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Abstract The time series obtained during different fault events in an inverter-based
microgrid are known to be inherently nonlinear, non-stationary and exhibits mul-
tifractal, chaotic behavior. This paper proposes a novel feature extraction and fault
detection methodology based on multifractal detrended fluctuation analysis
(MFDFA). The limitations of single-scale detrended fluctuation analysis and its
susceptibility to interfere with the background noises are overcome in MFDFA
which characterizes the multi-scaling nonlinear behavior of load signals during
faults. The shape and distribution of the multifractal spectrum along with Hurst
exponent are extracted from MFDFA analysis for pattern recognition and classifi-
cation of different fault events. The efficacy of multifractal features in fault
detection and localization with artificial neural network (ANN)-based classifier
validates the adequacy of the proposed model.
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1 Introduction

The rapid progress in the distributed power generation sector has led to the
establishment of microgrids, which in turn has accelerated the feasibility of power
supply to locally spaced loads by distributed means. These microgrids are formed
by clustering a number of power electronic devices that converts the dc power
generated by photo voltaic cells, fuel cells, etc., to ac power for local utilization,
thereby unleashing autonomous power systems. Overall, these microgrids provide
substantial reliability and efficiency to the underlying power system but these are
prone to power system transients like faults and voltage dips due to their inherent
negligible physical inertia. So, a proper fault detection and protection mechanism is
a crucial aspect for autonomous microgrid operation [1, 2].

Now, a microgrid can operate in a grid connected mode or an islanded mode. For a
grid connected mode, voltage and frequency of the microgrid are primarily deter-
mined by the main grid [3]. Whereas, in case of a microgrid operating in an islanded
mode, majority of the faults arises from within the microgrid arises, and hence, fault
detection becomes difficult. In a larger network of interconnections, the magnitude of
fault current is very high and so, faults are easily detectable [4]. Whereas in an
inverter-based microgrid operating in an islanded mode fault detection is difficult as
the inverters are only able to supply fault currents that are only twice of the rated value
[5]. Thus, traditional over current relay-based protection systems are inadequate for
fault detection. To overcome this difficulty, different solutions were proposed. This
can be solved by enhancing the fault current by increasing the inverter capacity or by
incorporating energy storage elements [6]. Also suitable feature vectors can be
determined and trained with machine learning tools for identifying fault conditions.
Statistical machine learning tools like support vector machines (SVMs) and principal
component analysis (PCA) have shown competence as fault localization [7, 8]. In this
paper, we have utilized an artificial neural network-based learning model using
multifractal features of fault events for fault segregation.

The paper is organized in the following sections. Section 2 provides a dynamic
model for an inverter-based microgrid. An autonomous microgrid model com-
prising of three inverters and domestic loads interconnected by a network has been
developed. In Sect. 3, the underlying theory for the non-stationary fault events,
their fractal parameter extraction and classification using neural network is dis-
cussed. Results obtained from different kinds of simulated faults are discussed in
Sect. 4. Finally, the possibility of integration of the suggested analysis to real-time
systems is discussed in Sect. 5.

2 Dynamic Model of the Inverter-Based Microgrid

The microgrid system considered in this work for fault prediction consists of three
distributed generation system (DG). Each DG is operated based on the droop-based
power sharing that consists of a VSI on common reference frame [9]. The detailed



A Multifractal Detrended Fluctuation Analysis-Based Framework ... 201

Vodod™Vaging

ito

Pvercicuion i Droop 1—

Fig. 1 Block diagram of a voltage source inverter model and b power controller

model of a single VSI is shown in Fig. la which mainly consists of the inverter,
output filter, power-sharing controllers, voltage and current controllers. The
power-sharing controllers control both the real and imaginary power using droop
control of frequency and voltage, respectively, as shown in Fig. 1b. They mainly
replicate the governor action as in the case of a synchronous generator. The active
power droop control works with the main principle of decreasing active power with
the increase in frequency and vice versa [5]. Also, the reactive power droop control
works with a similar principle of decreasing reactive power with the increase in the
voltage. The conventional controller used is a linear PI controller The voltage
controller along with all its feedback and feed-forward elements with its control
action conventionally achieved using PI controllers can be traced from [9].

