightly
changed and are therefore ignored in the simulation.

In this section, the kinematics and balance laws of finite growth are described.
The isotropic growth and transversely isotropic growth are also described and
adopted to solve a cube in triaxial tests and a cylinder with an internal pressure. The
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simulation results show that the growth models can be applied to simulate the
porcine tubular organs in a fibrin-PVDF scaffold. In our approach, the staggered
approach in the finite element setting was used.

3.1 Applied Approach

Let X0 be the reference configuration of the body (organ), which is assumed to be
stress free. Let us define the deformation map w, mapping the reference material
point X of a material particle in the configuration X0 to its current point x in the
spatial configuration X at time t. Then F ¼ Gradw X; tð Þ is a material deformation
gradient that relates an infinitesimal reference element dX from X0 to dx in the
deformed configuration Xg at time t. In Fig. 4, the intermediate (growth) config-
uration Xg is obtained by instantaneous elastic de-stressing of the current config-
uration X to zero stress [11]. The mass of an infinitesimal volume element in X0 is
dm0. The mass of the corresponding elements in Xg and X is dm.

The multiplicative decomposition of the deformation gradient into growth Fg

and elastic deformation Fe [11] is

F ¼ Fe � Fg; det Fg
� � 6¼ 1; det Feð Þ ¼ 1: ð1Þ

In (1), det Fg
� � 6¼ 1 since growth does not require volume preservation [35].

Different from an unchanged mass in the classical continuum mechanics, the
mass for a growth object is no longer a conserved quantity. Therefore, transfor-
mations of the important quantities of the different configurations must be per-
formed. Herein, the scalar value q0 signifies the reference density of a mass

Fig. 4 Multiplicative decomposition of deformation gradient F into its growth Fg and elastic Fe

parts
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element. Its counterpart in the current and in the growth configurations are denoted
by q and qg, respectively [12].

A volume element in the reference configuration is dV0, its counterparts in the
current and the growth configurations are dV ; and dVg, respectively. Besides, the

Jacobian J ¼ det Fð Þ ¼ dV
dV0

of the total deformation gradient, the Jacobians Jg and Je
of the growth and the elastic deformation gradients, respectively, are introduced as

Jg ¼ det Fg
� � ¼ dVg

dV0
and Je ¼ det Feð Þ ¼ dV

dVg
¼ J

Jg
¼ qg

q . To model the growth of

tissue the governing equations for balance of mass, balance of momentum and
density transformation need to be solved.

3.1.1 Balance of Mass

The balance of mass and the balance of momentum for an open system in ther-
modynamics are universal equations [36]. Thus, both the balance of mass and the
balance of momentum must be solved simultaneously or sequentially in growth
simulations [37], leading to a requirement of modifying the stiffness matrices. The
balance of mass for an open system is

DivRþR0 ¼ dq0
dt

; ð2Þ

where R is the mass flux vector, R0 is the mass source per unit volume in the
reference configuration. Cell migration can be incorporated phenomenologically
through the mass flux R. On the other hand, the mass source R0 can incorporate
phenomena such as increased cell growth, cell division or cell enlargement [13].
The balance of mass can be referred to as the ‘biological equilibrium’ or the
‘homeostatic equilibrium’ [37]. Without loss of generality, a mass flux through the
surface of the considered mass element is neglected in the following discussion
[13].

3.1.2 Balance of Momentum

The differential equations of motion are derived from the first Euler’s law of motion
of the continuum with the usual form as in conventional continuum mechanics with
the material divergence [11].

