
Advances in Intelligent Systems and Computing 703

Bidyut B. Chaudhuri
Mohan S. Kankanhalli
Balasubramanian Raman    Editors 

Proceedings of 
2nd International 
Conference on 
Computer Vision & 
Image Processing
CVIP 2017, Volume 1



Advances in Intelligent Systems and Computing

Volume 703

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl



The series “Advances in Intelligent Systems andComputing” contains publications on theory, applications,
and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as
engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce,
environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent
systems and computing such as: computational intelligence, soft computing including neural networks,
fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient
intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and
systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems,
e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent
control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms,
learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents,
intelligent decision making and support, intelligent network security, trust management, interactive
entertainment, Web intelligence and multimedia.

The publications within “Advances in Intelligent Systems and Computing” are primarily proceedings
of important conferences, symposia and congresses. They cover significant recent developments in the
field, both of a foundational and applicable character. An important characteristic feature of the series is
the short publication time and world-wide distribution. This permits a rapid and broad dissemination of
research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello Perez, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156


Bidyut B. Chaudhuri ⋅Mohan S. Kankanhalli
Balasubramanian Raman
Editors

Proceedings of 2nd
International Conference
on Computer Vision & Image
Processing
CVIP 2017, Volume 1

123



Editors
Bidyut B. Chaudhuri
Computer Vision and Pattern
Recognition Unit

Indian Statistical Institute
Kolkata
India

Mohan S. Kankanhalli
School of Computing
National University of Singapore
Singapore
Singapore

Balasubramanian Raman
Department of Computer Science
and Engineering

Indian Institute of Technology Roorkee
Roorkee, Uttarakhand
India

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-981-10-7894-1 ISBN 978-981-10-7895-8 (eBook)
https://doi.org/10.1007/978-981-10-7895-8

Library of Congress Control Number: 2017963008

© Springer Nature Singapore Pte Ltd. 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152BeachRoad, #21-01/04GatewayEast, Singapore 189721, Singapore



Preface

The Second International Conference on Computer Vision and Image Processing
(CVIP 2017) was organized at Indian Institute of Technology Roorkee (IITR),
Greater Noida Extension Center, during September 09–12, 2017. The conference
was endorsed by International Association of Pattern Recognition (IAPR) and was
primarily sponsored by MathWorks. CVIP 2017 brought together delegates from
around the globe in the focused area of computer vision and image processing,
facilitating exchange of ideas and initiation of collaborations. Among 175 paper
submissions, 64 (37%) were accepted based on multiple high-quality reviews
provided by the members of our technical program committee from ten different
countries. We, the organizers of the conference, were ably guided by its advisory
committee comprising distinguished researchers in the field of computer vision
and image processing from seven different countries. A rich and diverse technical
program was designed for CVIP 2017 comprising five plenary talks and paper
presentations in seven oral and two poster sessions. Emphasis was given to the latest
advances in Cybernetic Health, Perception of Visual Sentiment, Reshaping of
Human Figures in Images and Videos Using 3D Morphable Models, Vision and
Language, and Challenges in Biometric System Development. The papers for the
technical sessions were divided based on their theme relating to Computer Vision
Applications, Document Image Analysis, Machine Learning and Uncertainty
Handling, Surveillance and Security, Summarization, Retrieval and Recognition,
and Low-level Computer Vision. This edited volume contains the papers presented
in the technical sessions of the conference, organized session-wise. Organiz-
ing CVIP 2017, which culminates with the compilation of the volume of proceed-
ings, has been a gratifying and enjoyable experience for us. The success of the
conference was due to synergistic contributions of various individuals and groups
including the international advisory committee members with their invaluable
suggestions, the technical program committee members with their timely
high-quality reviews, the keynote speakers with informative lectures, the local
organizing committee members with their unconditional help, and our sponsors and

v



endorsers with their timely support. Finally, we would like to thank Springer for
agreeing to publish the proceedings in their prestigious Advances in Intelligent
Systems and Computing (AISC) series. We hope the technical contributions made
by the authors in these volumes presenting the proceedings of CVIP 2017 will be
appreciated by one and all.

Kolkata, India Bidyut B. Chaudhuri
Singapore, Singapore Mohan S. Kankanhalli
Roorkee, India Balasubramanian Raman
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Moving Target Detection Under
Turbulence Degraded Visible and Infrared
Image Sequences

Chaudhary Veenu, Kumar Ajay and Sharma Anurekha

Abstract The presence of atmospheric turbulence over horizontal imaging paths
introduces time-varying perturbations and blur in the scene that severely degrade
the performance of moving object detection and tracking systems of vision appli-
cations. This paper proposed a simple and efficient algorithm for moving target
detection under turbulent media, based on adaptive background subtraction
approach with different types of background models followed by adaptive global
thresholding to detect foreground. This proposed method is implemented in
MATLAB and tested on turbulence degraded video sequences. Further, this pro-
posed method is also compared with state-of-the-art method published in the lit-
erature. The result shows that the detection performance by proposed algorithm is
better. Further, the proposed method can be easily implemented in FPGA-based
hardware.

Keywords Moving object detection ⋅ Imaging under turbulent media
Performance metrics ⋅ Background subtraction ⋅ Computer vision and target
detection algorithm
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1 Introduction

Robust and automatic target detection is an important application in computer
vision systems and its performance is severely limited, particularly at longer ranges,
due to atmospheric degradation such as atmospheric turbulence. Atmospheric tur-
bulence is random, nonlinear, and optical phenomenon that limits the viewing
through any atmospheric path, e.g., twinkling of stars, distant lights, shimmering of
objects on hot sunny day. These effects are caused due to local reflections and
refractions by atmosphere which varies with time, resulting variation in the
refractive index [1]. This nonuniform and continuous variation in refractive index
results variation of phase of the received optical wave front. These variations in the
received distorted wave front cause the image to be focussed at different points in
the focal plane of the receiving optics, causing turbulence distortions. This turbu-
lence causes the light from target scene to reach the imaging system with pertur-
bations, i.e., spatiotemporal fluctuations [2].

In general, turbulent medium results target scene in the video sequences to
appear blurry and wavering that renders movements in scene even when objects of
the scene is stationary. These turbulence-induced movements in the target scene
have characteristics that might be similar to those of the real moving objects,
resulting significant increase in false detection, thereby degrading the detection
performance of the machine vision system. Therefore, it becomes necessary to
identify real moving objects in target scene from dynamic background.

Several methods for moving object detection in video sequences have been
reported in the literature, but only few dealt with atmospheric turbulence-induced
movements [2–8]. Direct background–foreground segmentation methods such as
frame differencing [3] and Gaussian mixture model [6] do not perform well in
turbulent scenarios, as motions induced by turbulence cause a lot of false detection.
Fishbain et al. [2] proposed a method to preserve object motion while eliminating
turbulence in real time. In their approach, a reference background image is computed
using a temporal median filter. Then, displacement map of individual frames from
reference background frame is estimated. Displacement map is then segmented to
detect stationary and moving objects. Turbulence compensation is done while pre-
serving moving objects. Oreifej et al. [5] proposed a method to simultaneously
recover the stable background and moving objects. The method includes a three-
term low rank matrix decomposition approach, with components-background,
turbulence-induced motion, and real moving objects. However, this method is
computationally very intensive and has high computation and memory requirements.
Baldini et al. [7] proposed a method for moving target tracking in dynamic back-
ground condition. In their approach, probabilistic method for motion detection is
chosen and each detected blob is tracked by matching them with those found by
block matching technique. A true object was declared after being tracked for at least
three frames. The algorithm has been tested on image sequences of different weather
conditions. This method is also highly computationally intensive. Barnich et al. [9]
proposed a universal background subtraction algorithm for motion detection that is

2 C. Veenu et al.



based on pixel-by-pixel comparison in order to determine whether that pixel belongs
to the background and adapts the model. Eli Chen et al. [8] proposed a method based
on novel criteria for objects’ spatiotemporal properties, to discriminate true objects
from false detections, using pixel-based adaptive thresholding technique for fore-
ground detection.

In the present paper, a simple and efficient algorithm is proposed for real moving
target detection in turbulence degraded visible and infrared image sequences. The
proposed algorithm increases detection performance by increasing true detection
and reducing false negative rates significantly. In this paper, the proposed moving
target detection method is based on the combination of two types of adaptive
background subtraction techniques followed by foreground extraction with adaptive
global thresholding. We have tested the proposed method on various video
sequences degraded by atmospheric turbulence. The performance analyses of the
proposed algorithm were carried out by implementing it in MATLAB (R2012a).
Further, this method is also compared with various other reported object detection
methods by testing it on various atmospheric degraded image sequences (available
at online resources [10]) taken at varying degree of turbulence. Results obtained the
performance analysis parameters establishes that the proposed method performs
better for moving target detection in turbulence degraded image sequences.

The remainder of this paper is organized as follows: Sect. 2 describes the
evolved method and block diagram of the proposed algorithm for moving target
detection under turbulence medium. Sections 3 and 4 discuss the proposed per-
formance metrics for results and comparison with state-of-the-art method reported
in [8]. Section 5 concludes this paper along with future work.

2 Proposed Algorithm

Background subtraction technique is used to identify moving objects in video
frames [11]. A large set of algorithms, reviewed in [12], have been designed to
segment the foreground objects from the background of the sequence. The back-
ground subtraction methods presented in [12] are based on single method and
hierarchy method approaches. However, in the proposed approach for moving
target detection under turbulence, we present simultaneously two methods and
combine their results to improve the target detection probability and deductions of
false alarms.

In the proposed method, each frame of the input video is subtracting from a
background image to identify moving pixels. Background image is computed based
upon the adaptive background models and is updated in every frame. For turbulence
degraded image sequence, background model should be adaptive in nature. This
proposed method combines background subtraction techniques based on adaptive
background model and temporal mean (moving average) filter background model.
The foreground regions are calculated by applying adaptive global thresholding on
each absolute background subtraction.
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Let In x, yð Þ is the current image frame and (x, y) is the image coordinates. We
define the following two models for estimating background:

The first estimated background model is

B 1
n x, yð Þ=αBn− 1 x, yð Þ+ ð1−αÞIn x, yð Þ ð1Þ

where B 1
n x, yð Þ is the first estimated background at nth frame and α is the back-

ground learning parameter whose value lies between 0 and 1. Its value is taken to be
0.7 in the proposed method for estimating B 1

n x, yð Þ.
We defined the second estimated background model as:

B 2
n x, yð Þ=meanðIt x, yð ÞÞ ð2Þ

where t= n+ 1,n+ 2, . . . n+N and B 2
n x, yð Þ is second estimated background

which is based on moving average filter with window size N = 15 at nth frame.
The background subtracted images of background models B 1

n x, yð Þ and B 2
n x, yð Þ

are defined as

BS 1
n x, yð Þ= In x, yð Þ−B 1

n x, yð Þ�� �� ð3Þ

BS 2
n x, yð Þ= In x, yð Þ−B 2

n ðx, yÞ�� �� ð4Þ

where BS 1
n x, yð Þ and BS 2

n x, yð Þ are two background subtracted images based upon
estimated background model 1 and background model 2, respectively.

Adaptive threshold is applied on background subtracted images BS 1
n x, yð Þ and

BS 2
n x, yð Þ in each frame for detecting moving objects. The threshold value for

background subtracted image BS 1
n x, yð Þ is defined as:

th low=mðBS 1
n x, yð ÞÞ− k1 * stdðBS 1

n x, yð ÞÞ ð5Þ

th high=m BS 1
n x, yð Þ� �

+ k1 * stdðBS 1
n x, yð ÞÞ ð6Þ

th low≤Th 1
n ≤ th high ð7Þ

where m(BS 1
n x, yð Þ) is the global mean of BS 1

n x, yð Þ image and std(BS 1
n x, yð Þ) is

the standard deviation of BS 1
n x, yð Þ image. Global mean (m) and standard deviation

(std) on background subtracted image are computed as follows:

m=
1

PXQ
∑
P− 1

x=0
∑
Q− 1

y=0
BS1n x, yð Þ ð8Þ
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std=
1

PXQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
P− 1

x=0
∑
Q− 1

y=0
½BS 1

n x, yð Þ−m�2
s

ð9Þ

where P and Q are the number of rows and columns of the image, respectively.
In the calculation of threshold value Th 1

n , k1 is the bias which can control the
adaptation in threshold value and value of k1 is kept at 2.7 in this proposed method.

Threshold value Th 2
n for background subtracted image BS 2

n x, yð Þ is defined by
Otsu’s threshold value [13] of estimated background model B 2

n x, yð Þ given as in [14].
Once the background images are computed, we define the foreground images as:

F 1
n x, yð Þ= 1,

0,

�
BS 1

n x, yð Þ=Th 1
n

otherwise
ð10Þ

F 2
n x, yð Þ= 1,

0,
BS 2

n x, yð Þ≥Th 2
n

otherwise

�
ð11Þ

where F 1
n x, yð Þ is the foreground image based on first estimated background sub-

traction technique that uses background modeling defined as per Eq. (1) and
F 2
n x, yð Þ is the foreground image based on the second background subtraction

technique that uses background modeling of Eq. (2).
The detected foreground pixels F 1

n x, yð Þ and F 2
n x, yð Þ undergo morphological

operation of opening and closing with disk-type structure element SE of order
5 × 5 [14].

The morphological operation of opening [14] is defined as:

A 1
n x, yð Þ= ððF 1

n x, yð ÞÞ o SEÞ= ðF 1
n x, yð Þ⊖ SEÞ⊕SE ð12Þ

where A 1
n x, yð Þ are the foreground pixels of opening operation on F 1

n x, yð Þ. The
holes will be filled in the pixels of A 1

n x, yð Þ that are smaller than SE by closing
operation, dilation following erosion operation, given as:

FG 1
n x, yð Þ= ððA 1

n x, yð Þ∙SEÞ= ðA 1
n x, yð Þ⊕SEÞ⊖ SE ð13Þ

where FG 1
n x, yð Þ is the foreground image produced after morphological operations

on first foreground image F 1
n x, yð Þ.

Similarly, morphological operation of opening and closing with disk-type
structure element SE of order 5 × 5 is done on second foreground image F 2

n x, yð Þ
defined by:

A 2
n x, yð Þ= ððF 2

n x, yð ÞÞo SEÞ= ðF 2
n x, yð Þ⊖ SEÞ⊕SE ð14Þ
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where A 2
n x, yð Þ are the foreground pixels of opening operation on F 2

n x, yð Þ. The
holes will be filled in the foreground image A 2

n x, yð Þ that are smaller than SE by
closing operation, dilation following erosion operation, given as:

FG 2
n x, yð Þ= ððA 2

n x, yð Þ∙SEÞ= ðA 2
n x, yð Þ⊕SEÞ⊖ SE ð15Þ

where FG 2
n x, yð Þ is the foreground image produced after morphological operations

on second foreground image F 2
n x, yð Þ.

Next, we perform logical AND operation between foreground images FG 1
n x, yð Þ

and FG 2
n x, yð Þ to extract moving pixels from the background. Lastly, the connected

component algorithm [14] is used for detecting motion regions in blobs and each
region is enclosed in bounding box to present moving object in target scene.

Block diagram of the proposed method of moving target detection in turbulence
degraded image sequences is given in Fig. 1. In order to implement the proposed
algorithm in MATLAB for detection of moving objects in turbulence-induced
movements, we have recorded several video sequences under various atmospheric
turbulence conditions. Out of these videos, two video sequences were taken. Each
video sequence comprises of 110 frames having a resolution of 760 × 480 pixels.
The ground truth of various real moving targets present in these videos is repre-
sented as green color bounding boxes where as detected targets after applying the

Fig. 1 Block diagram of the proposed method for moving target detection under turbulent media
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proposed method is represented as red color bounding boxes. Figure 2 represents
sample frames of two video sequences with ground truth information of each frame
marked manually as shown in column 1. Column 2 and column 3 present the
implementation results of proposed method.

Fig. 2 Sample frames showing ground truth and implementation results of the proposed method
on turbulence degraded two video sequences. The first column indicates ground truth information
of input frames (green bounding box). Implementation results of the proposed method in column 2
and 3 show detected targets by red bounding boxes and background map, respectively

Moving Target Detection Under Turbulence Degraded Visible … 7



3 Performance Evaluation Metrics

The performance analysis of proposed algorithm has been based upon the perfor-
mance evaluation metrics to quantitatively analyze the target detection performance
in turbulent degraded image sequences. Generally, frame-based metrics [15] are
used to measure the detection performance. These metrics are computed by the
quantity of parameters such as true positive (TP), false positive (FP) and false
negative (FN), defined as follows:

True Positive (TP): Numbers of frames where both ground truth and object
detection results agree on the presence of one or more object, and the centroid of at
least one or more detected object lies inside the bounding box of ground truth
object.
False Positive (FP): Numbers of frames where object detection results contain at
least one object, while ground truth either does not contain any object or none of the
detected object’s centroid falls within the bounding box of ground truth object.
False Negative (FN): Numbers of frames where ground truth contains at least one
object, while object detection results either do not contain any object or none of the
detected object’s centroid falls within the bounding box of ground truth object.

In addition, we calculated statistical parameters—false alarm rate (FAR), pre-
cision (P), detection rate (DR), false negative rate (FNR), and F1 presented as
follows:

FAR=
FP

TP+FP
,P=

TP
TP+FP

,DR=
TP

TP+FN
,FNR=

FN
TP+FN

,F1=
2 *P *DR
P+DR

ð16Þ

4 Results and Comparison

The moving target detection algorithm proposed in this paper method was tested on
recorded, atmospherically degraded video sequences and compared with the
state-of-the-art method published in the literature [8] for moving target detection
under similar imaging conditions. The video sequences used for evaluating the
detection performance of the proposed method with published work are taken from
resources available online at [10].

We have taken four video sequences, two with moderate strength of turbulence
and other two with higher strength of turbulence. Sample frames from four video
sequences are presented in Fig. 3. Each row in Fig. 3 shows frames from original
recorded video sequences, while column 1 shows input frame with ground truth
information. In Fig. 3, column 2 shows the detected targets using the proposed
method and column 3 shows the results obtained using Eli Chen et al.’s method [8].
The ground truth moving targets were marked by green bounding boxes, and the
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detected moving objects using the proposed method and those obtained using Eli
Chen et al. method are marked by red bounding boxes.

From the results shown in Fig. 3, it can be observed that the proposed algorithm
performs better than the published method of [8] under both moderate and high
turbulence conditions. It can be seen from the results given in Fig. 3 that the

Fig. 3 Sample frames from video showing ground truth information and moving target detection
results obtained using the proposed method and published method of [8]. The first column
indicates ground truth of four video sequences; 1, 2, 3, and 4 with green bounding box. The second
column shows the target detection using proposed method, and last column shows the results
obtained using the method proposed by Chen et al. [8]. Detected moving objects are marked by red
bounding boxes

Moving Target Detection Under Turbulence Degraded Visible … 9



method used by Eli Chen et al. [8] results in some miss detection, which are
detected using proposed algorithm.

We have carried out the performance analysis of the proposed algorithm with
published method of [8] by computing numbers of true detection, false alarms, and
miss detections over all the four videos taken from online resources of [10]. For
quantitative comparisons, TP, FP, and FN are evaluated by two approaches: number
of frame-based approach [15] and approach mentioned in Eli Chen et al. [8] work.
The results are summarized in Tables 1 and 2.

We have also calculated the statistical parameters DR, P, FNR, and F1 from the
results of Tables 1 and 2 for the proposed method and published method of [8].
Every parameter was averaged for two video sequences at both moderate turbulence
strength and strong turbulence strength. The results are summarized in Table 3. It
can be concluded from these parameters that the proposed algorithm produced
better detection performance irrespective of the evaluation approach.

The performance metric F1 describes the harmonic mean of false alarm (FP) and
miss detection (FN) with regard to TP (as shown in formula of F1 by Eq. 16), thus
describing detection performance in the range of 0–1. A higher value of F1 means
better detection performance of moving object detection algorithm. It can be seen
from the graph given in Fig. 4 that the proposed method has higher F1, under both
moderate and strong turbulence effects as compared to the state-of-the-art method
used in [8], enabling better detection performance with proposed method.

Table 1 Dataset of the proposed method and published method of [8] on number of frame-based
approach

Video sequence Strength of turbulence Proposed method Published method
of [8]

TP FP FN TP FP FN

1 Moderate 185 226 45 49 0 72
2 Moderate 357 145 205 287 59 343
3 Strong 373 358 22 204 42 301
4 Strong 98 359 33 12 9 141

Table 2 Dataset of the proposed method and published method of [8] on approach mentioned in
[8]

Video sequence Strength of turbulence Proposed method Published method
of [8]

TP FP FN TP FP FN

1 Moderate 6 1 3 1 0 6
2 Moderate 15 0 6 7 0 13
3 Strong 20 2 0 9 0 11

4 Strong 0 0 6 2 1 0
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5 Conclusion and Future Work

This paper proposes simple and efficient method for detecting moving objects in
long-range, turbulence degraded videos. We have tested this method on both visual
and infrared video sequences degraded by turbulence. We have also compared the
detection performance of our approach with the state-of-the-art method in varying
degree of turbulence. Results obtained establish that the proposed algorithm per-
formance is better under both moderate strength and higher strength of turbulence
degraded video sequences. The method presented is generic in nature used for
aerial-, marine-, and ground-based scenarios. We plan to further use this simple and
effective target detection algorithm in video stabilization for removing atmospheric
turbulence of long-range imaging systems.

Table 3 Performance metrics of the proposed method and published method of [8]. Each value
was averaged for two video sequences

Strength of
turbulence

Evaluation
approach

Proposed method Published method of [8]
P DR FNR F1 P DR FNR F1

Moderate No. of frame-based
approach

0.58 0.72 0.28 0.63 0.92 0.34 0.57 0.47

Approach
mentioned in [8]

0.93 0.69 0.31 0.79 1 0.25 0.76 0.39

Strong No. of frame-based
approach

0.36 0.85 0.16 0.5 0.72 0.27 0.76 0.39

Approach
mentioned in [8]

0.79 1 0 0.88 0.5 0.23 0.78 0.31

0

0.2

0.4

0.6

0.8

1

Proposed
Method

Published
Method of [8]

Strong Turbulence
Moderate Turbulence

Fig. 4 F1 of the proposed
method compared with
state-of-the-art method of [8].
A higher value of F1 means
better detection performance
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Effective Denoising with Non-local Means
Filter for Reliable Unwrapping of Digital
Holographic Interferometric Fringes

P. L. Aparna, Rahul G. Waghmare, Deepak Mishra
and R. K. Sai Subrahmanyam Gorthi

Abstract Estimation of phase from the complex interference field has become an

emerging area of research for last few decades. The phase values obtained by using

arctan function are limited to the interval (−𝜋, 𝜋]. Such phase map is known as

wrapped phase. The unwrapping process, which produces continuous phase map

from the wrapped phase, becomes tedious in presence of noise. In this paper, we

propose a preprocessing technique that removes the noise from the interference field,

thereby improving the performance of naive unwrapping algorithms. For de-noising

of the complex field, real part and imaginary parts of the field are processed sepa-

rately. Real-valued images (real and imaginary parts) are processed using non-local

means filter with non-Euclidian distance measure. The de-noised real and imaginary

parts are then combined to form a clean interference field. MATLAB’s unwrap
function is used as unwrapping algorithm to get the continuous phase from the

cleaned interference field. Comparison with the Frost’s filter validates the applica-

bility of proposed approach for processing the noisy interference field.

Keywords Holographic interferometry ⋅ Non-local means ⋅ Non-Euclidian

distance ⋅ Phase unwrapping ⋅ Image de-noising

1 Introduction

In interferometric techniques, physical quantities are encoded into phase, and hence

reliable phase estimation becomes the major task. These techniques include synthetic

aperture radar for surface topography, magnetic resonance imaging for mapping of
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internal structure of the body, digital holographic interferometry and moiré for in-

plane and out-off plane deformation assessment, fringe projection profilometry for

3D reconstruction of the object, digital holographic microscopy for study of micro-

scopic biological objects, and many others. The term phase changes from method

to method, e.g., in fringe projection profilometry, the phase means the phase of the

sinusoids of the fringe pattern, whereas in holography, phase means the phase of the

actual light wave. However, following equation represents most general form for the

complex interference field [1].

𝚪(m, n) = a(m, n)exp (j𝜙(m, n)) + 𝜂(m, n) (1)

where 𝛤 (m, n) represents the interference field, a(m, n) is the real amplitude, and

𝜙(m, n) is the phase of the interference field. 𝜂(m, n) is the noise and is assumed to

be white Gaussian with zero mean and variance 𝜎
2
𝜂
.

Several noise filtering techniques for the reduction of speckle noise in digital holo-

graphic interferometry for phase unwrapping have been developed in the past. For

example, Sukumar et al. [2] proposed Kalman filter for denoising in post-processing

step to restore the unwrapped phase without any noise. Several other techniques such

as Fourier transform profilometry [3], windowed Fourier transform profilometry [4],

wavelet transform profilometry by [5] have been proposed over last three decades

for the analysis of these fringe patterns. The phase map generated by most of these

methods is noisy and wrapped. This requires careful selection of the combination of

proper noise filtering [6–8] and phase unwrapping algorithms [9–12].

The noise filtering algorithms developed so far assumes the noise to be addi-

tive Gaussian. In digital holographic interferometry (DHI) and synthetic aperture

radar (SAR), the interference fields are generated using coherent sources that pro-

duce speckle pattern on the surface of the object under test. Speckle noise is a type of

noise where an undesirable signal gets multiplied with the original image, as opposed

to additive Gaussian noise where noise gets added to the intended signal giving rise

to a degraded image. Due to this reason, speckle noise is known to be multiplicative

noise. If the original image is represented by g(m, n) and speckle noise by 𝜂(m, n),
then the degraded observation h(m, n) is given by:

h(m, n) = g(m, n) . 𝜂(m, n) (2)

where (m, n) indicate the pixel location.

Speckle noise suppression has been a challenging task for long time. De-noising

methods began with techniques relying on local statistics. Lee et al. [6] and Kuan

et al. [13] proposed adaptive speckle suppression filters by making use of the local
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statistics of the degraded image and the multiplicative model of the noise. Expo-

nentially weighted kernel for speckle suppression was proposed by Frost et al. [7]

which uses the property of coefficient of variation. The enhanced versions proposed

by Lopes et al. [14] filter images independently in homogeneous, heterogeneous, and

isolated point regions.

The contribution of this paper is to propose NLM with non-Euclidian distance

measure [15] for speckle noise suppression in interferometric fringes and to

demonstrate that this denoising helps in effective reconstruction of continuous phase

through simple MATLAB’s unwrapping function (unwrap). The results obtained

by proposed approach have been compared to the performance of (i) denosing fol-

lowed by unwrapping with NLM with Euclidian distance (which is equivalent to

modeling the noise as additive) and (ii) application of simple adaptive filter (Frost

filter) and unwrapping. The results, depicted in Sect. 3, demonstrate the effectiveness

of the proposed approach.

In Sect. 2, we propose an image denoising algorithm using NLM with non-

Euclidian distance measure on interferometric fringes along with the guidelines for

pre- and post-processing. We model the noise in interference fields as (i) additive, and

apply NLM filter with Euclidian distance (henceforth, we refer to this approach as

NLM) for de-noising which is well adapted to additive Gaussian noise and (ii) mul-

tiplicative, and apply NLM filter with non-Euclidian distance (proposed approach)

which is well adapted to multiplicative noise and show that modeling the noise as

multiplicative performs better. Section 3 presents experimental results and observa-

tions. Finally, we conclude our paper in Sect. 4.

2 Methodology

2.1 Preprocessing

In DHI, multiplication of object wave field before deformation with the complex con-

jugate of that after deformation generates the reconstructed interference field [16].

The phase of this field possesses the information about the object deformation. For

de-noising the interference field, we consider real and imaginary parts of the field

separately. Each part is represented by the real-valued image taking values from

the interval [−1, 1]. These images are then normalized to the interval [0, 1] by sim-

ple mathematical manipulation. Both the images are then processed using proposed

approach and then converted back to original range [−1, 1]. Finally, these images are

combined to get the clean reconstructed interference field. The digital holographic

interferometric image can be represented using,

𝛤 (m, n) = R(m, n) + iI(m, n) (3)
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where, R(m, n) and I(m, n) are the real and imaginary parts of the complex pixel

at location (m, n). Phase is then calculated using arctan function and unwrapped

using MATLAB’s unwrap function.

2.2 Non-local Means Filter

Mathematically, for a given image Y , the filtered value at a point is calculated as a

weighted average of all the pixels in the image, following the equation,

NLM[Y(p)] =
∑

∀q∈Y
w(p, q)Y(q) (4)

For 0 ≤ w(p, q) ≤ 1, ∑

∀q∈Y
w(p, q) = 1 (5)

where p is the point to be filtered and q represents each of the pixels in the image. The

weights are based on the similarity between the neighborhood Np and Nq of pixels

p and q. Ni is defined as a square neighborhood centered at pixel i with a user-defined

radius Rsim. The weight w(p, q) is calculated as

w(p, q) = 1
Z(p)

e−
d(p,q)
𝜎
2 Z(p) =

∑

∀q
e−

d(p,q)
𝜎
2 (6)

d(p, q) = ‖(Y(Np) − Y(Nq))‖2Rsim (7)

The distance d(p, q) represents Euclidian distance measure and the weight w(p, q) is

based on Euclidian distance.

2.3 NLM with Non-Euclidian Distance

In this version of NLM filter, denoising process is expressed as a weighted maximum

likelihood estimation problem [15]. The distance measurement in this version is done

as given in Eq. 8 which can be well adapted to multiplicative noise,

d(p, q) = log
(Ap

Aq
+

Aq

Ap

)
(8)

where Ap and Aq are pixel amplitudes of each of the pixels in Np and Nq, respectively.
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We apply NLM with both distance measurements (Eqs. 7 and 8) to denoise holo-

graphic fringes and plot the unwrapped estimated phase and compare the results with

that of Frost filter.

Figure 1 summarizes the algorithm to compute the de-noised pixel value Y(q) of

a pixel q with NLM filter.

3 Experimental Results

The reliability of the proposed approach is verified using reconstructed interference

field generated from a real-time holographic experiment performed by Waghmare

et al. [17]. The complex interference field is separated into two real-valued images

corresponding to real and imaginary part of the complex field. The real and imag-

inary parts of the complex image, being sine and cosine parts, lie in the interval

[−1, 1]. Since the proposed algorithms works on images, we need to normalize the

range from [−1, 1] to [0, 1] using simple mathematical manipulation.

These images are then processed with proposed method. We consider a search

window Wsearch with radius Rsearch of the image in the neighborhood of the given

pixel to be denoised and move the similarity window W2 (Fig. 1) with radius Rsim
through this search window and take the weighted average of pixels in the search

window using Eq. 6, as it would be time consuming for the similarity window to

move through the entire image. For our experiments, we have set the dimensions

of similarity and search windows to 5 × 5 and 11 × 11, respectively. Finally, the

reconstructed interference field is formed from the real and imaginary components

by converting range of the cleaned images from [0, 1] to [−1, 1].
Figure 2 depicts results on phase pattern of size 200× 200 generated using MAT-

LAB’s peak function. Speckle noise with gradually increasing variance (var) was

added to the phase pattern generated, and it was observed that up till a variance var
= 0.25, the proposed approach is able to give satisfactory unwrapped phase results

with MATLAB’s naive unwrap function.

Figure 3 displays the performance of the proposed method. Figure 3a, b show

the real and imaginary parts of holographic images degraded by noise, respec-

tively. Figure 3c, d shows the real and imaginary parts after de-noising using Frost

filter. Figure 3e, f shows the denoised images with NLM method. Figure 3g, h

shows the denoised images by proposed method(weighted maximum likelihood

estimation-based NLM). Figure 4 depicts the wrapped phase maps and 3D plots of

the unwrapped phase maps generated using MATLAB’s unwrap function from the

de-noised fringe patterns by Frost filter, NLM (Euclidian), and proposed approach,

respectively. Figure 5 displays the results for another DHI dataset, where the phase
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Fig. 1 Non-local means filter algorithm

map underlying in the fringe pattern is rapidly varying. The experimental results

depicted in this section validate the reliability of the proposed method in the real-

time scenarios as a preprocessing step.

It is observed that there are some discontinuities in phase estimation plots for Frost

filter because of the inefficient noise removal of the Frost filter. Modeling noise as
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Fig. 2 a 3D meshplot of original phase generated using peaks b corresponding fringe pattern

with noise var = 0.25 c Unwrapped phase from noisy fringe pattern d wrapped phase with proposed

approach and e unwrapped phase with proposed approach

additive and applying NLM filter with Euclidian distance measure also has some

discontinuities, whereas modeling noise as multiplicative and processing with the

proposed method produces continuous and unwrapped phase map from the noisy

interference fringes. Thus modeling the noise as multiplicative yields better results.
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(a) Noisy data (Real) (b) Noisy data (Imaginary)

(c) Frost (Real) (d) Frost (Imaginary)

(e) NLM (Real) (f) NLM (Imaginary)

(g) Proposed (Real) (h) Proposed (Imaginary)

Fig. 3 Performance of Frost Filter, NLM, and proposed approach. First row shows the noisy images

corresponding to real and imaginary parts of the complex interference field. Second row shows the

denoised images by Frost filter, third row shows denoised images by NLM method, whereas fourth

row represents the denoised images by proposed method



Effective Denoising with Non-local Means Filter for Reliable Unwrapping . . . 21

(a) Noisy (Wrapped) (b) Noisy (Unwrapped)

(c) Frost (Wrapped) (d) Frost (Unwrapped)

(e) NLM (Wrapped) (f) NLM (Unwrapped)

(g) Proposed (Wrapped) (h) Proposed (Unwrapped)

Fig. 4 Performance of the proposed method. First row represents the wrapped phase map and 3D

plot of the unwrapped phase map generated using arctan and unwrap functions of MATLAB

from the noisy fringes. Second row shows that of Frost filter, whereas third row shows that of

proposed method
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(a) Noisy data (Real) (b) Noisy data (Imaginary)

(c) Frost (Wrapped) (d) Frost (Unwrapped)

(e) Proposed (Wrapped) (f) Proposed (Unwrapped)

Fig. 5 Performance of Frost filter and proposed approach. First row shows the noisy images cor-

responding to real and imaginary parts of the complex interference field. Second row shows the

wrapped and unwrapped phases after denoising with Frost filter, third row represents the wrapped

and unwrapped phase after denoising with proposed method
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4 Conclusion

We propose the weighted maximum likelihood denoising for holographic fringes

which uses non-Euclidian distance measure for the NLM filter as a pre-processing

step. Through experiments, it was found that proposed approach can tolerate speckle

noise of variance up to 0.25. The performance of the proposed method is compared

with Frost filter for noise removal. It was observed through experimental results that

the modified-NLM filter outperforms the Frost filter when the images are corrupted

by real speckle noise. We have shown that modeling the noise as multiplicative

rather than additive gives better results. We have also shown that the continuous

and unwrapped phase map can be generated by using arctan and unwrap func-

tion of the MATLAB on the cleaned interference field, which is more accurate than

the one generated from noisy interference field.
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Iris Recognition Through Score-Level Fusion

Ritesh Vyas, Tirupathiraju Kanumuri, Gyanendra Sheoran and Pawan Dubey

Abstract Although there are many iris recognition approaches available in the lit-

erature, there is a trade-off as which approach is giving the most reliable authentica-

tion. In this paper, score-level fusion of two different approaches, XOR-SUM Code

and BLPOC, is used to achieve better performance than either approach individually.

Different fusion strategies are employed to investigate the effect of fusion on genuine

acceptance rate (GAR). It is observed that fusion through sum and product schemes

provides better result than that through minimum and maximum schemes. For fur-

ther improvement, sum and product schemes are more explored through weighted

sum with different weights. The best GAR and equal error rate (EER) values are

98.83% and 0.95%, respectively. Performance of proposed score-level fusion is also

compared with existing approaches.

Keywords Iris recognition ⋅ Score-level fusion ⋅ Genuine acceptance rate (GAR)

1 Introduction

Biometrics is providing large solutions to the security issues related to knowledge

(PIN or password) or token (smart card, ATM card etc.)-based approaches. Biomet-

rics refer to the analysis of a person’s behavioral and physiological traits. Behavioral

characteristics deal with the behavior of an individual and may include signature,

voice, or gait while palmprint, fingerprint, face, and iris, which are associated with
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the body parts, embrace into the physiological properties. Among all physiological

traits, iris is best suited for personal authentication because the spatial patterns or

features present in human iris are highly idiosyncratic to an individual [5, 20].

Human iris is a ring-shaped strip lying between the pupillary (or inner) and limbic

(or outer) boundaries of an eye ball [2]. There is certain textural information present

in each iris which makes it distinguishable from the other one. An iris recognition

system necessarily has few elementary steps like preprocessing of the eye image,

normalization, feature extraction, and matching. Preprocessing includes segmenting

the iris boundaries from the whole eye image. Normalization is required in order to

form a fixed-size template from the iris, so that different iris images can be compared

irrespective of the varying lighting conditions. Feature extraction and matching are

two such steps which control the accuracy of an iris recognition system. Bowyer et

al. [2] have reviewed many state-of-the-art feature extraction approaches and image

matchers for iris. Roots of iris recognition were laid down in 1993 when Daugman [3]

presented the first automatic iris recognition system. In this paper, phase of 2D Gabor

filter coefficients was encoded to form the iriscode. Many commercial iris recogni-

tion systems are based on Daugmans iriscode. Miyazawa et al. [11] in 2008 used 2D

discrete Fourier transform of the image and its phase component for image match-

ing. In 2011, Farouk [7] represented the iris as labeled graphs. Then elastic graph

matching (EGM) was used for matching two iris images. Rai and Yadav [13] used

HAAR wavelet along with 1D log Gabor filter for extracting iris features. Khalighi

et al. [8] achieved feature extraction through non-subsampled contourlet transform

(NSCT) and gray level cooccurrence matrix (GLCM). Umer et al. [16] proposed fea-

ture extraction through multiscale morphological operations. Residue images formed

after the application of multiscale morphological features for different orientations

are accumulated to form the feature vector.

Recently, Bansal et al. [1], proposed local principal independent components

(LPIC)-based feature extraction. They have defined four discriminating features

namely energy feature (EF), sigmoid feature (SF), effective information (EI), Han-

man transform (HT) which can be used with different classifiers to give good recog-

nition rate. Umer et al. [17] have used texture code cooccurrence matrix (TCCM)

and its features for representing the iris.

The key discussion of this paper is about score-level fusion of texture- and

transform-based approaches for iris recognition: XOR-SUM Code and BLPOC.

XOR-SUM Code [15] is an efficient technique for palmprint recognition. Idea be-

hind its use in iris recognition is that Gabor filter at different orientations is able to

capture textural information of iris lying in respective directions. But, this technique

is highly affected by the Gabor parameters. While, band limited phase-only corre-

lation (BLPOC) [11] uses the phase information of 2D discrete Fourier transform

(DFT) of iris images for matching different images. It is observed that Gabor filter is

not able to capture the textural features of some of the iris images. For matching of

such images, BLPOC can be a good option. Therefore, this paper investigates the fu-

sion of above-mentioned schemes. Experiments of the proposed technique on IITD

database show that it is highly effective for iris recognition.
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Organization of the rest of this paper is as follows. Section 2 explains the pre-

processing and normalization of iris images. Implementation of XOR-SUM Code

and BLPOC is discussed in Sect. 3. Section 4 describes the fusion techniques em-

ployed. Experimental setup and results are elucidated in Sect. 5. Finally, conclusion

is presented in Sect. 6.

2 Preprocessing and Normalization

Preprocessing of an eye image is necessary to isolate the region of interest (ROI)

(i.e., the rectangular iris template) from the given eye image. For ROI extraction,

technique of [18] is employed here. The process starts with contrast enhancement

so that low-resolution images can be improved before processing (Fig. 1b). After

binarization, specular reflections are removed from the pupil (Fig. 1d) because these

specular reflections may cause spurious circles during the circle detection step. So,

their removal is necessary before starting the segmentation process. The pupil center

and pupil radius are detected by fitting a matrix over the connected circular pupil area

(Fig. 1e). Distance of edge points from the pupil center which is repeated maximum

number of times is selected as the iris radius. After getting all these parameters, iris

part is segmented from rest of the image (Fig. 1f). Daugman’s rubber sheet model

[3–5] is used for transforming the circular iris into rectangular template of size 64 ×
512 (Fig. 1g).

3 Implementation of Used Approaches

3.1 XOR-SUM Code

In XOR-SUM Code [15], Gabor filter at different orientations is employed to extract

line features of palmprint. Similar idea is also applied to iris images [19] because

iris template is also having certain structures which are lying in different directions.

Process of feature extraction using XOR-SUM Code is depicted in Fig. 2.

Feature extraction through Gabor filter is highly sensitive to its parameter

selection. Expression for a 2D Gabor filter is written in (1).

𝜓(x, y, 𝜎, f , 𝜃) = 1√
2𝜋𝜎2

exp
{
− x2+y2

𝜎2

}
× exp(2𝜋if (x cos 𝜃 + y sin 𝜃)) (1)

where f denotes the frequency of sinusoidal gratings. Optimal values of rest of the

parameters are given in Table 1, which are achieved empirically. This work uses four

orientations of Gabor filter, i.e., N = 4 (Fig. 3) because higher number of orientations

will result in more redundancies.
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Fig. 1 Preprocessing and normalization process a original image, b contrast enhancement, c bina-

rization, d removal of specular reflections, e detection of pupil center and radius, f segmented iris,

g normalized iris

Iris
Template

Decomposition
Gabor
Filter

Real Part

Imaginary
Part

SUM for different
orientations

Encoding
Feature
Vector

Zero-
crossing

Zero-
crossing

Fig. 2 XOR-SUM Code process

Table 1 Optimal 2D Gabor filter parameters

Size f 𝜎 𝜃 p

15 × 15 0.1833 2.809 p*/N 0, 1, …, N −1
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Fig. 3 Spatial representation of Gabor filters in four different orientation

The sum output S of XOR operation of real and imaginary Gabor filtered image

is encoded into bits, to generate XOR-SUM Code (XSC), using (2).

XSC(n) =
{

1 if n ≤ S < n + N+1
2

0 otherwise

}
(2)

where n = 1, 2,… , ⌈(N + 1)∕2⌉ is the number of bits used for encoding the XOR-

SUM S. Each XSC will result in a 3-bit code for N = 4 orientations. Finally, scores

are calculated using Hamming distance classifier.

3.2 BLPOC

Band-limited phase-only correlation (BLPOC) [11] is an image matching technique

which is independent of intensive parametric optimization as in the case of Gabor-

based approaches. It simply uses phase information of 2D discrete Fourier transforms

(DFTs) of different iris images.

If there are two iris images p and q of size M × N and P(k1, k2) and Q(k1, k2)

represent their 2D-DFTs, then their cross-phase spectrum is defined as in (3).
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Fig. 4 Band limiting in frequency spectrum of an iris image

RP,Q(k1, k2) =
P(k1, k2)Q(k1, k2)
|||P(k1, k2)Q(k1, k2)

|||

(3)

where Q(k1, k2) is the complex conjugate of Q(k1, k2) . Phase-only correlation (POC)

is defined as the 2D inverse DFT of cross-phase spectrum, i.e., rp,q . This POC func-

tion gives a peak if two similar images are being matched, and for non-similar im-

ages, the peak is not significant.

Further, as it is evident from Fig. 4, that the complete phase information of the

spectrum is not meaningful. Therefore, frequency band of the iris spectrum is limited

to only significant information range, i.e., from N1 to N2 and from M1 to M2. In this

paper, these four parameters are chosen experimentally and the optimal parameter

set (M1, M2, N1, N2) = (110, 350, 13, 52) for an iris template size of 64 × 512.

This BLPOC concept helps in more distinctive peak when matching two

similar images, while it does not affect the peak much for non-similar images (Figs. 5

and 6).

4 Score-Level Fusion

Aim of score-level fusion is to improve the classification performance than that can

be achieved through single classifier. Although feature-level fusion is also an option,

sometimes it is not practical because of the varying dimensions of the feature vector

extracted through different techniques.

Before fusing the scores, it is required to normalize them so that they can lie

within same range. In this paper, both the scores, i.e., Hamming distance scores of

XOR-SUM Code and BLPOC scores are already in the range of 0–1. But there is one

difference in the scores, i.e., Hamming distance scores are small for similar images

and large for non-similar images while BLPOC scores are large for similar images
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Fig. 5 BLPOC example for similar images (a), b two iris samples from same subject, c simple

POC function d BLPOC function

Fig. 6 BLPOC example for non-similar images (a), b two iris samples from different subjects,

c simple POC function d BLPOC function

and small for non-similar images. Therefore, before combining them, BLPOC scores

are normalized by subtracting from 1.

Experiments performed with different fusion strategies [12] show that there is

significant improvement in performance. The fusion strategies employed here are

minimum (MIN), maximum (MAX), sum (SUM), product (PROD), and weighted

sum (WS). Different parameters showing improvement in combined performance

are discussed under next section.
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Table 2 Performance comparison of XOR-SUM Code and BLPOC with different fusion schemes

Matching scores GAR (%) EER (%) DI

XOR-SUM Code 97.64 1.68 3.74

BLPOC 96.86 2.19 2.29

Fusion_MIN 98.1 1.75 4.29

Fusion_MAX 97.86 3.39 2.32

Fusion_SUM 98.4 0.97 2.99

Fusion_PROD 98.62 1.57 4.23

5 Experimental Setup and Results

The proposed combination of matching scores is investigated with the benchmark

iris dataset, IITD iris V1.0 [9]. This dataset contains 2240 grayscale iris images cap-

tured from 224 subjects at the rate of 10 images per subject. First five images of a

person belong to left eye and next five belong to right eye. So in total, there are 448

classes. Dimensions of each image is 320 × 240, and all images are stores in bitmap

format. This dataset is considered to be a challenging one because of large number

of occlusion affected image, i.e., a large number of images are having noise factors

like eyelashes, eyelids, reflections.

