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Abstract Because of the large amount of data, storage and processing of video
are always a challenging problem. It becomes even more difficult in surveillance
videos because of the length of the video data. Thus, it is extremely necessary to
design algorithms for faster browsing of the video data with as much compression
as possible. In this paper, we propose a novel decomposition algorithm that reduces
the redundancy of a video cube by segmenting the motion salient regions using
total variation approach. We further use the decomposition algorithm to summarize
a video shot for easy interpretation of the event in the video shot. We propose two
different methods for the summarization process and demonstrate that the video
summarization reduces the storage requirement drastically without sacrificing the
understanding of video content.

1 Introduction

Video is one of themost popularmedias in today’s world. It has been extensively used
for surveillance, communication, defense, and entertainment purposes. However, it is
difficult to store and browse video data because of its huge volume. Though different
video compression algorithms have been designed that save the storage space, they
cannot reduce the browsing time of a video. Thus, it is necessary to design new
algorithms that can reduce the demand of storage space and browsing time such that
the events in a video can be easily interpreted. One of the most popular approaches
is the generation of video storyboard or video skimming [1, 5, 6, 10]. However,
it is difficult to understand an event from video skimming and often it requires
multiple frames to represent a video. Recently, video summarization techniques
become popular because of more efficient browsing and file size management [3,
9, 11, 12, 15]. Video summarization algorithms detect the salient events in a video
and generate an image that represents the event without disturbing the continuity of
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the event. In [11], the authors proposed an interactive video summarization algorithm.
In [12], authors extracted the portion of a video where the events are denser than
the other parts and used the extracted video for summarization. Sunkavalli et al.
proposed a saliency-based algorithm to summarize a video [15]. In [8], authors
exploited the spatiotemporal information along with graph-cut method to generate
space-time montage from the input video. In [14], authors proposed a multi-scale
approach to summarize a video with minimum visual distortion. However, most of
these algorithms cannot segment the moving regions precisely and the edges get
blurred in the final summarized image [15].

In this paper, we propose a video summarization algorithm based on video decom-
position. The video decomposition algorithm extracts themotion salient regions with
sharp object boundary. Then,we temporally sample themotion salient regions to gen-
erate the final summarized image. We use both uniform sampling and non-uniform
sampling to summarize an input video.

Contributions:

• We propose a novel decomposition algorithm that is parallelizable.
• We use both uniform and non-uniform sampling to generate summarized images
of input videos with minimum visual distortion.

• As the summarization algorithms are based on the video decomposition technique,
the final summarized image has sharp object boundaries.

Rest of the paper is divided as follows. In Sect. 2, the novel video decomposition algo-
rithm is discussed along with the summarization techniques. In Sect. 3, we discuss
different aspects of the video decomposition algorithm.We also summarize different
input videos using both uniform and non-uniform sampling. Finally, we conclude
the paper in Sect. 4 discussing the impact of the work with its future prospects.

2 Proposed Algorithm

Before discussing the detection and restoration process of the artifacts, we briefly
discuss the parallelizable video decomposition scheme that we have used in all
restoration process. From an input video, the decomposition technique estimates
one background video where the frames are visually similar and a residual video that
has all the remaining information. The residual video is then used to summarize the
motion information and the visually similar video is used to estimate the background.
In Fig. 1, we show the basic block diagram of the proposed algorithm.

As themain objective of video decomposition is to decompose the input video, say
V into background videoL and feature video S, we will first estimate the background
video from the input video cube and then construct the feature video S usingV andL.

Let us assume that an input videoV has K number of frameswith frame resolution
M × N . If a pixel p = (x, y) is in the background of the video, the intensity will
not vary at that particular pixel location along the time axis. Thus, if we consider a
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Fig. 1 Block diagram of the proposed algorithm

vector lp at pixel location p along time axis, such that lip, i th element of the vector,
represents the intensity at pixel location p in i th frame of input video V, then if we
calculate a vector xp such that

xp = [l1p − l2p, l
2
p − l3p, . . . , l

K−1
p − l Kp ]t (1)

the vector xp will be a sparse vector if p belongs to the background of the video.
We can represent Eq.1, as xp = Dlp, where D is the variation matrix. If we take the
consecutive element-wise difference, as shown in Eq.1, then we can express D as

D =

⎡
⎢⎢⎢⎣

1 −1 0 … 0
0 1 −1 … 0

. . .

0 0 … 1 −1

⎤
⎥⎥⎥⎦

(K−1)×K

Using this idea of background pixel, we consider a vector vp at any pixel location
p ∈ M × N , such that vi

p, the i th element of the vector, represents the intensity at
pixel location p in i th frame of input video V. Then to get the background intensity,
we estimate lp from vp such that Dlp is a sparse vector. We define the optimization
problem as

minimize
lp

{∥∥vp − lp
∥∥2
2 + λ

∥∥Dlp
∥∥
0}

subject to λ ≥ 0
(2)
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where ‖.‖2 and ‖.‖0 denote l2 norm and l0 norm of a vector, respectively. The first
term of the expression is the data fidelity term and the second term ensures that the
estimated vector lp is smooth and λ is a non-negative weight that determines the
level of smoothness in the final estimate of lp. As λ increases, estimated lp becomes
smoother, i.e., Dlp becomes sparser.