Div F � Sð Þþ q0b0 ¼ DivPþ q0b0 ¼ q0g
dv
dt

; ð3Þ

where S denotes the second Piola-Kirchhoff stress and the nominal stress (first
Piola-Kirchhoff stress) P ¼ F � S is related to the nominal traction T by T ¼ N � P,
where N is the unit normal vector to the surface C0 bounding the reference volume
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X0 and q0g is also called the time rate of mass growth per unit reference volume. The
nominal traction T is composed of two terms as

T ¼ Tclosed þTopen ð4Þ

in which apart from the classical term in continuum mechanics Tclosed, the addi-
tional growth dependent contribution Topen is taken into account [37]. Similarly, the
body force is expressed as

b0 ¼ bclosed0 þ bopen0 : ð5Þ

The balance of momentum is typically referred to as the ‘mechanical equilib-
rium’ [37]. This equation of the open thermodynamic system implies that the
growth tensor Fg (or its determinant Jg) leads to volume changes and in addition
causes mass changes. The balance of mass signifies that mass changes result from
changes in density represented by the mass flux R and the source R0 [37].

3.1.3 Density Transformation

The grown mass element dm [12] consists of the reference mass element dm0 and
the mass produced by the mass source R0 (mass flux R is ignored) during the
growth time [t0; t] as

dm ¼ dm0 þ
Z t

t0

R0dt

0
@

1
AdV0 ¼ q0dV0 þ

Z t

t0

R0dt

0
@

1
AdV0 ð6Þ

�q0 is the density in the reference configuration too �q0 ¼ q0 þ
R t
t0
R0dt.

3.1.4 Essential Balance Equations

The material time derivative of �q0 results in the well-known local balance of mass
(continuity equation) in the reference configuration _�q0 ¼ R0 ¼ r0g , where r

0
g is also

called the time rate of mass growth per unit reference volume [11].
The current form of the continuity equation

dq
dt

dVð Þþ q
d
dt

dVð Þ ¼ rgdV ; ð7Þ

where rg is the time rate of the mass growth per unit current volume [11] and
r0g ¼ Jrg. For rg [ 0 mass growth occurs, and for rg \ 0 mass resorption (atrophy
or negative growth) takes place.
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3.1.5 Density Preservation

The assumption of density preservation from the reference state to the intermediate
configuration, i.e. q0 ¼ qg ¼ const:, implies that the volume of the mass element
has to change in order to generate a mass change [12]. This effect of a volume
change is denoted as growth if the volume increases or as atrophy if the volume
decreases [34]. When using the density preservation, the mass source is rewritten as

R0 ¼ JgqgtrLg ¼ Jgq0trLg: ð8Þ

where Lg is the velocity gradient Lg ¼ _Fg � F�1
g with the material time derivative.

Obviously, the mass source can directly be determined if the growth deformation
gradient Fg and its material time rate _Fg are given. The density preservation is thus
suitable for soft tissues [13].

3.1.6 Constitutive Equations

A mass specific strain energy function U ¼ Uiso þUtrans in terms of the volume
specific strain energy functions (W0;Wg and W) is defined as [38].

U ¼ W0

�q0
¼ Wg

qg
¼ W

q
ð9Þ

with W0 Fe;Ai
0

� � ¼ JgWg Fg;Ai
g

� �
¼ JW F;Ai

� �
, where W0, Wg and W are volume

specific strain energy functions in the reference, the intermediate and the current
configurations, respectively. The elastic strain energy per unit current mass is then
given by a function of the elastic Green-Lagrange strain Ee (or its invariants) and
the structure tensors Ai

0 ¼ ai0 � ai0, i ¼ 4; 6 for the first fibre family and the second
fibre family, respectively i.e. U Ee;Ai

0; �q0
� �

. Generally, the strain energy density
functions are usually formulated in terms of the overall deformation gradient F, the
growth tensor Fg, the structure tensor Ai

0 and the density �q0 such as U ¼
W0 F;Fg;Ai

0; �q0
� �

[11, 13, 38]. Herein, it is more convenient to manage the strain
energy functions which are described in terms of the invariants of the elastic right
Cauchy Green tensor I1 ¼ tr Ceð Þ, I3 ¼ det Ceð Þ, where Ce ¼ FT

e � Fe. In this work,
the compressible neo-Hookean model was used with the density strain-energy
function written as