2.1 Output LC Filter Coupling Inductance Model

The main purpose of the LC filter is that it can remove the high frequency har-
monics. Also the LC filter prevents the chance of resonance with the network and
load side if chosen according to the system [5]. The coupling inductance mainly
reduces the coupling between the active and reactive power components. A single
inverter is thus a combination of the DG, power controllers, current and voltage
controllers and output LC filter and coupling inductances. The inverter model
simulated includes three voltage source inverter of same rating. The three inverters
are interconnected through the two transmission lines which are considered as
network. The transmission lines are considered to be short transmission lines and
are emulated using suitable R-L branch. The inverters are connected to three loads
as shown in Fig. 2 with the help of the network. The load considered in this work is
resistive load. The inverter parameters are used for the simulation as given in
Table 1 and have been adopted from [4, 10].

2.2 Methodology and Simulated Faults

Different fault conditions for the microgrid model are simulated and are shown in
Table 2. The output current of the three inverters is recorded in dg reference frame
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Fig. 2 Complete test system used
Table 1 Inverter parameters used for simulation [10]

Inverter Parameter | Value

Inverter parameters

1,2,3 mp, nq 1.57 x 107%, 0.002
1,2,3 K., Ky, 390, 0.05

1,23 Kci, Kep 16 x 10°, 10.5
1,2,3 Rn 1000 Q

Line parameters & load parameters

Line 1 Rlinel & Xlinel 023 & 0.1 Q

Line 2 RlineZ & XlineZ 0.35 & 0.58 Q
Inverter 1 Active power 5.8 kW

Inverter 2 Active power 6.5 kW

Inverter 3 Active power 7.3 kW

Table 2 Different fault conditions simulated

Fault simulated

Inverter | Type of faults Fault instant (for training) | Fault instant (for
testing)
1,2,3 Line-to-ground (A) 0.3 0.5
1,2,3 Line-to-ground (B) 0.3 0.5
1,2,3 Line-to-ground (C) 0.3 0.5
1,2,3 Line-line—ground (AB) 0.3 0.5
1,2,3 Line-line-ground (BC) 0.3 0.5
1,2,3 Line-line—ground (AC) 0.3 0.5
1,2,3 Line-line-line—ground (ABC) 0.3 0.5
1,2,3 Line-line-line—ground (ABC) 0.3 0.5
1 Line-line-line—ground (ABC) 0.3 0.5
2 Line-line-line—ground (ABC) 0.3 0.5
3 Line-line-line—ground (ABC) 0.3 0.5
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and have been used for MFDFA analysis for multifractal feature extraction and fault
localization and detection using neural networks. The time series generated by the
load currents during normal operation and during different fault conditions and are
obtained by the taking the cumulative sum of fluctuations. The time series is ana-
lyzed by MFDFA for extracting the multifractal features. The singularity spectrum
width of the multifractal spectrum and the Hurst exponent quantifying the long-run
correlations are the extracted features of the time series which is tested with analysis
of variance (ANOVA) validating the efficacy of the features’ and fed to artificial
neural network (ANN) model for fault detection.

3 Theory
3.1 Multifractal Detrended Fluctuation Analysis (MFDFA)

The time series generated by the load events are analyzed using MFDFA. The steps
involved in MFDFA are summarized as follows. Let us consider y(n)to be a
non-stationary, nonlinear time series of length N [11]. The mean value of the time
series is given by Eq. (2).

1 N
=22 y(n) (1)

=]

The integrated time series is computed by subtracting the mean value from the
signal as shown in Eq. (2).

i

X(i)=> [y(n) —yNVi€1,2,...N (2)

n=1

The next step consists in dividing the time series into Ns non-overlapping
segments, where s denotes the segment length and Ns = int(N/s). For N not
divisible by s, a section of data sequence is left out. For including the left out data,
the procedure is reiterated from the reverse end and thus rendering 2Ns number of
segments. Using least square polynomial approximation, the variation in local
trends for each of the 2Ns is computed for each sequence fragments as shown in
Eq. (3).