Because of the large amount of noise, some images were not segmented properly.

Classes with unsegmented iris are very few in numbers, so they can be discarded

from inclusion in further processing without affecting the recognition performance

significantly. The detail of discarded classes is: right class of subject 17, left class of

subject 20, left class of subject 74, and right class of subject 156.

The performance evaluation consisted of 4440 genuine and 2458650 imposter

scores. The quantitative analysis of performance contains calculation of three param-

eters, i.e., genuine acceptance rate (GAR), equal error rate (EER), and decidability

index (DI). Parameters for the four basic fusion strategies are shown in Table 2. It is

apparent from the table that recognition rate of every fusion scheme is higher than

that of any of the individual techniques, i.e., XOR-SUM Code and BLPOC. Receiv-

er operator characteristics (ROC) curves for all the four basic fusion schemes are

shown in Fig. 7 (left).

Table 2 clearly demonstrates that fusion strategy plays a critical role in the im-

provement of the classifier performance. Fusion schemes SUM and PROD are show-

ing the maximum improvement in the recognition rate. Therefore, these two strate-

gies are further combined through weighted sum scheme for further enhancing the

performance. Expression for finding weighted sum scores is given in (4).

scorews = w1 ∗ scorePROD + w2 ∗ scoreSUM (4)
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Table 3 Evaluation parameters for different weights

S. No. w1 w2 GAR (%) EER (%) DI

1 0.1 0.9 98.62 1.06 3.04

2 0.15 0.85 98.69 1.23 3.07

3 0.2 0.8 98.78 1.49 3.1

4 0.25 0.75 98.47 0.95 3.13
5 0.3 0.7 98.57 1.03 3.17

6 0.35 0.65 98.66 1.21 3.21

7 0.4 0.6 98.78 1.55 3.25

8 0.45 0.55 98.52 1.04 3.29

9 0.5 0.5 98.71 1.22 3.34

10 0.55 0.45 98.83 1.71 3.4

11 0.6 0.4 98.69 1.16 3.45

12 0.65 0.35 98.83 1.69 3.52
13 0.7 0.3 98.69 1.32 3.59

14 0.75 0.25 98.54 1.21 3.67

15 0.8 0.2 98.47 1.18 3.76

16 0.85 0.15 98.47 1.21 3.86

17 0.9 0.1 98.59 1.3 3.97
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Fig. 7 ROC curves, left: different fusion schemes, right: comparative curves

Table 4 Comparison of performance

Approaches GAR EER DI

Umer et al. [16] 98.37 0.7 –

Barpanda et al. [14] 91.9 8.34 2.18

Dhage et al. [6] 97.81 – –

Masek [10] 94.06 – –

Proposed score-level

fusion

98.78 1.49 3.1
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The weights w1 and w2 can be selected empirically. Table 3 shows the evaluation

parameters for different weights. Figure 7 (right) shows the performance of weighted

sum approach with respect to BLPOC and XOR-SUM approach through ROC curve.

The proposed iris recognition using score-level fusion is compared with some pre-

viously reported approaches in Table 4.

6 Conclusions

This paper presents a score-level fusion of two approaches, XOR-SUM Code and

BLPOC, for iris recognition. XOR-SUM Code is using Gabor filter for extraction of

textural information, and BLPOC uses phase information of 2D-DFT which is illu-

mination invariant. Their scores are fused for getting the improved recognition per-

formance. Weighted sum of two fusion strategies, Fusion_SUM and Fusion_PROD

gives better recognition rate and equal error rate at optimum values of weights

(w1, w2) = (0.55, 0.45) and (w1, w2) = (0.25, 0.75), respectively. It is evident through

the performed experiments that the proposed score-level fusion is outperforming the

state-of-the-art approaches of iris recognition.
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A Novel Pattern Matching Approach
on the Use of Multi-variant Local
Descriptor

Deep Suman Dev and Dakshina Ranjan Kisku

Abstract The objective of pattern matching problem is to find the most similar
image pattern in a scene image by matching to an instance of the given pattern. For
pattern matching, most distinctive features are computed from a pattern that is to be
searched in the scene image. Scene image is logically divided into sliding windows
of pattern size, and all the sliding windows are to be checked with the pattern for
matching. Due to constant matching between the pattern and the sliding window,
the matching process should be very efficient in terms of space, time and impacts
due to orientation, illumination and occlusion must be minimized to obtain better
matching accuracy. This paper presents a novel local feature descriptor called
Multi-variant Local Binary Pattern (MVLBP) for pattern matching process while
LBP is considered as base-line technique. The efficacy of the proposed pattern
matching algorithm is tested on two databases and proved to be a computationally
efficient one.

1 Introduction

Pattern matching [1–3] is one of the fundamental research segments in the field of
computer vision and pattern recognition and seeks most similar image portions
(local window [4]) by matching to an instance of the pattern in a comparatively
large image where the pattern may be or may not be present in the same or different
orientation. Pattern matching has fascinating applications [1–3] which include robot
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vision, object tracking, image localization, image classification, shape matching,
boundary information extraction, video indexing, traffic monitoring, face tracking,
face detection. In pattern matching application, priori information about the target
pattern must be available from which most distinctive features can be computed.
Pattern matching process is shown in Fig. 1.

To achieve high degree of matching accuracy as well as to reduce computational
complexity is still a major challenge in pattern matching problem. A good number
of fast pattern matching algorithms are proposed as alternative to full-search
algorithms exploited and discussed in [5, 6]. In [5, 6], Haar-like features are used
for pattern representation and matching is performed using strip sum and image
square sum techniques. However, this pattern matching technique is not much
proved to be a computationally efficient one in terms of memory space and time
requirement, and therefore, overall performance gets slow down for large dataset. In
[7], branch-and-bound approach has been used to maximize a large class of clas-
sifiers functions efficiently on sub-images having good speed. In [8], a fast
full-search pattern matching method has been proposed. In [9], a fast pattern
matching algorithm which can handle arbitrary 2D affine transformations to mini-
mize sum of absolute differences (SAD) error has been proposed. It uses sub-linear
algorithm that randomly examines a small number of pixels, and further it is
accelerated by branch-and-bound scheme. In [10], rotation-invariant texture clas-
sification using feature distributions is being proposed and found very efficient for
pattern recognition using features with rotation-invariant property. In [11], both
shape and texture data are considered to represent a face image and the basic
LBP-based face recognition process has been proposed. Various other local texture
features such as modified census transform, MBLBP, LBP histogram and locally
assembled binary feature have been introduced in [12–15], respectively.

Fig. 1 Pattern matching process
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This paper proposes a novel pattern matching technique based on local features
called Multi-variant Local Binary Pattern (MVLBP) which is constructed from
basic LBP. It computes decimal equivalent of binary number for all source pixels
by thresholding neighbouring pixels of source pixel to implement graphical inter-
relationship between source and neighbouring pixels of it. For each feature point,
feature vector is calculated to obtain histograms for all training images and followed
by feature matching process for similarity measurement. The proposed work
addresses the problems related to changes in orientation, illumination and occlu-
sions in the image as object may or may not be found rigid and may not be invasive
in nature.

The rest of the paper is organized as follows: Sect. 2 discusses motivation of the
work. Section 3 presents MVLBP-based pattern matching process. Experimental
results are given in Sect. 4. Concluding remarks are made in the last section.

2 Motivation

In local feature-based pattern matching process, local descriptor needs to be robust
across substantial variations due to illumination, orientation, low resolution,
occlusions and other factors. Image pattern should retain significant amount of
spatial information, shape and texture information for pattern matching. Local
Binary Pattern (LBP) [16] with rotation-invariant property is one of the local
descriptors that collects information of how neighbourhood pixels around a source
pixel are correlated with the source pixel and extracts features to obtain textural and
shape information from image in pattern matching. For each source pixel, LBP
operates on a 3 × 3 adjacent neighbour area with 8 neighbourhood pixels to form
an 8-bit binary sequence. If intensity value of source pixel is found to be less than
or equal to the intensity value of a neighbourhood pixel, then 1 else 0 is placed in
the binary sequence. Whereas the MB-LBP [13] approach encodes rectangular
regions using LBP operator. The MBLBP features can capture large-scale structure
by comparing central rectangle’s average intensity value with all neighbourhood
intensity values. In order to use the structural properties of local descriptors and
apply them in pattern matching, a novel variant called Multi-variant LBP (MVLBP)
is proposed exploited from LBP.

3 Pattern Matching Methodology—The MVLBP
Approach

As the pattern matching approach needs matching across substantial variations of
image properties such as illumination, orientation, occlusion, therefore, the present
pattern matching techniques must be adaptable ones while local structural
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information is used for matching and enhanced performance. Local descriptors like
LBP and its rotation-invariant operators are found robust to various object recog-
nition problems, and they are able to represent the pattern in quite efficient way.
MVLBP is one such LBP-based local descriptor which can be used for feature
extraction to obtain local texture and shape information from an image pattern for
pattern matching problem. The process is simple and has higher discriminative
power, which is robust against monotonic grey value or scale changes caused due to
illumination variations.

MVLBP is a holistic approach which takes 3 × 3 block size of neighbourhood
area of pixels as a circle with radius 1. Each source pixel’s initial intensity value
would be updated with decimal equivalent of binary value being calculated by
thresholding its neighbour pixel values with it. The updated pixel value basically
depends on neighbours’ original intensity values along with the sequence of
neighbour pixels being taken for thresholding with the pixel whose value is going to
be updated. The algorithm gives a wide range of options to choose variants based
on neighbour pixel movements. Out of 32 variants depending upon 8 neighbour
pixels, MVLBP chooses variants of those neighbours whose intensity value is
found greater than the source pixel. So, to obtain maximum spatial and textural
information by tracking minor to minor variations in the image and to show
graphical interrelationship between source and its neighbourhood pixels, a partic-
ular sequence cannot be an optimal solution for all source pixels in an image. In
order to obtain optimal weighted value, the selection of neighbour along with its
variant may not be same for all source pixel as intensity value of all pixels along
with their neighbour is found different. For that, all possible sequences (named as
variants) formed in zigzag (i.e. horizontal or vertical or circular) fashion should be
checked to get optimal solution for each source pixel. Maximization of weighted
value not only helps to get optimal solution but also helps to identify the most
distinctive fiducial points for pattern matching which in turn increase the matching
accuracy of the process.

In this process, initially the images are resized to 128 × 128 size and it needs
3 × 3 matrix to calculate the weighted value of each source pixel. Using MVLBP,
[(128 − 3) + 1]2 = 15,876 different features for each image can be formed to train
if we use image of dimension 128 × 128 pixels.

In a 3 × 3 neighbour area of pixels for each source pixel, 8 neighbours’ are
being considered to form 8-bit binary sequence (for each neighbour, 1-bit binary
data is associated in the sequence). For each pair of pixel comparison, binary ‘1’ or
‘0’ is placed in the process of weighted value calculation in binary. For 8-bit binary
weighted value, there must be 8 comparisons. As, binary bit position count starts
from ‘0’, for that comparison count ‘c’ is started from ‘0’ and ends at ‘7’.

X =Binary bit for each pair of pixel comparison =
1, if Ipixel′s neighbour ≥ Ipixel
0, otherwise

�

ð1Þ
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Weighted ValueðwÞ= ∑
0

c=7
ðXÞ2c ð2Þ

where c = comparison count
Initially, ws (optimal weighted value for any source pixel) = 0;
for each neighbour ‘n’, of a source pixel ‘s’ as starting pixel of variants; where

n = 1,…,8

Number of Variants of nðnvÞ=
6, if n is diagonal neighbour

2, otherwise

�

for all nv of n, ws =maxðwn
vi ,wsÞ; if In ≥ Is ð3Þ

where wn
vi = weighted value of source with respect to nth neighbour’s variant vi

and i varies from 1 to 6 for diagonal neighbour and 1 to 2 for other neighbours.
Table 1 shows an example in which a pixel with intensity value ‘55’ has been

updated with 32 rotation sequences by various pixel movement adopted to generate
multiple variants of LBP, where we try to select an optimal value and it’s corre-
sponding structure for matching. Figure 2 shows an example of how a source
pixel’s value is updated by MVLBP for a source image of size 4 × 4 and pattern
matching process with a 3 × 3 pattern. The MVLBP algorithm is shown in
Algorithm 1.

Lemma 1 Optimal weighted value calculation for source pixel is entirely depen-
dent on surrounding neighbour pixel’s intensity value of the source pixel.

Table 2 shows that rotation starting with the neighbour pixel whose value is
greater than that of the source pixel value is giving maximum weighted decimal
value for the source pixel compared to all possible neighbour pixels with their
variants. For the source pixel ‘55’, neighbour 82 with variants V17 and V18 and
neighbour 73 with variants V19 and V20 returns better weighted value for ‘55’
where from maximum value will be chosen. Here, weighted value returned by
either 82-V17 or 73-V20 can be selected for weighted value of ‘55’.

Lemma 2 Selection of an appropriate variant gives better weighted value for
source pixel which helps to find discriminative fiducial points on the image.

In MVLBP, at most 32 variants can be constructed. These give wide range of
options to choose accurate variant for getting optimal weighted value for all source
pixels. Out of 32 variants, V17 and V20 variants are giving best choice for ‘55’. No
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Table 1 Different variants of MVLBP

Variant
number

Variant
type

Rotation paths Weighted
binary value

Weighted
decimal
equivalent
value of
binary

Pixel
movement

V1 Horizontal 41-73-42-82-15-51-46-13 (01010000)2 (80)10 41 73 42
82 55 15
51 46 13

V2 Horizontal 42-73-41-15-82-13-46-51 (01001000)2 (72)10 41 73 42
82 55 15
51 46 13

V3 Horizontal 51-46-13-82-15-41-73-42 (00010010)2 (18)10 41 73 42
82 55 15
51 46 13

V4 Horizontal 13-46-51-15-82-42-73-41 (00001010)2 (10)10 41 73 42
82 55 15
51 46 13

V5 Vertical 41-82-51-73-46-42-15-13 (01010000)2 (80)10 41 73 42
82 55 15
51 46 13

V6 Vertical 42-15-13-73-46-41-82-51 (00010010)2 (18)10 41 73 42
82 55 15
51 46 13

V7 Vertical 51-82-41-46-73-13-15-42 (01001000)2 (72)10 41 73 42
82 55 15
51 46 13

V8 Vertical 13-15-42-46-73-51-82-41 (00001010)2 (10)10 41 73 42
82 55 15
51 46 13

V9 Horizontal
and
vertical

41-73-42-15-82-51-46-13 (01001000)2 (72)10 41 73 42
82 55 15
51 46 13

V10 Horizontal
and
vertical

41-82-51-46-73-42-15-13 (01001000)2 (72)10 41 73 42
82 55 15
51 46 13

V11 Horizontal
and
vertical

42-73-41-82-15-13-46-51 (01010000)2 (80)10 41 73 42
82 55 15
51 46 13

(continued)
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Table 1 (continued)

Variant
number

Variant
type

Rotation paths Weighted
binary value

Weighted
decimal
equivalent
value of
binary

Pixel
movement

V12 Horizontal
and
vertical

42-15-13-46-73-41-82-51 (00001010)2 (10)10 41 73 42
82 55 15
51 46 13

V13 Horizontal
and
vertical

51-46-13-15-82-41-73-42 (00001010)2 (10)10 41 73 42
82 55 15
51 46 13

V14 Horizontal
and
vertical

51-82-41-73-46-13-15-42 (01010000)2 (80)10 41 73 42
82 55 15
51 46 13

V15 Horizontal
and
vertical

13-15-42-73-46-51-82-41 (00010010)2 (18)10 41 73 42
82 55 15
51 46 13

V16 Horizontal
and
vertical

13-46-51-82-15-42-73-41 (00010010)2 (18)10 41 73 42
82 55 15
51 46 13

V17 Circular 82-41-73-42-15-13-46-51 (10100000)2 (160)10 41 73 42
82 55 15
51 46 13

V18 Circular 82-51-46-13-15-42-73-41 (10000010)2 (130)10 41 73 42
82 55 15
51 46 13

V19 Circular 73-42-15-13-46-51-82-41 (10000010)2 (130)10 41 73 42
82 55 15
51 46 13

V20 Circular 73-41-82-51-46-13-15-42 (10100000)2 (160)10 41 73 42
82 55 15
51 46 13

V21 Circular 15-13-46-51-82-41-73-42 (00001010)2 (10)10 41 73 42
82 55 15
51 46 13

V22 Circular 15-42-73-41-82-51-46-13 (00101000)2 (40)10 41 73 42
82 55 15
51 46 13

(continued)

A Novel Pattern Matching Approach … 43



other variant’s starting pixel is giving best value to select. So by maximizing
weighted pixel value for all pixels in the image it is possible to identify most
discriminative fiducial points for pattern matching.

Table 1 (continued)

Variant
number

Variant
type

Rotation paths Weighted
binary value

Weighted
decimal
equivalent
value of
binary

Pixel
movement

V23 Circular 46-51-82-41-73-42-15-13 (00101000)2 (40)10 41 73 42
82 55 15
51 46 13

V24 Circular 46-13-15-42-73-41-82-51 (00001010)2 (10)10 41 73 42
82 55 15
51 46 13

V25 Circular 41-73-42-15-13-46-51-82 (01000001)2 (65)10 41 73 42
82 55 15
51 46 13

V26 Circular 41-82-51-46-13-15-42-73 (01000001)2 (65)10 41 73 42
82 55 15
51 46 13

V27 Circular 51-46-13-15-42-73-41-82 (00000101)2 (5)10 41 73 42
82 55 15
51 46 13

V28 Circular 51-82-41-73-42-15-13-46 (01010000)2 (80)10 41 73 42
82 55 15
51 46 13

V29 Circular 13-15-42-73-41-82-51-46 (00010100)2 (20)10 41 73 42
82 55 15
51 46 13

V30 Circular 13-46-51-82-41-73-42-15 (00010100)2 (20)10 41 73 42
82 55 15
51 46 13

V31 Circular 42-15-13-46-51-82-41-73 (00000101)2 (5)10 41 73 42
82 55 15
51 46 13

V32 Circular 42-73-41-82-51-46-13-15 (01010000)2 (80)10 41 73 42
82 55 15
51 46 13
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Fig. 2 Pattern matching process using MVLBP

Table 2 Starting pixel-wise updated decimal value for source pixel ‘55’

Sl
no

Intensity
value of
starting
pixel

Variant
no

Weighted
decimal
value

Sl
no

Intensity
value of
starting
pixel

Variant
no

Weighted
decimal
value

1 82 V17 160 17 15 V22 40
2 73 V20 160 18 46 V23 40
3 82 V18 130 19 13 V29 20
4 73 V19 130 20 13 V30 20
5 41 V1 80 21 51 V3 18
6 41 V5 80 22 42 V6 18
7 42 V11 80 23 13 V15 18
8 51 V14 80 24 13 V16 18
9 51 V28 80 25 13 V4 10
10 42 V32 80 26 13 V8 10
11 42 V2 72 27 42 V12 10
12 51 V7 72 28 51 V13 10
13 41 V9 72 29 15 V21 10
14 41 V10 72 30 46 V24 10
15 41 V25 65 31 51 V27 5
16 41 V26 65 32 42 V31 5
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4 Evaluation

The proposed pattern matching algorithm MVLBP is tested on two publicly
available databases, namely the COIL-100 [17] and the Caltech 101 [18] databases.
In the pattern matching process, scanning of input image is performed first, fol-
lowed by resizing of image to 128 × 128 pixels. Then after dividing the image into
a group of sub-regions of size 3 × 3 each, weighted decimal value is calculated
with respect to neighbourhood pixel for each matrix. Histogram of each block with
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the weighted value is generated followed by concatenation of all histograms into a
concatenated histogram which represents a feature vector. The measurement of
similarity is done by calculating similarity proximity with Euclidean distance
between pattern histogram and all possible candidate histograms. A candidate
window is selected based on the similarity score while it is compared with a
threshold determined heuristically.

4.1 Databases

The Columbia Object Image Library (COIL-100) database [17] is a publicly
available database which contains colour images of 100 objects. The colour images
are collected by placing the objects on a motorized turntable against a black
background. The turntable is rotated through 360° to vary the object pose with
respect to a fixed colour camera. Images of the objects are taken at pose intervals of
5°. This corresponds to 72 poses per object.

On the other hand, the Caltech 101 database [18] comprises of open-source
images of 101 different categories with most categories having minimum of 40
images. All images are with dimension of 300 × 200 pixels. Most images have
little or no clutter. The objects tend to be centred in each image.

4.2 Experimental Results

The MVLBP algorithm is tested on two databases described in Sect. 4.1. Table 3
shows the results determined on the COIL-100 and the Caltech 101 databases.
Accuracy curves are given in Fig. 3 which exhibits the trade-off between training
samples and accuracy. The algorithm gives a wide range of options to choose
variants based on neighbour pixel movements.

From Table 2 it is seen that when intensity value of neighbouring pixel is found
greater than intensity value of source pixel, these variants can produce better
weighted value for source pixel. So by maximizing weighted pixel value for all
pixels in the image, it is possible to identify the most discriminative fiducial points
for pattern matching which in turn increase the matching accuracy of the process.

With having less training compared to MBLBP and rotation-invariant LBP,
MVLBP has better matching accuracy. When training samples get increase grad-
ually, the matching accuracy also increases. However, compared to MBLBP and
LBP, the proposed MVLBP algorithm shows a consistent rise in matching accuracy
and has better matching accuracy compared to other two existing local descriptors,
viz., LBP and MBLBP with respect to training samples/percentage.
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Training percentage represents number of images tested or trained compared to
total number of images present in the database, and matching accuracy would be
ðT −UÞ

T ×100%; where T = total number of database images and U = number of
unrecognized images.

5 Conclusion

In this paper, a novel and efficient pattern matching algorithm MVLBP has been
presented. As the proposed MVLBP-based pattern matching method takes all 8
neighbour pixels close to a source pixel as reference, not the entire image is taken as
reference; therefore it can handle minor changes of object’s pose variations in the

Table 3 Table shows pattern matching accuracies of MBLBP, LBP and MVLBP on COIL-100
and Caltech 101 databases

COIL-100 database Caltech 101 database
Training
percentage

MBLBP LBP MVLBP Training
percentage

MBLBP LBP MVLBP

10 50.14 55.61 59.13 10 52.14 54.98 57.53
20 71.23 67.68 69.45 20 60.53 66.68 70.24
30 77.42 78.25 79.46 30 68.07 72.55 77.47
40 80.69 81.23 87.79 40 77.58 80.33 86.41
50 87.34 84.54 92.99 50 84.69 81.94 92.38
60 90.56 88.02 94.98 60 88.63 86.54 95.67
70 94.54 93.64 97.12 70 94.35 94.51 98.14
80 96.25 97.21 99.74 80 97.58 96.71 99.71
90 100 100 100 90 100 100 100
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Fig. 3 Matching accuracies of MBLBP, LBP and MVLBP on the COIL-100 (left) and the
Caltech 101 (right) databases are shown
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image, and it does not require very rich text information on the pattern which makes
MVLBP features very effective in handling blurred or low-resolution images and
also robust to occlusion. MVLBP features are also found to be scale and
illumination-invariant. MVLBP gives an option to choose the optimal value for
pixels by varying all possible 32 variants. MVLBP-based pattern matching shows
gradual and monotonic increasing accuracy with increasing training percentage of
samples. The proposed MVLBP-based pattern matching approach can be used for
other tasks like object attribute classification, video-based pattern recognition and
unconstrained pattern detection with the challenges of arbitrary pose variations,
occlusions, illumination.
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GUESS: Genetic Uses in Video Encryption
with Secret Sharing

Shikhar Sharma and Krishan Kumar

Abstract Nowadays, video security systems are essential for supervision every-

where, for example video conference, WhatsApp, ATM, airport, railway station, and

other crowded places. In multi-view video systems, various cameras are producing

a huge amount of video content which makes it difficult for fast browsing and secur-

ing the information. Due to advancement in networking, digital cameras, and media,

interactive sites, the importance of privacy and security is rapidly increasing. Hence,

nowadays the security of digital videos become an emerging research area in the

multimedia domain; especially when the communication happens over the Internet.

Cryptography is an essential practice to protect the information in this digital world.

Standard encryption techniques like AES/DES are not optimal and efficient in case

of videos. Therefore, a technique is immediately required, which can provide the

security to video content. In this paper, we address the video security-related issues

and their solutions. An optimized version of the genetic algorithm is employed to

solve the aforementioned issues through modeling the simplified version of genetic

processes. It is used to generate a frame sequence such that the correlation between

any two frames is minimized. The frame sequence determines the randomization

in order of frames of a video. The proposed method is not only fast but also more

accurate to enhance the efficiency of an encryption process.

Keywords Video encryption ⋅ Genetic algorithm ⋅ Secret sharing

1 Introduction

Conventionally, the video is a collective of the numerous scene while a scene made

up through a set of shots. Moreover, these shots were an unbreakable series of the

frames which is continuously recorded by the camera in a regular interval of time.
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So, such audiovisual information was usually accessed in an identical amount of

time. However, during last decade, a very big amount of video content has been

recorded by multiple cameras. In addition to this, rapid growth in the network as

well as computing infrastructure and frequent utilization of digital video technology,

a good number of multimedia real-time applications are forthwith required. Thus, a

huge amount of audiovisual data is fast generated for various applications [1–5] such

video conferencing, videos surveillance security systems, and WhatsApp [6–9].

A video call can be defined as an experience that two people make the com-

munication with one another using moving video image and audio, and essentially

additional features, i.e., Web video conferencing. Web video conferencing may be

employed in a Web training seminar or Webinar where the sender’s video image

live with you in a Web browser. You can send your video image as well. However,

it is not most likely, because Webinars tend to communicate one-way video to you

[10]. However, such audiovisual content is not safe over the Internet until we send

the encrypted message/videos instead. Therefore an essential security framework is

urgently required.

Video surveillance security systems are going to be omnipresent in urban life.

With the underlying principle to detect crime in urban areas, video camera setup is

being set up in these areas that provide the much secure environment to the society.

Sometimes, people won’t commit a crime or will commit them elsewhere, because

they afraid to catch by such active surveillance or being identified later on from

video recordings [11]. Therefore, authorized personnel may not only removed from

the surveillance video but also edited into the video itself. It can only be retrieved

with a secret key.

A perceptual watermarking approach [12] for compressed domain video is sug-

gested to deal with the huge payload problem in the surveillance security systems

where a particular signature is embedded into the header of the video for authen-

tication. They counted all the privacy information into the video without affecting

its visual quality. This model can monitor the unauthorized persons in a restricted

environment and provides the privacy of the authorized persons. Moreover, it allows

the privacy information to be revealed in a secure and reliable way. However, this

approach failed to make a secure and reliable communicate over the Internet in the

real time.

Secret Sharing: The secret schemes are ideal for storing highly sensitive and

important information as multimedia data such as missile launch codes, numbered

bank accounts, and encryption keys. The information pieces must be held highly

confidential. However, it is also critical, so should not be lost. Conventional models

for encryption are ill-suited to achieve high levels of confidentiality and reliability

at a time due to storage of encryption keys. One must hold a single copy of the key

at one location for maximum secrecy or hold multiple copies of the key at different

locations for greater reliability. Consequently, increasing the reliability of the key

through storing multiple copies leads the lower confidentiality as offering an addi-

tional opportunity for attack vectors. There are more chances for a copy to fall into

the wrong hands.
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This problem can address using secret sharing schemes in order to achieve the

highest levels of confidentiality and reliability. This refers to the techniques to dis-

tribute single secret among a group of people or participants. Each has an allocated

share of the secret. The secret reconstruction is only possible when a sufficient num-

ber of possibly different types, of shares, is combined together. Individual shares

are of no use on their own. In 1979, the schemes [13, 14] for secret sharing was

introduced as a solution for safeguarding the cryptographic keys where a secret S

is divided among n shares. The secret S shared among n participants or sharehold-

ers where reconstruction of the secret S is possible only with any m or more than

m shares. However, the key advantage of the secret sharing schemes is, the recon-

struction of the secret S becomes next to impossible, in the case of fewer than m

shares.

Security of Key: cryptography comprises the nuts and bolts to protect informa-

tion from undesirable individuals by conversion into a form non-recognizable or

unreadable by the attackers while in transmission and during storage. Data cryptog-

raphy is the rushing of the data content, such as “image,” “text,” “audio,” “video”

and so forth to make these data unintelligible, invisible or unreadable during storage

or transmission called encryption. The main principle of cryptography is keeping

information secure from unauthorized person or attackers.

A reverse technique of data encryption is data decryption, to recover the origi-

nal data. With the rapid growth in various multimedia technologies, more and more

multimedia data are produced and transmitted in numerous fields like the commer-

cial, medical, and military fields; this sensitive data should not be leaked or accessed

by general users. Hence, security of multimedia data has become more demanding

technology. Based on the key, two types of cryptographic schemes are suggested [15]

as follow:

Symmetric Key Cryptography is one of the most important types of cryptography

where a key is shared between both communicating parties (receiver and sender),

i.e., the same key is used for encryption and decryption. The main advantage of this

scheme is it used for private encryption of data in order to achieve high performance.

For example, Advanced Encryption Standard (AES), International Data Encryption

Algorithm (IDEA), Data Encryption Standard (DES).

Asymmetric Key Cryptography is one of the most important types of cryptography

where the same key is not shared between both communication parties (receiver and

sender), i.e., two different keys are used in the process of encryption and decryption.

In asymmetric key cryptography, encryption key refers to the public key (everyone

can access) and the decryption key refers to the private key ( the only receiver can

access). For example, Rivest Adi Shamir and (RSA), Diffie–Hellman. From the lit-

erature review [15], it was observed that the characteristics feature that determines

the strength of the key is not quantifiable. However, matrices should be employed

to compare and evaluate the performance of the cryptographic algorithms. Symmet-

ric or asymmetric as type, key size, and number of rounds; the complexity of the

algorithm, integrity and authentication of the message as functions are considered
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for the main characteristics. Nowadays, attackers have the understanding to test the

strength of the algorithm or try brute force attack and differential cryptanalysis to

break the secured approach. The various parameters are used to validate the effect of

the attacks which are based on the key length and complexity of the algorithm from

which key is generated. In order to generate a more complex key, key generation

processes should be involved with more complexity. It will become very difficult for

a cryptanalyst to attack the key.

Genetic Algorithm: (GA) can be understood as a family of computational

models. Its working principles are evolution and natural selection. These sets of

algorithms convert the particular problem in a specific domain as a model through a

chromosome-like data structure. The model evolves the chromosomes using recom-

bination, selection, and mutation operators. There are numerous applications [16]

available in the domain of computer security where it is used to find the optimal

solutions to a specific problem. A randomly selected population of chromosomes is

usually the origin of the process of a genetic algorithm.

From the last decade, numerous cryptographic schemes have been explored; some

techniques out of them are based on GA. Kumar et al. [17] suggested GA-based

encryption using a secret key for the encryption process, crossover operator and

pseudorandom sequence generator (by nonlinear feed forward shift register). Pseu-

dorandom sequence decides the crossover point which helps to obtain the fully

encrypted data. Later on, they used mutation after encryption [18] where encrypted

data become hidden by masking with the steno-image. Another GA-based model

was proposed for generating the pseudorandom numbers [19] where encryption pro-

cess follows the working of the crossover and mutation operator. It uses the concept

of genetic algorithms and pseudorandom binary sequence. In addition to this, nine

parameters of linear congruential generators are used in a key generation procedure.

However, this model comprises the confidentiality issue.

Later on, Qiao, et al. [20] stated that strong key may be generated by a good ran-

domness quality of the numbers. It can be selected on or above the threshold value.

The randomness of the sample was checked by the coefficient of correlation. More-

over, a new symmetrical block ciphering approach named improved cryptography

inspired by GA was presented [21] where a random process generated the session

key which was an enhancement of GA-inspired cryptography. Its results are more

efficient than the other encryption techniques, such as video shuffling and shred-

ding [22]. However, the existing state of the art approaches fails to meet the require-

ments of the real-time applications, and generating more complex and secure key

which creates difficulty for the attackers. Therefore, an integrated model is required

to promptly address these issues.

In this paper, we used two abstracts (steganography, random sequence generator)

to address the above limitations. Steganography is the practice of concealing a mes-

sage, image, file, or video within another message, image, file, or video [23–25]. This

paper uses steganography as its first phase to conceal the actual frames into dummy

frames having random values, thus forming glitch frames. Random sequence gen-
erator is a random sequence for a permutation of numbers between 1 to N. Since

it is random, so the permutation cannot be predicted, and which is impossible to
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reproduce sequentially and reliably in polynomial time. Hence, a random number

generator is used to generate keys and a genetic algorithm is used to make the key

more complex. The key selection is to entirely depend on the value of the fitness

function of the different strings generated by the random number. The permutation

act as key GA may be applied. The salient features of our work are delineated as

follow:

∙ We formulated the video encryption and the video decryption problem as a GA-

based optimization problem.

∙ The proposed method manipulates images instead of bit manipulation as used in

traditional method providing better efficiency and speed.

∙ Secret sharing scheme is employed on video frames which provide more security

to video over the Internet.

The rest of the paper is structured as follows. Section 1 introduced the secret shar-

ing schemes and importance of GA in encryption. The proposed video encryption

system is described in Sect. 2. The experiments and results are discussed in Sect. 3.

In the end, the work has been concluded in Sect. 4.

2 Proposed Model

This encryption problem can be solved using GA where the frames of the video rep-

resent as the chromosomes. Numerous different positions of each chromosome are

encoded as bits, characters, or numbers according to problem attributes. Sometimes,

these positions are known as genes. During evolution, these may be changed ran-

domly within a range and then a set of chromosomes are referred as population. An

evaluation function is employed to measure the goodness of each chromosome. In

order to simulate the natural reproduction and mutation of species, two basic oper-

ators, i.e., crossover and mutation are used during an evaluation. For survival and

combination, the selection of chromosomes is biased toward the fittest chromosomes

[16].

Moreover, phenotypes, creatures or individuals, are also known as the population

of candidate solutions; these are progressed toward better solutions to an optimiza-

tion problem. Each such candidate solution comprises a set of properties in form of

chromosomes or genotype which can be mutated and altered. In the next iteration of

the algorithm, a new generation of candidate solutions may be used. The algorithm

usually terminates with the condition of either a satisfactory fitness level has been

reached for the population or a maximum number of generations have been produced.

A typical genetic algorithm requires genetic representation and fitness function to

evaluate of the solution domain. The various components of our proposed model are

shown in Fig. 1.



56 S. Sharma and K. Kumar

Fig. 1 Various component of our model

At sender’s end:, Firstly, a video is broken down into N number of frames. These

frames are concealed into random images of size 640 × 480. Secondly, a permuta-

tion size of N (number of frames extracted from the video) is used to generate the ini-

tial population of two chromosomes. Here, each chromosome represents a sequence

in which frames will undergo with XOR operation. Block size is used as another

parameter for XOR operation which represents the chunk of frames; on which XOR

operation is performed. Thirdly, the result of XOR operation of the frames is then

stored in permutation given by child chromosome. Finally, the offspring is repro-

duced using uniform crossover operation on initial population. These offspring acts

as a key for decryption of the video if the parent is used for encryption or vice versa.

For example the encryption and decryption process for 4 frames using block size,

k = 2 as shown in Fig. 2.
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Fig. 2 Illustration for four encrypted and decrypted frames of a Video

At receiver’s end: the key represents the sequence in which XOR operation should be

performed on the frames of transmitted video using the same block size parameter.

The pseudo-code for encryption and calculating fitness of a chromosome is discussed

as above.

Fitness of chromosomes is defined as the maximum correlation between frame

obtained after XOR operation and any frame within the same block. Thus, the prob-

lem maps into a minimization problem which focuses on minimizing the fitness of

a chromosome. The fittest chromosome represents that frames are minimally cor-

related with each other. If any one of them is missing, original frames cannot be

restored. If child chromosome is fittest, then its parent is used in the decryption pro-

cess or vice versa.

Encryption: asymmetric key is used in the model which comprises three parameters

a block size, parent and child permutation of fittest chromosome. The structure of

the key can be represented as (k, P, C), where k is block size, P is permutation used

in encryption, and C is a permutation that to be used with P for decryption.
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Decryption: the transmitted video is again broken down into frames. Using Child

permutation, C from key as the sequence in which XOR operation is performed on

frames using block size parameter given in key, the concealed frames are restored

in parent permutation. Using parent permutation, P, the concealed frames can be

ordered correctly. These frames can be used to extract the original frame information,

and hence, the actual video frames are restored.

3 Experiment and Results

The work has been implemented and analyzed. The implementation has been done

on the standard dual-core desktop with 2.7GHz processor using MATLAB R2013a.

The fitness value of fittest chromosome is obtained. We used 10 video samples. The

size of the initial population is 10 and iterated for 10 times.

3.1 Qualitative Analysis

Each frame is resized with dimensions of 200 × 160 after breaking down a video

into N frames, and then operations are performed on them as discussed in Figs. 1

and 2. Here, only a few frames of a video are represented to illustrate the concealing,

encryption and decryption operations as shown in Fig. 3. As it can be seen from

Fig. 3. that the concealing and encryption are too hard to be decrypted using brute

force.

3.2 Quantitative Analysis

The minimum correlation between actual frames and decrypted frames is calcu-

lated to demonstrate the similarity between them, and the correlation between secret

frames is also calculated as tabulated in Table 1. To enable comparison between pre-

vious works and our work, same experimental methodology is used. Table 1. shows

the results of different works based on their correlation value. They are the following

reasons to attain the correlation between frames, which is used as the parameter:

∙ Correlation denotes the similarity between two digital signals, that is, if two sig-

nals are more similar then correlation is 1, otherwise 0 for two dissimilar signals.

∙ If there exist two frames such that they are more similar, then the concept of secret

sharing becomes obsolete.

∙ If the correlation is 0, then both frames are important as decryption is not possible

if either one is missing as per the concept of secret sharing [14].

From Table 1, it is observed that both encrypted and decrypted frames are sim-

ilar to each other. While the previous works offer good encryption and decryption
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Fig. 3 Illustration for concealed, encrypted, and decrypted frames of a video
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Table 1 Comparison of correlation between frames

Method Correlation value between

actual and decrypted frames

Correlation value between

encrypted frames

Simmons et al. [15] 0.98 0.86

Zhang et al. [12] 0.93 0.42

Kumar et al. [18] 0.85 0.09

Tragha et al. [21] 0.88 0.07

Qiao et al. [20] 0.84 0.08

GUESS(k = 25) 0.89 0.03

GUESS(k = 35) 0.91 0.01

GUESS(k = 40) 0.87 0.04

correlation, but correlation between frames makes them vulnerable to attack. While

in our work, it indicates encrypted frames are dissimilar making impossible to break

it. Therefore, the model is more secure and reliable.

3.3 Computational Complexity

The proposed method was implemented for video shots of 100–700 frames with the

varying duration 3–25 s. In order to reduce the computational cost, each frame is

scale-down to 200 × 160. The time taken by the proposed method in the encryption

and decryption of the 10 video samples is shown in Table 2.

The proposed GUESS model is compared with similar work [19] that was car-

ried out for hundreds of samples. Its population varies greatly as compared to

Table 2 Computational time comparison

Number of frames Block size Time (s)

325 25 42.575

125 25 16.375

625 25 81.875

225 15 29.250

250 50 32.000

400 40 52.800

410 10 53.710

380 20 49.780

375 25 49.500

300 20 37.800
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any other. The key size of the proposed method is a variable which increases greatly

with the size of video sample. It helps to create the complex key. The computa-

tional time reported by Key Gen. [19] is about 78 s to encrypt an image; in compar-

ison to this, the proposed model takes only about 130 ms to encrypt a frame. Hence,

the proposed approach meets the requirement for the real-time applications such as

YouTube, Video Broadcasting, WhatsApp.

4 Conclusion

In this work, we proposed a GUESS model which is based on the GA and secret

sharing schemes. The model was used to generate frame sequence such that the cor-

relation between any two frames is minimized. The frame sequence determines the

randomization as a size of the number of video frames. The proposed method min-

imizes the time required as well as enhancing the efficiency of encryption process

which meets the requirements of the real-time applications. For example YouTube,

Video broadcasting, transmission of highly classified data by concealing it in frames.

The efficiency of the proposed method is so promising that even ordinary data can be

encrypted. Consequently, the proposed GUESS model takes lesser time and is also

more accurate and efficient.
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Learning-Based Fuzzy Fusion of Multiple
Classifiers for Object-Oriented Classification
of High Resolution Images

Rajeswari Balasubramaniam, Gorthi R. K. Sai Subrahmanyam and Rama
Rao Nidamanuri

Abstract In remote-sensing, multi-classifier systems (MCS) have found its use for

efficient pixel level image classification. Current challenge faced by the RS commu-

nity is, classification of very high resolution (VHR) satellite/aerial images. Despite

the abundance of data, certain inherent difficulties affect the performance of existing

pixel-based models. Hence, the trend for classification of VHR imagery has shifted

to object-oriented image analysis (OOIA) which work at object level. We propose

a shift of paradigm to object-oriented MCS (OOMCS) for efficient classification of

VHR imagery. Our system uses the modern computer vision concept of superpixels

for the segmentation stage in OOIA. To this end, we construct a learning-based de-

cision fusion method for integrating the decisions from the MCS at superpixel level

for the classification task. Upon detailed experimentation, we show that our method

exceeds in performance with respect to a variety of traditional OOIA decision sys-

tems. Our method has also empirically outperformed under conditions of two typical

artefacts, namely unbalanced samples and high intra-class variance.

Keywords Multi-classifier system ⋅ Object-oriented image analysis

Segmentation ⋅ Superpixels ⋅ Classification ⋅ Fusion

1 Introduction

Early research pertaining to the classification of remote-sensing images had focused

on the principle of similar objects having similar spectral properties. Therefore,

the spectral information at pixel level had been the main feature considered during
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classification. However, limitations with regard to urban land cover classification

were found in the usage of generalised training libraries for classifying man-made

classes.

To solve the shortcomings of pixel-based classification methods and satisfy the

current requirements of classification of very high resolution imagery, the recen-

t trends have shifted towards object-oriented image analysis (OOIA) [2]. When it

comes to very high resolution images, there are certain drawbacks of OOIA tech-

nique as well. Due to very high resolution, a single object in a scene may be

categorised as multiple objects due to high intra-object variance. Also, due to the

arbitrary nature of the objects formed, it is not possible to perform neighbourhood

operations over them. In this situation, performance capabilities of OOIA drop.

Though OOIA currently provides the most feasible solution for remote-sensing im-

age classification problem, each of its stages is open to discretion. In this paper,

we have tried to improve the different stages of OOIA and design a robust standard

OOIA model that can be used for efficient image classification. We have proposed

an object-oriented multi-classifier system with a fuzzy decision fusion technique

(OOMCS), which utilises the advantages of contextual information from OOIA and

also the capabilities of accurate classification of multi-classifier techniques to its ad-

vantage. We use quick shift-based superpixels for the segmentation stage; this has

shown excellent boundary adherence and is amongst the best of superpixelization

schemes with lowest under-segmentation error [1]. To this end, we have designed

learning-based fuzzy decision fusion system for effectively combining the decisions

from multiple classifiers. Our experimentations show that it empirically outperforms

the existing state-of-the-art OOIA methods and performs exceptionally well during

frequently encountered artefacts of unbalanced situation and high intra-class vari-

ance. Thus, the overall contributions of this paper include:

∙ Segmenting an image into superpixels as the primary stage of remote-sensing im-

age classification, which is a trade-off between the pixels in the pixel-based clas-

sification and objects in object-oriented image analysis.

∙ Introduce a paradigm shift in object-oriented image analysis by using multi-

classifier systems to improve its classification performance.

∙ Design of a novel learning-based fuzzy decision fusion system to effectively com-

bine the capabilities of the multiple classifiers used in the classification stage.

∙ Extensive evaluation of the proposed methodologies and demonstration of its ca-

pabilities in the artefact cases of sparse samples and high intra-class variance.

Section 2 describes the methodology and the algorithms involved, in detail. Sec-

tion 3 describes the implementation details; In Sect. 4, we describe the results ob-

tained over various data sets and discuss its performance on special cases. Final

section concludes with discussions for plausible variations for further development

over the algorithm to improve its performance.
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Fig. 1 Proposed scene parsing framework

2 Proposed Methodology

The OOMCS with fuzzy fusion scheme can be broadly split into three stages. A

simplified block diagram is represented in Fig. 1. First stage generates superpixels

using quick shift algorithm. It is followed by a feature extractor and a set of widely

used classifiers which run over the feature vectors to provide their decisions. Final-

ly, a fusion mechanism that assigns priority weights to classifiers is based on their

performance over the training samples. This system mainly focuses on improving its

performance with minimal training. Each stage is described in detail in the following

subsections.