�q0Uiso I1ð Þ ¼ l
2

I1 � 3ð Þ � l ln Jeð Þþ k
2
ln2 Jeð Þ; ð10Þ

where l ¼ E
2 1þ mð Þ (with the Poisson’s ratio m) is equivalent to the small strain shear

modulus, k ¼ Et
1þ mð Þ 1�2mð Þ is equivalent to the first small strain Lamé’s parameter.
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Utrans I4ð Þ is the transversely isotropic strain energy in terms of invariants and can be
used to simulate transversely isotropic growth I4 ¼ a40 � Ca40

� �
. That means the

growth along the fibres dominates others in the rest directions. It is worth noting
that a compressible model must be utilized in such a way that the material can grow.
Therefore, the volumetric energy, which enforces the incompressibility condition, is
ignored.

Utrans I4ð Þ ¼ k1
2k2

exp k2 I4 � 1½ �2
� �

� 1
n o

: ð11Þ

The second Piola-Kirchhoff stress tensor in the material configuration is written as

S ¼ 2
@W0

@C
¼ 2�q0

@U
@C

: ð12Þ

Using the push forward operation to the growth configuration on Se yields

Se ¼ Fg � S � FT
g ¼ 2�q0Fg � @U

@C
� FT

g ¼ 2�q0
@U
@Ce

¼ Se;iso þ Se;trans: ð13Þ

The second Piola-Kirchhoff stress for isotropic part is calculated as

Se;iso ¼ 2�q0
@U I1ð Þ
@Ce

¼ l I1 � C�1� �þ kln Jeð ÞC�1 ð14Þ

and the second Piola-Kirchhoff stress for transversely isotropic part (only one fibre
family) is evaluated as

Se;trans ¼ 2�q0
@ I4ð Þ
@Ce

¼ 2k1 I4 � 1ð Þ exp k2 I4 � 1½ �2
� �

a40 � a40: ð15Þ

The constitutive tensor C is then defined as

C ¼ 2
@Se
@Ce

¼ 2
@ Se;iso þ Se;trans
� �

@Ce
: ð16Þ

The constitutive tensor of the isotropic part is written as

Ciso ¼ 2
@Se;iso
@Ce

¼ 2 � @C�1
e

@Ce
lþ k

@lnJe
@Ce

� C�1
e þ ln Je

@C�1
e

@Ce

� �� 	

¼ kC�1
e � C�1

e þ l� kln Jeð ÞI ð17Þ

where I ¼ 1
2 C�1

e;IKC
�1
e;JL þC�1

e;ILC
�1
e;JK

� �
. Similarly, the constitutive tensor of the

transversely isotropic part is computed as
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Ctrans ¼ 2
@Se;trans
@Ce

¼ 4k1fexp k2 I4 � 1½ �2
� �

þ 2k2 I4 � 1ð Þ2exp k2 I4 � 1½ �2
� �

a40 � a40
� �� ða40

� a40Þg:
ð18Þ

3.2 Computational Growth Models

3.2.1 Isotropic Growth

When considering the smooth muscle cells of porcine tubular organs in a
fibrin-PVDF scaffold is isotropic, the isotropic growth model applied in this case is
as

Fg ¼ #I: ð19Þ

Evolution equations for stretch ratios # are given in terms of isotropic scalar
functions of the second Piola-Kirchhoff stress tensor Se and the right Cauchy-Green
strain tensor Ce, assumed to be _# ¼ k# #ð ÞtrðSe � CeÞ.

To prevent an unlimited growth at an arbitrary nonzero state of stress, it is
proposed that during the mass growth [11].

k# #ð Þ ¼ kþ
#0

#þ � #

#þ � 1

� �mþ
#

; ð20Þ

where #þ [ 1 is the limiting value of the growth stretch ratio. In the case of the
mass resorption, the corresponding expression is

k# #ð Þ ¼ k�#0

#� #�

1� #�

� �m�
#

: ð21Þ

In contrast to [11], we adopt the driving force, which is the Mandel stresses
Me ¼ Se � Ce [12, 13].