F(s,v) = %Z (X[ = s+ — x () Pwhere v=1,2...N,  (3)
i=1

where x,(i) signifies the least square fitted value in the vth segment. By taking the
average of 2Ns segments the gth order fluctuation function, Fg(s) is computed,
where g is the scaling index as given by Eq. (4).
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1 2Ns 1/q
Fys) = {ﬁz F2(s, v)]W} 4)

v=1

Since, Fq(s) depends on both the values of ¢ and time scale s, its variation is
analyzed using a log—log plot. It is computed for all time-scale range [10]. When the
y(n) is long-range power-law correlated, then Fg(s) versus s shows a power-law
variation with a slope as function of H(g) as shown in Eq. (6). For H(g) being the
generalized Hurst exponent

Fy(s) oc sH@ (5)

For monofractal time series, the scaling behavior of F2(s,v) is similar for all
segments and for all values of ¢ which means that H(g) is independent of g. But, for
a multifractal time series, H(q) is a function of g and the Hurst exponent is taken for
g = 2, and the scaling characteristics of segmental fluctuation is described by H
(g) for all values of q.

3.2  Multifractal Spectrum

The long-range correlations of a monofractal time series are characterized by a
single Hurst exponent with the multifractal scaling exponent t(g) showing linear
dependency on the scaling exponent g. The multifractal scaling exponent 1(g) is
related with the generalized Hurst exponent H(g) by the relation shown in Eq. (6).

©(q) = qH(q)—1 (6)

While a multifractal time series is a set comprising of multiple Hurst exponents
and there is nonlinear dependency of t(g) on g as reported in [11]. With the help of
Legendre transform, the relationship between singularity spectrum f{o) and scaling
exponent 1(g) is obtained as given in Eq. (8).

% = d/dg & (2) = qu — 7(q) (7)

where « is the singularity exponent and f{«) signifies the fractal dimension of series
subset characterized by «. Mathematically, o and f{r) can be expressed in terms of
H(q) as given by Eq. (8)

a=H(q)+ q(q)

£(0) = qlo— Hig)] + 1 ®)

The singularity spectrum f{o) of the multifractal spectrum determines the
long-range correlation property of a time series. The width of the multifractal
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spectrum quantifies the multifractality of the spectrum. A large spectral width is
associated with a high degree of multifractality and vice versa. Since H(q) is
independent of g for a monofractal time series; hence, the multifractal spectrum
width will be zero [12].

3.3 Artificial Neural Network (ANN)

ANN inspired from biological computations consists of a multilayered weighted
combination of signals coming from a cluster of neural units called neurons. The
self-learning tuning of the weights of the network paths with different activation
functions coupled with a threshold function limit false triggers before propagating
to other neurons provides an excellent nonlinear feature learning methodology
where traditional learning fails. Mathematically, it is expressed as Eq. (10).

=y, [WUU (Z hjdok + <ij> + Owi
k=1

m=1

where i = 1,2...n (10)

where i, and y; are the output currents and output of the ANN and Aj and w;; are
hidden and output layer weights. The weights of these interconnections are updated
in the learning process. Details about the application of ANN to microgrid fault
prediction can be found in [8, 13, 14].

4 Observations

4.1 Line Faults in Inverters

Line faults in an inverter are marked by increase in output current to the saturation
level. Faults occurring for a very short duration are difficult to detect with an ANN.
Number of inputs and outputs of the ANN is 6 which is same as that of the number
of output currents (a1, Ioqi, Loaz loga: lodas log3) While the optimum number of
hidden layers is determined by prior iterations and maximizing the accuracy. More
details can be found in [8].

4.2 MFDFA Features

During normal operation of a microgrid, all the load currents exhibit anti-persistent
(H(g = 2) < 0.5) and similar generalized Hurst exponent scaling behavior and
multifractal spectrum characteristics. But when fault occurs in any inverter, the load



206 S. Pratiher et al.

(a) Generalized Hurst exponent Curves (b) Generalized Hurst exponent Curves
0.6 1.4 -
1.3 ° Ioci1
05 loaz
1.2 ol
od3
1.1
= 0.4 % = %a qu1
I I 1 %%J oo
0.3 0.9 2 & s
02 0.8
07 .
0.1 ""'~----............‘.......,,,,,,

-5

0 o
o

Fig. 3 Generalized Hurst exponent curves of the Iod’s a normal operation b line fault at DG3
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Fig. 4 Multifractal spectrum of the lIod’s a normal operation b line fault at DG3

lines supplying current to the fault areas gets interrupted and as such their fractal
nature changes. These changes are manifested in the Hurst exponent and spectrum
width values. Analyzing these changes in multifractal features of the load currents
and fault localization is done in the microgrid by a neural network model. The
generalized Hurst exponent curves and the multifractal spectrum of the normal and
fault load currents are shown in Figs. 3 and 4, respectively.