2.1 Superpixel Generation

2.1.1 Quick Shift Algorithm

Quick shift algorithm produces segments without the user specifying the number of

segments required and is predominantly mode seeking over intensity and spatial vec-

tors which is ideal for satellite image segmentation. It is a mode-seeking algorithm

with a time complexity of (dN2) [6].

Given N data points,

x1, x2,… , xN𝜖X(Rd)

a mode-seeking clustering algorithm begins by computing the parzen density esti-

mate:
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P(x) = 1∕N
∑

i
K(x − xi) (1)

where x𝜖Rd

N denotes the number of pixels within the kernel and

K(x) is a Gaussian window or any other window [4]. The mode of the density P(x),
need not be measured using the gradient or quadratic lower bound (as in the case of

mean shift algorithm). In quick shift, each point xi is moved to the nearest neighbour

for which there is an increment in the density P(x) [7]. Thus, the trajectory in the

case of quick shift is given by:

yi = argmaxj∶d(xj,xi)<𝜏(
Pj − Pi

dij
) (2)

Note that, (Pj − Pi)∕dij is a numerical approximation of the gradient of P in the

direction of xj − xi where

yi—is the trajectory of vector i.
Pi—is the probability density of i.
𝜏—denotes the threshold that determines the maximum size of the superpixel.

dij—L2 distance of pixel xi from xj.

This approximation helps in reducing the time complexity compared to mean shift

algorithm [7]. Figure 2 represents a sample aerial imagery which has been classified

by quick shift-OOIA [5]. The centre column depicts the superpixels generated. It

can be observed that the superpixels formed are more or less uniform unlike typical

oversegmentation algorithms. Classification of the above image has been performed

over four classes, namely buildings (yellow), roads (cyan), vegetation (blue) and

shadows (red).

Fig. 2 Aerial image classification by quick shift-OOIA
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2.2 Multiple Classifier Decisions

The MCS that we have designed contains five classifier modules, namely one versus

all RBF-SVM, binary decision tree, Adaboost classifier, K-nearest neighbours and

Gaussian discriminant analyser. The choice of classifiers are based on several factors

such as using the kernel trick of SVMs, efficient handling of redundant attributes

binary classification tree, resistance to overfitting by Adaboost forest.

2.3 Fuzzy Rank-Based Fusion

The existing fusion systems perform majority voting or simple averaging to combine

decisions from multiple classifiers. We introduce a novel technique for combination

of decisions called fuzzy ranking. The proposed approach is based on the intuition

that the training accuracies can naturally determine weights assigned to each clas-

sifier over individual classes. The graphical depiction of the approach is shown in

Fig. 3.

Elements of the class-wise histogram matrix (w) are the predicted probabilities

which are the weights wij. wij represents the weight of classifier i for class j. The

flow of these weights for final decision-making have been pictorially is depicted in

Fig. 3. Once the rank matrix is generated during training phase, the next step is to

assign scores to classify a test sample. Let DCi represent the decision of classifier

i, this decision is transformed into a one-hot vector notation, wherein 1 is placed at

the position of the decision class in the vector whose length is equal to the number

Fig. 3 Fusion model
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Algorithm 1 Decision Fusion

1: procedure FUZZY RANK GENERATION

2: ncl ← no.ofclassifiers
3: nc ← no.ofclasses
4: Initialize rank matrix ← zeros(size(nclxnc))

5: loop:

6: for i = 1 ∶ ncl do
7: for j = 1 ∶ nc do
8: rank matrix(i,j) ← TruePositives(i,j)

TrainingSamples(j)

9: w(i, j) ←
rankmatrix(i, j)

∑nc
j=1{rankmatrix(i, j)}

.

10: end
11: end
12: Sc = w ⋅ DC
13: Oc ←

∑nc
j=1{Sc(∶, j)}

14: Decision outcome ← maxOc

of classes. Mathematically, the fusion can be represented as a weighed decision of

all classifiers, where the weights have been learnt from the training samples. This

weighed decision is obtained as shown in line 13 and 14 of Algorithm 1. The ‘⋅’ in

line 12 refers to the element-wise dot product of the corresponding matrices. Here,

Ocj represents the jth class score. Therefore, the final decision will be the class which

is assigned the highest score (Tables 1 and 2).

3 Implementation

Extensive experimentation has been performed to test the capabilities of this model

under varying conditions. The model has been tested over data sets with varying

spatial resolution. The data sets are chosen to focus on urban land cover classifica-

tion. The major classes considered in the study are vegetation/barren land, roads,

buildings and shadow. Shadow is an important class, especially for very high reso-

lution images. Special artefact cases (unbalanced situation and high intra-class vari-

ance) are tested upon. Also, the model is evaluated with a very small percentage of

training samples. Performance of the model is analysed through multiple statistical

tests. Finally, a comparison is done with individual classifier performances. Upcom-

ing sections describe in detail the experimentations performed.

3.1 Locations and Data sets

We have chosen three data sets, each containing five tiles (images). The images

are three band optical images. The spatial extent per image is 512× 512 pixels and
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Table 3 Data set description

Location Dimensions No. of tiles Spatial resolution

(cm/pixel)

Jaipur, India 512× 512× 3 5 50

Madrid, Spain 512× 512× 3 5 30

Vaihingen, Germany 512× 512× 3 5 9

the radiometric resolution is 8 bits. The locations chosen are Jaipur, India; Madrid,

Spain; and Vaihingen, Germany. A summary of the data set description is specified

in Table 3.

3.2 Features

Feature extraction is done over the superpixels generated by quick shift segmenta-

tion. The features extracted can be broadly split into intensity-based features and

texture-based features. Intensity-based features include sample mean and standard

deviation across the superpixel. Entropy is a statistical measure of randomness that

can be used to characterise the texture of the input region (Tables 4 and 5).

𝜇j =
∑

i xij
N

(3)

𝜎j =
∑

i(xij − 𝜇j)2

N
(4)

𝜉 = −
∑

(p. ∗ log2(p)) (5)

where

xi pixels present in the given superpixel.

N total no. of pixels in the given superpixel.

𝜇j mean pixel intensity in band j.

𝜎j Std. deviation of intensity in band j.

𝜉 entropy.

p histogram counts of intensity values over all bands.

Hence, in our study, the feature vector over every superpixel is a ℜ7
vector

containing the intensity (over all 3 bands) and texture information. Superpixels do

not hold any geometric information without further processing; hence, shape and

geometry-based features have not been considered (Fig. 4).
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3.3 Design Specification

The first stage of the model is the segmentation process. In the quick shift algorithm,

we first transform the input image from RGB colour space to L-A-B colour space.

The L-A-B space is used to emulate human perception of colour. The feature vector

over which nonparametric density estimation is done is a combination of spectral and

spatial features. The spectral features include 3-dimensional L-A-B vector and the

spatial feature is a 2-dimensional (x, y) positional vector. Hence, the size of the total

feature vector is five dimensions. Segment localisation happens over the gradient

contour in the feature vector space. The kernel is a Gaussian kernel with a window

size of 2 pixels wide which is set to obtain fine-scale density estimation over the

defined image feature vector space. The threshold distance is a constraint over the

size of the segment, which is set as 10 pixel radius (𝜏) and the ratio factor to trade-

off between spectral and spatial features while segmentation is set as 0.5. Once the

superpixels are generated, a 7-dimensional feature vector is extracted over individual

superpixels, which contain intensity-based and texture-based information. The z-

score standardization is performed over the feature vectors as a method of feature

normalisation. Table 6 represents the segmentation results for different data sets.

4 Results and Discussions

The performance of OOMCS with fuzzy fusion scheme has been tested through var-

ious statistical measures. It has consistently shown elevated performance as com-

pared to its individual classifier counterparts. The statistics accounted for, include,

precision, recall and accuracy. Also, F-measure, a test for statistical significance is

performed for the special case of unbalanced samples and high intra-class variance.

A statistically significant outcome for the F-measure suggests that the results did not

happen by chance. Another important objective of the model is to work with a very

small percentage of training samples. Hence, accuracy assessment for varying per-

centage of training samples has been performed. The accuracy assessment plots for

different data sets have been shown in Fig. 5.

The results after the above-mentioned analysis on multiple data sets have been

summarised in Tables 1, 2, 4 and 5. The performance of the OOMCS-fusion scheme

is clearly superior to the other classifiers. The classified results of a sample image

from each data set by the best classifier and our method is depicted in Fig. 4. Four

classes have been considered for the study. The classes include vegetation (blue),

roads (cyan), buildings (yellow) and shadow (red). From the accuracy assessment

curves, it can be observed that the performance of the model increases with increase

in resolution and attains close to perfection with just 25–30 training samples per

class. It can be seen from Fig. 4 that visually, building class which has high correla-

tion with road class has been better identified in all data sets using the multi-classifier
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Fig. 4 Left column: Satellite imagery, Centre column: Best classifier, Right column: Fusion

method

Table 6 Segmentation details

Data set Average no. of regions Time (s)

Jaipur, India 1345 3.863

Madrid, Spain 1087 3.856

Vaihingen, Germany 878 3.798
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Fig. 5 Accuracy assessment

Table 7 Comparison of classifiers based on F-measure

Decision systems Sparse samples

(Jaipur-shadow)

High within class variation

(Jaipur-roads)

F-measure F-measure

RBF-SVM 0.65 0.666

Binary tree 0.571 0.1666

Adaboost 0 0.2

KNN 0.8 0.5454

GDA 0.88 0

Our method 0.9088 0.8333
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Fig. 6 Left column: Satellite imagery (Bottleneck cases), Centre column: Best classifier result,

Right column: Fusion method result

system as compared to the best classifier performance. The statistic precision is a

measure of correctness, and the recall is a measure of completeness.

Apart from the general analysis, a special case study of two artefacts has been

done. First, the presence of very less percentage of a particular class. The sample

image shown in Fig. 6 shows the two artefacts. The shadow class (red) is the exam-

ple of sparse samples, by sparse we mean, the proportion of the class in the given

image is very less. The second case study is the test of the ability of the model to

incorporate high intra-class variance for decision-making. The road class (cyan) of

Fig. 6 is the example of having high intra-class variance, and this can be clearly seen

in the imagery. Our model handles both the issues with high degree of flexibility

due to its robust fusion system. Performance of the model is evaluated through the

F-measure test. As shown in Table 7, our method scores the highest as compared to

any other method. As a part of analysis, we have also identified that KNN and GDA

are robust for sparse sample scenario and SVM and KNN are robust for high intra-

class variance situations. Finally, to visualise the results of classification during such

bottlenecks, a sample result is shown in Fig. 6.

5 Conclusion

In this paper, we have introduced a new paradigm shift to object level multi-classifier

decision fusion using a novel fuzzy rank-based fusion system. This system uses the

concept of superpixels over which decision fusion is applied. Class score for a test

superpixel is generated through the fusion of these weights. This system has main-

tained its performance capabilities over a wide range of resolutions from 50 to 9 cm.

Hence, its scope of application is very broad and will find its use in many real-

time applications. This model can be modified as per requirement. For instance,

in our study, the main focus of interest was to improve the true positive rate with

just a small set of training samples. Hence, the rank matrix was generated using the

true positive rate of the training samples. Therefore, depending on applications, the
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nature of rank matrix can be varied to solve different purposes. If, for example, false

positive rate has to be reduced, that factor can be used in generating the rank matrix

and fusion can be done. The flexibility and the simplicity of the fusion method is the

major advantage of our proposed system.
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Image Retrieval Using Random Forest-Based
Semantic Similarity Measures and
SURF-Based Visual Words

Anindita Mukherjee, Jaya Sil and Ananda S. Chowdhury

Abstract In this paper, we propose a novel image retrieval scheme using random

forest-based semantic similarity measures and SURF-based bag of visual words. A

patch-based representation for the images is carried out with SURF-based bag of

visual words. A random forest, which is an ensemble of randomized decision trees,

is applied next on a set of training images. The training images accumulate into differ-

ent leaf nodes in each decision tree of the random forest as a result. During retrieval, a

query image, represented using SURF-based bag of visual words, is passed through

each decision tree. We define a query path and a semantic neighbor set for such

query images in all the decision trees. Different measures of semantic image simi-

larity are derived by exploring the characteristics of query paths and semantic neigh-

bor sets. Experimental results on the publicly available COIL-100 image database

clearly demonstrate the superior performance of the proposed content-based image

retrieval (CBIR) method with these new measures over some of the similar existing

approaches.

Keywords Semantic similarity measures ⋅ Random forest ⋅ Query path

SURF ⋅ Visual words

1 Introduction

Content-based image retrieval (CBIR) has emerged over the years as a popular area

of interest for researchers in the computer vision and the multimedia communities.

The principal aim of CBIR is to organize digital picture archives from a thorough
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analysis of their visual content [1]. Bag of visual words (BoVW) framework has

become popular for modeling the image content [2]. In this model, an image is rep-

resented as a collection of elementary local features like SURF [3] or SIFT [4]. These

local descriptors are then quantized by k-means algorithm to build a bag of visual

words. In recent past, there have been efforts to improve the BoVW model. For exam-

ple in [5], Bouachir et al. have used a fuzzy c-means-based approach to improve the

retrieval performance. The authors in [6] have developed an affinity-based visual

word assignment model. They have also proposed a new measure of dissimilarity

using a penalty function. For probabilistic similarity measures in image retrieval,

please see [7]. While these methods have shown promises, still there remains a wide

scope to better the retrieval performance. One factor which has highly contributed to

this scope is lack of proper semantic similarity measures. Notion of semantic similar-

ity plays a pivotal role in the image content modeling and retrieval [8]. We have come

across interesting works, where initial notions of semantic image similarity based

on random forest are developed [9–11]. In this paper, we propose an image retrieval

scheme using random forest-based semantic similarity measures and SURF-based

BoVW model. The rationale behind using SURF features is its much faster execu-

tion time as compared to that of SIFT [3]. The main contribution of this paper is the

design and detailed analysis of random forest-based new semantic similarity mea-

sures. Experimental comparisons on the publicly available COIL-100 [12] image

database clearly show the merit of our approach.

2 Proposed Method

In this section, we describe in detail the proposed method. The section contains three

parts. In the first part, we discuss the SURF-based BoVW model for image represen-

tation. We then describe how random forest is used for training. Finally, we derive

novel semantic similarity measures based on random forest.

2.1 Image Representation Using SURF-Based BoVW

We first discuss basics of SURF features following [3]. We then mention how patch-

based image representation is done using SURF-based BoVW. SURF uses Hessian

Matrix to detect interest points. The Hessian Matrix H(x, 𝜎) for any point x = (x, y)
in an image I at a scale 𝜎 is mathematically expressed as:

H(x, 𝜎) =
[
Lxx(x, 𝜎) Lxy(x, 𝜎)
Lyx(x, 𝜎) Lyy(x, 𝜎)

]
(1)
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In Eq. (1), Lxx(x, 𝜎) marks the convolution of the Gaussian second-order deriva-

tive
𝛿

2

𝛿x2
g(𝜎) with the image I at point x and so on. Integral images are used to

efficiently obtain these computationally intensive convolutions. The above interest

points are found across different scales (𝜎 values). For the extraction of interest point

descriptors (representation of neighborhood of any interest point, i.e., a patch), SURF

uses sum of Haar wavelet responses. In the present problem, 64-dimensional SURF

vectors are used to represent several patches in each training image. These local

SURF descriptors need to be quantized to build the visual vocabulary. We apply

k-means algorithm (with k = 500) to achieve this goal. Each cluster is treated as a

unique visual word, and the collection of such visual words form the visual vocab-

ulary [2]. Each image is then represented using a histogram of these visual words.

Thus, at the end of this step, we have a 500-dimensional BoVW vector representing

each training image.

2.2 Random Forest-Based Training

Here, we discuss how random forest can be used for training in this context of image

retrieval. The rationale behind the choice of random forest is its very high accuracy

and capability to handle large volume of data. Random forest is an ensemble classifier

of decision trees with bagging (randomizing the training set) capability [13]. It votes

for the most popular class among the individual trees. The information gain I for the

jth node in a decision tree is given by:

I = H(Sj) −
∑
i=L,R

|Sij|
|Sj|H(Sij) (2)

In Eq. (2), H(S) denotes the entropy of a node S, which for a discrete set of C labels

is given by: −
∑

c∈C p(c)log2(p(c)) and |Sj| denotes the number of training images in

the node Sj. So, |SLj | and |SRj |, respectively, represent the number of training images

in the left child and the right child of the node Sj. In this problem, we use the 500-

dimensional BoVW vector and the class label for each training image as the two

inputs to the random forest. At the end of this training phase, the training images are

grouped into various leaf nodes in different decision trees.

2.3 Random Forest-Based Semantic Similarity Measures

Though random forest is mostly applied for classification, following [9], we have

used it here to derive measures of semantic image similarity. In this section, we

discuss three such measures. During the retrieval stage, a query image passes through

each decision tree. Let m denote a training image, q denote a query image, and
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t denote a decision tree in a random forest. Further, let M and T , respectively, denote

the total number of training images and the total number of decision trees in the

random forest. We now have the following definitions and expressions.

Definition 1 The semantic neighbor set SNS(q, t) is defined following [9] as the

set of training images present at the leaf node into which a query image q falls in a

decision tree t.

Definition 2 The frequency-based similarity measure sm1(m, q) is defined as the

number of trees (t, t ∈ [1,T]) in the random forest a training image m appears in

SNS(q, t). So, we mathematically express sm1(m, q) as:

sm1(m, q) =
T∑
t=1

𝜙m(t) (3)

Here, 𝜙m(t) = 1 if m ∈ SNS(q, t) and is 0 otherwise (1 ≤ m ≤ M).

Note that since sm1 is based on frequency, we do not normalize it.

Definition 3 A query path pk(q, t) of length k for a query image q in a tree t(1 ≤

t ≤ T) is denoted by a sequence of nodes n0(t), n1(t),… , n(k−1)(t), where n0(t) is the

root, ni(t) is the ith intermediate node (1 ≤ i ≤ (k − 2)), and n(k−1)(t) is a leaf node

in the tree t. Here, q falls into n(k−1)(t) and the training images which are present in

n(k−1)(t) form SNS(q, t).

In Fig. 1, we show a typical query path in a decision tree using a sequence of red

lines. The red oval marks the leaf node where the query image falls in this tree and

xi in the same figure denotes the ith (1 ≤ i ≤ 500) element of the 500-dimensional

BoVW vector. The label 5 in the leaf node indicates that the probability of class 5 is

maximum at this node. However, we have determined the SNS, i.e., training images

of different classes (and not just that of the highest class) which have accumulated

in such nodes for the evaluation of our proposed semantic measures.

Definition 4 Let the set of (k − 1) features on the query path pk(q, t) be denoted

by f (t) = {f1(t), f2(t),… , f(k−1)(t)} and the set of weights (relative importance) of

these k features be denoted by 𝛼(t) = {𝛼1(t), 𝛼2(t),… , 𝛼(k−1)(t)}. Here, fi connects

(ni, n(i+1)), (1 ≤ i ≤ (k − 1)), and so on. A query path-based similarity measure

sm2(m, q) between a training image m and a query image q is defined as the summa-

tion over all trees the product of weights of all features appearing in a path in each

tree. We mathematically express sm2(m, q) as:

sm2(m, q) =
T∑
t=1

(k−1)∏
i=1

𝛼i(t) (4)

We have actually used a normalized version of sm2(m, q), defined as sm2(m, q) =
sm2(m, q)∕max∀m,1≤m≤Msm2(m, q).
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Fig. 1 A typical query path in a decision tree

Definition 5 Further, let the set of k features fi(t), (1 ≤ i ≤ (k − 1)) on the query path

pk(q, t) be at respective levels li(t), (1 ≤ i ≤ (k − 1)). Since each tree is essentially

a binary tree, we define another query path-based similarity measure sm3(m, q)
between a training image m and a query image q as the summation over all trees the

product of level modulated weights of all features appearing in a path in each tree.

So, sm3(m, q) can be mathematically expressed as:

sm3(m, q) =
T∑
t=1

(k−1)∏
i=1

𝛼i(t) ×
1

2li(t)
(5)

We have actually used a normalized version of sm3(m, q), defined as sm3(m, q) =
sm3(m, q)∕max∀m,1≤m≤Msm3(m, q), where M denotes the total number of training

images.

3 Complexity Analysis

In this section, we analyze the complexity of the construction of the random forest

classifier and the computation of the three semantic measures. Let M, |B|, and d(t)
denote the number of training images, number of elements in the BoVW vector rep-

resenting an image, and depth of a decision tree t. Note that in a random forest, as
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a result of bagging, each decision tree is constructed with a randomly chosen sub-

set of the number of elements in the BoVW vector (f (t) = {f1(t), f2(t),… , f(k−1)(t)},
(k − 1) ≤ |B|). At each node in a tree t, we have to compute the information gain for

different fi(t)′s, (1 ≤ i ≤ (k − 1)). Then, the maximum cost of constructing a deci-

sion tree becomes O(M|B|d(t)). With a total of T such decision trees in the ran-

dom forest and a maximum depth D, where D = max∀t,1≤t≤T (d(t)), the maximum

cost of constructing the random forest is O(M|B|DT). The maximum value of the

length k of a query path pk(t) in a decision tree t is d(t), which in the worst case can

be D. So, the worst-case complexity for evaluating sm1(m, q) (please see the defi-

nition in Eq. (3)) is O(TD). The cost of using the weights 𝛼i(t) for corresponding

features fi(t), (1 ≤ i ≤ (k − 1)) in a decision tree t is O(1). Note that these weights

are already computed using Eq. (2) at the time of the construction of the decision

trees. In the worst case, we need to use this (D − 1) times for all T trees. So, the

worst-case complexity for evaluating sm2(m, q) (please see the definition in Eq. (4))

is O(T(D − 1)) ≈ O(TD). Similarly, the cost of evaluation of the levels li(t) for any

feature fi(t) in a decision tree t is also O(1). In the worst case, we need to evaluate this

(D − 1) times. So, the worst-case complexity for evaluating sm3(m, q) (please see the

definition in Eq. (5)) is O(T(D − 1)) + O(T(D − 1)) = O(T(D − 1)) ≈ O(TD). The

overall worst-case complexity of construction of the random forest and evaluation of

any semantic measure is O(M|B|DT) + O(TD) = O(M|B|DT).

4 Experimental Results

We use the publicly available COIL-100 image database [12] for experimentation.

The database contains a total of 7200 images with 72 different images of 100 different

objects having a viewpoint separation of 5◦. We have used MATLAB as the comput-

ing platform. Precision and recall values are chosen as the measures of retrieval per-

formance [1]. Precision indicates the percentage of retrieved images that are relevant

to the query. In contrast, recall measures the percentage of all the relevant images

in the database which are retrieved. Precision versus recall curves are obtained by

changing the thresholds 𝜃1, 𝜃2, and 𝜃3 in connection with the three semantic simi-

larity measures sm1, sm2, and sm3, respectively. So, for obtaining the curve using

measure sm1, we vary 𝜃1 from 5 to the total number of decision trees in the ran-

dom forest and retrieve only those training image(s) m for which sm1(m, q) > 𝜃1.

Likewise, we obtain the curves using sm2 and sm3 by varying 𝜃2 and 𝜃3 from 0.05
to 1.0.

We experimentally determine the optimal number of trees in the random forest to

be 100. Please see Fig. 2 where the best retrieval performance for Coil 1 is achieved

with T = 100. We now compare our performance with a fuzzy weighting scheme [5],

a term frequency–inverse document frequency (tfx)-based approach [14], a method

which only uses term frequency (txx) [15], and a visual word assignment model

(vwa) [6].
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Fig. 2 Precision versus

recall curves for Coil 1

using sm1 and three

different values of

number of decision trees

(T = 100,T = 75,T = 50)

The precision versus recall curves are shown for two different query objects,

namely Coil 3 and Coil 10 for each of the three semantic measures sm1, sm2, and

sm3 are shown in Fig. 3 and Fig. 4, respectively. The curves clearly indicate that the

retrieval performance using all three proposed semantic similarity measures yields

superior results compared to the four competing methods. We now show the retrieved

Fig. 3 Precision versus recall curves of five different methods, namely txx [15], tfx [14], fuzzy

weighting [5], vwa [6], and current approach for Coil 3 with three different semantic similarity

measures: sm1 (top), sm2 (bottom left), sm3 (bottom right)
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Fig. 4 Precision versus recall curves of five different methods, namely txx [15], tfx [14], fuzzy

weighting [5], vwa [6], and current approach for Coil 10 with three different semantic similarity

measures: sm1 (top), sm2 (bottom left), sm3 (bottom right)

images for Coil 3 and Coil 10 in Figs. 5 and 6. The retrieved results illustrate that the

top five retrieved images for all three semantic measures are relevant. The rank and

set of the relevant images are, however, different for different measures. Now, we

include a failed case for the object Coil 9 in Fig. 7. This figure indicates that all three

measures fail to retrieve only relevant images (images belong to the same class as

that of the query image). The reason for failure is that there are quite a few extremely

similar objects like Coil 9 in the database. Still, the measures sm2 and sm3 yield bet-

ter results than sm1. This is because sm1 is only based on frequency of appearance

of a training image in the SNS of a query image. In contrast, both sm2 and sm3 are

derived from the characteristics (weights and levels of BoVW elements) of a query

path.

We also present the recognition rate as an average precision for ten different

objects, namely Coil 1 to Coil 10 of the COIL-100 database [5]. Please note that the

recognition rate does not take into account any recall. In Table 1, we compare the

recognition rates for the above objects of the proposed method with three different

semantic similarity measures against four competing methods. The results clearly

demonstrate that all three measures in our method have better performances than

the competing methods. In nine out of ten cases, it turns out that the three mea-

sures become (single or joint) winners having achieved the highest recognition rate.



Image Retrieval Using Random Forest-Based Semantic Similarity Measures . . . 87

Fig. 5 Retrieval results for COIL-3: query image (first row), top five retrieved images based on

sm1 (second row), sm2 (third row), and sm3 (fourth row). All five retrieved images for all three

measures are relevant (belong to the same class as that of the query image)

Furthermore, all three average recognition rates, namely 89.7% from sm1, 93.2%

from sm2, and 92.1% from sm3, clearly surpass the previously reported recognition

rates. Once again, (and in fact, generally speaking), among the proposed three mea-

sures, sm2 and sm3, which carry more information, yield better results than sm1.

Fourth best is [6] with an average recognition rate of 86%, followed by [5] with the

reported average recognition rate of 80%. The other two methods [14, 15] are clearly

quite behind with average recognition rates of 71.5% and 61.5%, respectively.

5 Conclusion

In this paper, we proposed a method of image retrieval using random forest-based

new semantic similarity measures and SURF-based bag of visual words. The seman-

tic similarity measures are derived from characterization of query paths and semantic

neighbor sets in each decision tree of the random forest. Comparisons with some of

the existing approaches on the COIL-100 database clearly show the merits of the pro-

posed formulation. In future, we plan to perform more experiments with other similar
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Fig. 6 Retrieval results for COIL-10: query image (first row), top five retrieved images based on

sm1 (second row), sm2 (third row), and sm3 (fourth row). All five retrieved images for all three

measures are relevant (belong to the same class as that of the query image)

Table 1 Recognition rate comparison among different competing methods: txx [15], tfx [14],

fuzzy weighting [5], vwa [6], and current method with semantic similarity measures sm1, sm2,

and sm3
Image txx tfx Fuzzy

weighting

vwa sm1 sm2 sm3

Coil 1 0.5 0.4 0.65 0.8 0.98 0.98 0.98

Coil 2 0.4 0.1 0.45 0.6 0.88 0.89 0.89

Coil 3 0.9 0.95 1.0 1.0 1.0 1.0 1.0

Coil 4 1.0 0.9 1.0 1.0 1.0 1.0 1.0

Coil 5 0.25 0.1 0.75 0.75 0.97 0.98 0.98

Coil 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Coil 7 1.0 0.85 0.95 1.0 0.94 0.93 0.91

Coil 8 0.55 0.5 0.7 0.75 0.94 0.94 0.94

Coil 9 0.7 0.6 0.6 0.7 0.26 0.6 0.51

Coil 10 0.85 0.75 0.9 1.0 1.0 1.0 1.0

Average 0.715 0.615 0.8 0.86 0.897 0.932 0.921
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Fig. 7 Retrieval results for COIL-9 showing some failed cases: query image (first row),

top five retrieved images based on sm1; only fifth image is from the relevant class (second row),

top five retrieved images based on sm2; first, fourth, and fifth from relevant classes (third row), top

five retrieved images based on sm3; first, fourth, and fifth from relevant classes (fourth row)

approaches on additional databases like Oxford buildings [11]. We will also exploit

contextual and structural information in random forests [16] as well as explore deep

learning-based approaches [17] to further improve the retrieval performance.
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Rotation Invariant Digit Recognition
Using Convolutional Neural Network

Ayushi Jain, Gorthi R. K. Sai Subrahmanyam and Deepak Mishra

Abstract Deep learning architectures use a set of layers to learn hierarchical fea-

tures from the input. The learnt features are discriminative, and thus can be used for

classification tasks. Convolutional neural networks (CNNs) are one of the widely

used deep learning architectures. CNN extracts prominent features from the input by

passing it through the layers of convolution and nonlinear activation. These features

are invariant to scaling and small amount of distortions in the input image, but they

offer rotation invariance only for smaller degrees of rotation. We propose an idea of

using multiple instance of CNN to enhance the overall rotation invariant capabili-

ties of the architecture even for higher degrees of rotation in the input image. The

architecture is then applied to handwritten digit classification and captcha recogni-

tion. The proposed method requires less number of images for training, and therefore

reduces the training time. Moreover, our method offers an additional advantage of

finding the approximate orientation of the object in an image, without any additional

computational complexity.
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1 Introduction

Neural Networks, as the name suggests, are the artificial structures inspired by the

topological arrangement of neurons in human brain [1]. Fully connected neural net-

works require specific features of input for training and testing. The number of free

parameters is also very high for such networks. They are not immune to scale changes

and distortions in the input image. All such limitations of conventional neural net-

works are overcome in convolutional neural networks. CNN is a deep learning ar-

chitecture which extracts the complex and discriminative features of the input using

a series of convolutions, nonlinear activations, and subsampling. More details about

the CNN architectures and functioning of each layer can be found in [1].

Recently, convolutional neural networks are becoming more popular and are be-

ing used in many areas including image processing, computer vision, speech analy-

sis, natural language processing. They find application in digit recognition [2], image

super-resolution [3], face detection [4], gesture segmentation [5], rotation invariant

facial expression recognition [6].

CNNs use images directly as input. They learn a hierarchy of features which can

then be used for classification purposes. Repeated convolution of input image with

learnt kernels gives a hierarchy of features. The obtained feature maps are invariant

to translation and distortions in the input image. Up to some extent, the features are

invariant to rotation as well, provided that the degree of rotation is small.

Efforts have been made to employ rotation invariance in CNN by training the net-

work with all possible rotations, i.e., data augmentation [4, 7]. Thus the size of train-

ing dataset becomes extremely large. Similar work that uses more than single unit of

CNN to extract rotation invariant features has been done by [8], which has computa-

tionally complex training as they rotate the training input at multiple angles. Spatial

transformer networks (STNs) [9] are also another work to achieve transformation

invariant classification. A STN module generates the parameter of transformation

from an input feature map. It spatially transforms the feature map with the obtained

parameters to minimize the overall cost function. This STN module can be inserted

after any layer in CNN. But, additional computations involved in the module makes

CNN training complex.

The proposed architecture trains a CNN and uses it numerous times in parallel for

testing. The network is trained with images having digits at single orientation and

classifies the images with different orientations of the same digit. Thus, the training

data size is smaller as compared to data augmentation, also the training time is re-

duced. The proposed approach springs from the intuition and observation that the

CNN tested with roughly close to (need not be exactly same as) actual orientation of

the digit/object with which it is trained, gives higher response than the CNNs tested

with other orientations. As an additional application, our method can identify the

approximate orientation of the digit in an image. We have applied the method on

handwritten digit classification and rotated captcha recognition.
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2 Proposed Method: RIMCNN

The orientation of an object plays an important role in tasks such as object classi-

fication, digit recognition, texture classification. The object can be oriented at any

angle in an image. However, if the CNN is trained with single orientation, it will be

unable to classify different orientation.

We propose a method of introducing rotational invariance using multiple instance

of convolutional neural network (RIMCNN). We aim to construct a deep learning

architecture which is robust to orientation of the object with respect to center of

the image. The proposed idea involves one-time training of a single CNN unit, and

later that trained unit can be used multiple number of times in parallel for testing,

depending on the application.

The proposed method can be described in two phases:

∙ Training

∙ Testing

2.1 Training

This phase is same as training any CNN architecture with a version of backpropa-

gation algorithm. A single unit of CNN is trained till it converges to give minimum

training error. The training data includes images with only one orientation (say 0
◦
).

No rotation is involved during training phase. Thus, the number of images in training

data is lesser as compared to that of data augmentation.

We have used the LeNet-5 architecture [10] in our experiments. LeNet architec-

ture is constructed using five layers: two convolution layers, two subsampling layers,

and a fully connected layer. We choose six maps in each convolution layer and sub-

sampling layer. Kernel size is selected as 5 × 5 for convolutional layers, and 2 × 2
window is used for subsampling. The architecture is as shown in Fig. 1.

2.2 Testing

Here is the main contribution of our work. From digit classification results discussed

in the next section, we can observe that the network trained with particular orien-

tation can give good classification accuracy for test images having rotations only

up to ±20◦ of the training orientation. Based on this observation, we rotate the test

image by ‘N’ different angles (say L1, L2, . . . , LN) equally spaced in the range of ro-

tations involved in the test data, such that one among the N resulting images gets the
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Fig. 1 RIMCNN training: LeNet-5 architecture

rotation ±20◦ closer to the orientation with which the network is trained. The result-

ing rotated images are then fed to N different LeNets. The LeNet architecture trained

in previous phase is used multiple (N) times in parallel. The number of LeNets (N)

can be selected depending on the application.

Generally, in any classification task using CNN, the image is assigned to that

class which gives the maximum response or activation at the output layer. We use

a slightly different logic to decide the label. Suppose, there are ‘C’ classes, then we

get the vector of length ‘C × 1’ at the output layer of a LeNet. And since we use ‘N’

parallel units of LeNet, we get N different vectors of length ‘C × 1’. The image is

assigned to the class which gives the highest response among all NC activations at

output.

The reason behind deciding the label by such an approach is that if the image

is rotated at different angles then the resulting image with net orientation which is

close to the orientation that was included during the training of LeNet will give the

maximum response for correct label at the output layer, which will be the highest

among all NC responses obtained from ‘N’ resulting images. Closer the orientation

of the image with training orientation, higher is the response at the output layer. Thus,

the output label is decided by the LeNet that gets the image with orientation closer

to 0
◦
, which comes out to be the correct label as the network is trained with the same

orientation. This concept is demonstrated and verified with different experiments in

following sections. The architecture used for testing is as shown in Fig. 2. The testing

procedure is briefly described in Algorithm 1.

2.3 Selecting Number of LeNets and Rotation Angles

The number of LeNets ‘N’ is decided according to the application. If the application

involves the images with rotations ranging between the angles [−Dmax, Dmax], then
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Algorithm 1: RIMCNN Test Phase

Input : Test Image, Trained model of LeNet, No. of LeNets(N), No. of classes(C), Range of

rotations in test data[Dmin,Dmax]

Output: Label, Approximate Orientation

Initialization: Outputs = zeros(N,C)

begin
StepSize = (Dmax - Dmin) / N

angles = Dmin : StepSize : Dmax
for i=1:N do

RotatedImage = Test image rotated with angles[i]
Outputs[i] = LeNet’s output layer response for RotatedImage input

end
[RowIndex,ColIndex] = Index where Outputs is Maximum

Label = ColIndex
Approximate Orientation = angles[RowIndex]

end

Fig. 2 RIMCNN test phase: a single unit of LeNet trained with 0
◦

oriented images is used N times

in testing

the angles L1, L2, ..., LN can be selected in the same range [−Dmax, Dmax] at regular

intervals, but with opposite sign. Higher the number of CNN units ‘N’, flatter and

better is the accuracy plot, but higher is the testing time. So there is always a trade-off

between the number of CNN units and testing time.

2.4 Finding Approximate Orientation of the Digit

Once the classification label is obtained then the corresponding angle of rotation Lk
which gives the maximum response determines the orientation of object in the input

image. As the maximum activation is given by Lk which brings the object orientation

closer to 0
◦
, the negative of angle Lk more or less gives the approximate orientation.

Thus, if the angles for rotation span the complete range of rotation from 0
◦

to 360
◦
,

the proposed architecture can be used to determine the orientation of the object with

respect to center of the image.
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3 Experiments and Results

We applied RIMCNN for handwritten digit classification and rotated captcha recog-

nition. We observed that RIMCNN performs better than single unit of LeNet in all

applications. The results are discussed in detail below. All the experiments have been

performed using a high-level neural networks library Keras (1.0.5) running on top

of Theano (0.8.2). The computer used is Intel(R) Xeon(R) X5675 with 24 GB RAM

and NVIDIA Quadro 6000 graphics card.

3.1 Handwritten Digit Classification

It is a known fact that the letters and digits made by people are not always

similar. Also the documents may be scanned in any direction, yielding rotational

digits/characters in it. Some people make erect digits, whereas others might have

slanted handwriting. Thus, the proposed idea is applicable for handwritten digit

recognition because the network trained with erect digits can be used to classify

slanted digits as well, thereby making the architecture suitable for all users irrespec-

tive of their handwriting.

3.1.1 Dataset

We have used the MNIST dataset [11] for demonstrating our results on digit classi-

fication.

Pre-Requisite: To demonstrate the rotation invariant capabilities of RIMCNN, the

test images are rotated at different angles (anticlockwise) and the network is tested

for those rotated digits. Thus, the dataset requires the following modifications:

∙ The 28 × 28 image is centered in 52 × 52 image so that the digits do not suffer

from any distortion after rotation.

∙ After rotation, the samples of class 6 and class 9 may resemble same and cause

ambiguity in classification. Thus, all the samples belonging to class 9 in training

and test data are discarded. Thus, the resulting problem contains nine classes.

However, this step can be relaxed and all digits from 0 to 9 can be classified if the

test data has rotations ranging within 90
◦

of the orientation involved in the dataset,

such that there is no possibility for the two classes (6 & 9) resembling each other

under any rotation.

The details of original MNIST dataset and the modified dataset are shown in Table 1.
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Table 1 MNIST dataset details

MNIST dataset Actual Modified

Number of training images 60000 54000

Number of test images 10000 9000

Image size 28 × 28 52 × 52
Number of classes 10 9

3.1.2 LeNet Training

A single unit of LeNet described in Fig. 1 is trained with only 54000 images in the

modified MNIST dataset, with batch size of 50 images. Loss function is selected

as ‘categorical crossentropy’, and ‘adadelta’ optimizer with default parameters is

selected for compiling the model in Keras. The network converges to give training

accuracy of 99.53% after 100 epochs. Training time for 100 epochs comes out to be

2000 s.

3.1.3 Behavior of LeNet for Rotated Digits

The trained LeNet is then tested with rotated test samples. Figure 6 shows the be-

havior of LeNet for rotated digits at different angles. The test error comes out to be

symmetrical around 180
◦
. It can be observed that LeNet can be considered robust

up to ±20◦ of rotation, whereas test error greatly increases for higher degrees of

rotations. This observation helps us to select the number of LeNets and their corre-

sponding angles of rotation in RIMCNN.

3.1.4 RIMCNN for Digit Classification

RIMCNN is tested with digits at different orientations. The processing of the archi-

tecture can be understood from Fig. 3. Five images of digit ‘3’ at different orienta-

tions are given to RIMCNN with LeNets having rotations at angles 0
◦
, −30◦, −60◦

and −90◦. In the tables, it can be seen that the LeNet which gets the image with ori-

entation closer to 0
◦

classifies it correctly and gives the maximum response, whereas

other LeNets may not give correct label and produce the response which is always

lesser than the maximum response. Thus, the overall classification label comes out

to be correct.

The selected angles (L1, L2, . . . , LN) should be able to cover the entire range

of rotations in the test data with tolerance of ±20◦, i.e., the angles can be select-

ed with maximum interval of 40
◦

between two angles to get a fair classification.

However, classification accuracy is improved further by making the interval even
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Fig. 4 Different configurations of RIMCNN for rotated test data

Table 2 Number of samples misclassified per class by RIMCNN (N = 4) for 9000 test images

rotated at different angles

Angle of rota-

tion

0 10 20 30 40 50 60 70 80 90 100

Classification

label

No. of images misclassified

0 13 19 11 11 13 7 8 10 17 12 43

1 26 44 22 18 14 16 12 18 16 15 37

2 65 38 56 42 54 77 50 86 102 120 216

3 55 60 41 40 49 45 39 49 64 75 143

4 73 67 49 30 48 35 24 33 45 35 77

5 45 36 30 26 42 70 86 113 107 146 183

6 99 78 67 54 53 48 31 31 33 37 77

7 136 142 136 118 134 104 68 46 58 64 145

8 62 63 58 66 69 62 63 59 55 69 122

smaller, which can be observed in Fig. 4. RIMCNN with N = 4 and rotations 0
◦
,

−30◦, −60◦ and −90◦ is able to produce very good classification accuracy as com-

pared to RIMCNN with N = 2 and N = 3. The no. of samples in error from each

class for 9000 images rotated at different angles is shown in Table 2. It can be no-

ticed that even at higher degrees of rotation, maximum images of most of the digits

are correctly classified.

We give the comparison of proposed architecture with LeNet in Fig. 5. Our

method yields results which are better than those obtained by LeNet.
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Fig. 5 Comparison of RIMCNN with different architectures for test data rotated between 0
◦

to

100
◦

Fig. 6 Comparison of RIMCNN with LeNet for test data rotated between 0
◦

to 360
◦
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Fig. 7 Captcha recognition with RIMCNN

RIMCNN with N = 12 and rotations uniformly sampled between 0
◦

to 360
◦

is

used for testing rotated data between 0
◦

to 360
◦
. Even for higher degrees of rotation

in input image, the classification error is very low, as can be seen in Fig. 6.

3.2 Captcha Recognition Using RIMCNN

As RIMCNN is able to classify rotated digits, it can be applied to decode simple

captcha images with non-overlapping and rotated digits. The steps involved along

with the intermediate results are shown in Fig. 7. Initially, a histogram is formed by

summing the nonzero pixels in each column of the binary captcha. The region which

has a digit will produce higher-valued bins, as shown in the histogram, whereas the

background columns will have negligible values. By thresholding the values in the

histogram, each digit can be segmented. The segmented digits are then given to RIM-

CNN for classification, which yields the labels for each digit. Here, RIMCNN with

N = 4 and rotations 0
◦
, 30

◦
, −45◦ and 60

◦
produces the correct labels.
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4 Conclusion

The proposed architecture of RIMCNN is of great benefit for the problems which in-

volve images with rotated objects. It works considerably well even for higher degrees

of rotation and can be easily applied with limited training data. In all the tasks dis-

cussed above, it gives better classification as compared to LeNet without increasing

the training time. The method of using multiple LeNets in testing phase is easier to

implement. It is used for the first time as per our knowledge and has a lot of potential

in terms of saving computational cost and gives satisfactorily results. We observed

promising results in our experiments, and further this work can be extended for more

complex data. Its ability to find the orientation of objects in an image can be utilized

in many applications such as object tracking, robotics. Further, it can be applied to

texture classification and robust object classification task.
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Stochastic Assimilation Technique for Cloud
Motion Analysis

Kalamraju Mounika, J. Sheeba Rani and Gorthi Sai Subrahmanyam

Abstract Cloud motion analysis plays a key role in analyzing the climatic changes.

Recent works show that Classic-NL approach outperforms many other conventional

motion analysis techniques. This paper presents an efficient approach for assimilation

of satellite images using a recursive stochastic filter, Weighted Ensemble Transform

Kalman Filter (WETKF), with appropriate dynamical model and image warping-

based non-linear measurement model. Here, cloud motion against the occlusions,

missing information, and unexpected merging and splitting of clouds has been ana-

lyzed. This will pave a way for automatic analysis of motion fields and to draw infer-

ences about their local and global motion over several years. This paper also demon-

strates efficacy and robustness of WETKF over Classic-Non-Local-based approach

(Bibin Johnson J et al., International conference on computer vision and 11 image

processing, 2016) [1].

1 Introduction

Cloud motion analysis is widely used in different domains like weather forecast-

ing, meteorological applications, monitoring hazards. But, this has been a chal-

lenging task because of problems like non-rigid motion of clouds, splitting and

merging of clouds, presence of many clouds of which each have a different shape,

size, and also move in different directions. Traditional approaches for cloud motion

analysis discussed in the literature include techniques using template matching [2],
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artificial neural network for contour shape matching [3], pixel-based motion estima-

tion, i.e., optical flow estimation. The methods discussed in [2, 3] belong to category

of feature-based motion estimation techniques, in which, objects to be tracked are

segmented initially and then, motion is estimated over consecutive frames based on

correlation or other matching techniques. In [4], clouds were identified at different

thresholds and motion of clouds are then tracked using optical flow. The drawback

of these methods is that they do not estimate or do not use intra-cloud motion and

are not robust to occlusion and missing data cases [1].