3.2.2 Transversely Isotropic Growth

A transversely isotropic mass growth law is reasonably capable of characterizing a
transversely isotropic material, e.g. muscle with a bundle of longitudinal fibres.
Therefore, this model can be further employed for the smooth muscle cells of
porcine tubular organs in a fibrin-PVDF scaffold due to the experimental data
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mentioned above showing the orientation of cells. The unit vector specifying the
fibre orientation is denoted by a40 in the reference configuration X0. The interme-
diate configuration Xg is defined with the same fiber orientation with respect to the
fixed frame of reference. The isotropic growth deformation gradient is defined by
assuming that the fibres are embedded in the material [11], this is ensured by
defining Fg such that a40 is one of its eigendirections

Fg � a40 ¼ gga
4
0: ð22Þ

An infinitesimal fibre segment in the configuration is parallel to the vector
a4 ¼ Fg � a40, obtained from a40 by elastic stretching and rotation [11].

The expression for the growth part of the deformation gradient due to trans-
versely isotropic mass growth [11] is

Fg ¼ tIþ n� tð Þa40 � a40: ð23Þ

The Eq. (23) is similar to the transversely isotropic mass growth for orthotropic
material, except the direction of a40. The difference in growth direction leads to
different formulae for the growth stretch ratios. Specifically, Fg � a40 ¼ gga

4
0 so that

the growth stretch ratio in the fibre direction is n, while t is the growth stretch ratio
in any orthogonal direction. The inverse of the growth deformation tensor is

F�1
g ¼ 1

t
Iþ 1

n
� 1

t

� �
a40 � a40 ð24Þ

Fe ¼ F � F�1
g gives an explicit expression for the elastic part of the deformation

gradient

Fe ¼ 1
t
Fþ 1� n

t

� �
a40 � a40: ð25Þ

3.2.3 Evolution Equations for Stretch Ratios

The constitutive formulation is completed by specifying appropriate evolution
equations for the growth stretch ratios t and n. The evolution equations for the
stretch ratios and must be given in terms of isotropic scalar functions of the stress
tensor Se and the structural tensor A4

0 ¼ a40 � a40 [11]. The evolution equations of
the stretch ratios are assumed to be obtained by including in the list of arguments
their current values as
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_t ¼ ft n; t; Sea40
;
1
2

trSe � Sea40

� �� 	
; ð26Þ

_n ¼ fn n; t; Sea40
;
1
2

trSe � Sea40

� �� 	
: ð27Þ

The normal component of the second Piola-Kirchhoff stress Se in the direction of

the fibre is Sea40
¼ a40 � Se � a40, while 1

2 trSe � Sea40

� �
represents the average normal

stress in the plane perpendicular to the fibre. These two stresses are believed to have
a dominant mechanical effect on the transversely isotropic mass growth [11]. Note
that the normal stress in the direction of the fibre can be expressed in terms of the
Cauchy stress as

a40 � Se � a40 ¼ Je a40 � F�1
e

� � � r � a40 � F�1
e

� �
:

In the simplest case, the rates of the stretch ratios depend linearly on the stress
components, such that

_t ¼ kt tð Þ Sea40
� mt trSe � Sea40

� �h i
ð28Þ

_n ¼ kn nð Þ Sea40
� mn trSe � Sea40

� �h i
ð29Þ

where mn and mt are constants, or functions of n and t. For the sake of simplicity,
these constants are chosen as mt ¼ mn ¼ 1