5 Conclusions

The inherent fractal nature of the time series generated during normal operation and
fault events of a microgrid has been characterized by MFDFA analysis. The Hurst
exponent and the multifractal spectrum parameters are trained with ANN for fault
detection in microgrids. Also, the extreme behavior of windowed fractal analysis
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for finding the exact instant of fault localization is being studied for autonomous
operation and integration to real systems.

References

10.

11.

12.

13.

14.

. Jayawarna, Nilanga, et al. “Safety analysis of a microgrid”, 2005 International Conference on

Future Power Systems, IEEE (2005).

. Bo, Z. Q., et al. “Transient based protection for power transmission systems”, Power

Engineering Society Winter Meeting, 2000, Vol. 3 (2000).

. Maria, Tim C. Green, and John DF McDonald, “Modeling and analysis of fault behavior of

inverter microgrids to aid future fault detection”, IEEE International Conference on System of
Systems Engineering (2007).

. Nagaraju Pogaku, Milan Prodanovic and Timothy C. Green, “Modeling, Analysis and Testing

of Autonomous Operation of an Inverter-Based Microgrid”, IEEE Transactions on Power
Electronics, Vol. 22, No. 2, March (2007).

. SalomonssonDaniel, LennartSoder, and AmbraSannino, “Protection of low-voltage DC

microgrids”, IEEE Transactions on Power Delivery, Vol. 24, no. 3, pp. 1045-1053 (2009).

. DewadasaManjula, Arindam Ghosh, and Gerard Ledwich, “Line protection in inverter

supplied networks”, Power Engineering Conference, AUPEC’08, Australasian Universities
(2008).

. J. Chen, and J. Hou. “SVM and PCA based fault classification approaches for complicated

industrial process”, Neurocomputing 167, pp. 636-642 (2015).

. A. Shankar, “Toward intelligent fault classification in autonomous microgrids”, Industry

Applications Society Annual Meeting, IEEE (2015).

. D. Pullaguram, M. Mukherjee, S. Mishra, N. Senroy, “Non-linear fractional order controllers

for autonomous microgrid system”, IEEE 6th International Conference on Power Systems
(ICPS), India, March (2016).

M. Mukherjee, D. Pullaguram, S. Mishra, “Dynamic droop based inverter control for
autonomous microgrid”, Biennial International Conference on Power and Energy Systems:
Towards Sustainable Energy (PESTSE), India, January (2016).

Kantelhardt, Jan W., et al. “Multifractal detrended fluctuation analysis of nonstationary time
series”, Physica A: Statistical Mechanics and its Applications, Vol. 316, no. 1, pp. 87-114
(2002).

E. A. F. Ihlen. “Introduction to multifractaldetrended fluctuation analysis in Matlab”, Fractal
Analyses: Statistical and Methodological Innovations and Best Practices, pp. 97 (2012).
Hopfield, John J., “Artificial neural networks”, IEEE Circuits and Devices Magazine, Vol. 4,
no. 5, pp. 3-10 (1988).

Mitchell, Tom M. “Artificial neural networks”, Machine learning 45, pp. 81-127 (1997).



	24 A Multifractal Detrended Fluctuation Analysis-Based Framework for Fault Diagnosis in Autonomous Microgrids
	Abstract
	1 Introduction
	2 Dynamic Model of the Inverter-Based Microgrid
	2.1 Output LC Filter Coupling Inductance Model
	2.2 Methodology and Simulated Faults

	3 Theory
	3.1 Multifractal Detrended Fluctuation Analysis (MFDFA)
	3.2 Multifractal Spectrum
	3.3 Artificial Neural Network (ANN)

	4 Observations
	4.1 Line Faults in Inverters
	4.2 MFDFA Features

	5 Conclusions
	References