In this method, a pixel-based motion estimation approach is used in order to get

both intra-object and inter-object flow vectors. Basically, there are two approaches

for estimating flow vectors. They are variational approaches [5, 6] and stochastic

approaches [7]. The drawback of variational approaches is that they incorporate

preconditioning stages in optimization or covariance specifications which include

smoothing [8]. So, in this paper, a stochastic recursive filter called Weighted Ensem-

ble Transform Kalman Filter (WETKF) [8] is used for optical flow estimation. It can

also be considered as a particle filter extension of the Ensemble Transform Kalman

filter (ETKF) [9, 10]. The only difference between Ensemble Kalman Filter (EnKF)

[11] and ETKF is that ETKF do not use perturbed observations. In this paper, the

generality and applicability of WETKF for cloud motion estimation is investigated.

For experimentation, October month’s Meteosat (HRI) [12] satellite data is consid-

ered. The main contribution of this paper is to demonstrate that WETKF is a very

potential approach for cloud motion estimation, and it gives an automatic approach to

access the cloud motion in spite of occlusion, missing information, splitting, merg-

ing, and fully non-rigid cloud motion.

In this paper, efficacy of WETKF approach over Classic-NL [1, 13] is demon-

strated. Classic-NL is a Horn and Schunk optical flow estimation technique com-

bined with modern optimization strategies. As discussed in [1], this method is sup-

posed to handle large motion and occlusion cases. But, for missing data cases, this

method fails. It also requires pre-processing and post-processing of data for com-

plete analysis, and consistency of results is not observed. The proposed method,

using WETKF, can overcome these drawbacks. Because of its recursive nature, it

can automatically handle missing data cases, no pre-processing or post-processing

of data is required, and results are consistent. The structure of this paper is organized

as follows: Sect. 2 summarizes the steps of cloud motion estimation using WETKF;

Sect. 3 demonstrates an insight into its effectiveness by presenting some experimen-

tal results and discusses its robustness; Sect. 4 draws some conclusions on this work.

2 Cloud Motion Estimation Using WETKF

Cloud motion estimation using WETKF involves a dynamical model and a

measurement model. Dynamical model describes the formulation of state vari-

able, which we have considered as vorticity (curl of velocity) for cloud analysis.

Here, a stochastic filtered version of vorticity–velocity Navier–Stokes formulation
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Fig. 1 Block diagram showing cloud motion analysis using WETKF

is considered as dynamical model, assuming cloud motion as a special case of fluid

motion. Measurement model forms the relation between observations, i.e., cloud

images and state variable. A non-linear image warping error is considered as the

measurement model. Figure 1 shows the block diagram of cloud motion estimation

using WETKF. The process of cloud image assimilation using WETKF is explained

below.

2.1 Initialization of State Vector

In this cloud motion estimation analysis, vorticity is considered as state variable.

Initially, at time k = 0, the N particles of state (i.e., ensemble size being N){
𝜉
a,(i)
0 , i = 1, 2,… ,N

}
are initialized with vorticity, which is considered as curl of

velocity obtained by performing optical flow estimation on images I0 and I1. Ensem-

ble is generated by adding Gaussian noise to initial state vector. From time k = 1 to T,

we perform the following three steps for the WETKF assimilation of state (vorticity)

𝜉k using corresponding satellite images (observations).

2.2 Forecasting

Here, as discussed, a 2-D Navier–Stokes equation with a stochastic forcing function

is considered as a dynamical model. At time k, the ensemble obtained from previous

step are propagated through the model:

d𝜉t = −∇𝜉t.𝜗dt + 𝜈𝛥𝜉tdt + 𝜂dBt (1)

to supply the forecast ensemble members 𝜉
f ,(i)
t , expressed at time t. Here, the state

vector represents the vorticity (𝜉) at each image grid point coordinates, 𝜈 represents

viscosity constant, and 𝜗 represents velocity vector.
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2.3 Correcting

In this step, we directly incorporate the available observations, i.e., satellite images

and update forecast ensemble. Observational model is derived from brightness con-

sistency assumption. In many optical flow estimation techniques like Horn and

Schunk, Lukas kanade, brightness consistency equation is linearized. In this method,

non-linear version of it is employed as:

I (x, k) = I (x + d (x) , k + 1) + 𝛾dB ∀x ∈ 𝛺I (2)

where d (x) = ∫ k−𝛿t
k−1 𝜗

(
xt
)
dt and 𝛺I represents complete image plane. Using this

model, forecast ensemble and inverse of covariance matrix, corrected ensemble is

obtained from Kalman analysis equation [9].

2.4 Particle Filter Weights and Re-sampling

In this step, the ensemble members are weighted with a likelihood function of obser-

vations and then, re-sampling is performed. Finally, a weighted mean, wi, of ensem-

ble obtained is considered as the vorticity estimate at time k :

𝜉k =
N∑

i=1
wi𝜉

a,(i)
k (3)

and the corresponding velocity field is deduced through the Biot-Savart kernel as

𝜗 = ∇⊥G∗𝜉 where G (.) = ln(|.|)
2𝜋

is the green kernel associated to Laplacian operator

[8].

Matrix inversion problem: The observations in our analysis, i.e., satellite images,

will be usually of high resolution. In Kalman filter, Kalman gain calculation involves

inversion of covariance term. This covariance term depends on state vector dimen-

sion, which is resolution of image. Thus, inversion of n × n dimensional covari-

ance term (where n-state vector dimension) results in complex computation. In this

method, an ensemble of state vector is considered instead of single state vector. Sam-

ple covariance, obtained from ensembles, is considered in place of original covari-

ance term in Kalman gain calculation. This helps in reducing the computational

complexity as the dimension of covariance matrix to be inverted is reduced from

n to N, where N is the size of ensemble considered (N << n). This inversion can

be performed efficiently by considering singular value decomposition of ensemble

matrix [8].
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3 Experimental Results

In this section, we present our WETKF-based direct image assimilation results on

satellite images. In order to validate the accuracy of our method, we have initially

tested with Particle Image Velocimetry (PIV) images for which ground truth data is

available.

3.1 Particle Image Velocimetry (PIV) Images

In this section, comparison of WETKF and CNL on fluid images is established. This

forms the motivation for further application of these methods in cloud motion esti-

mation and analysis. Recent work [1] demonstrates that CNL (Classic − NL) out-

performs many conventional optical flow approaches, and CNL can be successfully

applied to cloud motion estimation. Hence, we compare results of WETKF and CNL

in Figs. 2 and 3 to show efficacy of WETKF over CNL.

For particle images, following results are obtained with a simple 2-D velocity–

vorticity formulation of Navier–Stokes equation as dynamic model. Ensemble size

is considered as 200. Figure 2 compares estimated vorticity field obtained from

WETKF with true vorticity field and CNL estimated vorticity field.

In Fig. 3, solid black line and dotted blue line indicate results from WETKF with

ensemble sizes 200 and 50, respectively. From the Fig. 3, it is quantitatively shown

that WETKF gives better results than CNL and Lucas Kanade (LK) [14] and also

can be observed that as ensemble size increases, estimation error decreases.

As ground truth is available only for fluid images, the scenarios which occur in

cloud images are simulated on fluid image sequence to test and compare the capabil-

ity of WETKF over CNL. Here, the results of large occlusion cases are demonstrated.

Figure 4 shows comparison of estimated fields in case of complete occlusion. The

small error generated in estimating flow vectors is nullified over iterations, and this

error is far less than the estimate obtained from CNL without any occlusion.

This ability of predicting flow vectors even in absence of data is practically useful

when data from satellites like INSAT-3D, KALPANA etc., are used as they do not

provide data during certain time interval per day.

3.2 Satellite Images

Here, WETKF is applied on satellite images. The analysis is done over both cloud

images and cyclone images. Satellite images are taken from Meteosat-7 satellite (HRI).
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Fig. 2 Comparing true and estimated vorticity fields, a PIV image—K, b PIV image—K + 1,

c true vorticity field, d estimated vorticity field with CNL, e estimated vorticity field with 50 ensem-

ble WETKF, f estimated vorticity field with 200 ensemble WETKF

3.2.1 Cropping Cloud Region

A cropped region of 512 × 512 pixels in the satellite images during September,

2014, displaying normal clouds is considered, and WETKF is applied over these

images. The following result is obtained when ensemble size N = 200. Figure 5

shows flow fields obtained from CNL and WETKF at 30th iteration. The obtained

flow estimates are consistent and agree with visual observation. Vorticities are

clearly visible, and splitting and merging of clouds is also properly shown by flow

vectors.



Stochastic Assimilation Technique for Cloud Motion Analysis 109

Fig. 3 RMSE plots. a RMSE in estimating velocity, b RMSE in estimating vorticity

WETKF performance is analyzed in cases of large occlusion and missing data.

From the results, it is clear that WETKF is able to predict best estimate of flow vector

even in complete occlusion and missing data cases. As satellite images are available

for every 30 min interval, missing one frame causes significant change in motion

estimation.



110 K. Mounika et al.

Fig. 4 RMSE plot showing results of WETKF with and without occlusion cases. At 40th and 80th

iterations, there is occlusion

Fig. 5 Cloud images with flow vectors estimated by a CNL b WETKF

3.2.2 Cropping Cyclone Region

Now, we have applied WETKF on cyclone images taken from Meteosat satellite

during October, 2014, over Bay of Bengal. These cyclone images are cropped into

340 × 340 pixels size.

From Fig. 6, WETKF gives better results than CNL because CNL does not con-

sider non-rigid motion in its flow estimation. From the results, it is observed that

CNL results are more uniform, which is not desired in case of cloud images. The

expected motion vectors in the experimental images, i.e., in northern hemisphere

region are to be in anticlockwise direction [15], and as cloud motion is similar to

fluid motion, local rotations are possible. These two are clearly seen in WETKF

results, whereas CNL results do not contain local rotations.

As flow vectors are obtained, tracking can be done by simply selecting vorticity

center of cyclone and track this center using flow vectors. A random selected point
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Fig. 6 Comparison of WETKF and CNL outputs of Hudhud cyclone at 0200 UTC on October 11,

2014: a CNL output, b WETKF output

Fig. 7 Track of intra-cloud

motion obtained from flow

vectors

tracking can also be done. Figure 7 shows a track of intra-cloud point using flow vec-

tors estimated from WETKF. This intra-cloud track is used in splitting and merging

cases of cloud motion analysis.

3.3 Validation

Validation of results can be done by considering model data as ground truth. For

this, height or pressure level of the clouds should be known. Here, the pressure level

of clouds is obtained from brightness temperature.

Figure 8 shows comparison between tracks obtained from WETKF (solid red

color line in figure) and best track data (considered as model track for cyclones rep-

resented as solid black line in figure) for Hudhud cyclone.
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Fig. 8 Cyclone track

4 Conclusion

In this paper, a novel method for cloud motion estimation is proposed. Here, WETKF

is used for data assimilation on real satellite images, and tracking of cyclones are

done using flow vectors obtained. Results shown indicate that it has the ability to

handle large data missing and occlusions. Future work includes obtaining the indi-

vidual tracks for splitting and merging cases of cloud images and testing on different

cyclones.
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Image Contrast Enhancement Using
Hybrid Elitist Ant System, Elitism-Based
Immigrants Genetic Algorithm
and Simulated Annealing

Rajeev Kumar, Anand Gupta, Apoorv Gupta and Aman Bansal

Abstract Contrast enhancement is a technique which is used to expand the range
of intensities within the image to make its features more distinct and easily per-
ceptible to the human eye. It has found many applications ranging from medical to
satellite imagery where the primary aim is to find hidden or minute details within an
image. Through literary research, the authors have realised that the existing
approaches lag behind in enhancing the contrast of an image. Hence in the present
paper, an improved contrast enhancement technique is proposed which is based on
the hybrid combination of nature-based metaheuristics: Elitist Ant System (EAS),
Elitism-based Genetic Algorithm (EIGA) and Simulated Annealing (SA). EAS and
EIGA work together to search globally for the optimum solution which is then
refined by SA locally. Through experiment, it is observed that the proposed algo-
rithm is efficiently improving the contrast of an image when compared with existing
algorithms.

Keywords Contrast enhancement ⋅ Elitist ant system ⋅ Elitism-based
immigrants genetic algorithm ⋅ Simulated annealing
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1 Introduction

The petabytes of digital images in the world reinforce the need for better quality and
enhanced imagery. Hence, digital image enhancement techniques are used to
improve upon how we perceive these images and the information they provide.
These images can then provide ‘better’ or ‘improved’ inputs to consequent digital
image processing systems.

Contrast enhancement is an important aspect of image enhancement and is
concerned with the difference between the bright and the dark areas of an image [1].
The effect of shadows or highlights in an image makes contrast enhancement an
important aspect of image enhancement, as the colour variations are not clearly
discernible in such an image owing to an eye’s relative insensitivity to variations in
dark and bright colours [1]. A considerable percentage of the images we deal with
regularly, ranging from the images of our own cameras to remote sensing and
medical imagery, suffer from poor contrast. This makes necessary, the need for
contrast enhancement. For the past few years, global intensity transformation
techniques are being employed to increase the contrast [2]. In these techniques, an
optimal transfer function is formed which maps the grey levels in an image to the
corresponding new intensity values. Hence, optimisation techniques such as
nature-based metaheuristics are found many applications in the field of contrast
enhancement. In the next subsection, previous applications of these metaheuristics
in the field of image contrast enhancement are discussed in detail.

1.1 Related Work

In recent years, nature-based metaheuristics like Ant Colony Optimisation
(ACO) [3], Genetic Algorithm (GA) [4], Simulated Annealing (SA) [5], or Artificial
Bee Colony (ABC) [6] have found a plethora of applications in the real-world
image processing. For improving the contrast of an image, nature-based meta-
heuristics are employed to find the optimal transformation functions. ACO, which is
used in contrast enhancement [7, 8], is a nature-based metaheuristic that is inspired
by the movement pattern of the ants. Similarly, GA which is used in [9, 10] is
another nature-based metaheuristic algorithm which uses genetic operators such as
selection, crossover and mutation to find the most optimal transfer function. Even
though the above nature-based metaheuristics provide adequately enhanced images,
sometimes the best possible solutions are left out because the guiding process of the
metaheuristic is random in nature [11]. Hence, to improve the guiding process of
the metaheuristics, hybridisation of these algorithms is carried out. Like in [12], a
combination of ACO and GA is used, where GA acts on the solution space created
by the ACO, thus improving the transfer function. Similarly, in [13], a hybrid of
ACO, GA and SA is used. ACO and GA work together to search globally for the
best solution, whereas SA is used to optimise the result locally.
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1.2 Motivation

After implementing the hybrid algorithm [13], the authors have observed that the
above hybrid algorithm is an improvement over previously found contrast
enhancement algorithms. However, it is felt that [13] has not fully exploited the
capabilities of the metaheuristics involved. The authors have observed the fol-
lowing limitations:

A. The initial form of ACO used in [13] lacks the exploitation of global best
solution to the fullest.

B. GA used in [13] lacks adequate exploration powers.

The initial form of ACO algorithm used in [13] is subjected to several
improvements, which have a considerable impact on the results. Primarily, these
improvements have laid their focus on two areas [14]. The solutions obtained by the
ants can be improved radically by the use of a local search algorithm. Secondly,
these improvements focus on exploiting the global best solution to the fullest.
Though [13] takes advantage of using a local search algorithm, i.e. SA, to improve
the solution found by ants, it does not exploit the global solution as well as it can.
Exploitation and exploration are the two predominant concepts that help in char-
acterising every heuristic search. When exploration of a search is enhanced, the
exploitation reduces and when exploitation is strengthened, the search gets diluted
making them two conflicting concepts [15]. GA tends to give preference to the best
individual in the population so as to direct the algorithm to an optimum, but high
selective pressure can lead to reduced exploration and premature convergence of the
algorithm which leads to poor results [16]. Moreover, the search is not highly
explorative when we deal with a fixed set of individuals initialised in the beginning
of the execution of the algorithm as in [13]. Though [13] tries strengthening the
exploration with the help of mutation, convergence might not happen at all if the
exploration is increased by a huge factor using mutation [17]. Therefore, GA used
in [13] lacked a method wherein the explorative power of search is increased for
individuals in the bad region of the state space and at the same time exploitation
power of search is not affected for individuals in the high fitness region of the state
space. In the next subsection, the above-mentioned limitations have been addressed
by the authors.

1.3 Contribution

To overcome the above-mentioned drawbacks, the authors propose an optimised
contrast enhancement algorithm. Through literary research, it has been observed
that original form of ACO did not incorporate elitist ants, resulting in less optimum
solutions [14]. The inclusion of these elitist ants improved upon the ant system’s
ability to find better tours, and that too in fewer iterations [14]. This way, a better
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tour is obtained by taking advantage of the increased exploitation of the global
search space. Therefore, to enhance the capabilities of Ant Colony Optimisation
(ACO) algorithm, the use of Elitist Ant System (EAS) is proposed. The GA
algorithm used in [13] did not have sufficient explorative power as after few gen-
erations due to selective pressure the population starts lacking diversity. In order to
efficiently search the solution space, we need to maintain the variations and
diversities in the population and for this reason; Elitism-based Immigrants Genetic
Algorithm (EIGA) is employed in the proposed hybrid algorithm [18, 19]. After
observing the flux of immigrant population that moved in and out with respect to
the main population between two generations, this algorithm had been proposed in
[18]. The algorithm replaces the worst performing individuals in the population by
new immigrants thereby maintaining the diversity [18]. The immigrants can be
generated randomly, but these can divert the search process by an unacceptable
degree. Thus, the proposed algorithm uses an Elitism-based Immigrants Genetic
Algorithm (denoted EIGA) where the immigrants are generated on the basis of the
best individual in the population. Elitism-based immigrants maintain the delicate
balance between the exploration and exploitive power of the algorithm [18]. The
enhanced diversity of the population achieved by immigration helps the algorithm
tackle multimodal functions better and can enable it to search for multiple global
and local optima [16].

The contributions proposed by the authors are summarised in Fig. 1 where
Fig. 1a represents the basic framework of the hybrid algorithm as proposed in [13],
whereas Fig. 1b shows the basic framework of proposed algorithm. From Fig. 1, it
can be observed that following modifications have been proposed:

A. ACO is replaced by EAS as it enhances the exploitation property of the ACO.
B. GA is replaced by EIGA as it enhances the exploration property of GA without

affecting its exploitation prowess.

  (a) Pourya Hoseini et al. [13] (ACO + GA + SA)          (b) Proposed Algorithm (EAS + EIGA + SA)

Fig. 1 Comparison of framework of [13] and proposed algorithm

118 R. Kumar et al.



Rest of this paper is organised in the following manner. The proposed work is
explained in detail in Sect. 2. Section 3 compares the performance of the proposed
method with other contrast enhancement approaches through experimentation and,
Sect. 4 concludes our work while discussing the prospects of the future work.

2 Proposed Algorithm

The detailed flowchart of proposed algorithm is shown in Fig. 3. The algorithm
consists of three components, i.e. Elitist Ant System (EAS), Elitism-based Immi-
grants Genetic Algorithm (EIGA) and Simulated Annealing (SA). The proposed
algorithm considers greyscale 8-bit images whose pixel intensities range from 0 to
255. The algorithm can also enhance the contrast of colour images by operating
upon the Intensity component of HSI colour model of images [20]. To enhance the
contrast of an image, a mapping function called transfer function is required which
transforms the pixel intensities to the desired intensities. Thus, the search space
defined for the transfer function is a plane of size 256 × 256. To find the optimum
transfer function in the search space, EAS first generates a set of ants. These ants
explore the search space for the optimal transfer function. The trace of an ant’s
movement generates the required transfer function. The movement of these ants is
controlled by their chromosomes which are initialised by EIGA. Hence, the chro-
mosomes set by EIGA are responsible for controlling the movement parameters of
ants. SA is used to optimise the transfer function generated by EAS. In SA, a set of
recently generated transfer functions are selected randomly and are locally opti-
mised. To terminate the search process, the proposed algorithm is run for 100
iterations. The frequency of execution of EIGA and SA is varied as the algorithm
proceeds and is divided into three equal phases which are detailed in Table 1.
As EIGA is responsible for the setting the movement parameters of the ants, the
frequency of EIGA is high during the first phase of the algorithm to enhance the
algorithm’s exploration powers. Similarly, the number of immigrants is higher in
the first phase to support exploration. Both the frequency and the number of
immigrants are decreased as the algorithm proceeds to second and third phase to aid

Table 1 Parameters of EIGA and SA

Phase EIGA SA
Execution
interval
(iteration)

Number of
elitism-based
immigrants

Execution
interval
(iteration)

Number of
transfer func.
selected

Number of
points on
transfer func.

Number
of SA
iterations

1 5 2 10 1 2 3
2 6 2 6 2 4 6
3 7 1 3 4 6 12
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convergence. The frequency of SA is kept low in the first phase and is increased as
the algorithm proceeds to second and third phase to further optimise the generated
transfer function and their corresponding pheromone trail. The various important
components of the proposed algorithm are now discussed in detail.

2.1 Elitist Ant System

Elitist Ant System which is a nature-based metaheuristic inspired by the movement
pattern of ants [14]. Ants deposit pheromone as they move, which becomes a
measure of their performance evaluation. In EAS, elitist ants are selected based on
their fitness values and are made to deposit much higher level of pheromone along
their paths. A problem might arise in deciding the number of elitist ants to be used
as too many of these elitist ants can decrease the explorative power of the algorithm,
resulting in the algorithm getting trapped in local minima [14]. By carrying out
experiments repeatedly, it has been found that a single elitist ant provides the most
optimum solution and maintains the balance between exploration and exploitation.

In Fig. 2, EAS has been shown in red. The movement of a population of 20 ants
defines the transfer function for the given image. This movement of the ants
through the search space is guided through a probability function defined as (1),

P=
ð1+ τiÞα * 1+ Ki ̸γð Þ10

� �
* ηi

h iβ
∑i∈GðiÞð1+ τÞα * 1+ Ki ̸γð Þ10

� �
* ηi

h iβ ð1Þ

where α and β control the relative importance of pheromone trail against heuristic
value. G(i) is the set of neighbourhood points around ant and τi is the amount of
pheromone deposited on these points [13]. The value of ηi is defined as Cup for the
up neighbour, 1 for the up-right neighbour, Cright for the right neighbour and for
other neighbours it is set as zero. For up and right neighbours, Ki is set to
Intensityinput − Intensityinput-min in the horizontal axis and Intensityoutput in the
vertical axis for the current position of ant, respectively, and for the other neigh-
bours it is set to zero. γ helps guide the ants towards the upper right corner. When
ants move across the search space, they leave a pheromone trail behind them to
guide other ants so that they can reach the destination efficiently. Also, this pher-
omone keeps on evaporating so that the search space is properly explored. As
discussed before, utilisation of an elitist ant in the algorithm provides better results
by depositing higher levels of pheromones on the path of the best ant. The math-
ematical function of pheroas (2),

τij t+1ð Þ= 1− ρð Þ * τij tð Þ+ ∑
20

k=1
Δτkij tð Þ

� �
+ΔτBAij ð2Þ
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where τkij is the quantity of pheromone deposited by the kth ant in between points
i and j and is equal to Fk/(30 × FBA). Fk is the fitness of the kth ant and FBA is the
fitness of the best ant. τBAij is the quantity of pheromone deposited by the best ant,
i.e. elitist ant and is equal to FBA. ρ is the pheromone evaporation rate and is set to
0.4.

Fig. 2 Detailed framework of the proposed algorithm
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To compute the quality of the produced images a fitness function needs to be
defined. The proposed algorithm employs the fitness function from [13] where it
has been studied in detail. The fitness function is found to provide higher contrast
images while preserving their natural look [13]. The fitness function is defined
as (3),

F =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
STD *ENTROPY * SOBEL3

p
ð3Þ

where STD is the global standard deviation of intensities and is a measure of
contrast of an image, ENTROPY is the global entropy that measures the randomness
in the image and SOBEL is defined as meanð SOBELverticalj j+ SOBELhorizontalj jÞ.

2.2 Elitism-Based Genetic Algorithm

It is an evolutionary metaheuristic algorithm which searches for the optimised
solutions in the search space using genetic operators including selection, recom-
bination (i.e. crossover and mutation), replacement and immigration operators. In
Fig. 2, EIGA is shown in blue colour. In the beginning of the algorithm execution,
EIGA is used to initialise the parameters of EAS. A set of ten chromosomes is
initialised randomly in the beginning of the algorithm. Each chromosome is then
used to set parameters of two ants. Every chromosome consists of five genes, i.e. α,
β, γ, Cup, Cright, which define the movement parameters of the [13]. The genes α
and β are in between 0 and 5. Cup and Cright can vary between 0 and 3, while γ can
vary from 100 to 250. During parent selection phase, two individuals are selected
on the basis of roulette wheel technique. These are then allowed to perform uniform
crossover operation with a probability of 0.85, which generates two offspring. The
fitness of the chromosome is equal to the sum of the average fitness values of the
transfer functions produced in between two EIGA iterations by each of the two ants
created using the specified chromosome and the maximum fitness value produced
by either of the two ants. The two produced offspring then replace the worst ant in
the population along with the worst ant out of the two parents. If both represent the
same ant, then two worst individual ants are replaced by these offspring. Mutation
probability is set to 5% where one of the gene values can change with ±10% of the
original value.

Immigration is applied after replacement of the ants by the new offspring, and it
creates elitism-based immigrants for the GA population. Every gene in the gener-
ated individual has a 25% probability of being similar to the corresponding gene of
the best chromosome. This immigrated individual then replaces the individual
having the least fitness. As described earlier, this elitism trait along with the
replacement strategy ensures that the generated migrants while enhancing the
diversity do not hamper the exploitation property of the algorithm. The number of
immigrants is carefully decided and kept low, at two, so that the exploitation power
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of the algorithm is not affected and is reduced further to one in the later iterations in
order to enhance the convergence of the algorithm.

2.3 Simulated Annealing

Simulated Annealing is an optimisation technique that is inspired by the annealing
process in metallurgy, which involves controlled cooling of a heated metal [5]. In
Fig. 2, SA has been shown in green. In the proposed work, SA is used to further
optimise the transfer function generated by EAS. In SA, the best transfer function
along with some randomly selected transfer function generated in the last run of
EAS are selected. Then random points are selected on the transfer functions which
are then optimised using the SA algorithm. A detailed explanation of neighbour
selection is provided in [13]. The probability function to select the neighbour is
defined as (4),

P= e
Fnew −Fold

0.05*T*Fold if Fnew <Fold

1 if Fnew >Fold

(
ð4Þ

where Fold and Fnew are the value of the current fitness and the value of the resulting
fitness, respectively. The temperature which is initially set to 200 and is cooled by
50% after every SA phase. After optimising the transfer functions, ant’s pheromone
trails are also adjusted as per the changes in the new transfer functions.

3 Experimental Results and Analysis

The proposed algorithm was tested on a system with Intel i7-4700MQ processor
(clock speed of 2.40 GHz), 8 GB RAM and was implemented on MATLAB. To
benchmark the performance of the algorithm, commonly used images available in
MATLAB and on the internet are used. The prowess of the algorithms to enhance
the contrast is quantified on the basis of the fitness values of the output images,
defined in (3).

The proposed algorithm is compared with the method implemented in [13], to
show the overall increase in the capabilities of enhancing the contrast of the image
as compared to [13]. Further, the algorithm is compared to histogram equalisation
[20] to show its supremacy over traditional contrast enhancement techniques.
Lastly, to show the effects of SA algorithm, the proposed algorithm with SA turned
off is also tested. In Table 2, the results of the fitness values of the enhanced images
by using the above-mentioned algorithms are stated. In Fig. 3, the images enhanced
by using the proposed algorithm are shown.
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Original 
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(a) Cameraman (b) Tire (c) Pout

Original 
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(d) Factory (e) House (f) Chang

Original Enhanced
(g) Crowd

Fig. 3 Contrast-enhanced images using the proposed algorithm
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By comparing the fitness values of the images produced by Hoseini and
Shayesteh [13] with the fitness value of the images produced by the proposed
algorithm, it is seen that the proposed algorithm outperforms [13] in enhancing the
contrast of the images. In all of the test images, the proposed algorithm provides
higher fitness as compared to [13], especially in the case of images Pout and Tire
where there is a significant improvement in the fitness value. The proposed method
achieves these better results in almost similar time as the previous method, i.e. [13].
In Fig. 4, the output image produced by Hoseini and Shayesteh [13] is compared
with the image produced by the proposed algorithm. It can be seen that the output
image produced by the proposed algorithm has better contrast as compared to the
image produced by Hoseini and Shayesteh [13].

To show the effects of Simulated Annealing, it is turned off and is then compared
to the proposed algorithm. From Table 2, by comparing the values of EAS + EIGA
and the proposed algorithm, the effect of SA can be seen at refining the global
solutions produced by EAS and EIGA. Moreover, EAS + EIGA tends to perform
slightly better than [13]. Though the difference in fitness value is not much, turning
SA optimisation off greatly increases the computation speed of the algorithm as
verified in [13]. Therefore, EAS + EIGA provides slightly better results than [13]
in considerably less time and is suited for applications where computational time is
of great importance.

The proposed algorithm is further compared to histogram equalisation in Fig. 4
from where it is seen performing significantly better in enhancing the contrast of the

Image

Histogram

(a) Original (b) Pourya Hoseini et al. [13] (c) Proposed Algorithm

Fig. 4 Comparison of performance of proposed algorithm versus [13] on image X-ray
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images. Though histogram equalisation takes much lesser time in generating the
output images as compared to any metaheuristic-based contrast enhancement
algorithm including the proposed algorithm [13], it is unable to enhance the contrast
of the image adequately. Moreover, the image sometimes lacks the natural look. In
Fig. 5, the images produced by histogram equalisation are compared to the image
produced by the proposed method. It is evident that the image produced by the
proposed algorithm has higher contrast as compared to histogram equalisation.
Further, the image produced by histogram equalisation has been distorted (In
Fig. 5b, sky above the hut) and lacks the natural look.

4 Conclusion and Future Work

In this work, the authors have proposed an improved contrast enhancement algo-
rithm. The proposed algorithm uses a hybrid of Elitist Ant System (EAS), Elitism-
based Genetic Algorithm (EIGA) and Simulated Annealing (SA) metaheuristics.
The experimental results have shown that the proposed algorithm performs better at
enhancing the contrast of the images. The algorithm is also found to preserve the
natural look of the images while enhancing the contrast. However, the better
contrast of an image is susceptible to human perception. Hence, the requirement of
better and advanced contrast enhancement technique has always been felt. The
proposed algorithm can be improved by using a hybrid algorithm with newer and
advanced nature-based metaheuristics such as grey wolf optimisation (GWO) [21]
and fireworks optimisation [22], which generally outperform global optimisation
algorithms such as ACO and GA. Moreover, more advance parameters such as

Image

Histogram

(b) Histogram Equalisation (c) Proposed Algorithm(a) Original

Fig. 5 Comparison of performance of proposed algorithm versus histogram equalisation on the
image Beach
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feature similarity index (FSIM) [23] and edge-based contrast measurement (EBCM)
[24] can be used to further evaluate and compare the proposed contrast enhance-
ment algorithm.
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A Novel Robust Reversible Watermarking
Technique Based on Prediction Error
Expansion for Medical Images

Vishakha Kelkar, Jinal H. Mehta and Kushal Tuckley

Abstract Degradation of the host image by noise due to errors during data
transmission is a major concern in telemedicine, especially with respect to rever-
sible watermarking. This paper presents the effect of salt and pepper noise on
prototypical prediction error expansion-based reversible watermarking and pro-
posed prediction error expansion scheme using border embedding for gray scale
medical images. In prototypical prediction error expansion, the accretion of the
predicted error values is used for data insertion while in the proposed scheme,
prediction error expansion using border embedding is used and aftermath of noise is
demonstrated, respectively. A performance assessment based on peak signal-to-
noise ratio (PSNR), total payload capacity, noise effect is conducted. Additional
capacity and less mutilation of the host image in contrast to the pristine method in
the presence of noise is obtained through the results.
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1 Introduction

Recent developments in information and communication technologies have made
digital information transfer easier and encouraged the quality of healthcare services.
With the help of telemedicine, it is possible to exchange electronic health records
and medical images between different healthcare entities. Potency of the tele-
medicine application depends on the effectiveness of the data transmission channel
and its auxiliary processing’s while transmission over public networks [1]. For
secure data transmission, digital watermarking is currently a promising technology
in the digital intellectual property and information security domain [2]. Digital
watermarking is the process of sheltering secret information in the primary image
for content protection and verification. Based on its behavior, watermarking can be
divided into two types, namely reversible and irreversible [3]. In reversible
watermarking, the host image after watermark extraction is similar to the original
elementary image [4]. Over the years, a lot of importance is been given to pre-
diction error expansion (PEE)-based reversible watermarking techniques. In clas-
sical PEE, correlation among the neighboring pixels is used to obtain prediction
error which is realized with the help of median edge detector (MED). The selected
pixels are customized in order to augment two times the prediction error. Multi-
plication by two creates a void in the least significant bit (LSB) which is used for
embedding one bit of data. The pixels to be infused are selected considering the
overflow/underflow problem and by defining an optimum threshold. Prediction
error expansion technique reaps embedding rates up to 1 bit per pixel (bpp) without
multiple embedding [5].

Mutilation of the host image due to errors during data transmission is an
important issue, especially with respect to reversible watermarking, as most of the
existing reversible watermarking schemes are fragile in nature [2]. A watermarked
image may get tampered deliberately or accidently during transmission. The
implemented watermarking mechanism should be robust enough to detect and
extract the watermark as well as the original primary image. Different types of
attacks may mutilate the transmitted image [6]. Salt and pepper noise is one such
attack where the intensity values of certain pixels are altered resulting in the dis-
tortion of the original transmitted image [7].

This paper demonstrates how the distortion in the host image and the watermark
can be scaled down and robustness against salt and pepper noise can be improved
with the help of border embedding for gray scale medical images. Healthcare and
medical images like X-ray, magnetic resonance imaging (MRI), computerized
tomography (CT) scan are taken into account.

The paper is assorted as follows: The vintage PEE scheme is illustrated in
Sect. 2. The proposed PEE technique using border embedding for gray scale
medical images is explained in Sect. 3. Comparison of the results obtained by
executing the two methods for 8-bit gray scale medical images in the presence of
predefined noise density is discussed in Sect. 4, and Sect. 5 is the conclusion.
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2 Prediction Error Expansion [5, 8]

In PEE, the correlation among the neighboring pixels is exploited for predicting the
intensity of the pixel under consideration. Consider a pixel with intensity p in a gray
scale image. The pictorial representation of pixel under consideration and the
neighboring pixels u, v,w are as shown in Fig. 1. The predicted value p ̂ of a pixel p
is acquired with the help of Median Edge Detector as follows:

p ̂=
max u, vð Þ if w ≤ min u, vð Þ
min u, vð Þ if w ≥ max u, vð Þ
u+ v−w otherwise

8<
:

In case of border pixels, we can infer that the ‘u+ v−w’ condition is applicable.
The prediction error er = p− p ̂ is augmented and message bit m is inserted in the
primary image. Thus, the watermarked prediction error is given as,

e
0
r =2er +m. ð1Þ

Pixel intensity values of a gray scale image lie between [0, 255]. Embedding of
the message bits can cause overflow or underflow; hence, only expandable locations
are selected for insertion. A location of the primary image that satisfies (2) is an
expandable location. The respective pixel intensities of the modified image should
lie between 0 and 255. Such that, 0 ≤ p0 ≤ 255.

p+ er
≤ 254 if er ≥ 0
≥ 0 if er <0

�
ð2Þ

A portion of the expandable locations is chosen for embedding by employing a
threshold value T 0. Initially, the expandable locations are embedded by the payload.
After the completion of payload insertion, the remaining locations are fed with
original LSBs of the locations that would be employed for LSB replacement in the
second stage (location map embedding). This serves as the subsidiary data for
extraction of the original primary image at the receiver end. The length of sub-
sidiary data is equal to that of the compressed location map. The threshold T 0 is
selected depending on the size of the payload and the subsidiary data. The location
map of the selected expandable locations is compressed and lodged into the primary
image by LSB replacement. The final image at the transmitter end is given as,

Fig. 1 Pixel plot
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p
0
= p ̂+ e

0
r = p+ er +m. ð3Þ

For analyzing the effect of salt and pepper noise, noise of a particular density ‘d’
is added to watermarked image and then the image is sent for further processing.

At the receiver end, foremostly, the location map is redeemed. The secret data
can be extracted and the original image can be revived by using the same predictor
as the one deployed at the transmitter end. The received image is processed in the
reverse raster scan order. Initially, the subsidiary data is redeemed and reimbursed
into received image, later the payload is extracted. The prediction error at the
receiver end is calculated for all the expandable locations. It is given as,

e
0
r = p

0
− p ̂ ð4Þ

The LSB of e0r is the embedded message bit. The required pixel intensity can be
computed with the help of original prediction error er as,

er =
e
0
r

2
ð5Þ

Thus, the primary pixel intensities of the basic image can be retrieved as,

p= p
0
− er −m. ð6Þ

3 Prediction Error Expansion Using Border Embedding

3.1 Encoder First Stage

In this technique, application of basic PEE scheme in the first stage is followed by
the location map embedding at the border. The first stage of embedding is analo-
gous to that of basic PEE scheme. Consider a pixel of intensity a, having estimated
intensity a ̂. Let ma be the private message to be infused. A median edge detector is
employed where the predicted value of the pixel under consideration is deduced.
The difference between the original pixel intensity and the predicted intensity is
augmented and is used for the insertion of message bits given as, era = a− a ̂. The
watermarked prediction error is given as,

e0ra =2era +ma ð7Þ

A location map is developed by taking overflow and underflow into account and
by applying suitable threshold T 0

a, depending on the size of the payload. The
message bits ma are inserted into the primary image; thus, the reworked pixel
intensity is given as,
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a
0
= a ̂+ e

0
ra = a+ era +ma ð8Þ

3.2 Encoder Second Stage

The location map computed in the first stage is compressed using lossless com-
pression technique and embedded along the border of the image in concentric
fashion starting from the edge toward the center in ‘U’-shaped fashion as shown in
Fig. 2. It is assumed that the payload to be inserted occupies one-fourth part of a
specified image approximately. As the embedded pixel values at the border do not
carry significant information with respect to medical images, their initial values can
be neglected. Hence, it is not necessary to preserve the LSBs of the primary image,
as like in the primitive PEE scheme, hence vanishing the need of subsidiary data.
The location map is ingrained with the help of basic LSB replacement scheme.

3.3 Salt and Pepper Noise Attack

For understanding the effect of salt and pepper noise, noise of a particular density
‘d,’ having value equal to the one employed in classical PEE scheme is added to the
final watermarked image at the encoder section.

3.4 Decoder First Stage

At the receiving end, initially, the compressed location map is extracted from the
concentric ‘U’-shaped border and decompressed to obtain the actual location map
consisting the set of expandable locations.

Fig. 2 Border embedding
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3.5 Decoder Second Stage

The prime aim at this instance is simply the payload extraction. This can be
implemented with the help of classical PEE technique where the predicted values
are calculated for the locations that were embedded with the help of median edge
detector and decompressed location map. The prediction error at the receiver end is
given as,

e
0
ra = a

0
− a ̂ ð9Þ

The LSB of e
0
ra is the required message bit. The original pixel intensities of the

host image can be retained as,

a= a0 − era −ma ð10Þ

4 Results and Discussion

A performance assessment of the primitive PEE technique and proposed PEE using
border embedding for gray scale medical images in the presence of noise is con-
ducted. The parameters employed for judging the imperceptibility and visual
quality are mean square error (MSE), PSNR [9, 10]. Another parameter determining
the ability of the host image to embed larger payload by a particular technique is the
total capacity or the maximum number of locations that could be embedded [8].

The MSE between a primary image I and watermarked image Iw having M rows
and N columns can be calculated as,

MSE=
1

M *N
∑M, N ½I M,Nð Þ− Iw M,Nð Þ�2 ð11Þ

Mean square error determines the average of the squares of the errors. MSE for
gray scale image can be used to calculate PSNR as follows,

PSNR=10 log10
2552

MSE

� �
ð12Þ

Higher value of PSNR of the acquired image proves that the error between the
images being compared is minimum. High PSNR also implies higher transparency
and better visual quality of the image under consideration [8].

One other important parameter that determines the robustness of the technique
against an attack is the effectiveness of the technique in the presence of noise. It is
made sure that the distortions are limited to those factors which do not lead to
excess degradation of the original image, and the integrity of the watermarking
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algorithm is conserved [11, 12]. Since most of the existing reversible watermarking
techniques are feeble in nature, they can sustain only a small amount of noise [2]. In
this paper, salt and pepper noise is taken into consideration. In this type of noise,
black-and-white dots appear in the image which corresponds to the corrupted pixels
which have respective intensities set to maximum value or has single bits flipped
over. It occurs due to the errors during data transmission. Unaffected pixel values
remain unaltered [13]. Generally, adulteration of the image due to salt and pepper
noise is to a small extent [7].

The comparison between the two discussed techniques in the presence of salt
and pepper noise of density d = 0.01 is carried out with the help of MATLAB. The
techniques explained above were executed and tested for a set of 8 bit gray scale
medical images. The payload is a binary test authorization image of the patient’s
personal details. A preconfigured threshold is selected and deployed for both the
techniques. The compression technique used for both the methods is arithmetic
coding. Detailed discussion regarding arithmetic coding can be obtained from [14].
The cover image considered for data hiding in this observation is Fig. 3 which is a
255 × 197, Kidney CT scan image, Fig. 4 is a binary payload of dimensions
132 × 59 and size 2.30 Kilo bytes (KB). Figure 5 is the watermarked image by
basic PEE (Method 1, M1) while Fig. 6 is the watermarked image by PEE using
border embedding (Method 2, M2). Figure 7 is the watermarked image by basic
PEE (Method 1) while Fig. 8 is the watermarked image by PEE using border
embedding (Method 2), both considering the effect of salt and pepper noise,

Fig. 3 Host image to be
watermarked

Fig. 4 Payload to be
embedded
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Fig. 5 Watermarked image
by M1 (no noise)

Fig. 6 Watermarked image
by M2 (no noise)

Fig. 7 Watermarked image
by M1 + noise
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Fig. 8 Watermarked image
by M2 + noise

Fig. 9 Retrieved image by
M1

Fig. 10 Retrieved image by
M2
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d = 0.01. The retrieved image obtained by method 1 and method 2 are Fig. 9 and
Fig. 10, respectively, while the retrieved payload for method 1 and method 2 is
Fig. 11 and Fig. 12, respectively. Table 1 shows the comparative results of method
1 and method 2 for Fig. 3 in terms of PSNR and total capacity.

It is observed that method 2 implementing PEE using border embedding has
better PSNR of the watermarked noisy image as well as that of retrieved noisy
payload and has an additional capacity in contrast to the primitive PEE method.
Also, the PSNR of the restored image by method 2 is greater than that of method 1
considerably. The comparative results of the image metrics for a set of 5 similar 8
bit gray scale medical images are listed in Table 2.

From Table 2, it is apparent that proposed PEE using border embedding out-
performs the classical PEE scheme in terms of PSNR of the retrieved host image as
well as that of retrieved payload in the presence of salt and pepper noise (d = 0.01).
The elementary reason for this is that the probability of occurrence of the random
salt and pepper noise is higher in the upper section of an image under consideration,
in comparison with the mentioned border embedding in method 2. In addition to
this, the unsatisfactory performance of method 1 in the presence of noise is due to

Fig. 11 Retrieved watermark
by M1

Fig. 12 Retrieved watermark
by M2

Table 1 Parameter comparison of method 1 and method 2

Parameter Method 1 Method 2

Total capacity (bits) 45655 49734
PSNR of watermarked image without noise 36.5891 39.4012
PSNR of watermarked image with noise 24.3557 24.3786
PSNR of retrieved image with noise 18.9851 23.9787

PSNR of the retrieved payload with noise 16.5035 18.0151
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the destruction of the pixels values of the compressed location map residing in the
upper section of the image causing deterioration in the performance of the water-
marking algorithm. The probability of this distortion is less along the proposed
border. Also, the replaced original LSBs (in the decoded image) of the host image
which forms the auxiliary data consist of pixels that were already corrupted by
noise before reaching the decoder section. All this makes method 1 more sensitive
to noise in comparison with proposed method 2 and leads to its strategy
degradation.

The PSNR of the watermarked image is greater for method 2 in comparison with
method 1. This is because the need to save the original LSBs of the host image that
forms the overhead subordinate data having length equal to that of compressed
location map is averted. This is true for the basic border embedding method as well
as in the presence of noise. Also, due to this, an improvement in capacity is
obtained.

It can also be concluded that the effectiveness of PEE using border embedding
depends on the performance of the coding technique used for location map com-
pression. Smaller the length of the compressed location map, less space it occupies,
lesser is the effect of noise, greater is the PSNR at the encoder as well as that at
decoder end.

With the execution and testing of the above methods, it is understood that the
decoder deployed in PEE using border embedding can be realized with much ease
in comparison with basic PEE scheme. The requirement for selection of the opti-
mized perfect threshold to make room for the payload as well as the subsidiary data
can be averted, since only the payload embedding is done in the expandable
locations.

Thus, the only foreseen drawback of this method at this point is that if the size of
the compressed location map is large, there is a possibility of its embedding area
interfering with the region of interest which may lead to errors.