2.
To prevent an unlimited growth at an arbitrary non-zero state of stress, it is

proposed that during mass growth

kn nð Þ ¼ kþ
n0

nþ � n

nþ � 1

� �mþ
n

for Sea40
[

mn
1þ mn

trSe ð30Þ

kt tð Þ ¼ k�t0
t� t�

1� t�
� �m�

t

for Sea40
\

mt
1þ mt

trSe: ð31Þ

3.2.4 Numerical Implementation

In isotropic growth case, the constitutive tensor is calculated as

Ce ¼ 2
dSe
dCe

¼ 2
@Se
@Ce

þ @Se
@t

� @t
@Ce

� �
¼ CþCt: ð32Þ
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In addition, the constitutive tensor of the transversely isotropic growth model is
written as

Ce ¼ 2
dSe
dCe

¼ 2
@Se
@Ce

þ @Se
@n

� @n
@Ce

þ @Se
@t

� @t
@Ce

� �
¼ CþCn þCt: ð33Þ

Note that the elasticity-growth tensor comprises two main parts, the elasticity
tensor C as in the passive response and the active response and the growth tensors
ðCn þCtÞ that relate to remodelling of the material. Furthermore, ðCn þCtÞ tensors
are not symmetric because they are generated from the tensor products of different
tensors. Consequently, asymmetric solvers are required for this computation.

The incremental updates for the stretch ratios in the cases of isotropic growth and
transversely isotropic growth are presented without loss of generality. Obviously,
the strains, the stresses, and the elasticity tensor in (15,17,18) depend on the stretch
ratios at any time step. Since n; tð Þ are introduced as internal variables at integration
points, the implicit Euler backward scheme is used to compute the stretch ratios at a
time step [37], hence the stretches are formulated as

nnþ 1 ¼ nn þ _nnþ 1Dt ð34Þ

tnþ 1 ¼ tn þ _tnþ 1Dt ð35Þ

and their derivatives computed as

@n
@Ce

¼ @ _n
@Ce

þ @ _n
@n

@n
@Ce

 !
Dt ð36Þ

@t
@Ce

¼ @ _t
@Ce

þ @ _t
@t

@t
@Ce

� �
Dt: ð37Þ

3.3 Numerical Simulation of Growth

To exhibit the capability of modelling and simulating the growth of cells, a simple
test case was investigated with different material laws, such as the neo-Hookean
strain energy function and the model in [39]. Their parameters are tabulated in
Table 2.

Table 2 Growth parameters for isotropic growth

Mode kþ
#0 k�#0 mþ

#
m�

# #þ #� Mt
Unlimited 1.5 � 10�3 0.8 � 10�3 2.5 3 2 0.5 1

Limited 6.5 � 10�3 0.8 � 10�3 1.5 3 1.24 0.5 1
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It is well known that soft tissues are considered as nearly incompressible
materials. However, the tissues grow under stress induced changes, and hence, the
incompressibility condition need not strictly be imposed. Thus, the Poisson’s ratio
is chosen as m ¼ 0:4.

3.3.1 Triaxial Tension and Compression Tests of a Cube

The cube is subjected to monotonic loading by prescribed displacements as in the
training described above for the tubular fibrin structure. Loading can be simulta-
neously applied (e.g. in a step function with 5 times increments) along three
orthogonal directions of one eighth of the cube since the intermediate configuration
(growth configuration) is incompatible, see Fig. 5. The cube is simulated by finite
elements using the hexahedral element (FEM-H8). The time step Dt (its unit
depends on the unit of the measurements of the growth process or time counted for
tissue enlargement, e.g. when this time is measured in hour or day, then Dt is
measured in the same unit) found for each load increment are solved at the bio-
logical equilibrium state (all stresses are zero). Figure 5 clearly shows the numerical
results of employing the neo-Hookean model with the shear modulus l ¼ 1:5 kPa.
The larger stresses r induce the smaller number of time steps, i.e. the tissue grows
faster. Correspondingly, the stresses in each load increment are decreasing slowly,
see Fig. 5. At the final state, the increased volume of the cube is 3.375 times the
initial volume. In this case, there is no growth limit since the load (prescribed
displacement) is 1.4 times smaller than the limit stretch ratio #þ ¼ 2:0.