As the optimization problem defined in Eq.2 is a non-convex problem, the esti-
mation of optimal lp is NP-hard. To reduce the computational complexity, keeping
the concept of sparsity intact, we replace the l0 with l1 norm [2, 4] and modify the
optimization problem of Eq.2 as

minimize
lp

{∥∥vp − lp
∥∥2
2 + λ

∥∥Dlp
∥∥
1}

subject to λ ≥ 0
(3)

To solve the convex problem defined in Eq.3, we apply iterative reweighted norm
(IRN) approach. IRN uses the concept of iterative reweighted least square (IRLS)
method to convert l p norm of a vector to weighted l2 norm. This solves the optimiza-
tion problem in fewer iterations [16] as l2 norm is differentiable and leads to a closed
form solution with an iterative update step of the weight matrix. A simplified form
of IRN states that l p norm minimization of q = [q1, q2, . . . qn]t can be solved using
an weighted least square problem as,

‖q‖p
p =

∑
j

|q j |p = ∥∥R1/2q
∥∥2

2 (4)

where R is a diagonal matrix with each diagonal element defined as R1/2
i,i =

(|qi |1−p/2 + ε)−1, and ε is a small positive constant added to avoid division by
zero [16].

Using the concept of IRLS, we modify Eq.3 and define the cost function C(lp(k))

as

C(lp(k)) = 1

2

∥∥vp − lp(k)
∥∥2

2 + λ

2

∥∥∥R(k)1/2Dlp(k)
∥∥∥
2

2
(5)

where weighting matrix R(k)1/2 is calculated considering q(k) = Dlp(k−1).
To minimize the cost function, we differentiate right-hand side with respect to

lp(k) and set that equal to zero. A mathematical simplification gives us

lp(k) = (λDtR(k)D + I)−1vp (6)

lp(k) = �−1vp (7)

where I is the identity matrix of dimension K × K and� = λDtR(k)D + I. We may
end the iteration process if Q(lp(k)) − Q(lp(k−1)) = 0 or if rank(�) < K , where Q
is a quantizer that quantizes element-wise a floating value to its nearest integer and
0 is a null vector. It is important to note that � is a symmetric matrix as R(k) is a
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diagonal matrix and � has a diagonal loading, i.e., the matrix � is invertible even if
DtR(k)D = 0. The linear system �lp(k) = vp defined in Eq.7 can be solved for lp(k)

using Newton’s method without performing the matrix inversion explicitly [13].
Finally, we construct the two videos L and S where video L contains the back-

ground information of the input video and S contains the motion information of the
input video V defined as S = V − L. The intensity values at pixel location p in the
i th frame are lip and sip for videos L and S, respectively, where lip is the i th element

of the estimated vector lp(k).
To summarize the video frames, first we calculate the background image B as

bp =
∑K

i=1 l
i
p

K

where bp is the intensity at pixel p in background B.
Next, we uniformly sub-sample the feature video S with sampling rate z to con-

struct a video Su such that

S j
u = Szj ; j = 1, 2, 3 . . . �K/z� (8)

where Siu and Si are the i th frames of videos Su and S, respectively.
As V = L + S, Su or S does not contain the actual intensity values of a moving

object. We apply adaptive thresholding on video Su to extract the moving object. If
F is uniformly sampled motion segmented video, then,

f j
p =

{
v
j
p if |s j

u p | ≥ τ j

0 otherwise
(9)

where s j
u p is the intensity at pixel location p in the j th frame of video Su and τ j is an

adaptive constant calculated as τ j = μ j + σ j , whereμ j andσ j are themean and stan-
dard deviation of frame S j

u , respectively, and j ∈ Ju where Ju = {1, 2, 3, . . . �K/z�}.
We generate the uniformly summarized image Iu as

iu p =
{
f p

j if f p
j �= 0; for any j ∈ Ju

bp otherwise
(10)

where iu p is the intensity value at pixel location p in Iu .
Though uniformly summarized image generates satisfactory results in simple

videos, it performs poorly if the scene has non-uniform motion, acceleration, or
multiple moving objects. Thus, we define another approach to summarize an input
video non-uniformly.
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To do so, we first segment the motion information present in input video V using
the information present in S. If U is the final motion segmented video, then,

uip =
{
vi
p if |sip| ≥ τi
0 otherwise

(11)

where uip and sip are the intensities at pixel location p in the i th frame of videos U
and S, respectively, and τi is an adaptive constant calculated as τi = μi + σi where
μi and σi are the mean and standard deviation of frame Si , respectively.