5 Conclusion

This paper presents a comparatively robust reversible watermarking technique in
contrast to the basic PEE method. It is executed and tested for small amount of salt
and pepper noise. For fixed payload size, proposed technique endures acceptable
results in comparison with the basic PEE technique. It can withstand salt and pepper
noise up till 5% (d = 0.05) corrupted image pixels. The host image as well as the
infused payload can be obtained at the receiving end with some distortion, but still
having a better PSNR and improved capacity in comparison with the original
method.
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Integrated Feature Exploration
for Handwritten Devanagari Numeral
Recognition

Shraddha Arya, Indu Chhabra and G. S. Lehal

Abstract In this paper, the statistical feature extraction techniques are explored,

incrementally combined using different methods and analyzed for the recognition

of isolated offline handwritten Devanagari numerals. The techniques selected are

zoning, directional distance distribution, Zernike moments, discrete cosine trans-

form, and Gabor filter that encapsulate the mutually exclusive statistical features

like average pixel densities, directional distribution, orthogonal invariant moments,

elementary frequency components, and space frequency component, respectively.

The standard benchmark handwritten Devanagari numeral database provided by ISI,

Kolkata, is used for the experimentation and 1-nearest neighbor and support vector

machine for classification. The accuracy achieved with individual feature extrac-

tion techniques ranges from 86.87% to 98.96%. Further, features are integrated with

methods like feature concatenation, majority voting, and a new proposed method-

ology by us named winners pooling. The maximum recognition obtained through

feature integration is 99.14%.

Keywords Handwritten Devanagari recognition ⋅ Zoning ⋅ Directional distance

distribution ⋅ Zernike moments ⋅ Discrete cosine transform ⋅ Gabor filter
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1 Introduction

Efficient feature extraction and correct classification are the pillars of any good

handwritten character recognition system. A feature extraction technique despite

being proficient has a limited scope in terms of overall optimization. This paper

experiments with statistical feature extraction techniques and their integration for the

recognition of offline handwritten Devanagari numerals. Numerals are the

basic entities of any script, and their recognition is a prime concern. Devanagari

is the script for many languages like Sanskrit, Hindi, Bhojpuri, Marathi, and Nepali.

Hindi is officially the national language of India and the third most popular lan-

guage of the world. Handwritten character recognition imposes challenge as it per-

mits the infinite number of possible rendering of the character shapes and offline

adds to the complexity as there is total lack of the real-time information as available

in online recognition. A vivid description on feature extraction methods for charac-

ter recognition is presented by Trier et al. [18]. The directional distance distribution

(DDD)-based feature was introduced by Oh and Suen [11] which was applied to

recognize CENPARMI handwritten numeral database through modular neural net-

work classifier. Liu et al. [10] used Gabor features to recognize Roman handwritten

digits using MNIST and CENPARMI database reporting 99.47% and 98.95% accu-

racy, respectively. Handwritten numerals of MNIST database were recognized by

Wang et al. [19] applying Gabor filters and MQDF classifier giving 0.87% error

rate. Bhattacharya and Chaudhuri [2, 4] developed the handwritten databases for

Devanagari and Bangla thus providing the standard benchmark in the native script.

Handwritten Devanagari numeral database of the same is used for experimentation

and comparison purpose in our work and referenced as ISI database in the text. Fol-

lowing is the work reported using ISI database. Dimensional features with MQD-

F classifier were used by Pal et al. [12] attaining 99.56% accuracy. Wavelet-based

technique and Chain code histogram using MLP classifier were applied by Bhat-

tacharya and Chaudhuri [2] reporting 99.27% accuracy. Jangid et al. [7] performed

recursive subdivision of character image with support vector machine (SVM) giving

98.98% recognition rate. Experiments on feature combination have been performed

by the researchers in order to compliment rather than supplement the feature vec-

tor potential. Hybrid techniques are likely to enhance performance as multivariate

properties of character are captured. Different methods have been proposed in the

literature for the feature combination ranging from simple concatenation, weighted

combination, combination through feature selection using intelligent techniques like

ant colony optimization, bee swarming, genetic algorithm, fuzzy logic, and com-

bination at classifier level as in neural networks. The following work is reported

using feature combination and feature selection using ISI database. Prabhanjan and

Dinesh [13] used Fourier descriptor and pixel density from zones for feature extrac-

tion and Naive Bayes, instance-based learner, random forest and sequential mini-

mum optimization for classification reporting 99.68% recognition. Singh et al. [16]

applied zoning and direction feature with 1-nearest neighbor (1-NN) and quadratic

Bayes classifiers giving 99.73% accuracy at 6% rejection rate. The same authors also
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utilized gradient-based feature with MLP classifier reporting 99.37% recognition rate

[15] and applied pixel density values and zone-based gradient features with MLP

classifier resulting in 98.17% recognition rate [17]. Bhattacharya et al. [3] used shape

features with ANN and HMM classifiers reporting 92.83% recognition accuracy.

In this work, the features are integrated using different methods through 1-NN

and SVM classifiers.

2 Feature Extraction and Classification

2.1 Feature Extraction

Zoning: In this technique, the character image is segmented into zones of equal

size. The density values (Number_of_foreground_pixels/Total_number_of_pixels)

are computed for each zone and used as the feature values. The zone size opted for

our experimentation is 5× 5, and hence the feature size is 25.

Directional Distance Distribution (DDD): It is a distance-based feature proposed

by Oh and Suen [11]. Two sets of eight bytes say W (white) set and B (black) set

are assigned to each pixel of the binarized numeral image. If the pixel is white,

the set W stores the distance of nearest black pixel in each of eight directions

(0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦) and the corresponding set B is filled with

zero values. Similarly, for a black pixel, the set B stores the distance of nearest white

pixel in each of eight directions and the corresponding set W is filled with zero val-

ues. The eight direction codes assumed are 0(E), 1(NE), 2(N), 3(NW), 4(W), 5(SW),

6(S), 7(SE). Two variations have been proposed for the case when the desired black

or white pixel is not found on reaching the array boundary [11]: either the array is

assumed circular or the search continues in the reflected direction. We have used

the latter one and the search halts after the ray is reflected by two boundaries. The

character image is divided into 5× 5 zones. 16 DDD values are computed for each

image pixel, and average DDD value is calculated for each zone. Thus, feature size

is 400 (5× 5× 16). The computation of DDD feature is illustrated in Fig. 1.

Zernike Moments: These are a set of complex polynomials which form a complete

orthogonal set over a unit disk of (x2 + y2 ≤ 1) in polar coordinates. The Zernike

polynomials are defined by (1) with constraints (n≥ 0) and n − |m| is even, |m|≤ n.

Rnm(𝜌) =
( n−|m|2 )
∑

s=0

(−1)s(n − s)!𝜌(n−2s)

s !( n+|m|
2

− s)! ( n−|m|
2

− s)!
. (1)

The orthogonal rotational invariant moments (ORIMs) of order n and repetition m

of a continuous signal f (x, y) over a unit disk are defined by Anm [14] as given in

(2). The moment basis function Vnm(x, y) is given by (3) where 𝜌 is the length of

vector from origin to pixel (x, y), i.e., 𝜌 =
√
x2 + y2, 𝜃 is the angle between vector 𝜌
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Fig. 1 Calculation of DDD

feature

(a) White pixel at (4,3)

(b) WB encoding for white pixel at (4,3)

(c) Black pixel at (6,3)

(d) WB encoding for black pixel at (6,3)

(e) Directional distances of the pixels (4,3) and (6,3)

Direction White Pixel 1 Black Pixel2

00 3 3
450 3 1
900 3 1
1350 3 1
1800 6 1
2250 5 4
2700 2 8
3150 2 2

1Distance of nearest black pixel for white pixel (4,3)
2Distance of nearest white pixel for black pixel (6,3)
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and x-axis in counter clockwise direction, i.e., 𝜃 = tan
−1

(y/x), i =
√
−1 and Rm,n(𝜌)

is the radial polynomial, V∗
nm (x, y) is the complex conjugate of Vnm(x, y). The basis

function Vnm(x, y) is orthogonal to each other. The image function f(x, y) can be

represented by (4).

Anm = n + 1
𝜋 ∫ ∫x2+y2≤1

f (x, y)V∗
nm (x, y) dxdy . (2)

Vnm (x, y) = Vnm (𝜌, 𝜃) = Rnm (𝜌) eim𝜃 . (3)

f (x, y) =
∑

n

∑

m
AnmVnm(x, y) . (4)

Discrete Cosine Transform (DCT): This method converts image data into its

elementary frequency components. The DCT of a 2D array A[M, N] is a matrix

say B[M, N] of same size as A whose each element f(u, v) is calculated by the given

formula for corresponding element f(m, n) in A where M and N are the width and

height of the image, respectively [8]. Its coefficients f(u, v) for f(m, n) are computed

by (5).

f (u, v)=a(u) a(v)
M−1∑

m=0

N−1∑

n=0
f (m, n) cos

[
(2m+1)𝜋u

2M

]

cos
[
(2n+1)𝜋v

2N

]

. (5)

where a(u) =
⎧
⎪
⎨
⎪
⎩

1
√
M

, u = 0
√

2
M

, 1 ≤ u ≤ M − 1

⎫
⎪
⎬
⎪
⎭

, a(v) =
⎧
⎪
⎨
⎪
⎩

1
√
N
, v = 0

√
2
N
, 1 ≤ v ≤ N − 1

⎫
⎪
⎬
⎪
⎭

.

The resultant matrix B[M, N] is the matrix with DCT coefficients f(u, v) corre-

sponding to each pixel f(m, n), and the feature size is M×N. DCT cluster high-value

coefficients in the upper left corner and low-value coefficients in the lower right cor-

ner of matrix B[M, N]. These high-value coefficients are obtained in zigzag pattern

from top left corner of matrix and used as features.

Gabor Filter: A Gabor filter is two-dimensional linear filter defined as a complex

sinusoidal plane modulated by a Gaussian envelope of an elliptical shape which can

be tuned to a specific orientation and spatial frequency. Its computation in spatial

domain is given by (6).

g
(
x, y ; f0 , 𝜃) =

1
2𝜋𝜎x𝜎y

exp
−

[

x
′ 2

2𝜎x2
+ y

′ 2

2𝜎y2

]

⋅ expi2𝜋(u0x+v0y) . (6)

x′ = x cos 𝜃 + y sin 𝜃, y′ = −x sin 𝜃 + y cos 𝜃, u0 = f0 cos 𝜃, v0 = f0 sin 𝜃
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where (x, y): spatial co-ordinates, f0: center frequency, 𝜃: sinusoidal plane wave

orientation, (x′, y′): rotation co-ordinates, (𝜎x, 𝜎y): spread of the elliptical Gaussian

envelope along x-axis and y-axis, respectively, (u0, v0): center spatial frequencies of

the sinusoidal wave in Cartesian coordinates, (f0, 𝜃): the corresponding counterpart

frequency magnitude (f0 =
√
u02+v02) and direction

(
𝜃 = tan−1

(
u0∕v0

))
in polar

coordinates [1].

2.2 Classification

The 1-NN and SVM with linear and radial basis function (RBF) kernel are used

for the classification purpose. The minimum Euclidean distance metric is utilized

as measure for classification through 1-NN. SVM is a discriminative classifier

defined by a separating hyperplane. Given labeled training data, the algorithm

returns an optimal hyperplane that classifies the unknown data. We have used LIB-

SVM 3.21 classifier tool [5] with linear and RBF kernel. The cost and gamma

parameters required for RBF kernel computation are computed using grid.py tool

using fivefold cross validation [6].

3 Feature Integration

The features are combined selectively after feature extraction phase either before

or after classification as per the chronological order of their individual recognition

performance scores. The testing is done by combining features using either 1-NN or

SVM classifiers. Three methods are designed for the experimentation.

3.1 Combining Features Using 1-NN Classifier

The features extracted through different feature extraction techniques have incompat-

ible range and values. Hence, for justified and unbiased combination through 1-NN,

the Euclidean distance metric obtained for each of the feature extraction technique is

normalized to range (0, 1) using formula (7) where M′
: normalized distance metric,

M: distance metric, (max, min): maximum and minimum feature value for combined

training and testing data. Although features can be normalized before calculating dis-

tance metric, it is computationally expensive to first normalize each feature before

metric computation as compared to normalizing distance metric directly. The sum

total of the normalized metric of the selected features as per their individual recog-

nition rate order of 1-NN performance is used for the classification.

M′ = M
(max − min)

. (7)
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3.2 Combining Features Before Classification Through SVM

Features extracted using different feature extraction techniques are first concatenated

irrespective of their range of values and then scaled using the svmscale application

in LIBSVM in the range (−1, 1). The svmscale does scaling longitudinally with

respect to values within a feature column and irrespective of the feature values in

the same feature group or the adjacent feature group columns. This characteristic

of svmscale permits us to concatenate feature vectors without the need to first scale

them. The SVM classification is then done for the concatenated scaled feature vector

using linear and RBF kernel.

3.3 Combining Features Using SVM Classifier Ensemble

In the present study, the SVM classifier with RBF kernel gives the optimum recog-

nition performance in comparison to the 1-NN and SVM with linear kernel. Hence,

it is used for feature combination through the classifier ensemble. The optimal clas-

sifier is selected to maximize the ensemble accuracy by minimizing the entry of

wrong classification results which pool in by classifier ensemble. In this method, first,

the features extracted using individual feature extraction techniques are classified

using SVM with RBF kernel independently and then the classifiers result is com-

bined using either of the following methods.

Majority Voting The majority voting is simple and effective technique that com-

bines the output of different classifiers [9]. Each classifier assigns a class label to

test-data which acts as a vote for the class. A class casted k number of votes is

selected through majority voting technique if condition (8) is satisfied.

k ≥ (n + 1)
2

if n is odd or k ≥
(n
2
+ 1

)

if n is even . (8)

where k: number of votes and n: number of classifiers. For ‘k’ less than the given

value, it is considered as rejection or neutral case and not counted under misclassi-

fication as per the technique [9].

Winners Pooling The principle used is to give more weight or priority to the

class labels assigned by the feature giving higher recognition rate. The features are

arranged in the decreasing order of their recognition rate as in (10). The algorithm

given below explains the method.
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Fig. 2 The size of ISI database

Steps: Algorithm for Winners Pooling

1. Assuming the order of recognition rate as given in (10), let a, b, c and d be the

class labels for test-data assigned by DDD, DCT, Zoning and Gabor features

using SVM with RBF kernel.

2. int final_class=0;

3. if ( (a==b) OR (a==c) OR (a==d) ) then final_class = a;

elseif ( (b==c) OR (b==d) ) then final_class = b;

elseif (c==d) then final_class = c;

else final_class = -1;

endif

4. if (final_class == -1)

if (Rejection is permitted) then ’Misclassification’ case;

elseif (Rejection is not permitted) then final_class = a;

(i.e. assign label given by the best feature)

endif

endif

Since in our case the output desired is the class label only, the rejection case is

counted as misclassification. These results are tabulated under the head ‘rejection

cases as misclassification.’ If rejection is not permitted, the class label given by the

best feature is assigned as final class label to improve the recognition rate and the

corresponding results are tabulated under the head ‘rejection case replaced by the

best feature output.’ The classifier ensemble results are given in Table 4.

4 Experimentation

The experiments have been conducted on system with Intel Core 2 Duo CPU T5870

@2GHz, 2GB RAM and Windows 7 Ultimate operating system. The standard bench-

mark ISI database [2, 4] that consists of 22546 grayscale tiff images of isolated hand-

written Devanagari numerals has been utilized for experimentation. The details are

given in Fig. 2. For preprocessing, the images are binarized using Otsu method and

32× 32 size normalization is done for only Gabor feature computation. No other

preprocessing technique is used.
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Feature Size The feature size for zoning and DDD is 25 (5× 5) and 400 (5× 5× 16),

respectively. To select the optimal feature size for Zernike and DCT features, a sam-

ple set was made taking first 200 characters of ISI database training data of each class

for training purpose and next 40 characters from ISI database training data only for

testing purpose. Zernike moments were tested with different orders. The maximum

recognition obtained for the same was at order n = 10, and the best reconstruction

achieved was at order n = 12. Similarly, various sizes for DCT were tested, and size

6× 6 gave the best results. Hence, for both Zernike (order n = 10) and DCT (6× 6),

the feature size opted is 36.

Gabor Feature Computation The computation details of Gabor features along

with the criteria of parameter value selection are elaborated by authors in [1].

Accordingly, the following values are used for the purpose: filter size (31× 31),

frequency scaling factor =
√
2 (half octave spacing), number of frequencies = 5,

frequency values = [0.25, 0.1767, 0.125, 0.8838, 0.0625], number of orientations = 8

in the range (0, 𝜋), spatial width in x and y direction
(
𝜎 = 𝜎x = 𝜎y

)
, (𝜎 = 𝜆), where

𝜆 is the wavelength. Four features given by
[
Geven_Mean,Geven_Standard_Deviation,

GOdd_Mean,Godd_Standard_Deviation
]

are calculated for each filter convolved with 32× 32

size normalized image. Hence, the feature vector size per numeral image is given by

5× 8× 4 = 160 [1].

5 Result and Discussion

The statistical feature extraction techniques of zoning, DDD, Zernike, DCT, and

Gabor features are applied individually and in combination with different experimen-

tal settings on standard benchmark ISI database for handwritten Devanagari numeral

recognition.

5.1 Performance of Individual Features

The accuracy rate obtained for the individual features using the classification tech-

niques of 1-NN and SVM with linear and RBF kernels is given in Table 1.

Observation: The DDD feature is characterized by compact encoding, rich infor-

mation of both black and white pixel distribution, and direction distance distribution

over the whole area of the pattern [11]. The complete information is simply encoded

as integer and represents distance in a given direction. The discriminatory strength of

the feature is evident from its recognition performance. The DCT feature has qual-

ity of excellent energy compaction for highly correlated images, and it has abili-

ty to pack input data into few coefficients without compromising coding efficiency

[8]. With these characteristics, DDD and DCT with 98.96% and 98.43% recognition

accuracies, respectively, have emerged as the best feature extraction techniques as
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Table 1 Performance of individual features

Feature Acronym 1-NN (%) SVM

Linear (%) RBF (%) Gamma (𝛾) Cost (C)

Zoning G 95.53 89.74 97.05 0.5 2

DDD D 95.48 98.48 98.96 0.03 32

Zernike Z 81.34 71.24 86.87 0.5 8

DCT C 97.68 93.43 98.43 0.5 32

Gabor B 74.16 93.54 96.99 0.12 32

Table 2 Recognition rate for combining features using 1-NN classifier

Features Normalized distance metric 1-NN (%)

GC
G
100

+ C
42.844

97.76

GDC
G
100

+ D
203

+ C
42.844

97.84

GDZC
G
100

+ D
203

+ Z
0.702

+ C
42.844

97.84

GDZCB
G
100

+ D
203

+ Z
0.702

+ C
42.844

+ B
0.068

96.75

observed from Table 1. The recognition ranking order for 1-NN and SVM classifiers

with RBF kernel for individual feature extraction techniques is given in (9) and (10).

1-NN ∶ DCT > Zoning > DDD > Zernike > Gabor

97.68% 95.53% 95.48% 81.34% 74.16% (9)

SVM ∶ DDD > DCT > Zoning > Gabor > Zernike

(RBF Kernel) 98.96% 98.43% 97.05% 96.99% 86.87% (10)

5.2 Performance of Feature Combination Using 1-NN

For the combination using 1-NN, the Euclidean distance metric is first normalized to

range (0, 1) using the formula (7) as explained. The features are combined incremen-

tally as per their individual ranking order with 1-NN classifier as given in (9). The

result for combining features incrementally using 1-NN along with the formulation

used for normalization is given in Table 2.
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Table 3 Recognition rate for combining features before classification using SVM

Features SVM

Linear (%) RBF (%) Gamma (𝛾) Cost (C)

DC 98.51 99.01 0.031 32

DCB 98.67 99.14 0.031 8

GDCB 98.64 99.14 0.007 128

GDC 98.56 98.99 0.031 8

GDZCB 98.80 99.06 0.031 8

5.3 Performance of Feature Combination Before Using SVM

The experimentation for combining features before classification through SVM is

done by concatenating features incrementally as given in (10) after scaling them in

range (−1, 1). The result for combining features before classification using SVM is

shown in Table 3.

Observation: The maximum recognition obtained with combination is 98.80% and

99.14% for linear and RBF kernel, respectively. The improvement in recognition

rate is seen as multiple disjoint properties are captured in the concatenated feature

vector. The above results also suggest that combination of complimentary features

has better prospects despite of their slightly low individual recognition rate (like

DCB recognition better than DCG) and concatenation of sufficient good features

(like DCB) is better than combination of all features (like GDZCB) as observed for

SVM classifier with RBF kernel.

5.4 Performance of Feature Combination Using SVM
Classifier Ensemble

The features selected for combination through the SVM classifier ensemble are as

per their ranking order given in (10). Majority voting and winners pooling methods

are used, and the result is shown in Table 4.

Observation: The maximum result obtained through majority voting is 99.12% for

DCBG while through winners pooling is 99.09% for DCB. Here also, DCB result is

better than DCG that reinforces that complimentary feature combination overpowers

the total recognition rate.

Comparison of Results: The earlier reported results on ISI database with different

feature extraction techniques are Bhattacharya et al. [2] (99.27%), Pal et al. [12]

(99.56%), and Jangid et al. [7] (98.98%). The best recognition in our case under

individual features is obtained for DDD (98.96%) and DCT (98.43%) through SVM

classifier with RBF kernel. The literature survey for feature combination provides
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Table 4 Recognition rate for combining features using SVM classifier ensemble

Features Majority voting Winners pooling

RM
3

(%) RB
4

(%) RM
3

(%) RB
4

(%)

DCB 98.85 99.09 98.85 99.09
DCG 98.61 98.72 98.61 98.72

DCBG 98.06 99.12 98.96 99.01

DCBGZ 98.59 98.72 98.99 98.99

3
Rejection cases considered as misclassification

4
Rejection cases replaced by the best feature output

the following result: Prabhanjan and Dinesh [13] (99.68%), Singh et al. [16] (99.73%

accuracy at 6% rejection rate), [15] (99.37%), [17] (98.17%), and Bhattacharya et al.

[3] (92.83%). Our results are comparable with peer researchers with techniques used

as feature concatenation (99.14%), majority voting (99.12%), and a new proposed

technique winners pooling (99.09%).

6 Conclusion

In this paper, we have experimented with statistical feature extraction techniques and

proposed feature integration with different experimental settings for the recognition

of offline isolated handwritten Devanagari numerals. The DDD feature has been used

with extension in its implementation which is not found in the literature as per our

study so far, and its results are encouraging compared to other techniques used. The

analysis is carried out, and it is observed that the feature integration using SVM has

resulted in overall optimal accuracy as 99.14%.
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Privacy Preserving for Annular Distribution
Density Structure Descriptor in CBIR Using
Bit-plane Randomization Encryption

Mukul Majhi and Sushila Maheshkar

Abstract With the rapid increase in multimedia services and Internet users over

the network, it is crucial to have effective and accurate retrieval while preserv-

ing data confidentiality. We propose a simple and effective content-based image

retrieval algorithm using annular distribution density structure descriptor (ADDSD)

to retrieve the relevant images using encrypted features to preserve the privacy of

image content. It exploits the HSV color space of image to generate quantized image.

The structure element is obtained using same or similar edge orientation in uniform

HSV color space. The structure element is detected using the grid and based on the

quantized structure image so formed. Finally, annular histogram is generated from

the quantized structure image which is encrypted by bit-plane randomization tech-

nique. Experimental analysis illustrates that the proposed method retrieves the rele-

vant images effectively and efficiently without revealing image content information.

Keywords HSV ⋅ Feature extraction ⋅ Quantization ⋅ Edge orientation

Bit-plane randomization ⋅ Annular histogram ⋅ CBIR ⋅ Encryption

1 Introduction

Recently, for human communication, different forms of multimedia resources are

available which include image, video, graphics, and audio. These huge amount of

information plays a vital role for human to have better understanding of the world.

The advancement of imaging techniques has increased the availability of images to

the public. Considerable amount of processing and storage is desired for extremely

effective and efficient method to retrieve, evaluate, and index visual information

M. Majhi (✉) ⋅ S. Maheshkar

Department of Computer Science and Engineering,

Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

e-mail: mukulmajhi@gmail.com

S. Maheshkar

e-mail: sushila_maheshkar@yahoo.com

© Springer Nature Singapore Pte Ltd. 2018

B. B. Chaudhuri et al. (eds.), Proceedings of 2nd International Conference
on Computer Vision & Image Processing, Advances in Intelligent Systems

and Computing 703, https://doi.org/10.1007/978-981-10-7895-8_13

159



160 M. Majhi and S. Maheshkar

from the image. Moreover, the increasing complication of multimedia contents wit-

nesses an unparalleled evolution in the availability, amount, diversity, complexity,

and importance of images in all domains. This demands an acute need for estab-

lishing a highly effective image retrieval system to appease the human needs. Thus,

image retrieval has emerged as an important research topic for the research commu-

nity worldwide, and for effective retrieval machine learning, artificial intelligence,

and pattern recognition are used in coherence with image processing for effective

and efficient retrieval.

Liu et al. [1] have categorized image retrieval system as content-based image

retrieval (CBIR), text-based retrieval, and semantic-based retrieval method. In CBIR

system, visual analysis of the image content is used as feature to extract relevant

images. The features are either low level which include color, texture, and shape of

images or high-level features in which semantic of images is considered for retrieval.

Smeulders et al. [2] and Datta et al. [3] presented survey which elaborated depicting

the evolution of CBIR in the early years and efforts made by authors toward the

scope of CBIR, characteristics of domain and sources of knowledge which serve as

a preprocessing step during the computation of features. Alzubi et al. [4] presented

a detailed survey over the framework of CBIR system and renovation acquired in

the fields of preprocessing of image, extraction, and indexing of feature, similarity

matching and evaluation of performance.

With the emergence of various applications based on CBIR, privacy preserving

plays a vital role for preserving and protecting the private sensitive data from any

malicious attacks. Fanti et al. [5] developed one-way privacy model to protect CBIR

system. As the database is public, the authorized user wants to keep sensitive infor-

mation secret. Weng et al. [6] demonstrated SPEED and SRR as two approach for

CBIR security. The former rely on cryptographic computation which is homomor-

phic encryption and multiparty computation, while the later is based on secure index.

In this paper, we propose a secure and effective CBIR system which exploits the

annular histogram of color image to generate the quantized structure image, over

which encryption is applied. Rest of the paper is organized as follows: In Sect. 2, we

discuss the relevant work related to this field, Sect. 3 describes the proposed work

with detail explanation, Sect. 4 mainly illustrates the result analysis with discussions,

and Sect. 5 concludes the paper.

2 Related Work

Color, texture, and shape provide the most significant feature for CBIR system.

Among the various feature extraction algorithm, color histogram has been exten-

sively used in CBIR due to its orientation and scale invariance property.
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In order to exploit the spatial information, Manjunath et al. [7] presented an

approach on color MPEG-7 descriptor which consisting of color layout descrip-

tor (CLD), dominant color descriptor (DCD), and scalable color descriptor (SCD).

Rao et al. [16] proposed annular histogram in which each subset is rotation and trans-

lation invariant. Moreover, it can tolerate small movement of camera while capturing

the images.

Various feature extraction algorithms based on texture properties of images have

been used which includes structure element descriptor, edge histogram descriptor,

and gray-level co-occurrence matrix are summarized in Alzubi et al. [4]. Based on

edge oriented similarity, Liu et al. [1] proposed microstructure descriptor (MSD)

which extracts features by stimulating human visual processing in which whole

image information is integrated as color, texture, and shape layout. Alzubi et al.

[4] demonstrated moment invariants, Zernike moments, and histogram descriptor

as shape feature extraction method.

Combined feature selection algorithms have been adopted for efficient retrieval

of image. These algorithms are formed by combining color, texture, and shape fea-

tures together or by employing different combination of each feature. Yue et al. [8]

fused the color histogram feature and texture feature using co-occurrence matrix.

Wang and Wang [9] proposed a texture descriptor which effectively describes and

represents the local feature of an image using its color and texture property known

as structure elements descriptor (SED).

In Zhang et al. [10], secure retrieval for cloud is demonstrated with effective

retrieval efficiency. Color, shape, and texture are used as feature vector and local-

ity preserving projection (LPP) is applied for feature dimension reduction. Paillier

Homographic encryption provides the privacy to the sensitive data. A concise study

to summarize the cryptographic primitives to encrypt the signals and security chal-

lenges for retrieval and protection is discussed in Erkin et al. [11]. A hierarchical

data structure along with hash indexing scheme in Shashank et al. [12] provides

a scalable, accurate, and effective private image retrieval by exploiting image data

property. With the involvement of third party such as service provider in transmis-

sion and storage of data, Yiu et al. [13] proposed a dataset encoding-based algorithm

such that only authorized users have the access of the sensitive content, while third

party blindly evaluates the queries. Lu et al. [14] proposed a scheme for feature pro-

tection which exhibits comparable performance and good trade-off between compu-

tational complexity and security. In order to preserve effective retrieval and protect

the images from malicious attack on server, Lu et al. [15] designed secure min hash

sketches and secure inverted index scheme which are based on image processing,

information retrieval, and cryptography techniques. Both achieve better retrieval and

serve as candidate for privacy preserving for retrieval of multimedia.
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3 Proposed Work

3.1 HSV Color Space and Color Quantization

Color provides spatial information which is highly reliable for image retrieval and

object recognition. The use of RGB color space does not describe human visual per-

ception. On the contrary, HSV color space could mimic human conceptual

understanding of colors which provide enough information to distinguish large num-

ber of color for image retrieval. It is defined in terms of three basic components: Hue

(H), Saturation (S), and Value (V). The H component ranges from 0 to 360
◦

which

describe the color type. The S component ranges from 0 to 1 which demonstrate the

relative purity. Lower the saturation, more is the grayness presented and more faded

will be the color appearance. The V component represents brightness of the color or

the amount of black color mixed with H component. It ranges from 0 to 1. In this

paper, the HSV color space of image C(x, y) is uniformly quantized into 8, 3, and 3

bins, respectively, which provide a total of 8 × 3 × 3 = 72 color combination. The

quantized image obtained is represented as C′ (x, y) and C′ (x, y) = q, q{0, 1, ..., 71}.

3.2 Edge Orientation Detection

Edge orientation provides strong influence for processing of low-level image percep-

tion. It minimizes the data to be processed. Many existing gradient-based edge detec-

tor which include Robert operator, Prewitt operator and Sobel operator are under

first-order derivative while Laplacian of Gaussian and Canny edge detection are

second-order derivative. If edge detector is applied on each of the three channels sep-

arately, some edges which are caused by the spectral variation may not be detected.

Similarly, if color image is converted to gray image, and then edge detector is applied,

the corresponding chromatic information will be lost. In the proposed work, HSV

color space is represented in Cartesian space as (H′
, S′

,V ′ ), where H′ = S ⋅ cos(H),
S′ = S ⋅ sin(H) and V ′ = V .

Edge detection is performed by Sobel operator because as compared to other

operator it has less sensitivity to noise. Moreover, it is based on first-order derivative

which makes it less expensive as compared to second-order derivative operator such

as Canny operator. For two vector, the gradient along x and y direction is denoted

as X(H′

x, S
′

x,V
′

x) and Y(H′

y, S
′

y,V
′

y), where Hx represents gradient of H′
along the hor-

izontal direction and Hy represents gradient of H′
along the vertical direction. The

dot product and the norm are shown in Eqs. 1–5.

|X| =
√

(H′
x)2 + (S′

x)2 + (V ′
x)2 (1)
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|Y| =
√

(H′
y)2 + (S′

y)2 + (V ′
y)2 (2)

XY = H′

xH
′

y + S′

xS
′

y + V ′

xV
′

y (3)

cos(̂X,Y) = XY
|X||Y|

(4)

𝜃 = arccos(̂X,Y) = arccos
[

XY
|X|.|Y|

]

(5)

The edge orientation 𝜃(x, y) of size W × N for pixel is uniformly quantized into m
bins, where m ∈ {6, 12, 18, 24, 30, 36}. The edge orientation map 𝜃(x, y) = 𝜙 where

𝜙 ∈ {0, 1, ...,m}.

3.3 Structure Map Definition

Color, texture, and shape play an important role in content-based image retrieval. The

image is described in terms of descriptors which include color, texture, and shape

descriptor. Local structure of same class indicates the presence of common pattern

in the images. This property can serve as common base for analysis and comparison

of different images. In this context, images can be represented as structure unit and

texture decomposition which plays an important role in the final analysis.

In the proposed approach, there are two types of structure map which include

color structure map and edge-structure map. The former is based on quantization of

HSV color values, while the later is based on quantization of edge-oriented values.

Edge-oriented image 𝜃(x, y) is used to define the edge-structure map because of

its insensitivity to color and illumination. Moreover, it is independent of scaling,

translation, and small rotation. The edge-oriented image is quantized into six levels

whose value varies from 0 to 5. We move 3 × 3 block in overlapping manner, starting

from the left uppermost pixel and moving it from left-to-right and top-to-bottom to

detect edge-structure throughout the image. The step length is of one pixel along

both horizontal and vertical directions. In each of the 3 × 3 block, the eight neighbor

pixels having same value as the center pixel are marked active and rest are unchanged.

The final edge-structure map is denoted as M(x, y), where 0 ≤ x ≤ W − 1, 0 ≤ y ≤
N − 1. Figure 1 and Fig. 2 show the example to demonstrate the edge-structure map

and structure element extraction process, respectively.

The edge-structure M(x, y) is used as a mask to extract the desired underline cor-

responding colors information from the quantized image C′ (x, y). Finally, only those

corresponding color pixels of quantized C′ (x, y) are preserved which are marked

active in edge-extraction map M(x, y). All other color pixels in C′ (x, y) are set empty.

Finally, quantized image consists of active and empty pixel values. The active color

pixel of C′ (x, y) is quantized into m bins where m ∈ {6, 12, 18, 24, 30, 36, ...72}.
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Fig. 1 Edge-structure map extraction process

Fig. 2 Structure element generation using edge-structure map

Thus, not only edge features are exploited, but also color features are taken into

consideration.

3.4 Annular Distribution Density Structure Descriptor
(ADDSD)

The set of preserved pixels of M(x, y) characterizes the distribution of geometric

points on a two-dimensional plane. Let p(i, j) represent the color of preserved pixels

of M(x, y) where i ∈ x and j ∈ y. Let m color bins be represented as B1,B2, ...,Bm.

Suppose, Lq = (x, y)|(x, y) ∈ M, pxy ∈ Bq for 1 ≤ q ≤ m. Each Lq refers to the set

of active pixel whose color is in qth bin termed as histogram subset of bin Bq. For a

given Lq of given color pixel bin Bq, suppose Cn = (xq, yq) be the centroid for Lq as

shown in Eq. 6.

xq = 1
|Lq|

∑

(x,y)∈Lq

x; yq = 1
|Lq|

∑

(x,y)∈Lq

y (6)
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Fig. 3 Annular distribution

density vector (4, 7, 5, 4) for

a bin of structural element

image

Suppose, dq be considered as radius of Lq which is shown in Eq. 7.

dq = max(x,y)∈Lq
√
(x − xq)2 + (y − yq)2 (7)

The radius dq with centroid Cn
for each of the Lq can be divided into n concen-

tric circles with kdq∕n radius for each 1 ≤ k ≤ n for generating n annular regions.

Figure 3 shows the vector of annular distribution density which calculates the num-

ber of points in each and every annular region. Thus, the final histogram formed is

of dimension 1 × k|m|, where |m| refers to the levels of quantization of C(x, y). The

matrix is referred as annular color histogram of image. The centroid and the corre-

sponding annular partition are translation and rotation invariant which can tolerate

small camera movement while taking the images. With 72 quantization levels and

n (empirically taken as 4) annular region generate 1 × 288 dimension feature vector

termed as annular distribution density structure descriptor (ADDSD).

3.5 Bit-plane Randomization

Image appearance information is best described by most significant bits (MSB)

which has been used in scalable encoding for finer granular trade-off between

quality and bit-rate. The work is motivated by the fact that feature vectors with

smaller distances among their MSB result into similar pattern. Given a feature vec-

tor f = {f1, f2, ..., fn} ∈ Rn
and each component fi is represented in binary form as

{mi1, ...,mil}T , where mi1 and mil denote first MSB and least significant bit (LSB),

respectively, where l is total number of bit-planes. Hamming distance between bit-

planes is preserved when they are permuted or XORed with same random bit pat-

tern. This property is exploited to encrypt the feature vector from top k bit-planes.

Encryption of jth bit-plane of feature vector f is composed of jth MSB with n fea-

ture component denoted as {mij, ...,mnj}. The randomization of jth bit-plane with

{rij, ..., rnj} as binary random vector is shown in Fig. 4.
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Fig. 4 Encyption of the jth bitplane

The feature vector 𝜀(f ) = {f ′1, f
′

2, ..., f
′

n} is formed from encrypted bit-plane. Ham-

ming distance is calculated between two encrypted feature vectors 𝜀(f ) and 𝜀(g) as

weighted sum between their individual bit-planes shown in Eq. 8.

d
𝜀

(𝜀(f ), 𝜀(g)) =
n∑

i=1

l∑

j=1
|m̃(f )

ij − m̃(g)
ij | × w(j) (8)

where m̃(f )
ij is randomized feature component of input image, m̃(g)

ij is randomized fea-

ture component of output image, and w(j) is the weights assigned to the bit-planes

to represent their unequal importance.

L1 distance measures the upper bound of the distance metric between randomized

features shown in Eq. 9.

d
𝜀

(𝜀(f ), 𝜀(g)) =
n∑

i=1

l∑

j=1
|m(f )

ij − m(g)
ij | × 2−j ≥

n∑

i=1

|
|
|
|
|
|

l∑

j=1
(m(f )

ij − m(g)
ij ) × 2−j

|
|
|
|
|
|

= ||f − g||1

(9)

This indicates that there is some disturbance in distance distortion before and after

encryption with few of the feature vector whose probability is very low.

3.6 Similarity Measure

For each of the template, 288 dimension feature vector F = (f1, f2, ..., fi, ..., f288) is

extracted. The query feature vector is represented as Q = (q1, q2, , qi, ..., q288). For

similarity measure between query and database image, L1 norm is used. It sim-

ply computes the distance with no square and square root computation involved.

It can save a lot of computational cost which is suitable for large-scale retrieval. An

overview of proposed method is shown in Fig. 5.
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Fig. 5 Overview of proposed method

3.7 Proposed Method

Step 1: HSV color space component H, S, and V of color image C(x, y), 0 ≤ x ≤ W,

0 ≤ y ≤ N is quantized into 8 × 3 × 3 levels as C′ (x, y) = q, q ∈ {0, 1, ..., 71}, which

generate a total of 72 bins.

Step 2: Sobel operator is applied on C(x, y) on its H, S, and V component to gen-

erate horizontal and vertical derivative represented (Hx, Sx,Vx) and (Hy, Sy,Vy)
respectively.

Step 3: The components are represented in Cartesian coordinate as (H′

x, S
′

x,V
′

x) and

(H′

x, S
′

x,V
′

x), where H = h ⋅ cos(H), S = s ⋅ sin(H) and V = V .

Step 4: The edge orientation 𝜃 obtained as 𝜃 = 𝜙, where 𝜙 ∈ {0, 1, ...,m}.

Step 5: The edge orientation mapM(x, y) is extracted using 3 × 3 block masking with

step length of one pixel. In each block, the pixels are marked based on the similarity

with the central pixel value.

Step 6: The corresponding pixel of C′ (x, y) is marked active, and structure element

of image is generated.

Step 7: ADDSD for the active pixels in C′ (x, y) is obtained having dimension of

1 × mn, where n (empirically taken as four) is the number of annular region and m
(empirically set as six) is number of quantization levels in C′ (x, y).
Step 8: Bit-plane randomization encryption is applied on ADDSD obtained from the

query image.

Step 9: L1 norm is used to measure distance between the query and database

encrypted feature vectors.
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4 Experimental Results and Discussions

Corel database [17] of 1000 images have been used in the experiment for retrieval

accuracy and security analysis of CBIR system. The database is in JPEG format

and is classified into ten categories, such as African people, buildings, dinosaurs,

flowers. Image resolution is either 384 × 256 or 256 × 384. MATLAB R2016a with

Intel(R)Core(TM) i3 processor and 4GB RAM is used to simulate the algorithms.

The proposed work uses HSV color space to evaluate the image retrieval effi-

ciency. As per the evaluated results, the proposed algorithm achieves better per-

formance. Among various standard criterion available to evaluate the accuracy and

performance of CBIR systems, precision and recall have been used for evaluating

search strategies. Precision refers to the ratio between the number of relevant images

retrieved and total relevant images. Recall refers to ratio between the number of rel-

evant images retrieved and total number of relevant images in the corresponding

database. Precision and recall measure accuracy and robustness, respectively. For

each category, more than 50 test were taken to evaluate precision and recall. Figure 6

displays the comparison between proposed method and Wang and Wang [9].

Query images from different categories of image of coral database with its corre-

sponding first five relevant retrieval are shown in Fig. 7. Thus, we conclude that the

image retrieval based on plaintext feature performance of proposed method is better

than Wang and Wang [9].

The encryption of feature vector set using the bit-plane randomization and permu-

tation of elements of feature vector securely preserves the privacy. Figure 8 illustrates

that both Zhang et al. [10] and proposed algorithm have high search accuracy and

close retrieval efficiency. In the experiment, it was analyzed that ciphertext size and

encryption time of Zhang et al. [10] are much higher than the proposed encryption

algorithm which is shown in Table 1.

Fig. 6 Plaintext retrieval
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dataset
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Fig. 7 Retrieval of relevant images in corel database

Table 1 Encryption and ciphertext size analysis

Encryption scheme Encryption time (s) Ciphertext size (KB)

Paillier homomorphic 1778.5 32005

Bitplane randomization 0.24 159
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Fig. 8 Ciphertext retrieval
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5 Conclusion

The availability of encrypted feature vector brings a new era of secure image retrieval

which would protect the privacy and integrity of the user data. In this paper, a

secure and effective image retrieval algorithm using ADDSD is proposed. HSV

color space is exploited to generate quantized image. Based on same or similar

edge orientation in uniform HSV color space, structure element is obtained. Finally,

the structure element is detected using the grid and based on that quantized struc-

ture of image is formed. Annular histogram is generated from the quantized struc-

ture of image which is encrypted by bit-plane randomization technique. L1 norm

is used for similarity measure evaluation between the encrypted query feature vec-

tor and encrypted database feature vector. Experimental analysis demonstrates that

homomorphic-based techniques are secure but possesses high computational com-

plexity and user involvement in various applications, while bit-plane randomization

provides high efficiency based on deterministic distance preserving with minimum

user involvement. Proposed method retrieved the relevant images effectively and effi-

ciently without revealing image content.
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Near-Duplicate Video Retrieval Based
on Spatiotemporal Pattern Tree

Ajay Kumar Mallick and Sushila Maheshkar

Abstract Recently, due to rapid advancement in multimedia devices and

exponential increase in Internet user activities such as video editing, preview, and

streaming accumulate enormous amount of near-duplicate videos which cannot be

detected or retrieved effectively by conventional video retrieval technique. In this

paper, we propose a simple but effective hierarchical spatiotemporal approach for

high-quality near-duplicate video retrieval. Pattern generation of encoded key frames

using angular distribution density is used which are translation and rotation invariant.

Queue pool contributes temporal matching and consistency for the retrieval. Exper-

imental result analysis demonstrates the effectiveness of the proposed method.

Keywords Near-duplicate ⋅ Angular density distribution ⋅ Encoding ⋅ Key

frames ⋅ Pattern Tree ⋅ Queue pool ⋅ Video retrieval ⋅ CBVR

1 Introduction

With the rapid increase in online video services such as video broadcasting and video

sharing attract Internet user to edit, stream, and store videos. It accumulates unpre-

sented amount of multimedia entities in multimedia repositories which demand new

innovation in video retrieval techniques. This exponential growth of multimedia con-

tent gives rise to the possible existence of near-duplicate videos which occur due to

visual or temporal transformation such as scaling, re-encoding frame dropping, slow

or fast forwarding. This brings a scenario in which near-duplicate retrieval tech-

niques play an eminent role in video copyright protection, video search, and in many

more events. Among the various approaches object oriented data modelling or video
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tagging based method have limitation of manual interpretation for video retrieval is

illustrated in Pickering and Ruger [1]. Moreover, exhaustive texture description is

needed to tag any video. According to the study conducted by Kim and Vasudev [2],

video invariant feature selection is essential, but high-dimensional complex feature

vector consecutively lowers indexing efficiency.

Content-based video retrieval (CBVR) and indexing bring a new challenge and

opportunity to the research community for effective analysis and evaluation of mul-

timedia in computer vision domain. Bohm et al. [3] demonstrated that the data in

the repositories are multimodal as well as multidimensional due to the existence

of visual, audio, and temporal information in it which demand better innovative

approach. Hartung and Kutter [4] analyzed that watermark and CBVR are two basic

methods which can provide the desired retrieval. The former is imperceptible embed-

ding of message in the corresponding media while the later refers to content-based

signature extraction scheme of the given media which is compared with the signa-

ture of media available in repositories is illustrated in Pickering and Ruger [5]. CBVR

technique is more advantageous than watermarking approach.

2 Related Work

Depending upon the video content, there have been various feature extraction

approaches that are available in the literature. In the context of CBVR, Liu et al. [6]

investigated various existing variants for defining near-duplicate video, state-of-the-

art practices, generic framework and finally explored its emerging research trends.