In contrast with the tension test, in the simulations of the compression test, there
are reductions of the size of the cube that were compensated by the negative growth
(Fig. 6) and the larger strain leading to a faster atrophy. The anisotropic material

Fig. 5 Stretch and growth stretch ratio for a cube in tension test [40]
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described in [39] and the growth constants in Table 2 adopted for limit growth
simulation, result in residual stresses which cannot be compensated by growth in
Fig. 7.

3.3.2 Tube Tension Test

For the first step of mimicking approximately urine dropping inside the ureter, an
extension along axial direction of a tube was performed to investigate the growth of
the tube, see Fig. 8 (left). The isotropic growth parameters are the same as in the
case of the triaxial test, but the material model is transversely isotropic (11),
combined with the neo-Hookean material with constants as l ¼ 1:28 kPa, k1 ¼
1:00 kPa, k2 ¼ 1:91; and the vector a40 ¼ 100½ �T: The FEM boundary conditions

Fig. 6 Stretch and stretch ratio for cube of isotropic tissue in compression test [40]

Fig. 7 Stretch and growth stretch ratio for a cube of anisotropic tissue in tension test with limit
constant [40]
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and the major principal stress approaching zero are depicted in Fig. 8 in which we
prescribe both ends of the tube with a specified stretch. For each increasing stretch
imposed, the tissue needs to grow in order to compensate the imposed stretch to
reach the zero-stress state. Specifically, Fig. 9 shows that after reaching the stretch
of 1.4 with four loading increments, the first principal stress becomes zero due to
compensation by growth with the density ratio approaching unity for the density
preservation case. At the beginning of each stretch prescribed, the density curve
drops suddenly and gradually increases to the magnitude of one. Consequently, the
tube enlarges both in the radial and the longitudinal directions with a maximal
stretch ratio of 1.4.

Fig. 8 Extension of a tube: boundary conditions and major principal stress [40]

Fig. 9 FEM result of growth of extension of a tube [40]
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Figure 10 describes the mimicking of urine with a ball or a hyperelastic
kyphoplasty balloon catheter travelling inside the muscle in fibrin-PVDF scaffold.
This is future work of the study applied to transversely isotropic growth and
transversely isotropic material. This case is a dynamic simulation since the ball
inducing displacement ur; travels along the axial direction of the tube modelled as
transversely isotropic. Hence, the growth of tissue will be solved and can be
compared with experimental data such as the mechanical properties, shape, size and
fibre orientation of the smooth muscles in a fibrin-PVDF scaffold.

4 Conclusions

Our work presents a novel stimulation procedure mimicking a urine bolus, applied
to smooth muscle cells of porcine tubular organs in a fibrin-PVDF scaffold. The
mechanical stimulation has a tendency to increase mechanical stability for stimu-
lated prostheses. A similar tendency was observed for extended incubation periods.
The rupture pressure is also increased after two weeks of incubation with
mechanical stimulation. Furthermore, the stimulation results in a preferred orien-
tation of cells along the tubular structure of the prosthesis. However, the intensity of

Fig. 10 Balloon travelling
inside a tube mimicking urine
drop in a fibrin-PVDF
scaffold
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mechanical stimulation is dependent on various parameters and different models:
the applied cell type, cell source, cell passage as well as in the experimental
setup. Nevertheless, it is seen to be stress level and cell type specific.

In this study, we focus on the change in shape and mechanical properties of cells
with stimulated prostheses so that the growth theory can be applied to simulate the
experiments. Although, growth is generally a very complex process and can
account for the increase of tissue volume of inner organs due to daily activities and
gravity this process can be characterised by simulation. With the mechanical
stimulation presented for the experiments on smooth muscle cells of porcine tubular
organs in a fibrin-PVDF scaffold, the isotropic and transversely isotropic growth
models are certainly adequate for simulating the growth of smooth cells.
Consequently, a standard protocol can be applied to conduct experiments and
growth simulations are adopted to validate simulations with experimental data. That
can be a novel challenge for the future work.
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