Next, we select the indices of the frames such that

Jn = {i : d(Ui ) ∩ d(Uh) = φ, i, h ∈ K , i �= h} (12)

where d(.) is dilation operation performed on a frame, φ is an null matrix and ∩
computes spatial intersection of nonzero elements in two images. Suppose, we get a
sampled video Fn such that

Fi
n = Ui ; i ∈ Jn (13)

where Fi
n and Ui are the i th frames of videos Fn and U, respectively. We construct

the final non-uniformly summarized image In as

in p =
{
f in p

if f in p
�= 0; for any i ∈ Jn

bp otherwise
(14)

where f in p
is the intensity at pixel location p in the i th frame of video Fn .

3 Experimental Results

To validate the decomposition algorithm and the summarization algorithms, we test
them on different input videos. Figure2a shows frame from a typical input video.
Figure2c shows the respective frames from feature video S. In Fig. 3a, we show the
estimated lp for different λ values. The input vector vp is the change in intensity at the
center of the red circle shown in Fig. 2a. The change in rank of the video L is shown
in Fig. 3b. The rank of the video L is calculated as described in [7]. It is important
to inform that in our previous work [2], we reported a parallelizable decomposi-
tion method based on majorization-minimization algorithm. However, the algorithm
in [2] takes large number of iterations (∼500) to complete the decomposition. As
shown in Fig. 3b, the proposed decomposition minimizes the rank in much smaller
number of steps (∼60) without increasing the complexity of the algorithm. Thus, the
proposed decomposition algorithm is faster than the algorithm mentioned in [2]. In
Fig. 3c and d, we compare the execution times of these decomposition algorithms on
different datasets and further validate the claim. As the decomposition algorithms
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are pixel based, the algorithms are parallelizable and increase in number of cores in
the processor reduces the execution times in both the cases.

In Fig. 4, we show the outputs of both the summarization algorithms for different
input videos. In Fig. 4a–d, we show frames of the input videos. All the videos in
the dataset contain complex motions like acceleration, multiple objects, nonlinear
motion, etc. Figure4e shows the respective summarized images using the uniform

Fig. 2 a Estimation of lp for different values of λ; b rank of L versus iteration for λ = 100; c
execution time of [2] with different number of cores for different dataset; d execution time of the
proposed algorithm

Fig. 3 a Frame of an input video; b estimated background c respective frame from S video
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Fig. 4 a–d Frames of input videos; e uniformly summarized images Iu ; f non-uniformly summa-
rized image In

summarizationmethod, and Fig. 4f shows the summarized images using non-uniform
summarizationmethod. However, asmentioned in Sect. 2, the uniformly summarized
image Iu may contain distortion due to overlapping regions. In Fig. 4e, we show
the overlapping regions within the black rectangles. As shown in Fig. 4f, the non-
uniformly summarized images In are free from such artifacts. An interesting property
of non-uniform summarization algorithm is that the summarized image In may differ
for the same input video depending on the frame to initialize the summarization
process. This is further depicted in Fig. 5. For the same input videos, Fig. 5a and b
show the final non-uniformly summarized images initialized from the first frame and
the last frame, respectively.

Though it is easier to interpret an event in a summarized video, video summa-
rization algorithm drastically reduces the file size as it generates a single image as
the final output. In Table1, the sizes of the input videos and the summarized images
Iu and In are shown. The execution times of both the proposed summarization algo-
rithms are also tabulated in Table1. It is evident that the space-time requirements
of both the algorithms are comparable. All the evaluations are done in MATLAB
2013 using 4 cores running on an Intel(R) core(TM) i7-4770 3.90GHz processor
with 8GB RAM.
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Fig. 5 a Non-uniformly summarized image starting from the first frame; b non-uniformly summa-
rized image starting from the last frame

Table 1 File size comparison after summarization for different videos

Video name Frame
dimension

Video size Summarized
(linear)

Summarized
(nonlinear)

Run time
(linear)

Run time
(nonlinear)

Walk 384 × 288 4.3MB 68.1KB 67.9KB 10.31s 12.72 s

Cars 768 × 567 4.74MB 48.4KB 47.5KB 13.96s 15.91 s

Dunk 480 × 360 2.88MB 197KB 191KB 12.18s 15.27 s

Gokart 640 × 360 9.1MB 315KB 312KB 11.76s 13.46 s

Flip 960 × 540 16.4MB 672KB 644KB 8.1 s 12.62 s

Man 320 × 240 23.2MB 123KB 107KB 12.38s 14.81 s

4 Conclusion

Storage and interpretation of videos require large amount of resources. It is crucial
to develop algorithms which can represent an input video consuming as minimum
resource as possible without disturbing the flow of the events. In this paper, we pro-
posed two algorithms to summarize an input video to an image using uniform and
non-uniform sampling of the video frames. The methods consume little amount of
disk space and can be executed in small amount of time as the entire algorithms are
pixel based and can be executed using parallel processing. Though the uniformly
summarized image may contain some distortion depending upon the content of the
input video, the non-uniformly summarized image is always distortion-free. How-
ever, the non-uniformly summarized image requires slightly more resources.
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Though the proposed summarization algorithms work for static cameras, it is
necessary to design such algorithm in future for videos with camera motions.
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