There has been lot of work on indexing of high-dimensional data. Bohm et al. [3]

provided an insight into principle ideas to overcome the problems related to index-

ing of high-dimensional space. Color correlation invariance for sequence matching

of videos is proposed in Pickering and Ruger [5] which extracted the desired key

frames independently. In the study conducted by Rao et al. [7], annular-, angular-,

and hybrid-based color histogram are proposed which outperform the traditional his-

togram. The algorithm satisfy both space and time complexity. Kim and Vasudev

[2] demonstrated a computationally effective spatiotemporal matching technique for

video copy detection. It computes spatial matching by utilizing ordinal signature for

each frame and corresponding temporal matching based on temporal signature. For-

mat conversion such as pillar-box and letter box can be effectively managed. More-

over, its memory requirement for storing or indexing is comparatively low.

Wu et al. [8] demonstrated a content and context fusion approach which con-

sider a joint set of context information and perform varied task with redundancy

elimination. Thumbnail and time duration are used to eliminate near-duplicate video

which evade the exhaustive pairwise comparison of corresponding key frames of two

videos. In a scenario of mismatched alignment among near-duplicate video clips, Wu

and Aizawa [9] proposed an approach based on binary frame signature extraction.

The extracted signature is encoded into concise matrix through a well-organized

self-similarity mining procedure of pattern generated to analyze and investigate the
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localization and copy capacity of Web videos. In order to handle spatiotemporal

variation to detect video copy, Chiu et al. [10] presented a computationally low-

cost probabilistic framework that considers video copy detection as partial matching

problem and correspondingly transforms it as a shortest path problem. Registration

framework of spatiotemporal method in which multimodal features are utilized for

frame alignment is illustrated in Rooplakshmi and Reddy [11].

A dynamic programming-based approach using pattern set is demonstrated in

Chou et al. [12] which accomplishes relatively high-quality retrieval and local-

ization of near-duplicate videos. Tian et al. [13] presented a transformation-based

copy detection for enhanced localization. To overcome the problem related to high-

dimensional visual feature, Su et al. [14] proposed a scheme based on pattern index-

ing and matching. Activity recognition has been a major area of research in content-

based video retrieval. Chaudhry et al. [15] proposed a method that model the ongoing

activity of any scene which do not require any preprocessing is represented com-

prehensively as feature of non-Euclidean Histogram Optical flow. In the study con-

ducted by Rosten et al. [16], a simple but effective machine learning approach is

proposed which is based on heuristic detector which outperforms the available fea-

ture detector significantly. Based on spatiotemporal pattern approach, Chou et al.

[17] proposed a hierarchical framework approach for filter and refine near-duplicate

video retrieval and corresponding localization. Our work is motivated by the above

observation of hierarchical framework to filter and refine near-duplicate videos illus-

trated in Chou et al. [17]. The proposed method provides better result of the retrieval

due to key frame selection and encoding as compared with the method addressed by

Chou et al. [17].

The remaining section of paper is categorized as follows. Proposed work is

described in Sect. 3. Experimental results and discussion is elaborated in Sect. 4.

Finally, Sect. 5 demonstrates the conclusion and future work of the paper.

3 Proposed Work

3.1 Problem Definition

Let Vf
be a video of n consecutive frames with resolution of W × H as shown in

Eq. 1.

Vf = ⟨Vf
1,V

f
2,… ,Vf

l ⟩ (1)

The corresponding ith frame of video Vf
with k partition is shown in Eq. 2.

Vf
i = ⟨Vf1

i ,Vf2
i ,… ,Vfk

i ⟩ (2)
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3.2 Clip Segmentation

In order to reduce the effective computation and enhance retrieval accuracy, video

frames are subjected to selection of key frames using its content and subsequently

organizing it as clusters of small clips. In the literature, there are basically two

approaches for key frame selection which are classified as clip segmentation and

shot segmentation. The former technique produces comparatively lesser key frames

by just replacing each desired shot by a key frame, while the later technique con-

siders small subsets of frames as single unit produces shots and corresponding key

frames which result into effective key frame extraction.

In the proposed work, considered shots may exist in different position instead of

consecutive time position in any given video. Shot selection is performed by dividing

each frame into w × h non-overlapping blocks and correspondingly average of each

block is computed. The first frame of a clip is termed as pivot frame. Initially, a video

is considered as single clip and subsequently many sub-non-overlapping sub-clips

are extracted. Starting from the pivot frame of a video, corresponding difference with

each frame is evaluated. Frames with value less than a threshold 𝜇 is/are considered

to be similar to the pivot frame from a part of clip headed by the respective pivot.

This process continues until each frame is a part of any clip headed by respective

pivot. In our work, threshold is empirically considered as 0.5. Eventually, l clips are

generated from any video with n consecutive frames, where 1 ≤ l ≤ n.

3.3 Key Frames Selection

Block-based histogram equalization of frames in a clip is applied as evaluation metric

for key frame generation. For each clip ci with k frames, where 1 ≤ k ≤ l , 1 ≤ i ≤ l,
starting from the pivot frame, the difference of equalized histogram with other k − 1
frames in the clip is calculated and summation of the evaluated value is considered.

This process is repeated for each of the frames in the clip until each frame has par-

ticipated as a key pivot and summation of histogram equalization is computed. This

indicates that each frame in a clip has computed its distance with respect to other

k − 1 frames and the frame with least value is considered as key frame in the corre-

sponding clip. Finally, video with n frames is represented with k frames.

3.4 Key Frame Encoding

Color histogram is considered as an important approach in content- based retrieval.

A mathematical model termed as annular distribution density is applied on the

extracted key frames mentioned in the above section. It basically characterized set of
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geometric points distribution state on a two-dimensional plane which provide rota-

tion and translation invariant constraint.

Suppose pij represent the color of pixel for a key frame of dimension W × H
where 0 ≤ i ≤ W, 0 ≤ j ≤ H. Let U = (x, y)|1 ≤ x ≤ W; 1 ≤ y ≤ H. The color space

is quantized into B color bins represented as M1,M2,… ,MB. Suppose Rq =
(x, y)|(x, y)𝜀U, pxy𝜀Mq for 1 ≤ q ≤ B, is the histogram subset of bin Mq, is the set

of color pixel in the qth bin. For histogram subset Rq with Cq = (xq, yq) as centroid

of Rq, where xq an yq are defined in Eq. 3 and Eq. 4 respectively.

xq = 1
|Rq|

∑

(x,y)∈Rq

x (3)

yq = 1
|Rq|

∑

(x,y)∈Rq

y (4)

In order to obtain annular partition, each point (x, y) 𝜀Rq direction (principal angle)

𝜙(x, y) 𝜖 Rq in the associated coordinate system is shown in Eq. 5.

𝜙(x, y) = arctan
(
y − yq

x − xq

)

± 𝜋 (5)

𝜃(Rq) =
1

|Rq|

∑

(x,y)𝜖Rq

𝜙(x, y) (6)

Similarly, for each of the bin average or principle direction is evaluated by using

Eq. 6 and place it in the respective angular partition. Each of the angular regions is

encoded by a symbol representation such as A,B,C. For any key frame, the angular

region with maximum density is chosen and the frame is represented by the encoded

symbol of the angular region. Similarly, whole set of key frames of a video can be

represented by sequence of encoded symbols. Key frame encoding of Fig. 1 of key

frames is shown in Table 1.

Fig. 1 Key frame encoding
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Table 1 Pattern generation of reference and query videos

Video Encoded sequence Pattern

v1 ADBACFHGCAB ADB, DBA, BAC, ACF, CFH,

FHG, HGC, GCA, CAB

v2 BCFGDABEFA BCF, CFG, FGD, GDA, DAB,

ABE, BEF, EFA

v3 DCAEBGA DCA, CAE, AEB, EBG, BGA

v4 HABDCAFBDAGDC HAB, ABD, BDC, DCA, CAF,

AFB

FBD, BDA, DAG, AGD, GDC

Q ACFGDCABE ACF, CFG, FGD, GDC, DCA,

CAB, ABE

3.5 Pattern Tree

In order to facilitate matching of near duplicate videos, a simple but effective data

structure in constructed termed as Pattern Tree. It is basically a prefix queue with

m levels (empirically m set to 3) generated by overlapping sliding window in which

symbol p1p2p3 are considered. Similarly, next pattern is generated by sliding the win-

dow with unit step length. Similarity among the videos frames does not imply near-

duplicate copies; instead, temporal consistency is better cue to detect near-duplicate

videos. For any video vi with |k| encoded symbol 1 ≤ k ≤ l, if p1p2p3 is the first pat-

tern generated, then 2-tuple (vi, 1) is inserted into the Pattern Tree based on the value

of p1p2p3. Encoded sequence for v1 is ADBACFHGCAB as shown in Fig. 2. Patterns

generated using m level prefix queue for v1 are ADB, BDA, BAC, ACF, CFH, FHG,

HGC, GCA, and CAB. The corresponding 2-tuple structures are (ADB, 1), (BDA, 2),
(BAC, 3), (ACF, 4), (CFH, 5), (FHG, 6), (HGC, 7), (GCA, 8), and (CAB, 9). In order

to consider temporal consistency, (ADB, 1) which belongs to the first pattern of v1 is

queued as (v1, 1) prefixed by ADB. Similarly, (BDA, 2) is queued as (v1, 2) prefixed

by BDA as shown in Fig. 3. Finally, the procedure is repeated for every reference

video and Pattern Tree is generated. Based on the pattern generated for the reference

videos v1, v2, v3, and v4 in Table 1, a Pattern Tree is generated as shown in Fig. 2.

3.6 Pool Generation

In order to maintain sustainable retrieval and accuracy for near-duplicate videos,

queue pool is generated for the query videos using Pattern Tree of reference videos.

For each of the N reference videos v1, v2,… , vN , queue pool is generated for cor-

responding temporal matching and consistency among query and known reference

videos. For any pattern p1p2p3 of a query video, d number of 2-tuple (vi, (k − 2)d),
where 0 ≤ i ≤ N, 1 ≤ k ≤ l, 0 ≤ d ≤ N, is obtained. The obtained value (vi, (k − 2)d)
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Fig. 2 Pattern Tree generation for reference videos

where vi is video identity is inserted into the queue qij of queue pool QPi, where

0 ≤ i ≤ N, 0 ≤ j ≤ N, depending upon the relation between 𝛾 and 𝛿. 𝛾 is the time

stamp difference between two consecutive entries in queue in a particular queue pool,

and 𝛿 is the threshold empirically taken as 3. If 𝛾 ≤ 𝛿, then (vi, kd) is inserted into

the queue qij of queue pool QPi else the queue is set inactive. Initially, when queue
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Fig. 3 Queue pool of query video

pool QPi is empty, 𝛾 value is set to 0 and unless any pattern of query video matches

with any reference pattern in the Pattern Tree all queues are set inactive represented

as ≠. When any 2-tuple value of query video matches in the Pattern Tree with ci
video pattern, then a new queue pool is constructed with a new queue in it and its

status is set active represented by 𝛥 else it is set to be inactive represented as ▽.

A counter Cn is used to represent the frequency of query pattern matching with refer-

ence pattern matching. If any query pattern p1p2p3 is inserted into a queue of queue

pool based on its 𝛿 and 𝛥 values, the counter Cn value is set to 0 and for all other

active queues of the queue pool are incremented by 1. When Cn ≥ 𝜂, queue is set

inactive and new queue is generated in that particular queue pool which is initially

set inactive before any match. Empirically, 𝜂 is set to 3 in our work. For the given

query pattern ACF,CFG,FGD,GDC,DCA,CAB, and ABE in Table 1 for reference

videos v1, v2,… , v4 process of query matching is shown in Table 2.

Initially, no queue and queue pool exist. When the first query pattern ACF finds

a match with (v1, 4), query pool QP1 is constructed and q11 is generated as active

status is obtained represented as 𝛥 and the pattern (ACF, 4) is inserted into queue

q11 with both counter Cn and 𝛾 is set to 0. The second pattern CFG matches with

(v2, 2) in Pattern Tree and Queue Pool QP2 is constructed. Queue q21 is generated as

active in which (CFG, 2) is inserted and counterCn is set as to 0whileQP1 counter is

incremented by 1 which signify a pattern miss for QP1 for the current queue pattern.

Similarly, since 𝛾 is 1 ≤ 𝛿, the matched pattern (FGD, 3) is inserted into the queue

q21 of QP1 with Cn set to 0 and q11 queue of queue pool QP1 is incremented by 1
making its value as 2. Fourth query pattern is GDC which matches at (v4, 11). This

is to be inserted into QP4 queue pool which is created and queue q41 is generated

and finally (GDC, 11) is inserted in which Cn is set zeros while QP1 and QP2 Cn
are incremented making it as 3 and 1 respectively. Now, Cn of QP1 is greater than

𝛿 so q11 is set inactive denoted by ▽ and new queue c12 in QP1 is to be generated
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for insertion of query pattern (CAB, 9). Similarly, q21 becomes inactive and q22 is

to be generated for inserting (ABE, 6) as shown in Table 2. The pool generation for

the query pattern is shown in Fig. 3.

3.7 Distance Measure

In order to measure distinctiveness for the generated pattern p, inverse document

frequency (IDF) is computed which is shown in Eq. 7.

IDF(p) = log
(

|N|
|PQ(p)|

)

(7)

where |N| refers to the number of reference videos and |PQ(p)| denote number of

videos with prefix pattern p. Moreover, temporal relation and its corresponding con-

sistency score (TRC-score) of a queue qij is represented in Eq. 8.

TRC − score(qij) =
∑

(qij)in(pi)
IDF(pi) (8)

where |qij| is number of pattern inserted into qij and pi is the pattern in qij. When all

the query patterns are inserted in the corresponding queue pool QPi for each of the

reference videos v1, v2, v3, and v4, near-duplicate score for each query pool can be

generated as shown in Eq. 9.

ND − score(vi) =
∑

(qij)∈(QPi)
TRC − score(qij) (9)

3.8 Proposed Algorithm

Step 1: For a given video Vf
i with l frames, where 1 ≤ i ≤ l, using block-based

shot segmentation disjoint set of k clips are generated, where 1 ≤ k ≤ l.
Step 2: Key frame corresponding to each k clip is generated using summation of

equalized histogram differences between pivot and other frames of a clip.

Step 3: Key frame is encoded using angular distribution density in which symbol

assigned to it depends on maximum density angular region.

Step 4: From the sequence of k symbol generated from k key frame, prefix queue

pattern is generated by overlapping sliding window of size m (empirically set to

3).

Step 5: Based on the generated prefix pattern, Pattern Tree is generated and each

pattern which is a 2-tuple (vi, (k − 2)d), where 1 ≤ i ≤ N, 1 ≤ d ≤ N, is inserted

in the node containing corresponding video identity with pattern
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position, (k − 2)d in generated prefix pattern. N refers to the number of videos

in the database.

Step 6: Step 1 to Step 5 is repeated for each of the reference videos, and finally,

Pattern Tree for whole database is constructed.

Step 7: Initially, all queue pool QPi, 1 ≤ i ≤ N is empty represented as ≠.

Step 8: For a query video, Step1 to Step5 is repeated and for each query pattern, if

there is a match at any node in Pattern Tree, then corresponding reference video

identity with the pattern position is inserted into the queue qij of queue pool QPi,
where 0 ≤ i ≤ N, 0 ≤ j ≤ N, if 𝛾 < 𝛿, where empirically 𝛿 is set as 3 and 𝛾 is time

stamp difference between two consecutive entry in queue in a particular queue

pool.

Step 9: Initially, for first insertion in queue of a particular queue pool counter Cn
is set 0 and active status 𝛥.

Step 10: For every insertion in a queue of queue pool, its counter Cn is set 0 and

counter of other queue pool is incremented by 1. If any queue pool counter Cn >

𝜂, the queue of the queue pool is set inactive denoted by ▽ and new empty queue

is generated in that queue pool.

Step 11: Final generated pool is used to evaluate NR-score with respect to every

reference video which is calculated for the given query video for detecting near-

duplicate reference videos.

4 Experimental Results and Discussions

The proposed method is simulated using MATLAB R2016a on a system with

Intel(R) Core(TM) i3 Processor and 4GB RAM. MUSCLE VCD database [18] is

used in our work with frame rate of 25 frames per second. Resolution of videos in

the corresponding database is 240 × 240 which comprise of various topics such as

educational, ephemeral, documentary. With the perspective of reducing the compu-

tational cost for video retrieval, key frame extraction has been considered. Query

video key frames with its corresponding retrieved video key frames are shown in

Fig. 4 which reflects the effectiveness of the proposed algorithm.

Key frame encoding provided the much needed property for effective retrieval

which basically exploits the geometric point distribution of the key frames under

constraint of rotation and translation invariance. Generation of queue pool based on

the Pattern Tree which not only provide the data structure to match pattern between

query and reference video but also temporal consistency is taken into consideration

which provide an effective and efficient retrieval. Based on the near-duplicate score

of each queue pool, retrieval of near-duplicate videos is computed. Subsequently,

precision and recall serve as the fundamental measure to evaluate the accuracy of

retrieval. Precision refers to the ratio between numbers of relevant data retrieved and

total number of relevant data, while recall refers to the number of relevant data to the

total number of data in the corresponding database. In Fig. 5, the retrieval accuracy
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Fig. 4 Retrieval of query reference video key frames
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of the proposed algorithm is shown which depicts its effectiveness as compared to

Wu and Aizawa [9].

5 Conclusion and Future Work

In this paper, the motivation was to develop a simple but effective hierarchical spa-

tiotemporal approach for effective high-quality near-duplicate video retrieval. Pat-

tern generation of encoded key frames using angular distribution density provided

rotation and translation invariance. Queue pool generation using the Pattern Tree
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generated from reference video encoded pattern contributes temporal matching and

consistency. Experimental result analysis on MUSCLE VCD dataset demonstrates

promising results of the proposed approach which not only handle spatio and tem-

poral variation, but also contribute cost-effective computation. In future, our focus

will be on developing better near-duplicate retrieval system for fast retrieve by using

approximate similarity search approach such as Locality Sensitivity Hashing (LSH)

and global interest point for better feature representation.
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Fingerprint Liveness Detection Using
Wavelet-Based Completed LBP Descriptor

Jayshree Kundargi and R. G. Karandikar

Abstract Fingerprint-based authentication systems need to be secured against
spoof attacks. In this paper, we propose completed local binary pattern (CLBP)
texture descriptor with wavelet transform (WT) for fingerprint liveness detection.
The fundamental basis of the proposed method is live, and spoof finger images
differ in textural characteristics due to gray-level variations. These textural char-
acteristics occur at various scales and orientations. CLBP has high discriminatory
power as it takes into account local sign and magnitude difference with average
gray level of an image. CLBP extended to 2-D Discrete WT (DWT), and 2-D Real
Oriented Dual Tree WT (RODTWT) domain captures texture features at multiple
scales and orientations. Each image was decomposed up to four levels, and CLBP
features computed at each level are classified using linear and RBF kernel support
vector machine (SVM) classifiers. Extensive comparisons are made to evaluate
influence of wavelet decomposition level, wavelet type, number of wavelet orien-
tations, and feature normalization method on fingerprint classification performance.
CLBP in WT domain has proved to offer effective classification performance with
simplicity of computation. While texture features at each scale contribute to per-
formance, higher performance is achieved at lower decomposition levels of high
resolution with db2 and db1 wavelets, RBF SVM and mean normalized features.
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1 Introduction

Fingerprint-based biometric authentication systems are most commonly deployed
for various security-based applications. Fingerprint biometric has the advantages of
being unique, reliable, and simplicity of acquisition. It was proved that these sys-
tems can be attacked by spoof fingers made of synthetic materials like clay, silicone.
[1]. A large number of methods have been proposed in the literature to protect
fingerprint authentication systems against spoof attacks. In particular, each of these
methods proposed a technique to identify whether an acquired fingerprint image is
from a live finger or an artificial finger. Earlier systems are hardware-based which
consist of an additional device to acquire some biological trait such as body odor
[2]. Since these methods used additional information, they guaranteed reliable
protection against spoof attacks. However, they are more costly, rigid, invasive, and
inconvenient to the users. Introduction of software-based methods paved the way
for economical, flexible, and noninvasive systems. Typically, these methods use
image processing techniques to find discriminatory characteristics of a live fin-
gerprint image which would not be present in a spoof fingerprint image. Early
software-based systems used change in the dynamic characteristics of a live fin-
gerprint image which would otherwise be constant in a spoof image, by acquiring
multiple images of the same finger over a specific time duration [3]. These methods
were time consuming. Static software-based methods acquire a single image from
the user and are more convenient and user-friendly. Most of the researched methods
fall in this category. These methods extract discriminatory features from the images
to perform the classification and have proven to be very challenging.

A live finger is characterized by the presence of pores along the ridges through
which sweat is released due to perspiration process. Random ridge–valley structure,
skin elasticity, and presence of pores and sweat cause significant wide and random
gray-level variations in a live finger image. These gray-level variations constitute
textures of multiple scales in multiple directions. A spoof finger cannot experience
sweat and has a regular ridge–valley structure based on the synthetic material
properties resulting in a few gray-level variations in the acquired image. The
contribution of the features at each scale will be different in classification perfor-
mance. In addition, live fingerprint images will exhibit discriminatory features over
a large range of scales due to high gray-level variations.

Texture reflects gray-level statistics of an image which includes spatial distri-
bution and structural information of an image [4]. Texture feature plays a very
crucial role in many image classification-related works and is widely researched for
fingerprint liveness detection. Texture analysis in WT domain has often reported
encouraging results. Images are decomposed into multiple levels of resolution from
fine to coarse, and features are extracted from low-pass and high-pass subbands of
each scale. Subbands at each scale reflect local image characteristics of the original
image at respective scale. In addition, high-pass detail subbands reflect directional
characteristics in the original image. Therefore, effective texture features computed
from all subbands will achieve encouraging results. Many of the proposed WT
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domain methods for fingerprint liveness detection concatenated texture features at
all scales [5–7]. Multiscale features can also be acquired in spatial domain by
increasing the radius of feature operator [8, 9]. However, these methods tend to be
computationally intensive.

In this paper, we analyze the performance of texture features at each scale. We
propose use of CLBP in DWT and RODTWT domain. RODTWT has advantage of
better discrimination of features that occur in multiple orientations [10]. It
decomposes an image into six detail subbands in six orientations and low-resolution
approximation subbands. In our work, we investigated the influence of
RODTWT-based features on fingerprint liveness detection performance. Our
method computes CLBP texture features from detail and approximation subband
coefficients. To analyze the performance of each scale, a feature vector is computed
by concatenation of CLBP features of detail and approximation subbands of that
level. Local binary pattern (LBP) has proved to be a simple and effective texture
descriptor and is used successfully for texture classification [11]. CLBP operator
derived as an extension of LBP has higher discriminatory power [12]. We use
rotation invariant CLBP operator jointly computed from local sign difference, S,
local magnitude difference, M, and average gray level of image, C, computed over a
radius of 1 with 8 neighbors designated as CLBP8,1

RIU2_S\M\C. We explore Dau-
bechies wavelets db1–db4 to implement DWT. Each of these wavelets has different
support area and capture signal features of a particular shape and size. The choice of
a wavelet for a particular application is experiment-driven. Extension of CLBP
operator to DWT and RODTWT domain results in extraction of powerful dis-
criminatory features at multiple scales and orientations for efficient fingerprint
liveness detection. The computed feature vectors have different ranges of values. It
is often beneficial to normalize all the features to a common scale. It is essential to
choose a suitable normalization method as the SVM performance is sensitive to the
method selected. We compare performance of two methods, wherein in the first
method (N1) features are scaled to the range 0–1 and in the second method (N2)
each feature is normalized by subtracting its mean and dividing by its standard
deviation. Supervised classifiers linear SVM and RBF kernel SVM are used in this
work as these have proved to offer superior performance in many machine
vision-related applications. Being a preliminary study, SVM is operated with
default parameters, C = 1 and gamma = 1/(feature dimension), for linear and RBF
kernel SVM, respectively. Tuning of SVM parameters to the training dataset is very
much likely to improve the performance further. Subsequently, contribution of
features at each scale, choice of suitable wavelet, type of WT, normalization
method, and SVM classifier type are evaluated based on the classification error. The
experimental results are provided on LivDet 2011 and LivDet 2013 datasets that
consist of live and spoof images acquired using four sensors [10, 13]. Average
classification error (ACE) is used for the performance evaluation.

The rest of the paper consists of four sections. Section 2 contains brief review of
existing fingerprint liveness detection methods with emphasis on single-image-based
multiscale feature extraction methods. Section 3 describes the proposed method, and
Sect. 4 presents experimental results. Conclusions are presented in Sect. 5.
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2 Related Work

A live fingerprint image is characterized by abundant and strong textural infor-
mation due to random ridge–valley structure, specific pore distribution, skin elas-
ticity properties, and sweat on a fingertip surface. Spoof fingers fabricated from
synthetic materials like gelatin and latex have constant material and physical
properties leading to minimal texture patterns. A large number of texture-based
methods have been proposed in the last few years. Among them, multiresolution
transform domain methods are widely researched due to their ability to capture
multiscale features in multiple orientations. Multiresolution wavelet transform was
proposed to analyze fingerprint image liveness by deriving texture features and
local ridge frequency features from multiscale pyramid coefficients [14]. It was the
first single-image-based effort based on textural features. LBP descriptor, being
powerful, has been widely used in many machine vision-related applications [11].
First method to propose use of features derived from wavelet transform detail
coefficients of four scales combined with LBP features of image was presented for
fingerprint liveness detection in [5]. Each image was decomposed up to four levels
using three types of wavelet filters, energy of all detail subbands of four levels for
each wavelet filter and of original image constituted wavelet domain feature vector
to represent image properties at multiple scales and orientations. Wavelet transform
is suitable to highlight point singularities in an image. A fingerprint image consists
of curvilinear regions due to ridge–valley structure. Such curvilinear discontinuities
can be well captured by curvelet transform. Use of multiscale curvelet transform
with texture features derived from three decomposition scales was proposed in [6].
Each image was decomposed up to three scales. Energy of detail subbands of all
levels formed one feature vector. Another set of texture features was computed
from gray-level co-occurrence matrices (GLCM) derived from each curvelet sub-
band of all levels. The two feature vectors were separately tested. Each of the above
two methods used feature selection method due to large feature size. The same
authors proposed use of multiscale ridgelet transform to derive texture features [7].
Image was divided into small size subblocks, and ridgelet transform was applied to
each subblock. Energy of ridgelet subbands at first decomposition level for each
subblock was computed and formed energy feature vector. Co-occurrence features
were computed from GLCM derived from each ridgelet subband. Ridgelet trans-
form is suitable to extract line singularities in an image corresponding to ridge lines
as compared to wavelet transform. Multiscale transform-based methods rely on
features used to extract information from subband coefficients and are computa-
tionally simple.

LBP operator has too small spatial support area as a result of which it cannot
handle multiple scale variations in gray levels. Multiresolution form of LBP was
presented by using multiple size neighborhoods to capture multiscale texture fea-
tures in spatial domain [8]. However, the method is computationally intensive. It
was pointed out that this approach is sensitive to noise due to sampling at a single
pixel position and may cause aliasing [8, 11]. The suggested solutions involved
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either use of filters to gather information over a region or averaging information
over a region [8, 11, 15]. Based on it, Multiscale Block Local Ternary Pattern was
proposed for fingerprint liveness detection [9]. Local differences are computed over
average values of blocks of pixels to avoid sensitivity to noise, and local differences
were encoded into three levels which make it more discriminatory compared to
LBP. These methods are computationally intensive and parameter-driven as the
exact size of block is a free parameter and size suitable for efficient feature
extraction for a given application has to be determined experimentally.

There are other carefully researched state-of-the-art methods for fingerprint
liveness detection. A Local Phase Quantization descriptor obtained by binarizing
phase information corresponding to four low-frequency components in a local
window was proposed in [16]. Known for its insensitivity to blurriness, the per-
formance on LivDet 2011 database is moderate. A learning-based Binarized Sta-
tistical Image Feature descriptor hat use filter designed from a large number of
natural images was proposed in [17]. Experiments reported significantly low error
rate on LivDet 2011 dataset at the cost of large feature size. Local Contrast Phase
Descriptor feature consisting of local phase information and local amplitude con-
trast was proposed in [18]. The best results were reported on LivDet 2011 dataset.
Spoof images in LivDet 2011 dataset are obtained using cooperative method and
hence are more challenging than LivDet 2013, wherein spoof images are obtained
using noncooperative method. In this paper, we have carried out work on LivDet
2011 dataset.

3 Proposed Method

The procedure for the proposed method for fingerprint liveness detection is shown
in Fig. 1. It involves basic steps of preprocessing, decomposition using DWT/
RODTWT up to four levels, CLBP8,1

RIU2_S\M\C feature extraction from wavelet
subbands, feature normalization, training of SVM classifiers with training data, and
finally classification of test dataset using trained SVM classifier. In the next five
subsections, we describe the method in brief.

3.1 Image Preprocessing

Image preprocessing involves conversion of fingerprint images from RGB to gray
format and image resizing by symmetric extension of image boundaries to enable
wavelet decomposition up to four levels. We compare our method with other
methods in which no other preprocessing operations such as segmentation and
filtering are performed on database images. In feature-based image classification
task, features are derived from the entire image. The background area and finger-
print image area are different for fingerprint images acquired using different sensors
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and are likely to influence the classification performance. Hence, we evaluate our
proposed method directly on the images without any operations.

3.2 2-D Discrete Wavelet Transform (DWT)

DWT is suitable for multiscale analysis as it can represent an image at multiple
levels of resolution. DWT has been efficiently employed in many image processing
applications such as image de-noising, image analysis, image segmentation, image
compression, texture classification. Another important characteristic of DWT is its
good space-frequency localization property which can preserve intrinsic spatial and
textural information for efficient fingerprint liveness detection. DWT consists of
three wavelet functions to produce high-frequency detail subbands to measure
gray-level variations corresponding to textural information in horizontal, vertical,
and diagonal directions and one scaling function which produces low-frequency
approximation subband at the next coarse level of resolution. Wavelets by

Live \ Spoof  Fingerprint Image

RGB to grey conversion ,Image resizing  for wavelet decomposition upto level  4

2-D DWT decomposition of image 
upto level  l =1,2,3,4

CLBP8,1
RIU2 _S/M/C

2-D RODTWT decomposition 
of image  upto  level  l =1,2,3,4 

Linear & RBF kernel SVM Classifier

Feature Normalization N1, N2

Fingerprint Image Liveness Detection

Wavelets db1, db2, db3, db4

Subbands  LLl ,LHl , HLl , HHl

Subbands  S1l, S2l , S3l , S4l , S5l ,
S6l , A1l , A2l

Fig. 1 Block diagram of proposed investigation of CLBP descriptor with multiscale wavelet
representation for fingerprint liveness detection
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I. Daubechies are orthogonal, exhibit time invariance, produce real coefficients, and
have sharp transition bands to minimize boundary effects [19]. Each Daubechies
wavelet has different support area that determines the nature of the signals that can
be encoded. We use db1, db2, db3, and db4 to compare their performance for
liveness detection. The approximation and detail subbands at each level l are
denoted by LLl, LHl, HLl, HHl, respectively. Each image is decomposed up to four
levels, and CLBP8,1

RIU2_S\M\C features extracted from all bands at each level are
denoted by LLl_CLBP, LHl_CLBP, HLl_CLBP, and HHl_CLBP where l varies
from 1 to 4 for each decomposition level and CLBP stands for CLBP8,1

RIU2_S\M\C.
The feature size of CLBP8,1

RIU2_S\M\C operator is 200.

3.3 2-D Real Oriented Dual Tree Wavelet Transform
(RODTWT)

RODTWT is implemented using two separate DWTs in parallel. Six oriented detail
subbands and two approximation subbands are formed by taking the sum and
difference of pairs of DWT subbands. For mathematical details, refer to [10]. In our
work, we used RODTWT to determine its effectiveness over DWT. The detail
subbands can capture gray-level variations in the original image in six directions,
{+15°, −15°, +45°, −45°, +75°, −75°} and are designated as S1l, S2l, S3l, S4l, S5l,
S6l, respectively, at each decomposition level l. The two approximation subbands
are denoted as A1l and A2l, respectively. Each image is decomposed up to four
levels, and CLBP8,1

RIU2_S\M\C features extracted from all subbands are denoted by
S1l_CLBP, S2l_CLBP, S3l_CLBP, S4l_CLBP, S5l_CLBP, S6l_CLBP, A1l_CLBP,
and A2l_CLBP where l varies from 1 to 4 for each decomposition level and CLBP
stands for CLBP8,1

RIU2_S\M\C.

3.4 Completed Local Binary Pattern (CLBP)

CLBP was proposed to enhance discrimination capability of original LBP for
effective feature extraction. CLBP consists of three operators CLBP_S, CLBP_M,
and CLBP_C obtained by encoding local difference sign (S), local difference
magnitude (M), and average gray level of image (C), respectively. M and S are
obtained by using local difference sign magnitude transform (LDSMT) as specified
in [12]:

dp = gp − gc = sp *mp,
sp = sign dp

� �

mp = dp
�� ��

(

ð1Þ

mp, sp =
1, dp ≥ 0
− 1, dp < 0

n
are magnitude and sign of dp
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The three operators are jointly combined to produce CLBP feature histogram. In
our work, we use uniform rotation invariant CLBP computed with radius of one
over eight neighbors represented as CLBP8,1

RIU2_S\M\C.

3.5 Support Vector Machine (SVM)

The SVM is a state-of-the-art supervised classifier introduced in [20] and is suc-
cessfully applied for many image classification tasks due to its high accuracy and
ability to handle high-dimensional data. Originally proposed as a binary classifier, it
classifies the data with a hyperplane into two regions. The boundary between the
two regions is called decision boundary. Linear SVM with linear decision boundary
is capable of classifying linearly separable data. However data which is not linearly
separable, a nonlinear SVM with nonlinear decision boundary need to be used.
A computationally simple way to convert linear decision boundary into nonlinear is
use of kernel function. Commonly used kernel functions are Radial Basis Function
(Gaussian), Polynomial and Sigmoid. In image classification tasks, it is not possible
to know nature of data as features are of high dimensions. Choice of SVM is
decided based on experimentation. In our work, we used linear SVM and RBF
kernel nonlinear SVM, with default parameters, from LIBSVM package [21].

4 Experimental Results

In this section, after describing dataset used to evaluate performance of our pro-
posed fingerprint liveness detection method, we present the investigated results. We
conclude with comparison of achieved results with related state-of-the-art tech-
niques and results of LivDet 2011 Fingerprint Liveness Detection competition.

4.1 Dataset

We conducted experiments on the challenging database made available for LivDet
2011 competition jointly organized by University of Cagliari and Clarkson
University [22]. More details of LivDet 2011 dataset are reported in Table 1. For
each scanner, the training and test datasets consist of 1000 live and 1000 spoof
images with no overlap of images in train and test sets.
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5 Results

The experimental results are presented in terms of average classification error
(ACE) as per the requirement of [22] and computed as:

ACE=
FLR+FFR

2
ð2Þ

False Living Rate (FLR) and False Fake Rate (FFR) are the percentages of spoof
images classified as live and of live images classified as spoof, computed with
liveness score threshold of 50 available from SVM classifier. In Table 2, we present
comparison of ACE obtained, when CLBP8,1

RIU2_S\M\C operator was applied to
LivDet 2011 dataset in spatial domain with normalization methods N1 and N2 and
linear and RBF SVM, with LBP results from the literature. Encouraged by these
results, we extended CLBP operator to DWT domain. In Table 3, we present the
results obtained in DWT domain for db1–db4 wavelets, normalization methods N1
−N2, decomposition levels l = 1–4 and linear and RBF SVM. Table 4 presents
ACE over all the four scanners, used in [22] for overall performance comparison
with CLBP-DWT, to determine the best combination of the involved factors. In
Table 5, we present the results obtained using CLBP operator in RODTWT
domain. Table 6 presents ACE over all the four scanners, used in [22] for overall
performance comparison with CLBP-RODTWT.

Table 1 LivDet 2011 dataset characteristics

Dataset 1 2 3 4

Scanner Biometrika Italdata Digital persona Sagem
Model no. FX2000 ET10 400B MSO300
Resolution
(dpi)

500 500 500 500

Image size 312 * 372 640 * 480 355 * 391 352 * 384
Live samples 2000 2000 2000 2000
Spoof samples 2000 2000 2000 2000
Material used
for spoof
samples

Ecoflex,
gelatine
latex, silicone
wood glue

Ecoflex,
gelatine
latex, silicone
wood glue

Gelatine, latex
play doh,
silicone
wood glue

Gelatine, latex
play doh,
silicone
wood glue

Live fingers 200 200 200 112
Spoof fingers 81 81 100 100
Live subjects 200 200 52 20
Spoof subjects 34 34 42 68
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In Table 7, we present FLR and FFR obtained for four scanners using
CLBP-DWT at first decomposition level using db2, RBF SVM, and normalization
method N2. Table 8 presents comparison of the liveness detection result obtained
by the proposed method with the related existing solutions in terms of average
ACE. Figure 2 presents receiver operating characteristics for the four scanners
obtained with CLBP-DWT, db2, RBF SVM, and N2 normalization method. From
Tables 3 and 4, we see that in DWT domain the best liveness detection result was
obtained with db2 wavelet at first decomposition level with RBF kernel SVM and
mean normalized features, N2, for Biometrika and Italdata scanners. For Digital
Persona wavelet db3 at level 1 with RBF kernel SVM produced the highest result
with mean normalized features. For Sagem, we achieved the highest result at level 2
with db1 wavelet, RBF SVM with mean normalized features. The overall average
classification error rate over four scanners was highest at level 1 with db2,
RBF SVM, and mean normalized features. Tables 5 and 6 indicate that there is no
improvement in classification performance with ORSTWT over DWT as was
expected due to its multi-orientation analysis capability. Highest result was
obtained for Biometrika and Italdata at first level with RBF SVM and mean nor-
malized features. The best result for Digital Persona was achieved with linear SVM
and N1 normalization method at first decomposition level. For Sagem, the highest
result was obtained at third decomposition level with RBF SVM and mean nor-
malized features.

For both DWT and RODTWT, not much difference was observed with the two
normalization methods, i.e., N1 and N2 with linear SVM. However, the perfor-
mance was RBF kernel SVM differed by significant margin for N1 and N2 indi-
cating that RBF kernel SVM is sensitive to feature normalization methods. Superior
results are obtained by the proposed method in spite of being a simple and general
method.

Table 2 Comparison of ACE with original LBP in spatial domain

Method in
spatial domain

Biometrika Italdata Best Ave. ACE

CLBP8,1
RIU2_S\M\C Linear

SVM
RBF
SVM

Linear
SVM

RBF
SVM

9.6

N1 N2 N1 N2 N1 N2 N1 N2
11.5 10.3 19.5 9.3 22.3 24.5 29.1 19.6

Original LBP [11] 13.0 24.1
Method
spatial domain

Digital persona Sagem

CLBP8,1
RIU2_S\M\C Linear

SVM
RBF
SVM

Linear
SVM

RBF
SVM

N1 N2 N1 N2 N1 N2 N1 N2
5.0 5.3 9.7 4.8 5.9 4.2 11.5 4.7

Original LBP [11] 10.8 11.5 14.9

196 J. Kundargi and R. G. Karandikar



T
ab

le
3

A
C
E
co
m
pa
ri
so
n
fo
r
al
l
sc
an
ne
rs

to
in
ve
st
ig
at
e
in
flu

en
ce

of
D
W
T
w
av
el
et

ty
pe
,d

ec
om

po
si
tio

n
le
ve
l,
no

rm
al
iz
at
io
n
m
et
ho

d,
an
d
SV

M
cl
as
si
fi
er
,

be
st
re
su
lts

hi
gh

lig
ht
ed

in
bo

ld
w
ith

un
de
rl
in
e

C
L
B
P-
D
W
T

do
m
ai
n

w
av
el
et

db
1

db
2

db
3

db
4

Sc
an
ne
r,

de
co
m
p.

le
ve
l
no

.

L
in
ea
r
SV

M
R
B
F
SV

M
L
in
ea
r
SV

M
R
B
F
SV

M
L
in
ea
r
SV

M
R
B
F
SV

M
L
in
ea
r
SV

M
R
B
F
SV

M
N
1

N
2

N
1

N
2

N
1

N
2

N
1

N
2

N
1

N
2

N
1

N
2

N
1

N
2

N
1

N
2

B
io
m
et
ri
ka

L
ev
el

1
8.
4

8.
0

19
.9

8.
8

5.
8

6.
2

15
.3

4.
5

8.
0

8.
7

15
.5

6.
6

8.
3

9.
1

17
.0

5.
9

L
ev
el

2
16

.7
18

.2
26

15
.3

16
.0

18
.1

21
.9

12
.4

17
.4

18
.4

20
.4

12
.0

18
.1

18
.8

23
.1

14
.1

L
ev
el

3
23

.0
22

.8
21

.7
23

.0
19

.9
20

.5
25

.3
17

.2
24

.8
25

.5
26

.8
19

.0
24

.4
24

.5
28

.6
19

.9
L
ev
el

4
28

.6
29

.4
21

.7
23

.0
30

.8
31

.7
21

.9
23

.6
32

.8
37

.0
28

.7
25

.6
30

.5
30

.5
28

.6
23

.2
It
al
da

ta

L
ev
el

1
18

.9
21

.8
23

.7
17

.2
18

.6
19

.3
24

.4
16

.7
21

.7
25

.2
27

.1
18

.7
23

.6
24

.3
25

.3
17

.9
L
ev
el

2
40

.5
40

.8
37

.1
30

.7
27

.0
28

.9
30

.0
24

.5
27

.3
27

.5
29

.2
21

.1
29

.9
27

.3
33

.7
23

.9
L
ev
el

3
35

.9
35

.0
40

.4
29

.2
46

.0
46

.7
43

.5
40

.4
38

.8
37

.7
38

.4
31

.8
36

.6
36

.7
37

.6
30

.0
L
ev
el

4
38

.6
39

.0
44

.0
33

.7
39

.1
42

.6
45

.2
40

.2
46

.9
47

.6
45

.2
42

.3
43

.0
43

.2
43

.4
36

.9
D
ig
ita

l
pe
r.

L
ev
el

1
4.
9

4.
9

12
.2

5.
0

4.
7

5.
1

11
.6

5.
0

4.
7

5.
0

10
.9

4.
1

5.
7

5.
3

12
.4

4.
5

L
ev
el

2
7.
6

8.
0

12
.7

7.
9

7.
1

7.
4

13
.5

6.
5

8.
2

9.
5

18
.1

7.
2

9.
2

9.
9

14
.5

7.
5

L
ev
el

3
13

.2
15

.2
17

.5
9.
8

12
.6

13
.7

17
.7

10
.0

14
.1

18
.4

19
.6

10
.7

15
.9

16
.9

19
.6

12
.3

L
ev
el

4
13

.5
15

.0
19

.7
8.
5

11
.7

12
.6

16
.1

6.
6

12
.6

12
.9

16
.0

7.
5

13
.8

15
.3

15
.7

9.
8

Sa
ge
m

L
ev
el

1
8.
0

8.
6

14
.9

6.
1

8.
0

8.
8

17
.1

6.
9

8.
7

9.
1

18
.8

7.
05

10
.0

10
.5

21
.5

7.
6

L
ev
el

2
10

.0
10

.8
13

.8
4.
5

9.
9

10
.7

21
.4

8.
8

11
.1

10
.6

24
.1

8.
7

12
.1

13
.5

25
.1

9.
3

L
ev
el

3
13

.1
13

.8
15

.9
7.
3

13
.4

14
.5

15
.6

8.
2

12
.9

12
.9

12
.9

8.
1

15
.0

15
.9

14
.7

8.
2

L
ev
el

4
14

.2
14

.5
22

.1
9.
0

16
.7

17
.2

23
.9

10
.5

16
.6

18
.3

23
.0

10
.8

16
.4

18
.3

21
.0

10
.7

Fingerprint Liveness Detection Using Wavelet-Based … 197



T
ab

le
4

A
vg

.
A
C
E
co
m
pu

te
d
ov

er
al
l
fo
ur

sc
an
ne
rs
,
be
st
re
su
lt
in
di
ca
te
d
in

bo
ld

w
ith

un
de
rl
in
e

C
L
B
P-
D
W
T

do
m
ai
n

w
av
el
et

db
1

db
2

db
3

db
4

D
ec
om

po
si
tio

n
le
ve
l
no

.
L
in
ea
rS

V
M

R
B
F
SV

M
L
in
ea
rS

V
M

R
B
F
SV

M
L
in
ea
rS

V
M

R
B
F
SV

M
L
in
ea
rS

V
M

R
B
F
SV

M
N
1

N
2

N
1

N
2

N
1

N
2

N
1

N
2

N
1

N
2

N
1

N
2

N
1

N
2

N
1

N
2

L
ev
el

1
10

.0
10

.8
17

.7
9.
2

9.
3

9.
8

17
.1

8.
3

10
.8

12
.2

19
.0

9.
0

11
.9

12
.3

19
.0

9.
0

L
ev
el

2
18

.7
19

.4
22

.4
15

.4
15

.0
16

.2
21

.7
13

.0
16

.0
16

.5
22

.9
12

.2
17

.3
17

.3
24

.1
13

.7
L
ev
el

3
21

.3
21

.7
24

.3
16

.0
23

.0
23

.9
25

.5
19

.1
22

.6
23

.6
24

.4
17

.4
23

.0
23

.3
25

.1
17

.6
L
ev
el

4
23

.7
24

.4
26

.9
18

.5
24

.4
26

.0
28

.7
20

.2
27

.2
28

.9
28

.2
21

.5
25

.9
26

.8
27

.2
20

.1

198 J. Kundargi and R. G. Karandikar



T
ab

le
5

A
C
E
co
m
pa
ri
so
n
fo
ra

ll
sc
an
ne
rs
to

in
ve
st
ig
at
e
in
flu

en
ce

of
R
O
D
T
W
T
,d

ec
om

po
si
tio

n
le
ve
l,
no

rm
al
iz
at
io
n
m
et
ho

d,
an
d
SV

M
cl
as
si
fi
er
,b

es
tr
es
ul
ts

hi
gh

lig
ht
ed

in
bo

ld
w
ith

un
de
rl
in
e

C
L
B
P-

R
O
D
T
W
T

do
m
ai
n

B
io
m
et
ri
ka

It
al
da
ta

D
ig
ita
l
pe
rs
on
a

Sa
ge
m

D
ec
om

po
si
tio

n
le
ve
l

D
ec
om

po
si
tio

n
le
ve
l

D
ec
om

po
si
tio

n
le
ve
l

D
ec
om

po
si
tio

n
le
ve
l

1
2

3
4

1
2

3
4

1
2

3
4

1
2

3
4

L
in
ea
r

SV
M

N
1

6.
9

12
.4

21
.1

24
.0

22
.5

30
.3

31
.3

45
.5

3.
9

6.
9

9.
2

9.
6

8.
2

12
.1

11
.7

11
.9

N
2

7.
2

12
.7

20
.6

23
.3

23
.7

29
.5

33
.3

44
.7

4.
1

7.
8

11
.6

9.
7

8.
9

11
.6

11
.7

12
.7

R
B
F

SV
M

N
1

16
.0

21
.0

25
.6

26
.7

25
.9

31
.7

36
.4

45
.5

12
.2

13
.0

15
.9

12
.5

18
.0

23
.7

10
.7

20
.6

N
2

5.
7

9.
4

18
.0

20
.4

17
.7

25
.0

29
.2

44
.7

5.
5

5.
9

7.
7

6.
2

7.
2

9.
2

6.
1

8.
4

Fingerprint Liveness Detection Using Wavelet-Based … 199



Table 6 Avg. ACE computed over all four scanners, best result indicated in bold with underline,
LivDet 2011

CLBP-RODTWT
domain

ACE over four scanners

Decomposition level
1 2 3 4

Linear
SVM

N1 10.4 15.4 18.3 22.6
N2 10.9 15.4 19.2 22.6

RBF
SVM

N1 18.0 22.3 22.1 26.3
N2 9.0 12.3 15.2 19.9

Table 7 Comparison of FLR and FFR for LivDet 2011

Scanner FLR FFR

Biometrika 5.3 3.6
Italdata 16.8 16.6
Digital persona 6.4 3.6
Sagem 4.3 9.5

Table 8 Comparison of ACE with existing methods and LivDet 2011 competition results

Method Biometrika Italdata Digital persona Sagem Avg. ACE

Proposed. method
CLBP_DWT

4.5 16.7 5.0 6.9 8.3

MBLTP [9] 10.0 16.3 6.9 5.9 9.77
MLBP [8] 10.8 16.6 7.1 6.4 10.22
LCPD [18] 4.9 11.0 4.2 2.7 5.7
BSIF [17] 6.8 13.6 3.5 4.9 7.2
LPQ [16] 12.8 15.6 9.7 8.4 12.3
LBP [11] 13.0 24.1 10.8 11.5 14.85
Curvelet [6] 45.2 47.9 21.9 28.5 35.87
C. GLCM [6] 22.9 30.7 18.3 28.0 24.97
Wavelet [5] 50.2 46.8 14.0 22.0 33.25

Darma.g [22] 22.0 21.8 36.11 13.8 22.92
Federico [22] 40.0 40.0 8.9 13.4 25.57
CASIA [22] 33.9 26.7 25.4 22.8 27.2
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6 Conclusion

In this paper, a completed local binary pattern with multiscale wavelet represen-
tation is proposed. It has demonstrated a superior discriminative power with
promising results for fingerprint liveness detection. It has achieved a significant
performance in spite of being a general purpose texture descriptor. The method
demonstrates the influence of texture features at different scales on fingerprint
liveness detection. Daubechies wavelets db2 and db1 have achieved superior
classification performance indicating their suitability. The proposed method is
computationally simple and efficient than multiscale spatial domain LBP operator.
Fingerprint images from each scanner have unique properties. Careful selection of
features, feature normalization method, and classifier are essential to achieve better
results. Features at each scale offer different classification performance. Careful
study of contribution of features at each scale is likely to improve the fingerprint
liveness detection performance.
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Silhouette-Based Real-Time Object
Detection and Tracking

Bhaumik Vaidya, Harendra Panchal and Chirag Paunwala

Abstract Object detection and tracking in the video sequence is a challenging task
and time-consuming process. Intrinsic factors like pose, appearance, variation in
scale and extrinsic factors like variation in illumination, occlusion, and clutter are
major challenges in object detection and tracking. The main objective of the
tracking algorithm is accuracy and speed in each frame. We propose the best
combination of detection and tracking algorithm which performs very efficiently in
real time. In proposed algorithm, object detection task is performed from given
sketch using Fast Directional Chamfer Matching (FDCM) which is capable of
handling some amount of deformation in edges. To deal with the articulation
condition, part decomposition algorithm is used in the proposed algorithm. Com-
bination of these two parts is capable enough to handle deformation in shape
automatically. Amount of time taken to perform this algorithm depends on the size
and edge segment in the input frame. For object tracking, Speeded up Robust
Features (SURF) algorithm is used because of its rotation invariant and fast per-
formance features. The proposed algorithm works in all situations without the prior
knowledge about number of frames.

Keywords Convexity defects ⋅ Fast directional chamfer matching
Part decomposition ⋅ Speeded up robust features

1 Introduction

The ongoing research topic in computer technology that makes efforts to detect,
recognize, and track objects through a series of picture frames is known as object
detection and tracking. Along with that, it makes an attempt to determine and
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narrate attributes of an object, thereby superseding the obsolete traditional method
of supervising cameras manually. Object detection and tracking is consequential
and challenging task in large number of vision applications such as vehicle navi-
gation system, self-govern robot navigation and surveillance, traffic control.

Accurate object detection is an important step in object tracking. It needs an
object detection step either in every frame or the frame in which the object appears
first. While going for object tracking, basic operation is to make separation of
interested object called ‘foreground’ from ‘background’ [1]. There are three
important steps in video analysis—detection of objects, tracking of these objects
from every frame to frame, and analysis of their tracks to determine their attributes.
Some work in literature focused on developing algorithms for automatic detection
and tracking which reduces the need of human surveillance. In some environments,
the background is not available and can always be changed under critical situations
like illumination changes, objects being introduced or removed from the scene. So,
the background representation model must be more robust and adaptive [1].

Representation of shapes for matching is well-studied problem, and there are
existing two types of categories: (1) Appearance-related cues of objects and
(2) Contour or silhouettes or voxel sets [2]. The proposed algorithm is based on
second type of category as it can deal with deformation in object shape easily [2].

The remaining paper is arranged as follows: Sect. 2 summarizes the related work
done in object detection and tracking; Sect. 3 describes problem formulation;
Sect. 4 describes FDCM algorithm in detail; Sect. 5 describes SURF algorithm in
detail; Sect. 6 summarizes experiments and results of proposed algorithm.

2 Related Work

For detection of object, background modeling is very important. In basic model,
background is modeled using an average, a median, or a histogram analysis over
time [3]. In this case, once the model is computed, the pixels of the current image
are categorized as foreground by thresholding the difference between the back-
ground image and the current frame. The statistical models are more robust to
illumination changes and for dynamic backgrounds [4]. They can be categorized as
Gaussian models, support vector models, and subspace learning models. Gaussian
is the easiest way to represent a background [4]. It expects the history over the time
of pixel’s intensity values. But a single model cannot deal with the dynamic
background, for example, waving trees, rippling water. To overcome this problem,
the Mixture of Gaussians (MoG) or Gaussian Mixture Model (GMM) is used [4].

The second category utilizes more sophisticated statistical models, for example,
Support Vector Machine (SVM) [5], Support Vector Regression (SVR) [6]. In
estimation models, the filter is used to estimate the background. The filter may be a
Wiener filter [7] or a Kalman filter [8] or Chebychev filter [9]. The Wiener filter
works well for periodically changing pixels and it produces a larger value of the
threshold for random changes that are utilized in the foreground detection. The
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main advantage of the Wiener filter is that it lessens the uncertainty of a pixel value
by representing how it varies with time. A drawback occurs when a moving object
corrupts the history values [7]. The Chebychev filter slowly updates the background
for changes in lighting and scenery while making the use of a small memory
footprint with low computational complexity [9]. For cluster modeling K-means
models, codebook models, neural network models can be used [10, 11].

It can be seen that most of the algorithms detect the moving object with different
accuracy and conditions. The background initialization and updating of background
after specific time are necessary in all of them. Some of the other techniques are
based on contour-based approach where background initialization is not needed.
Contour-based approach gives best result in most of the conditions like illumination
change, bootstrapping, dynamic backgrounds [12]. Shape band algorithm [12]
which is a contour-based model detects an object within a bandwidth of its sketch/
contour. However, it not only detects/matches the identical template and input
image but also captures the reasonable variation and deformation of object in the
same class. Sreyasee and Anurag [2] presented an algorithm for object detection
using part-based deformable template. They are using part-wise hierarchical
structure decomposition for matching the template with the parts of object. For this,
Gopalan’s algorithm [13] is used for estimating the parts of the shape through
approximate convex decomposition by measure of convexity and decomposed
convex shape with junction of concave region.

The proposed algorithm uses convexity defect for finding junction points from
where object convex parts are decomposed. Then parts are matched using FDCM
and then SURF is used for tracking.

3 Proposed Algorithm

Figure 1 shows the flowchart of proposed algorithm for object detection and
tracking. From the given input image or sketch, shape segmentation and part
decomposition are done automatically and stored in the database on the server side.
On client side from a test video, first frame is extracted and parts are matched using
FDCM. Then using SURF, key points are extracted and matched. Individual steps
are explained in detail, and results for individual steps are shown in next section.

3.1 Part-wise Decomposition

Figure 2 shows the flowchart for part-wise decomposition.

A. Input Sketch Model

The object sketches of human or animal are common articulation sketches used. It
has large deformation if the viewpoint changes or part of object is in action and
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Fig. 1 Flowchart of proposed algorithm

A. Input Sketch Model
(Silhouette of object shape)

B. Find Contour and 
convex hull

C. Apply convexity defect 
and find junction points

D. Searching of good cut 
points

E. Differentiation of convex 
segment

Fig. 2 Flowchart for
part-wise decomposition
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movement. To deal with this situation, the proposed algorithm uses convexity
defect to identify the joint from where the articulating shape can undergo
movement.

B. Contour extraction and Convex Hull Creation

Contours can be explained simply as a curve joining all the continuous points
(along the boundary), having same color or intensity. The contours are useful tool
for shape analysis, object detection, and recognition. The Suzuki’s algorithm [14]
for retrieving contours from the binary image is used in proposed algorithm which
gives only the outermost borders.

The convex hull [15] of a planar shape P is defined by finding the smallest
convex region enclosing shape P. For example, to fit shape P into a polygon, it is
necessary and sufficient that the convex hull CH(P) of shape P fits. It is usually the
case that CH(P) has less points than shape P.

C. Convexity defects

The convexity defect [16] is actually the space between the convex hull and actual
object. As shown in Fig. 5, human body silhouette shown in Fig. 3 can be
described by five defect triangles (A, B, C, D, and E). Each triangle represents three
coordinate points: (i) defect starting point xds, ydsð Þ, (ii) defect position point
xdp, ydp
� �

, and (iii) defect end point xde, ydeð Þ. Identification of defect points is a
crucial and important task. If triangle A is considered, the defect is defined by
considering each points of object contour in triangle A and making perpendicular
online passes from points xds, ydsð Þ and xde, ydeð Þ and that is called as depth of that
point. So the defect points of the triangle A can be described as the following
vector:

Fig. 3 a Human silhouette
b green line denotes contour
and blue line convex hull
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VA
d = <A xds, ydsð ÞA xdp, ydp

� �
A xde, ydeð Þ>

In real world, we have to deal with different shapes with uneven surface and also
more complicated shapes. So finding only convexity defect position is not suffi-
cient. It needs some modifications to deal with those artifacts. In proposed algo-
rithm, for removing the unnecessary defect points from computation, all defect
points which have less depth than depth threshold are discarded and remaining
points are taken into account for further computation (Fig. 4).

D. Cut Points search

This step is used to find a set of points from the defect points that can be used to
segment different parts from the sketch. The algorithm to find this set of cut point is
given below:

Fig. 4 Non-convex polygon
P and its convex hull CH(P)
(dashed line) [20]

Fig. 5 Convexity defects
human body silhouette
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Program  Cut-Points (Defect Points)

d1= defect point1
ROI =  region of interest (ROI) around the defect point
M = Appropriate Mask Size
Repeat till No_of_contors > 1 in ROI :

if No_of_contour < 1:
Find d2= defect point 2 on Same Contour

elseif No_of_defect_point == 2
Joint (d1,d2) with line

Else:
M = 0.1*M

d2= Make first guess of defect point on another contour
d3= starting or end point of convexity defect in ROI
f1=  minimum Euclidean distance defect point

if d2 is present :
Join(d1,d2) with line

elseif d3 is present: 
join(d1,d3) with line 

else :
join(d1,f1) with line

Move to Next Defect Point
end
Follow same procedure for each defect point and differentiate all segment from each other

E. Differentiation of convex segment

This step is used to segment different parts from the sketch by using defect positions
and cut points found in previous steps. The algorithm for part segmentation is
explained below, and results are shown in Fig. 6a and b:

Fig. 6 a Defect position with
cut point b differentiation of
convex segment
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Program Part Segmentation (Defect Points, Cut-Points)
for all cut points c1:

Find nearest cut point c2
Joint (c1, c2) with a line
Repeat for all part segments:
D1 = starting defect point
D2 = Iterating defect point 
Contour points = [D1]
While D2 != D1:

Contour Points += D2
D2= Next Defect Point

end
Contour points array represent close contour part.  At the end fill different colors to represent different segment 
parts. 

All experiment results for part identification and segmentation are shown in
Fig. 7. The performance of proposed system is evaluated on ETHZ dataset [17]
which is suitable for investigating performance of this algorithm. The dataset
contains sketches of various objects like animals, mug, apple, and bottle. Main
focus of work is to decompose the whole structure into the part-wise structure as the
human can visualize.

Table 1 shows the experimental setup for ETHZ shape class dataset which
contains sketches and images for five classes of objects: bottle, apple, mug, giraffe,

Fig. 7 a Step-wise analysis for human of proposed algorithm b segmentation of object in
part-wise structure
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and swan [17]. As shown in the table, depth threshold and mask size values are
decided based on the structure and convex hull area. First input data is silhouette of
human body which is not from ETHZ dataset.

Figure 8 shows comparison between the results of part decomposition using
Gopalan’s algorithm [13] and the proposed algorithm. It can be observed that
proposed algorithm outperforms Gopalan’s algorithm because it gives different
parts of object as human can visualize automatically without user explicitly spec-
ifying the number of parts as it was required in case of Gopalan’s algorithm [13]. So
the proposed algorithm will work well with objects of different shapes without
worrying about the number of parts for decomposition.

Table 1 Experimental setup data

Sketch Image size Depth threshold Mask size Sketch

Human 294 × 549 20 150 × 150 Human
Apple 93 × 114 10 40 × 40 Apple
Bottle 200 × 300 7 60 × 60 Bottle
Giraffe 250 × 250 20 130 × 130 Giraffe
Mug 200 × 200 15 40 × 40 Mug

Fig. 8 a Result of part decomposition using the method by Gopalan [13], each row represents the
results for specific shape as the user estimate for the number of part varies from 2 to 8. b Results
using the proposed part decomposition method without user input
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4 Part Matching Using Fast Directional Chamfer
Matching (FDCM)

After segmenting sketch into several parts, there is a need to match the parts
obtained from the client-side sketch to the parts that are already stored in server
database. For real-time operation, this function should be as fast as possible. There
are many shape-matching algorithms available, but the chamfer matching is the
most preferred one based on speed and robustness compared to other algorithms
[18]. There are different types of variations in Chamfer Matching algorithm which
are described in literature like (i) Chamfer matching (ii) Directional Chamfer
Matching (iii) Fast Directional Chamfer Matching. Chamfer matching provides a
fairly smooth measure of fitness and can tolerate small rotations, misalignments,
occlusions, and deformations. Chamfer matching becomes less reliable in the
presence of background clutter [18]. To improve robustness, Directional Chamfer
matching has been introduced by incorporating edge orientation information into
the matching cost. In DCM, match cost is more in terms of time and memory and to
overcome that FDCM was introduced. In that directional matching cost is optimized
in three stages by linear representation of the template edges, describing a
three-dimensional distance transform representation and presenting a directional
integral image representation over distance transforms. Using these intermediate
structures, exact computation of the matching score can be performed in sublinear
time in the large number of edge points. In the presence of many shape templates,
the memory requirement also reduces drastically. In addition, smooth cost function
allows binding the cost distribution of large neighborhoods and skipping the bad
hypotheses [18]. Experimental results for fast direction chamfer matching are
shown in Fig. 9.

Hand-drawn sketch shown in white box and green box indicates detected object
using given sketch. After detecting parts using FDCM, SURF is used for contin-
uous detection and tracking extracted feature point in image sequences.

5 Speeded Up Robust Features (SURF)

One of the most important tasks is to select the ‘interest points’ at distinct location
in an image. An output of FDCM is considered as region of interest (ROI). SURF
detector and descriptor is used for finding minimum feature points in ROI [19].

SURF uses Hessian matrix approximation for interest point detection which
performs well in terms of accuracy [19]. SURF detects blob-like structure at
locations with the maximum value of determinant. For reducing the computational
complexity, integral images are used which uses only four memory locations and
three addition operations to calculate the intensities inside a rectangular region of
any size. Hence, the calculation time of this is independent from the size of an
image [19]. For making SURF descriptor invariant to image rotation, Haar wavelet
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response is calculated in x- and y-direction with the radius of 6 s around the interest
point, where ‘s’ is the scale at which the interest point is detected. Then wavelet
response is computed and Gaussian weight is given centered at interested point. The
sum of all responses within the window π ̸3 is calculated, and with use of this, the
dominant orientation is estimated. The horizontal and vertical responses are sum-
med, and longest vector of the window defines the orientation of the interest point.
Figure 10 shows the experimental results using SURF algorithm for different
conditions like scaling and rotation.

Fig. 9 Output of FDCM algorithm on ETHZ dataset

Fig. 10 Output of surf, left-side image is input image, and right-side image shows detected object
image
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6 Experiments and Results

Experiment results for object tracking for different objects like human, book, and
bottle are shown in Figs. 11, 12, and 13. The results are taken in different envi-
ronments to prove the effectiveness of the proposed algorithm. Figure 11 shows
human tracking in two different frames, where shape of the body is different and
there is deformation in parts of body. In Fig. 12, the object of interest is book so the
algorithm tracks book in different frames even when bottle is introduced or moved
in the frame. In Fig. 13, bottle is tracked but book is not tracked. Both results are
shown with start frame, two intermediate frames, and end frames. The results
indicate that proposed algorithm performs well in challenging conditions.

Fig. 11 Results of human tracking in two different frames with different shapes

Book Silhoutte First Frame Frame#10

Frame#15 Last Frame

Fig. 12 Results of book tracking in the presence of bottle movements in different frames
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7 Conclusion

In this paper, novel algorithm has been proposed for object detection and tracking
using part decomposition and SURF. A method to decompose non-planar structure
in part-wise planar structure using silhouette of object is also proposed. The method
works very efficiently when input silhouette is without distortion. The computation
complexity is also less than state-of-the-art algorithms. As in Gopalan’s [13]
algorithm and other state-of-the-art algorithms required prior knowledge about
number of parts in given structure or user has to decide number of parts to be
decomposed, but this method works in all situation without the prior knowledge
about number of parts. As shown in experiment results, proposed algorithm gives
better results in terms of part decomposition for all input sketches of ETHZ dataset.
SURF can fulfill the requirement of real time though part decomposition and
matching take more time, so in future work time taken for part decomposition can
be modified.

Informed consent Additional informed consent was obtained from all individual participants for
whom identifying information is included in this article.

Silhoutte First Frame Frame#10

Frame#15 Last Frame

Fig. 13 Results of bottle tracking in the presence of book movement in different frames
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Visual Object Detection
for an Autonomous Indoor Robotic System

Anima M. Sharma, Imran A. Syed, Bishwajit Sharma, Arshad Jamal
and Dipti Deodhare

Abstract This paper discusses an indoor robotic system that integrates a
state-of-the-art object detection algorithm trained with data augmented for an indoor
scenario and enabled with mechanisms to localize and position objects in 3D and
display them interactively to a user. Size, weight, and power constraints in a mobile
robot constrain the type of computing hardware that can be integrated with the
robotic platform. However, on the other hand, the robot’s mobility if leveraged
properly can provide enough opportunity to detect objects from different distances
and viewpoints as the robot approaches them giving more robust results. This work
adapts a CNN-based algorithm, YOLO, to run on a GPU-enabled board, the Jetson
TX1. An innovative method to calculate the object position in the 3D environment
map is discussed along with the problems therein, such as that of duplicate
detections that need to be suppressed. Since multiple objects of different or same
class may be detected, the user is overloaded with information and management of
the visualization through human–machine interaction gains an important role.
A scheme for informative display of objects is implemented which lets the user
interactively view object images as well as their position in the scene. The complete
robotic system including the interactive visualization tool can be put to various uses
such as search and rescue, indoor assistance, patrolling and surveillance.
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1 Introduction

There are important challenges that need to be addressed in developing an auton-
omous robotic system which can look for objects in a 3D environment. While
mobility of the platform restricts the computational capability of the system,
applications demand higher accuracy of algorithms. In the present context, an
autonomous robotic system is required to perform object detection and locate them
in a 3D point cloud. One crucial challenge is the selection of compute capability for
a robotic system because it affects the mobility of the robot and the time durations
for which the robot can endure. Another challenge is the selection of object
detection algorithms that run in real time on the restricted computer onboard the
robot with high detection rate and low false positives.

Computer vision techniques for object detection have remained a topic of
research for almost four decades. In a robotic application such as autonomous
driving [1], search and rescue, or object manipulation [2, 3], various sensors that are
already available on the platform can be reused for object detection. Object detection
can be performed in images, point cloud or range data, or a combination thereof. 2D
and 3D LiDAR can be used to obtain point clouds which can be used to perform
object detection in 3D. While camera images can be used for image-based object
detection [4], stereo cameras and RGBD cameras are capable of finding depth in the
scene as well which can be used for multimodal object detection [5–9]. Recently,
convolutional neural network (CNN)-based methods [7, 10, 11] have boosted the
classification accuracies in images to acceptable limits while exploiting GPUs for
faster execution, making them suitable for practical applications. These detection
algorithms are usually benchmarked on outdoor data such as KITTI [1, 12, 13] for
autonomous driving application, but to the best of our knowledge, no benchmark
dataset exists for indoor scenarios for search or human assistance applications.

This work uses a CNN classifier [14] running on a portable CUDA-enabled
board trained for indoor scenarios, capturing the detected objects in images from an
RGBD camera and their position in the scene using range information present in the
depth images. Our literature survey indicates that such an integrated indoor robotic
system featuring a reliable object detection algorithm has not been reported yet. The
novel contributions of this paper are as follows:

1. Evaluation and selection of an object detection algorithm suitable for running
onboard a mobile robotic platform,

2. Re-training the detection algorithm using indoor images for improved
performance,

3. Finding 3D position of detected objects and its integration in the map,
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4. Suppression of duplicate detection when the same object is detected multiple
times, and

5. Interactive visualization of objects relating them to their position in the map.

In the following sections, our robotic platform setup is described, followed by
our approaches for adapting object detection for onboard and indoor scenarios, 3D
localization of detected objects while suppressing duplicates, and interactive
visualization of the detection data in a 3D point cloud. The results presented
indicate the usefulness of this autonomous system for the targeted scenario.

2 Setup

Our hardware setup consists of a base platform, sensors, compute, and power
supply. A Pioneer 3DX is selected as the base platform, mounted with a SICK 2D
scanning LiDAR and an xTion Pro Live RGBD camera, as shown in Fig. 1.
CNN-based algorithms require CUDA-enabled GPU cards. Though most object
detection works report tests done on high-end CUDA-enabled graphics cards, these
cards cannot be used onboard on a robotic platform. As of today, only NVIDIA
produces a CPU–GPU hybrid board, targeted for robotic applications. The version
used here is the Jetson TX1 with 256 GPU cores. To run CNN-based algorithms on
a robotic platform, we are left with only this choice. Hence, two computing plat-
forms are mounted on the platform. While one is a dual-core CPU-based box-pc,
the other is a 256 core GPU–CPU hybrid board, the Jetson TX1.

The software setup uses the ROS framework, with the sensors and computer
hardware connected on a network, publishing and subscribing data and commands
through nodes running on both the computing hardware. The exploration, path
planning, and Simultaneous Localization And Mapping (SLAM) algorithms run on

Fig. 1 Pioneer 3DX platform with SICK LiDAR and xTion Pro RGBD camera, and the Jetson
TX1
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the box-pc using the LiDAR and RGBD data, details of which are beyond the scope
of this paper. In the purview of object detection, the Jetson board is employed to run
a CNN-based algorithm on the images obtained from the RGBD camera.

3 Approach

This section details the visual object detection, 3D localization of objects, and the
interactive visualization approaches developed in this work. First, various object
detection algorithms suitable for a robotic platform are evaluated and the require-
ment of adapting it to the indoor scenario is then brought out. Our novel method of
localization of objects in 3D point cloud is then described, followed by details of
design of an interactive visualization scheme for displaying the detected objects in a
3D map of the scene.

3.1 Visual Object Detection

Our robotic platform performs localization and mapping as it moves around
exploring an indoor scene. While the generated map provides information about
obstacles and traversable regions, a user would also be interested in locating objects
of interest. To fulfill this requirement, an object detection algorithm is required to
run simultaneously in near real time.

Driven by the need for accuracy and execution speed, various landmark algo-
rithms available in the literature, such as HOG [15], DPM [16], and YOLO [14],
were evaluated. While DPM and HOG use handcrafted features, YOLO is a
CNN-based classifier. The HOG was originally proposed for human detection,
using a histogram of local intensity gradients for each cellular window in an image.
A part-based model consisting of a star structure, comprising a root and parts, and
its deformation model was later proposed. This framework could use features like
HOG to detect root and part positions. Since information of each part is corrobo-
rated with the corresponding deformation model, the detections are more robust.
A real-time version of DPM reports detections at 30 fps, which is desirable for this
work. However, CNN-based detection algorithms have outperformed DPM by a
considerable margin, thereby attracting our attention.

YOLO, being a CNN-based classifier, learns the features on its own for the
classification problem. This is in contrast to the handcrafted features and frame-
works developed erstwhile. While early CNNs provided only image classification,
more recent works endeavor to provide the bounding boxes in order to localize the
object in the image [17]. YOLO [14] and R-CNN [18–20] are two of the most
prominent CNN algorithms reporting much higher accuracies compared to tradi-
tional handcrafted feature-based methods, and providing object localization as well.
However, both these algorithms have different approaches for localizing or
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segmenting the object in the image. While R-CNN uses region proposals to gen-
erate bounding boxes, YOLO divides the image into grids and predicts bounding
boxes for each grid.

While various datasets that are published for benchmarking object detection
algorithms try to include diverse classes, all such objects may not appear in any
single application. For example, the VOC 2012 test includes aeroplane with fur-
niture and animals. In the present context, a single camera mounted on an indoor
robot might not be exposed to all these classes. The indoor test scenario used in this
work consists of an office-like environment with walls, galleries, doors, stairs, fire
extinguishers, plants, etc. In our initial tests, blank walls were often misclassified as
‘car’ or ‘bird.’ YOLO was slightly better than R-CNN in averting classification
errors particularly with respect to indoor scenes. However, re-training was inevi-
table to include indoor object classes fit for this application. Note that in the above
example, misclassifications are primarily due to the absence of the ‘wall’ class. This
work augments the PASCAL VOC database [21] with few more classes and uses
them for re-training. The additional classes are ‘wall,’ ‘fire extinguisher,’ ‘door,’
‘window,’ ‘switchboard,’ ‘stairs,’ ‘cupboard,’ etc., with around 2000 additional
images. Figure 2 shows sample images of some augmenting classes. Figure 3
compares results on indoor images as detected by YOLO trained using the original
PASCAL VOC, and after augmentation with additional classes. It is clear from
Fig. 3 that standard datasets do not suffice for indoor scenarios and re-training is a
necessity.

It is reported that the performance of the YOLO algorithm is relatively poor for
small objects [14], and the localization error is higher for smaller detection boxes.
Our application paradigm minimizes the impact of these problems by leveraging the
mobility of the platform. The mobile platform is capable of moving closer to objects
so that larger images of objects are obtained. Further, since this work also includes
depth information to find 3D object location, faraway detections which are beyond
the range of the depth sensor are discarded. Finding the 3D object location is
detailed in a later section.

In addition to a slightly better accuracy, YOLO was adaptable to lower number
of GPUs. This version of YOLO, called Fast YOLO, retains acceptable detection
speed and accuracy, making it suitable for the application at hand. The full version
of YOLO has a trained model file size exceeding 1 GB and hence could not be

Fig. 2 Sample images for some of the additional indoor object classes used in training. These
classes augment the PASCAL VOC dataset [21] to meet the requirements of the presented work.
The images are best viewed in color
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loaded on the Jetson TX1 which has limited RAM. However, Fast YOLO was
successfully run on this hardware. Table 1 compares the above methods based on
required hardware, achievable speed, and reported accuracies. In our application,
the Fast YOLO network was trained offline for 135 epochs and a batch size of 64 on
a Tesla K20 GPU card. The trained model file is under 200 MB and can be easily
loaded on the Jetson TX1.

3.2 3D Localization of Objects

The detected objects are enclosed in bounding boxes in the camera image. How-
ever, this is not sufficient to facilitate operator decision. The actual location of the
object in 3D space has to be computed, and the information is used to merge the

Fig. 3 Top row shows ‘car,’ ‘bird,’ ‘bicycle,’ and ‘bottle’ classes detected from PASCAL VOC
training, compared to detections after re-training with additional indoor object classes. The bottom
row shows detection of ‘stair’ in orange boxes, and ‘extinguisher’ in blue boxes. The images are
best viewed in color

Table 1 Comparison table for object detection methods with respect to speed, hardware
requirement and accuracy. The detection speeds were tested on our setup. mAP values are as
reported in [14] for Pascal VOC 2007 dataset

Method Speed
(FPS)

Test hardware Mean average precision
(mAP)

HOG 7 2.6 GHz CPU –

DPM 0.2 2.6 GHz CPU 26.1
YOLO 25 2.6 GHz Intel

CPU + K20 GPU
63.4

Faster R-CNN 18 2.6 GHz Intel CPU + K20
GPU

62.1

Fast YOLO 11 Jetson TX1 52.7
Faster R-CNN 0.8 Jetson TX1 62.1
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object in the 3D point cloud generated by the mapping module. Note that the
mapping module operates on point clouds obtained by the LiDAR sensor and the
SLAM is performed using this input. As the robot moves around the object or sees
it again from a different viewpoint, multiple detections are possible. These need to
be suppressed. This section details the work required to meet the above
requirements.

The mapping algorithm onboard the platform uses the computed pose for each
RGBD frame to find the position where the current point cloud should be inserted.
After detection, though the 2D bounding box is available in the RGB image, the 3D
bounding box still needs to be found. The depth image does provide range infor-
mation for each pixel in the bounding box, but these include background pixels as
well as foreground pixels from an occlusion. Assuming that firstly the object is
convex and has no holes, and secondly, the central region on the bounding box
clearly sees the object without any occlusions, this work selects a small 10 × 10
pixels window in the center of the bounding box. Selecting the central region gives
a reasonable assurance that all the background pixels are discarded. It is also
important to note that the object may have oblong dimensions, in which case the
computed object position is of the portion of the surface visible in the depth image.
Since the exact dimensions of objects are not recorded and their orientation is also
unavailable, a unit cube (1 m3) is placed around the object to mark its bounding box
in 3D. Finding the exact bounding box is possible if for each class a standard set of
dimensions is recorded, and post-object detection and its orientation are also
computed by matching it with a set of views [5]. Alternatively, a 3D object
detection [3, 13, 22] algorithm may also provide the required dimensions for the
bounding box. However, this has not been attempted here.

After detection, the 3D position and class label of the object are recorded. To
suppress duplicate detections, the presence of another object of the same class label
is verified within a threshold distance. The localization algorithm may itself have
slight errors in addition to the 3D object localization. To accommodate these errors,
the threshold for duplicate detection is set at 50 cm. Thus, a duplicate detection
within a sphere of 1 m diameter is suppressed. Figure 4 provides a flowchart for
performing the tasks of object detection, 3D position finding, and suppression of
duplicates. Figure 5 shows detected objects and their locations bounded in unit
cubes in a scene. This method is good enough for static objects in the scene.
However, moving objects such as humans may get detected multiple times as they
move around and appear multiple times in the view.

3.3 Interactive Visualization

The interface for displaying the point cloud allows zooming, panning, and rotation
for interactive 3D viewpoint manipulation. The object positions are required to be
shown as unit cubes enclosing the detected object. However, displaying all the
object classes detected by the algorithm in the generated point cloud overcrowds the
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Fig. 4 Flowchart for the object detection, 3D position finding, and suppression of duplicates

Fig. 5 Unit cubes painted on each chair object detected in the images shown at the right. Multiple
detections appeared in adjacent frames, but were suppressed. Note that it is difficult to find which
chair was located where
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map. Another issue with point cloud is that its resolution is not as good as the image
itself, which makes it difficult for a user to identify the class. The user interface has
been designed with features that cater to above issues for better-managed visual-
ization of the detected objects in the scene.

The interface consists of an object–class selection interface that lists all the
classes detectable using the classifier. The display panel consists of an image list
and a point cloud display. The image list is a scrolling pane which shows images in
which only the selected object class was detected. The image list is cleared and
updated whenever another class is selected.

Another pane displays the point cloud of the environment traversed by the robot,
with unit cubes drawn at the computed object locations. Though the image list and
point cloud are shown juxtaposed, correlating an image with multiple unit cubes
strewn across the point cloud is difficult. Hence, whenever an image is clicked
upon, the corresponding cube is shown in a different color, as shown in Fig. 6. This
enables users to identify the actual location of the currently selected object.

4 Results and Discussion

Using the augmented classes for training, the performance of the system improves
with fewer misclassifications. The mean average precision (mAP) is 0.77 computed
over the additional classes alone for easy understanding. It was noticed that stairs

Fig. 6 Interactive visualization showing the clicked image shown in red frame is disambiguated
in the map by changing the color of its bounding box
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and window classes had fewer misclassification than door, wall, and cupboard
classes. Also, doors and walls were often confused with each other. This is partially
due to the inclusion of contextual information along with the object of interest while
training using YOLO. Our door images almost always have walls present in the
same image. Further, our door examples consisted of plain surfaces usually having
same color as the wall. YOLO could learn stairs, text on nameplates, switchboards,
and fire extinguishers quite well, as can be seen from Table 2. It is worthwhile to
note that the wall class was included primarily to reduce misclassifications.

The 3D positions of objects were without any perceptible error, unless the object
contains holes or is concave. Figure 4 shows the correct location of chair in a unit

Table 2 Average precision for augmented classes computed over corresponding number of
testing images. The mAP was computed over augmented classes alone

Augmenting classes Training images Testing images Average precision

Stairs 320 80 0.92
Fire extinguisher 224 56 0.78
Switchboard 184 46 0.89
Door 152 38 0.5
Window 216 54 0.833
Wall 400 100 0.637
Text 133 33 0.9
Cupboard 72 18 0.667

Total = 1701 Total = 425 mAP = 0.7659

Fig. 7 Same person is detected multiple times but at different positions. All detections are shown
in the list on the right. The corresponding cubes appear as a trail in the 3D map
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cube bounding box painted in the point cloud. Note that the same object was
detected multiple times as the platform crossed the gallery. The duplicate sup-
pression algorithm filtered later detections and retained only one. However, with
dynamic objects changing position, duplicate suppression will require tracking
them and suppressing detection on the track. Figure 7 shows a trail of boxes painted
by a group of moving people in the scene. Suppressing these will be attempted in a
future work.

The object detection algorithm integrated with 3D mapping was useful in
visualizing a unified display for the area explored by the robotic platform. However,
a list of images with detected object was also displayed as images have better
resolution than the point cloud. The robotic system works as an assistant to a user,
and human–machine interface is an important aspect for the usability of the system.
The visualization developed here assures information is not overloaded, and the
displayed images of detected objects and their position in the map are visually
linked. This ensures clarity and ease of operation for the user.

5 Conclusion

The developed indoor robotic system successfully integrates object detections with
3D mapping and displays them interactively to a user. The mobility of the robot
constrains the type of compute hardware, but on the other hand, it provides enough
opportunity to detect objects as the robot approaches them. In our experiments,
detection of at least 10 fps was sufficient to capture most objects present in the
scene. However, higher accuracies are required to avoid misclassifications and must
be chosen according to the computer hardware available. In this work, YOLO was
chosen since a CUDA-enabled portable hardware was available. When only a
box-pc is available, the DPM would be a better choice though the detection
accuracies would suffer. This work also suggested an innovative method to cal-
culate the object position in the 3D environment map and discussed the problems
therein. It brings out the necessity of also recording object dimensions and orien-
tation detection in order to present a tighter bounding box in comparison to the
currently used unit cubes. An attempt is made to suppress duplicate detections,
considering the errors encountered in detection in the presence of localization and
mapping errors. Finally, a scheme for informative display of objects is implemented
which lets the user interactively view object images as well as their position in the
scene.

The developed system may be put to various uses such as robotic assistance,
search and rescue, or autonomous remote exploration. With inclusion of a robotic
arm, miniaturization of computing hardware, and improved detection algorithms,
future work could incorporate object manipulation and enable robots to autono-
mously search for and interact with selected objects present in its environment.

Visual Object Detection for an Autonomous … 227



References

1. A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the KITTI vision
benchmark suite. In CVPR, 2012.

2. Menglong Zhu, Konstantinos G. Derpanis, Yinfei Yang, Samarth Brahmbhatt, Mabel Zhang,
Cody Phillips, Matthieu Lecce and Kostas Daniilidis, Single Image 3D Object Detection and
Pose Estimation for Grasping, ICRA, 2014.

3. Ian Lenz, Honglak Lee and Ashutosh Saxena, Deep Learning for Detecting Robotic Grasps,
arXiv 2014.

4. Ling Cai, Lei He, Yiren Xu, Yuming Zhao, Xin Yang, Multi-object detection and tracking by
stereo vision, Pattern Recognition, 2010.

5. Arjun Singh, James Sha, Karthik S. Narayan, Tudor Achim, Pieter Abbeel, BigBIRD: A
Large-Scale 3D Database of Object Instances, ICRA, 2014.

6. Omid Hosseini Jafari, Dennis Mitzel, Bastian Leibe, Real-Time RGB-D based People
Detection and Tracking for Mobile Robots and Head-Worn Cameras, ICRA, 2014.

7. Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann Le Cun,
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks,
arXiv, 2014.

8. Saurabh Gupta, Ross Girshick, Pablo Arbelaez, and Jitendra Malik, Learning Rich Features
from RGB-D Images for Object Detection and Segmentation, arXiv, 2014.

9. Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, and Jianwei Wan, 3D Object
Recognition in Cluttered Scenes with Local Surface Features: A Survey, IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 36, no. 11, November 2014.

10. Christian Szegedy, Alexander Toshev, Dumitru Erhan, Deep Neural Networks for Object
Detection, NIPS, 2013.

11. Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov, Scalable
Object Detection using Deep Neural Networks, CVPR, 2014.

12. Yu Xiang, Roozbeh Mottaghi, Silvio Savarese, Beyond PASCAL: A Benchmark for 3D
Object Detection in the Wild, WACV, 2014.

13. Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew Berneshawi, Huimin Ma, SanjaFidler,
Raquel Urtasun, 3D Object Proposals for Accurate Object Class Detection, NIPS, 2015.

14. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You Only Look Once: Unified,
Real-Time Object Detection, CVPR, 2016.

15. Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005.

16. Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan, Object
Detection with Discriminatively Trained Part Based Models, PAMI 2010.

17. J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards unified object detection and semantic
segmentation. In Computer Vision–ECCV 2014, pages 299–314. Springer, 2014.

18. Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierarchies for
accurate object detection and semantic segmentation, CVPR, 2014.

19. Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks, NIPS, 2015.

20. Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Region-Based Convolutional
Networks for Accurate Object Detection and Segmentation, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 38, no. 1, January 2016.

21. M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes challenge: A retrospective. International Journal of Computer
Vision, 111(1):98–136, Jan. 2015.

22. Khaled Alhamzi, Mohammed Elmogy, Sherif Barakat, 3D Object Recognition Based on
Local and Global Features Using Point Cloud Library, IJACT, 2015.

228 A. M. Sharma et al.



Engineering the Perception of Recognition
Through Interactive Raw Primal Sketch
by HNFGS and CNN-MRF

Apurba Das and Nitin Ajithkumar

Abstract The impression of a scene on human brain, specifically the primary visual

cortex, is still a far-reached goal by the computer vision research community. This

work is a proposal of a novel system to engineer the human perception of recog-

nizing a subject of interest. This end-to-end solution implements all the stages from

entropy-based unbiased cognitive interview to the final reconstruction of human per-

ception in terms of machine sketch in the framework of forensic sketch of suspects.

The lower mid-level vision as designed behaviorally in primary visual cortex hon-

oring the scale-space concept of object identification has been modeled by hierar-

chical 2D filters, namely hierarchical neuro-visually inspired figure-ground segrega-

tion (HNFGS) for interactive sketch rendering. The aforementioned human–machine

interaction is twofold: in gross structural design layer and finer/granular modifica-

tion of the pre-realized digital perception. Pre-realized sketches are formed learn-

ing the characteristics of human artists while sketching an object through integrated

framework of deep convolutional neural network (D-CNN) and Markov Random

field (MRF). After few iterations of interactive fine-tuning of the sketch, a psycho-

visual experiment has been designed and performed to evaluate the feasibility and

effectiveness of the proposed algorithm.

1 Introduction

The process of recognition is perhaps the most important aspect of visual percep-

tion [1]. Translating the perception of human to a machine through human–machine

interaction is even more difficult. As vision is the most important sense of percep-

tion, memory of a perceived vision is the most important source of data for modeling
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the scene digitally. The proposed system intends to engineer the individual’s (e.g.,

witness in forensic sketching procedure) perception of recognition, and convert this

information into a form very close to the subject’s (e.g., suspect in forensic sketch)

identity.

Countless criminal cases have taken a turn with the help of forensic sketches.

The project intends to automate the forensic face sketching process, i.e., the process

of converting the witness’s visual perception of recognizing suspect into a raw pri-

mal sketch which is identifiable, shareable, and modifiable by possible ornamenta-

tions like beard, bald digitally. The available forensic sketching softwares FACE [2],

EvoFIT [3] use composite techniques to render face sketches from template options.

Both Laughery et al. [4] and Willis et al. [5] have proved the effectiveness of the

aforementioned software to be unacceptable in practice due to face composition and

psychological bias while using image templates in cognitive interview, respectively.

The general sequence of forensic face sketching process consists of three parts,

namely cognitive interview, raw primal sketching, and sketch refinement and cor-

rection through iterative interactions. The sketching process is often done by the

professional sketch artist in such a way that the witness does not see the sketch while

in progress in order to prevent memory bias. Hence, showing possible set of template

faces to the witness and coming up with composite face is not an option for practical

machine sketching. We have formulated the optimized question bank based on the

mathematical model of Entropy maximization as described in the Sect. 2. Based on

the cognitive interview, a gross face template with essential fiducial regions is cre-

ated automatically. Honoring the scale-space concept of recognition by visual cortex,

a hierarchical neuro-visually inspired figure-ground segregation (HNFGS) forms the

smoothened tentative raw primal sketch representing shades by quantized gray inten-

sities as discussed in Sect. 3. Next, the face sketch is generated by integrated deep

convolutional neural network (D-CNN) and Markov Random Field (MRF) [6] imi-

tating the process of sketching by professional human artists as discussed in Sect. 4.

At this stage, for the first time the output sketch is shown to the user (i.e., witness)

for confirmation. As discussed in Sect. 5, through a number of iterations of interac-

tions between user and machine, the draft sketch is fine-tuned by thin plate spline

warping [7] method, next. Section 6 has formulated and executed a psycho-visual

experiment to prove the statistical significance of the proposed algorithm using

ANOVA. Finally, in Sect. 7 we have concluded our findings with a direction to the

future research.

2 Cognitive Interview: Face Wire-Frame Synthesis

The cognitive interview is conducted by selecting and asking questions from a

question bank and populating the next layer of questions triggered by the previ-

ous answers. A question bank is first created by listing out the possible questions

that are required to create a perceptually accurate sketch of the face (e.g., shape

of eye, structure of face contour, eyebrow curve). The goal of the cognitive inter-

view is to ask minimum number of relevant questions to get the maximum possible
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information. We have generated a layered question bank honoring the concept of

Entropy maximization as discussed in the subsequent subsections.

2.1 Entropy Optimization

Entropy is a measure that represents the average information per message. In the

proposed cognitive interview, Entropy optimization [8] is dependent on the path of

control across the layers in the question bank. The layers in the question bank have

been illustrated in Fig. 1. The first layer contains sections that are divided on the

basis of the facial feature of priorities for recognition by Das et al. [9], e.g., the first

section pertains to eyebrow, the second to eye, the third to lips. Each section con-

tains questions that pertain to that feature. Considering one section, the second layer

consists of sections that are relevant to different aspects of the facial feature. Consid-

ering the probabilities of the sections in the current layer to be p1, p2,… pn (where

n denotes the number of sections in the current layer all probabilities are uniformly

distributed), the information that can be obtained from the current layer is given by

Eq. 1. In this equation, n and m are the number of sections in the current layer and

number of possible outcomes, i.e., number of sections in the next layer, respectively.

The probability of choosing section i in the current layer pi. It is noticed that the

base of the logarithmic term is m, as the possible choices from the current layer is

given by the number of sections in the next layer. Hence the calculated Entropy for

ith layer Hi is defined as follows.

Fig. 1 Layered question

bank for entropy

maximization
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Hi = −
n∑

i=1
pilogmpi (1)

Equation 1 is applicable solely for the interaction between 1st and 2nd layer, whereas

the concept of mutual information and information gain would pitch in for subse-

quent layers. Considering section i of the first layer, the probabilities of the second

layer are given by pi1, pi2,… , pim (where m denotes the number of sections in the

second layer). However, these values will be joint probabilities as it depends on the

selection of section i in layer 1. Thus information that is obtained in the second layer

will also contain information from the first layer. To address information redundancy,

we consider information gain. The mutual information is obtained by considering the

conditional probabilities of the question section for each layer. By extending this pat-

tern of calculation to each layer, upto the question level, we can say that Information
from each question, H = (Information for Layer1) + (Information gain in Layer2) +
⋯ (Information gain in layer k), where k denotes the number of layers. The path of

control from one layer to another can be considered as a channel whose capacity has

been incorporated into the calculation of Entropy H to model the cognitive interview

has been depicted in Eq. 2.

H = max

( A∑

K=1
Hk

)

= max
A∑

k=1

(
−

n∑

i=1
pilogmpi −

m∑

j=1
pjlog𝜉pj − · · · +

m∑

j=1
pijlog𝜉pij …

)
(2)

where, A denotes the number of questions in the question bank, n denotes the number

of sections in layer 1, m denotes the number of questions in layer 2, 𝜉 denotes the

number of questions in layer 3, pi is the probability of selecting a section in a particu-

lar layer, and pij is the conditional probability of a particular layer upon the previous

layer. Thus, the overall design is in the form of a computer adaptive test which max-

imizes the information that can be gained from the witness with minimum number

of questions.

2.2 Gross Face Template Synthesis on Golden Ratio

This system is used to build a gross template face based on the input of the cognitive

interview. First a database was created where the gross templates of eyes, eyebrows,

lips, nose, and their corresponding labels are stored. The system takes the input from

the cognitive interview through voice-enabled interaction engine and maps the input

to the images in the database by cross-referencing the labels intentionally hiding the

database feature templates to remove psychological bias [10]. The corresponding
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Fig. 2 a Female Face Golden Ratio (GR), b Gross synthesis of face from cognitive interview onto

GR, c Synthesized face for next stage of operations

feature templates are then transferred onto a base template face formed by gender

golden ratio as depicted in Fig. 2.

3 Machine Sketching by Hierarchical Neuro-Visually
Inspired Figure-Ground Segregation (HNFGS)

Ever since Marr [11] proposed his famous theory, a lot of work has been done by

psychologists and computer vision engineers to mathematically model the human

vision system. By creating such models that closely resemble the way human vision

operates, they believed that they could make machines perform complex tasks like

pattern recognition and understanding. An import part of this step in the process

involves searching for zero-crossings in the image and presenting the image using

two distinct levels. Alternatively, it can be said that a perception-based binarization

has been done on the image using Laplacian of Gaussian (LoG) operator [12]. This

can be considered as equivalent to centre-surround receptive field model upon which

lateral inhibition is based, viz. the Difference of Gaussians (DoG) [13].

3.1 NFGS Filter for Binarization

It has been observed by physiologists for a fairly long time (almost forty years [14])

that the cell’s behavior is greatly affected by a number of cells lying outside the

Classical Receptive Field (CRF). This modulation is called extended/extra-classical

receptive field (ECRF) and is known to evoke nonlinear responses. It is based in the

concept of ECRF that Ghosh et al. proposed a model for neuro-visual figure-ground
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Fig. 3 a Tabular and b Graphical representation of ECRF kernel (size 11 × 11)

segregation which has been modified into the form of a digital mask [15, 17] as

shown in Fig. 3.

Here ‘n’ denotes the filter size (n = 2m + 1 > 1,m ∈ Z+). The number of zeros

from the centre to the periphery of the digital mask is always m − 1 for both row

and column. The finite difference approximation for the classical Laplacian mask

is reduced by the filter to it lowest value at m= 1. The convolved image is then

binarized by thresholding each of the elements at zero. Das et al. have shown the

efficiency of face recognition [17] systems using NFGS. Another work by the him

[18] has described the importance of filter size in recognition through cellular neural

network. The following subsection would address the choice of relative size of NFGS

filter kernels adaptively.

3.2 Scale-Space Hierarchy: HNFGS

Inspired from the scale-space concept [16] of recognizing an object and figure-

ground segregation by human brain [15], it has been established that extraction of

information is complete when addressed both in wholistic and local/granular fash-

ion. The proposed hierarchical NFGS (HNFGS) algorithm has honored the same.

The smaller the size of the NFGS kernel, the more details can be captured. How-

ever, we do not want to capture all details as it will make the image distorted and

noisy as shown in Fig. 4b, i. The gross synthesized template image (CogIntGRimage)

through cognitive interview (CogInt) and golden ratio (GR) overlay has been filtered

through NFGS kernels of different size in hierarchy. The first NFGS kernel is of size

N = 2X + 1 where X = ImageSize∕4. The NFGS filtered image, ImgN is considered

as a mask to extract the region of interest (RoI) from CogIntGRimage. All the pixel

values in the extracted RoI image have been assigned to an intensity quantized as

256∕NumberOfLevels. In our experiment, we have used four levels of quantization

for generating raw primal sketch. The same procedure is followed until the smallest

mask of size 3 × 3 is obtained by iterative reduction of mask size as depicted in the
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Fig. 4 Efficiency of HNFGS: a–c, h–j Comparisons between classical figure-ground segregation

and edge detectors, d–g, k–n Stages of HNFGS filtering

Pseudocode 3.1. This ensures that detailing happens only in a manner that is required

to produce a sketch-like image.

Algorithm 3.1. MACHINESKETCHHNFGS(CogInt,GR)

comment: Output = Machine Sketch

ImgN = NFGS(CogIntGRimage, SizeN = 2X + 1)
ImgNew ∶= ImgN
while N >= 3

do

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

ConvrtImgNewtoMask
RoI ∶= ApplyMask2CogIntGRimage
NFGS(CogIntGRimageANDRoI, Size = N)
ImgNew ∶= ReplaceAllPixValInRoIbyQVal
N ∶= N∕NumberOfLevels
if EVEN(N)
then N ∶= N + 1

ImgN ∶= ImgN + ImgNew

Figure 4 shows the efficiency of HNFGS over conventional edge detectors which

produce images that fail to catch all the features of importance let alone the detail-

ing. One-shot binarization technique (e.g., NFGS) also failed to address both wholis-

tic and granular feature extraction. However, the HNFGS image produces a smooth

image with all the important aspects captured and the detailing done hierarchically.

NFGS filter of kernel size 3 is directly applied to the grayscale face image Fig. 4a

resulting Fig. 4b. It is observed that although it captures all the details, the output

is noisy. The Canny edge detector failed to extract the face feature details eliminat-

ing noise as shown in Fig. 4c. The same is illustrated using a sample template face

Fig. 4h. The application of NFGS filter with window size 3 captures more details

than necessary as can be seen in Fig. 4i. Also, the Canny image gives poor results
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as can be seen in Fig. 4j. The figure also depicts the different layers of HNFGS fil-

tering response. The image Fig. 4d, k shows the output for the corresponding input

images when the NFGS filter of window size N = 2X + 1 is applied in the first stage

(X = ImageSize∕4), and the corresponding regions are colored with the quantized

value following the pseudocode 3.1. Similarly, Fig. 4e, l is the output from the sec-

ond iteration with odd kernel size N∕4, Fig. 4f, m from the third iteration for filter

size N∕16 and finally Fig. 4g, h from the fourth iteration for filter size 3 which is the

final output.

4 Imitating Artist’s Style of Sketching by CNN-MRF

In order to convert the HNFGS generated raw primal sketches to professional foren-

sic artist’s style of sketching, we have employed the cascaded CNN-MRF system as

proposed by Zhang et al. [6]. The combination of generative Markov Random Field

(MRF) models [19] and trained Deep Convolutional Neural Nets (D-CNN) learns

the style of a forensic sketch artist and transforms HNFGS filtered face into a foren-

sic sketch. It does this by dividing the training photographs and their corresponding

sketches into patches and learning how each patch is translated into its correspond-

ing sketch version. The gross-level mapping and placement of the patches in the test

image are done using the MRF and is optimized for local feature details using the

trained CNN. The system was trained by giving the HNGFS filtered images and its

corresponding forensic sketches (Fig. 5).

5 Refining the Facial Sketch by Iterative Human–Machine
Interaction

The first iteration of the forensic sketch rendering may have errors due to lack of

accuracy in the feature description. The current section deals with the method of

iterative human–machine interaction to fine-tune the face features. At this stage, the

Fig. 5 Refinement of eye feature by Thin Plate Spline warping: a Sketch at iteration 1, b Sketch

at iteration 3, c Sketch at iteration 5 for more elongated eye
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Fig. 6 Flowchart of the

perception driven raw primal

machine-sketching system

output sketch is shown to the witness for the first time. Primarily, the witness is asked

to provide feedback regarding the general appearance of the face and its similarity

to the face in memory. The specific details regarding the features are asked and the

responses are used to control changes that are to be made on the face. For example,

if the witness says the eyes are wider and it needs to be changed, or that the nose

is little bigger, etc., the necessary changes are made in the next stage. The detailed

process is described in terms of a flowchart as shown in Fig. 6. We have employed

thin plate spline (TPS) [7] warping for the fine-tuning the sketch.

5.1 Fine-Tuning the Facial Features by Thin Plate Spline
(TPS)

The error correction system is based on the idea of TPS warping [7]. The control

points for each template points are decided beforehand, and the system stores the

location of these points. When a change in feature proportion is required, the sys-

tem automatically selects the necessary control points and moves it in the required
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direction. This causes the warping of the feature template and perceptually gives the

desired effect; e.g., if the change to made is to make the eye longer, the system moves

the corresponding control points and it changes the shape of the eye as illustrated in

Fig. 5. In this manner, minor modifications and adjustments can be made to increase

the similarity between the suspect and the rendered facial sketch.

6 Psycho-Visual Experiment and Results

To validate the effectiveness of the proposed algorithm, a psycho-visual experimen-

tation has been designed and performed in terms of a survey. The outcome of the

survey has been finally analyzed through statistical significance measure. Before the

survey was performed, five faces were machine sketched following the proposed

method (Fig. 7 shows three sample sketches). In the survey phase, 100 new subjects

were identified randomly in two age groups (fifty subjects from age group <30 and

fifty subjects from age group ≥30). The goal of the survey was to determine if the

sketch produced by the system was recognizable. A GUI was developed in which

the five sketches and ten photographs were shown in a matrix form (Sketches in the

rows and photographs in the columns). The five sketches were shuffled each time the

survey was done. Five of the photographs, which corresponded to the sketch pho-

tographs, were also displayed in a random order and the rest of the five faces were

chosen randomly from the database of 50 photographs. Few sketches were cam-

ouflaged intentionally by ornamentation like adding or removing spectacles and/or

Fig. 7 Machine sketch correspondence used for psycho-visual survey (3 sample matches are

shown)
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Table 1 Psycho-visual survey report for 3 machine sketch recognition

𝜒11 𝜒12 𝜒13 𝜒1R 𝜒21 𝜒22 𝜒23 𝜒2R 𝜒31 𝜒32 𝜒33 𝜒3R

Age

<30
years

43 0 0 7 0 45 0 5 0 0 39 11

Age

≥30
years

45 0 0 5 0 48 0 2 0 0 44 6

facial hair. The subjects were allowed to add their confidence level also to each of

the recognition between 0 to 100%. In the Table 1, we have weighted the confidence

level to number of recognition and finally rounded off wherever required. Recogniz-

ing jth face from ith sketch is represented as 𝜒ij in Table 1. In the table, only three

instances have been shown (randomly chosen) and j = R when some other person is

recognized out of the given set. With regard to survey, it needs to noted that it was

conducted with local groups in and around the Author’s circles, in a controlled setup,

with the full consent of the subject. The photographs of the subjects that have been

displayed in Fig. 7 have been done so with the written consent of the subjects.

6.1 ANOVA: Validation Through Analysis of Psycho-Visual
Survey

Analysis of Variance (ANOVA) is a collection of statistical models that are used to

find the sources of variances that are felected in a variable as observed variance. It

provides a way of knowing, statistically, if the means of several groups are equal

or not [17]. From the Table 1, it is clear that most of the subjects could recognize

persons from machine sketches correctly. The box plot (Fig. 9) approves the fact.

In this experiment, a one-way ANOVA is performed. It is done so by comparing

the means of 12 columns of data in the 2-by-12 matrix X, as presented in Table 1. In

this table, each column represents an independent sample containing two mutually

independent observations for the two predefined age groups. The output of the test

is a p-value for the null hypothesis that all samples in X are drawn from the same

population.

The p-value determines if the null hypothesis is true or not, i.e., whether atleast

one sample is significantly different from other sample means. Generally, this con-

clusion is arrived at if the p-value is less 0.05. The columns in the ANOVA table

(Fig. 8) show the following: column 1 shows the source of the variability, column 2

shows the Sum of Squares (SS) due to each source, column 3 shows the degrees of

freedom (df) associated with each source, column 4 shows the Mean Squares (MS)

for each source, which is the ratio SS/df, column 5 shows the F statistic, which is
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Fig. 8 ANOVA for the psycho-visual survey presented in Table 1

Fig. 9 Box plot for the

ANOVA table presented in

Fig. 8 for survey of Table 1

the ratio of the MS’s and column 6 shows the p-value, which is derived from the cdf

of F. As F increases, the p-value decreases. Figures 8 and 9 confirm the significance

of correct recognition (𝜒11, 𝜒22, 𝜒33) of human from machine sketches synthesized

by proposed algorithm.

7 Conclusion

Engineering the perception of recognition is an important aspect of computer vision

to ensure the machine-based object recognition to be even more accurate. The current

work has proposed a novel algorithm of cognitive interview-based machine sketch-

ing using HNFGS and analyzed the effectiveness of the sketches synthesized through

psycho-visual experiments. To the best of our knowledge, this is the first attempt

to enable a machine to sketch a human face through iterative interaction honoring

the concept of Entropy maximization. In future work, the impact of ornamentation

(facial hair, spectacles etc.) on recognition should be examined. Researchers may

also look for modeling the machine sketches in terms of linear combination of mul-

tiple faces available in database of law enforcement agencies. The measure of con-

fidence of the witness and weightage of emphasis on feature should also be mapped

in possible future work to make the system even more adaptive and agile.
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An Efficient Algorithm for Medical Image
Fusion Using Nonsubsampled Shearlet
Transform

Amit Vishwakarma, M. K. Bhuyan and Yuji Iwahori

Abstract Multimodal medical image fusion techniques are utilized to fuse two

images obtained from dissimilar sensors for obtaining additional information. These

methods are used to fuse computed tomography (CT) images with magnetic reso-

nance images (MRI), MR-T1 images with MR-T2 images, and MR images with sin-

gle photon emission computed tomography (SPECT) images. In proposed method,

nonsubsampled shearlet transform (NSST) is used for decomposition of source

images to attain the low-frequency and high-frequency bands. The low-frequency

bands are fused using weighted saliency-based fusion criteria, and high-frequency

bands are fused with the help of phase stretch transform (PST) features. Applying

inverse NSST operation, fused image is obtained. The results show the proposed

method produces better results compared to state-of-the-art methods.

Keywords Medical image fusion ⋅ Nonsubsampled shearlet transform (NSST)

Phase stretch transform (PST)

1 Introduction

Three primary requirements defined for the excellent image fusion [2]. First, to trans-

fer the prominent attributes of input images into the fused version of the image. Sec-

ond, any relevant details of input images should preserve after the fusion process.

Third, fused image should be free from any undesirable artifacts. The CT images

show the hard tissue details such as bones, while MRI images show the soft tissues
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particulars of the body. Image fusion approaches are implemented to fuse CT and

MRI images to perceive the hard and soft tissue details simultaneously in a single

fused image. In general, radiologist also used to observe a fused form of SPECT

and MR images for the better diagnosis because SPECT images show the biologi-

cal activity of tissues such as blood flow. Hence, fused image shows both biological

activities and soft tissue information [11, 18].

Image fusion algorithms are categorized into three categories: pixel-, feature-,

and decision-level. The pixel-level fusion techniques directly applied to the pixels.

These techniques can further classify into two types: spatial domain- and trans-

form domain-based approaches. In the spatial domain, fusion is performed using

local spatial features like pixel intensities and local energy. While transform-based

fusion approaches, first decomposed the source images into multiple subimages, then

apply appropriate fusion rules. Then, fused image is attained using inverse transform.

The multiscale transforms (MSTs)-based fusion approaches are gradient pyramid

(GP) [16], discrete wavelet transform (DWT) [13], etc. Moreover, MST-based meth-

ods are shift variant due to the use of subsampling operations. If the source images

are misregistered, then these sampling operations can cause serious artifacts such as

ringing effect near edges in the fused image [22].

Recently, to enrich the fused image with high-frequency information, multigeo-

metrical analysis (MGA) methods, for example, curvelet transform [5], nonsubsam-

pled contourlet transform (NSCT) [22], and NSST [12] are applied for image fusion.

Due to direct operations on pixels, pixel-level fused image suffers from contrast and

spatial distortion. While, feature-level fusion associated with the features attained

from the source images [14, 15, 21]. At last, decision-level fusion includes attributes

of forecast, fuzzy logic, and voting [17] to perform the fusion. Feature- and decision-

level fusion methods suffer from loss of spatial and spectral information during the

feature extraction process, which degrades the quality of fused image. The proposed

method uses NSST for fusion over curvelet and NSCT due to lower implementation

complexity and more directional bands. Furthermore, NSST has good localization

in spatial and frequency domain, optimally sparse and directional sensitivity with

parabolic scaling [7–10].

2 Preliminaries

Nonsubsampled Shearlet Transform (NSST): NSST [7, 9, 10] is applied to obtain

low- and high-frequency bands of the input images. In dimension n = 2, continuous

shearlet transform of the signal f (x) is given as a mapping:

SHψf (a, s, t) = ⟨f ,ψast⟩ (1)
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where a is scale, s is orientation, t is location, ψast(x) = | det𝐌as|
−1∕2ψ(𝐌as

−1

(x − t)), 𝐌as =
(
a −

√
as

0
√
a

)

for a > 0, s ∈ R and t ∈ R2
. ψast(x) are called shearlets.

Matrix 𝐌as = 𝐁s𝐀a is associated with the two different matrices: anisotropic dila-

tion done by matrix 𝐀a =
(
a 0
0
√
a

)

and shearing done by matrix 𝐁s =
(
1 −s
0 1

)

.

The NSST is the nonsubsampled version of shearlet transform (ST). The NSST is

not using sampling operations, which make NSST shift invariant. Due to that ring-

ing artifacts reduces in the fused image [7, 9, 10].

Phase Stretch Transform (PST): The PST [1] is a multistep process for detecting

the high-frequency features of the images. First, noise reduction is done by Gaus-

sian smoothing, then PST is applied on the smooth image. PST having a nonlinear

frequency dependent transfer function. In PST, 2-D phase function is applied to the

smooth image in frequency domain. The extent of phase applied to image is depends

upon frequency. Lower phase implemented to the low-frequency contents such as

texture features and fine details. However, higher phase applied to high-frequency

contents such as edge features. Then a threshold is applied to the PST output to high-

light the prominent high-frequency features. Then using some morphological oper-

ations, reliable edge features obtained by removing noise artifacts. Let any image

𝐈(m, n), where m, n are the 2-D space variables. PST applied to 𝐈(m, n) is given as

follows [1]:

𝐏𝐒𝐓I(m, n) = ∠
⟨
IFFT2

{
̃𝐊(p, q)̃𝐋(p, q)FFT2 {𝐈(m, n)}

}⟩
(2)

where, 𝐏𝐒𝐓I(m, n) is output phase image, ∠ ⟨.⟩ is angle operation, FFT2 is 2-D fast

Fourier transform, IFFT2 is 2-D inverse FFT, p and q are frequency variables. ̃𝐋(p, q)
is frequency response of localize smoothing kernel and ̃𝐊(p, q) is warped phase ker-

nel (in frequency domain), which is given as follows [1]:

̃𝐊(p, q) = ejϕ(p,q) (3)

where,

ϕ(p, q) = ϕpolar (r, θ) = ϕpolar (r) =
SWrtan−1(Wr)−(1∕2) ln(1+(Wr)2)

Wrmaxtan−1(Wrmax)−(1∕2) ln(1+(Wrmax)
2)

(4)

where, r =
√
p2 + q2, θ = tan−1(q∕p), ln(.) is the natural logarithm and rmax is the

maximum frequency r. S and W are the real-valued numbers associated with strength

(S) and warp (W) of phase profile function [1].
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Fig. 1 Schematic block diagram of proposed image fusion technique [3]

3 The Proposed Method

Figure 1 shows the block diagram of proposed image fusion method. In proposed

method, NSST decomposed the input images 𝐀 and 𝐁 into low-frequency bands:

𝐋A(m, n) and 𝐋B(m, n), in addition into high-frequency bands 𝐇A
k,l(m, n) and 𝐇B

k,l
(m, n). Here, k and l shows the decomposed high-frequency band in kth direction

at lth decomposition level, respectively. NSST domain variables are denoted by m
and n. Then, applying the proposed fusion rules and inverse NSST, fused image 𝐅
is acquired. In the 2-level of NSST decomposition of an image produces one low-

frequency coefficients band, with four high-frequency coefficients bands.

Low-Frequency Band Fusion Rule: Low-frequency bands acquired after NSST

decomposition are fused using weighted saliency-based method [4]. Weighted

saliency fusion rule fused the coefficients of NSST in such a way that fused image

efficiently captures the texture, fine, and edge information. This is done by calculat-

ing energy and correlation between the pixels of low-frequency bands. This fusion

rule is implemented in the two steps: first implementing the salience measure then

implementing the match measure. The salience measure measured at𝐋(m, n) as local

energy, where 𝐋 is low-frequency band of image 𝐈 and m, n is coordinate positions in

𝐋. The salience measure 𝐒I(m, n) within a neighborhood 𝐩 of size m̂ × n̂ is obtained

as [4]:

𝐒I(m, n) =
∑

m̂,n̂
𝐩(m̂, n̂)𝐋I(m + m̂, n + n̂)2 (5)

If 𝐒I(m, n) of corresponding pixels of both the low-frequency bands 𝐋A and 𝐋B
are equal, then their average and if saliency measure is different, then pixel with

maximum saliency measure is considered. Furthermore, match measure is used

to find, which combined method to use (if saliency measures are different) either
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selection or averaging. However, an alternative way to use a correlation between

the low-frequency bands. At sample (m, n) within a neighborhood 𝐩, match as local

normalized correlation is [4] given as follows:

𝐌AB(m, n) =

∑

m̂,n̂
𝐩(m̂, n̂)𝐋A(m + m̂, n + n̂)𝐋B(m + m̂, n + n̂)

0.5(𝐒A(m, n) + 𝐒B(m, n))
(6)

𝐌AB has value 1 for the same structures and less than 1 for remaining. If the match

measured at the respective sample of 𝐋A and 𝐋B is high, then the average of the

decomposed coefficient is taken else coefficient with the high saliency measure is

considered. This rule represents the weighted averaging. Summarizing, in selec-

tion mode, if match measure MAB(m, n) at position m, n is below the threshold

α < 0.75 then weights WA(m, n) and WB(m, n) in (8) are either 1 and 0, depending

upon the saliency measure S(m, n) obtained using (5). Now, assign 𝐖A(m, n) = 1
and 𝐖B(m, n) = 0 in (8), if 𝐒LA (m, n) > 𝐒LB (m, n). But, assign 𝐖A(m, n) = 0 and

𝐖B(m, n) = 1 in (8), if 𝐒LA (m, n) < 𝐒LB (m, n).
Now if 𝐌AB(m, n) > 0.75 (which is basically averaging mode), weights WA(m, n)

and WB(m, n) in (8) are evaluated using (7). First apply (7) and find the mini-

mum and maximum weights 𝐖min(m, n) and 𝐖max(m, n). Now, assign 𝐖A(m, n) =
𝐖min(m, n) and 𝐖B(m, n) = 𝐖max(m, n) in (8), if 𝐒LA (m, n) < 𝐒LB (m, n). But, assign

𝐖A(m, n) = 𝐖min(m, n) and 𝐖B(m, n) = 𝐖max(m, n) in (8), if 𝐒LA (m, n) > 𝐒LB (m, n).
The 𝐖min(m, n) and 𝐖max(m, n) are given as [4]:

𝐖min(m, n) =
1
2
− 1

2

(
1 −𝐌AB(m, n)

1 − α

)

and 𝐖max(m, n) = 1 −𝐖min(m, n).

(7)

The fused low-frequency band 𝐋F(m, n) is obtained as:

𝐋F(m, n) = 𝐖A(m, n)𝐋A(m, n) +𝐖B(m, n)𝐋B(m, n) (8)

Novel Fusion Rule for High-Frequency Bands: New fusion criteria based on PST

features [1] is employed to attain fuse high-frequency coefficients. PST features-

based fusion rule enhances the high-frequency attributes such as line, edges, cor-

ners, and fine details. Applying PST on any image gives a feature descriptor. This

feature descriptor consists of information regarding edges, structural and fine infor-

mation present in the applied image. Based on this information, coefficients of high-

frequency band are selected because human visual system is very sensitive to this

information compared to other information present on the images. Let 𝐇A
k,l(m, n),

𝐇B
k,l(m, n), and 𝐇F

k,l(m, n) are high-frequency bands in lth directional band at the kth

decomposition level at (m, n) position, of input images 𝐀, 𝐁, and fused image 𝐅.
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Algorithm:

The outline of proposed algorithm is as follows:

(a) Decomposed the preregistered input images using NSST.

(b) Fuse the low-frequency band using weighted saliency [4] fusion rule given in (8),

and fuse the high-frequency bands using PST features [1] given in (9). Apply

PST on each high-frequency bands and obtain the features of high-frequency

bands 𝐏𝐒𝐓A
k,l(m, n) and 𝐏𝐒𝐓B

k,l(m, n) using (2). Then, using (9) obtain fused high-

frequency bands as follows:

𝐇F
k,l(m, n) =

{
𝐇A

k,l(m, n), 𝐏𝐒𝐓A
k,l(m, n) ≥ 𝐏𝐒𝐓B

k,l(m, n)
𝐇B

k,l(m, n), Otherwise. (9)

(c) Fused image 𝐅(i, j) is attained by applying inverse NSST transform operation.

Proposed method also applicable for the fusion of PET/SPECT images with MRI

images. The fusion has done by first, calculating the luminance components (Y)

of the source images by RGB to YIQ transformation [19]. When fusion of Y

components are done, then reconstruct the fused color image by applying YIQ

to RGB transformation.

4 Results and Comparison

To carry out the experiments with two datasets of medical images are considered.

The source images downloaded from the following Web site [20]. The proposed

technique is compared to following state-of-the-art techniques such as GP [16],

DWT [13], NSCT Fuzzy [25], NSCT phase congruency (NSCT PC) [3], SWT

NSCT [2] previously proposed for medical image fusion. Analysis of image fusion

techniques carried out subjective and objective manner.

The proposed method is tested using three metrics such as mutual informa-

tion (MI) [6], structure similarity-based index (QS) [24], and edge-based similar-

ity measure (QAB∕F
) [23]. Proposed technique is tested in two datasets of medical

images. The dataset-1 for brain images of MR-T1 and MR-T2 modalities, dataset-2

for brain images of MR-T2 and SPECT modalities. The different parameter settings

are adjusted to attain good quality fused image. Only 2-level of NSST decomposition

is used to minimize the effect of misregistration and noise. The weighted saliency [4]

rule is implemented to fuse low-frequency band, and PST features-based fusion rule

is implemented to fuse high-frequency bands. Apply inverse NSST to get the fused

image. Considering image dataset-1 of MR-T2 and MR-T1 images Fig. 2a1–a3 and

Fig. 2b1–b3, respectively. Some of the regions in the brain are specifically selected.

These areas are highlighted with the arrows to make the easier subjective compari-

son of different fusion methods. Compared to previous methods, proposed approach



An Efficient Algorithm for Medical Image Fusion . . . 249

Fig. 2 Subjective comparison of the proposed technique for dataset-1. Images a1–a3 MR-T2, b1–

b3 MR-T1, c1–c3 GP [16], d1–d3 DWT [13], e1–e3 NSCT fuzzy [25], f1–f3 NSCT PC [3], g1–g3
SWT NSCT [2], h1–h3 proposed

efficiently captures the most of the salient details of the input images. The claim is

justified subjectively as shown in Fig. 2h1–h3. Objectively, this can be justified from

results given in Table 1. From Table 1, QS is higher in SWT NSCT method for a

couple of images. However, overall our proposed method gives better performance.

In Fig. 3 analyzing the structures of dataset-2, arrows are shown for the sim-

ple subjective comparative study of the proposed method with previous techniques.

Figure 3 shows the proposed method able to preserve the prominent details of

input images such as lesions and infraction in fused image, which is desirable for

diagnosis. From the observation of Table 1, this claim justified. The main drawback

of GP and DWT methods is the effect of ringing artifacts in the fused images and inef-

ficient to represent the edge singularities of input source images. The NSCT Fuzzy

approach suffers from the low contrast due to applied fusion rules, which can cre-

ate a problem for diagnosis. The NSCT PC method is unable to capture prominent

information of the source images such as texture because PC mainly enhances the

high-frequency information, not the low-frequency information.

The NSST is less computationally complex than NSCT. While SWT NSCT

method suffers from the low contrast fused image due to the principal component

analysis (PCA)-based fusion rule because this rule distorts the spectral information

of fused image. Moreover, SWT NSCT method suffers from noise artifacts due to

maximum selection fusion rule. However, SWT NSCT method able to capture more

structural information more efficiently due to SWT and NSCT basis. The SWT can

detect texture information more effectively compare to NSCT. The reasons for out-

performing our methods are proposed fusion rules and NSST decomposition and
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Table 1 Objective evaluation for fused medical images of dataset-1 and dataset-2

Images Indices GP DWT NSCT

fuzzy

NSCT PC SWT

NSCT

Proposed

Fig. 2a1–b1 MI 3.738 3.714 3.673 3.722 4.015 4.439
QAB∕F

0.404 0.372 0.340 0.378 0.461 0.557
QS 0.762 0.755 0.745 0.757 0.885 0.829

Fig. 2a2–b2 MI 3.386 3.341 3.431 3.430 3.894 4.342
QAB∕F

0.449 0.429 0.444 0.453 0.547 0.645
QS 0.711 0.719 0.733 0.723 0.940 0.981

Fig. 2a3–b3 MI 3.544 3.509 3.635 3.590 3.720 4.132
QAB∕F

0.458 0.426 0.399 0.444 0.455 0.496
QS 0.719 0.71 0.690 0.725 0.844 0.708

Fig. 3a1–b1 MI 2.219 2.193 2.315 2.224 2.700 2.711
QAB∕F

0.505 0.440 0.400 0.468 0.700 0.656

QS 0.838 0.831 0.804 0.832 0.967 0.903

Fig. 3a2–b2 MI 3.171 3.127 3.256 3.171 3.282 3.704
QAB∕F

0.471 0.402 0.333 0.439 0.436 0.479
QS 0.834 0.815 0.784 0.819 0.838 0.812

Fig. 3a3–b3 MI 3.091 3.026 3.115 3.097 3.48 3.693
QAB∕F

0.528 0.452 0.448 0.486 0.642 0.643
QS 0.822 0.808 0.876 0.810 0.91 0.920

Fig. 3 Subjective comparison of the proposed technique for dataset-2. Images a1–a3 MR-T2, b1–

b3 SPECT, c1–c3 GP [16], d1–d3 DWT [13], e1–e3 NSCT fuzzy [25], f1–f3 NSCT PC [3], g1–g3
SWT NSCT [2], h1–h3 proposed
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reconstruction (role of directional basis functions). Also, due to window based fusion

rules for the low-frequency bands, proposed method becomes slight robust to fine

misregistration error and noise, as most of the image information lies in the low-

frequency bands. Because image pixels intensities are highly correlated to neigh-

boring pixels. Hence, proposed method performs the fusion by considering local

window instead of considering pixel intensity of single pixels.

5 Conclusion

The medical imaging is taking a progressively critical part in health care. The pro-

posed method uses novel NSST based image fusion approach for multimodal medical

images. The proposed approach utilizes new fusion rule based on the PST features

to select the fused coefficients of high-frequency bands. Low-frequency bands are

fused by employing weighted saliency fusion criteria. The proposed method gives

reliable and consistent results for the medical images.
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A Novel Text Localization
Scheme for Camera Captured
Document Images

Tauseef Khan and Ayatullah Faruk Mollah

Abstract In this paper, a hybrid model for detecting text regions from scene
images as well as document image is presented. At first, background is suppressed
to isolate foreground regions. Then, morphological operations are applied on iso-
lated foreground regions to ensure appropriate region boundary of such objects.
Statistical features are extracted from these objects to classify them as text or
non-text using a multi-layer perceptron. Classified text components are localized,
and non-text ones are ignored. Experimenting on a data set of 227 camera captured
images, it is found that the object isolation accuracy is 0.8638 and text non-text
classification accuracy is 0.9648. It may be stated that for images with near
homogenous background, the present method yields reasonably satisfactory accu-
racy for practical applications.

Keywords Text detection ⋅ Feature map ⋅ Background suppression
Textness features ⋅ Text non-text classification ⋅ MLP

1 Introduction

Camera captured scene or document images containing text is one of the most
expressive means of effective communication. So, detecting and localizing text
components from natural images have been most pioneer work in recent research
trend, where many researchers have implemented several algorithms for efficient
extraction of text blocks. The automated localization, extraction and recognition of
scene text in unconstrained environments are still open research problems. The core
of the problem lies in the extensive variability of scene text in terms of its location,
physical appearance and design. Although, standard optical character recognition
(OCR) is a solved problem for document images acquired with flatbed scanners,
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detection and recognition from camera captured scene images are an active research
problem. Complex background, variation of text layouts, orientation of handwritten
text, various font size, uneven illumination and multilingual scripts lead to severe
challenges compared to well-formatted scanned document images.

There are several approaches for extraction of text regions that have been
implemented. Zhang et al. [1] proposed a fully convolutional network (FCN)-based
multi-oriented text line detection from natural scene images and Chen et al. [2] used
a strong AdaBoost classifier for recognizing text regions from natural images. Text
extraction using connected component analysis [3–6] is another approach where
candidate text components are identified and then they are classified as text or
non-text based on various statistical features. Epshtein et al. [7] proposed a stroke
width transformation function (SWT) to distinguish text components from non-text
regions in scene images. SWT is used to detect colour independent text from video
frames [8]. There are also several classifier-based approaches such as support vector
machine (SVM), neural network-based machine learning algorithms, clustering
based algorithms [9–11] for efficient discrimination of text lines from non-text
objects. A multi-scale kernel based approach [12] where multi directional filter is
used on the image to determine foreground intensity and generates a scale
map. From this scale map, different shape, colour and texture-based features have
been extracted and fed into different classifiers to distinguish text components from
background and other regions. Also, HOG-based approaches [13] have been used
for localization of text components.

Dalal et al. [14] proposed a histogram based on different orientation of gradient
(HOG) for human detection. Minetto et al. [15] proposed an advanced texture-based
HOG (T-HOG) descriptor for detecting single line text. In recent times, HOG has
been implemented using co-occurrence matrix (CO-HOG) for multilingual char-
acter recognition [16]. Though this approach is not fully accurate for images where
texts are hard to segment also time complexity of this algorithm is a constraint.
Local binary pattern (LBP) is another efficient texture descriptor proposed by Ojala
et al. [17]. Later, Multi-Scale LBP (MS-LBP) is used which is an extended version
of LBP [18]. Wavelet transform, discrete cosine transform (DCT), Fourier trans-
form descriptor have been extensively used for texture analysis for component
classification [19, 20].

Feature extraction is one of the most important phases of text information
extraction (TIE). Choosing discriminating and scale invariant features leads to
better result for classifying text and non-text components. CC-based method uses
bottom-up approach by merging all small foreground components to get larger
components until all possible regions of the image get identified. In CC-based
method after component extraction, non-text components need to prune out by
applying discriminating, scale invariant, rotation invariant features computed from
foreground components [21, 22].

Song et al. [23] designed a text extraction model based on K-means clustering
algorithm where first multi-scale technique is applied to localize the text compo-
nents and then, colour-based K-means clustering algorithm has been applied for
character segmentation step. Colour image segmentation is much more suitable
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compared to conventional greyscale image segmentation for extracting text regions
from natural scene images. Chen et al. [24] have developed an approach for
extracting text from natural scene images based on support vector regression
(SVR). They have extracted features from edge map, and then, support vector
regression model has been applied for final classification. Hao et al. [25] have used
some morphology-based features for detection of license plate from complex
background.

Though several approaches have been made till now, efficient and accurate text
detection from complex background is an unsolved problem. There are very few
works for real-time application for hand-held devices such as mobile phones and
other portable hand-held digital devices. In this paper, a novel text detection and
extraction scheme is presented for camera captured text images. The technique is
discussed in detail in Sect. 2, and experimental results are presented in Sect. 3.
Finally, conclusion is made in Sect. 4.

2 Present Work

At first, input images are converted into greyscale images using a weighted average
of red, green and blue channels as discussed in [26]. Then, reversed images are
converted into normal images and foreground components of such normal images
are segmented from their backgrounds. After that, various statistical features are
extracted from foreground objects and fed into a binary classifier for further clas-
sification as text components or non-text components.

2.1 Correction of Reverse Image

In normal cases, scene images containing text components are contrasting with
background, where text strokes are in darker side with light background, which
clearly separate text from background. But, in some images it has been observed
that background is relatively dark and text lines are light. These images are reverse
images. Such reverse images need to be converted into normal images. It has been
observed that for normal images global mean intensity is less than global median,
but in reverse image mean is greater than median of the image. By analysing this,
property reverse images are detected and corrected using Eq. 1.

f x, yð Þ= 255− f x, yð Þ, if μf >mf

f x, yð Þ, otherwise

�
ð1Þ

where μf denotes mean grey level intensity of input image denoted as ½f x, yð Þ�M×N
and mf denotes median value. Here if mean is greater than median, we just inverse
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the image to get the normal image; otherwise, the normal image is retained as usual
for further processing.

2.2 Foreground/Background Separation

Let p½i� denote the probability density of grey level i where i∈ ½0, 255� and
p i½ �∈ 0, 1½ �, as p i½ �=ni ̸ðM×NÞ, where ni is the number of pixels having grey level
i. Then, from this distribution, background mean intensity μBG is calculated using
Eq. 2.

∑
totsu

i = 0
p i½ �× i ð2Þ

where totsu denotes the Otsu threshold [27].
Then, adaptive parameter τ is generated using the expression given in Eq. 3. It

may be noted that τ∈ ½totsu, μBG� and the value of τ depends upon k. A pictorial
representation of mean background intensity μBGð Þ and mean foreground intensity
μFGð Þ, Otsu threshold totsuð Þ and τ is shown in Fig. 1.

τ= μBG − kðμBG − totsuÞ ð3Þ

where 0≤ k≤ 1. Although, τ, if considered a threshold may coarsely divide the
image into background and foreground, it is avoided as it may distort the fore-
ground object appearance in the foreground image. Instead, a seed s∈ ½τ, 255� is
chosen from around the boundary regions of the greyscale image and background
expansion is started from the seed using 8-connected neighbours. Two pixels p and
q are said to be neighbours if both p, q∈ τ, 255½ � and finally, a single background
connected component is formed and foreground components become isolated.

This approach has a potential advantage in protecting foreground objects from
being over segmented. Firstly pixels within a foreground region, having intensities
f x, yð Þ∈ ½τ, 255�, will not be included in the expanded background if they are

Fig. 1 Intensity range
computation for bimodal
background distribution of
text embedded image (grey
shade denotes background
intensities)
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enclosed by object pixels f x, yð Þ∈ ½0, τ− 1�. This leads to a great advantage in
proper segmentation of foreground objects. Examples are shown in Figs. 2b and 3b,
whereas if multiple seed points are chosen, foreground regions enclosed by object
pixels are lost as shown in Fig. 2c. Therefore, single seed is considered for this
stage.

Secondly, varying the value of k, background expansion strength may be con-
trolled. If k = 0, τ= μBG and if k = 1, τ= μotsu. So, selection of k plays an
important role in object isolation.

Foreground dilation and feature map generation Now, morphological dilation is
applied on foreground objects with X×Y mask for clear visibility by increasing the
degree of discrimination from background. Here, dimension of the kernel is
choosing in such a way that inter text line isolation will be high, but each character
of text lines will be connected more preciously which leads to better segmentation
of text components from background. The dilated image is considered as the feature
map from which each foreground component is extracted and feature extraction is
performed. It may be observed from Fig. 3c that in feature map, foreground objects
are clearly distinguishable from background area and feature map contains both text
and non-text components.

Fig. 2 Effect of region growing algorithm with varying number of seeds. a Sample image,
b image with background suppression for single seed point, c image with background suppression
for multiple seed points

Fig. 3 Foreground object isolation for a sample image: a normal text image, b isolated
foreground objects, c dilated foreground objects
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2.3 Component Feature Extraction

Foreground components extracted with connected component analysis are used for
extraction of various statistical features that characterize the textness of objects and
are potentially discriminating between text components (TC) and non-text com-
ponents (NC). Sample components are shown in Fig. 4. It may be noted that each
component is in greyscale at this stage.

However, there can be foreground components that contain both text and
non-text. These mixed components (MC) cannot be used for training a binary
classifier. Therefore, during trainings, MC’s are not considered.

In this work, we have computed several texture-based, shape-based,
region-based features for classifying these components as text component (TC) and
non-text component (NC). Extracted features are described below:

Normalized Aspect Ratio Let height and width of a component be h and w,
respectively. Then, normalized aspect ratio r is obtained as shown in Eq. 4. It has
been observed that values of aspect ratio significantly differ from text components
to non-text components in most of the cases.

Aspect Ratio ðrÞ= minðh, wÞ
maxðh, wÞ ð4Þ

where minðÞ and maxðÞ functions return the minimum and maximum of the
argument, respectively.

Circularity It is a shape-based feature and is defined as the ratio between com-
ponent perimeter and area. Perimeter (P) of an object is the number of pixel lies in

Fig. 4 Sample foreground component images: a–c text components, d–f non-text components,
g–i mixed mode components
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the boundary region called contour. Area (A) of a component is defined by the total
number of pixels present in the image. Mathematical expression is shown in Eq. 5.

Circularity =
P2

A
ð5Þ

Occupancy Ratio (OR) It is the ratio of total number of pixels present in the
object, i.e. area to the bounding box area. This ratio gives a measure of how much
space a given component occupies with respect to its bounding rectangle. For
non-text components, this ratio is too small or too large many a times. Mathematical
expression is shown in Eq. 6.

Occupancy ratio ðORÞ= Area ðComponentÞ
Area ðBounding BoxÞ ð6Þ

Transiency Normally, text lines are self-contrasting and transient in nature com-
pared to homogenous region. This feature signifies how transient text components
are. Transiency is computed using Eq. 7 [26].

TR = ∑ fðx, yÞj − fðx− 1, yÞj+ fðx, yÞj − fðx, y− 1Þj ð7Þ

It is one of the most important features for classifying TC and NC.

Horizontal Transition Density Transition from background to foreground or vice
versa is more in text region compared to non-text region. So, here, number of
horizontal transition along X-axis has been computed and divided by the
X-dimension of the component.

Vertical Transition Density Similarly, transition along Y-axis from background to
foreground and vice versa is also computed for component classification. It may be
noted that Otsu threshold is used for deciding transition in both the cases.

Energy It is a very important and discriminating feature for component classifi-
cation. Energy defines a measure of homogeneity of an image. Here, value of
energy is 1 mean’s all the pixels are having constant intensities. When energy value
decreases, it signifies that images are having different pixel intensities. Equation 8
shows the mathematical expression.

Energy= ∑
L− 1

i = 0
p½i�2 ð8Þ

where L is grey level intensity, p[i] = Probability density.
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Elongateness It is a shape-based feature. In this paper, it has been observed that
text components are significantly different from non-text components with respect
to elongation. Elongation is the ratio of component minor to the major axis that is
shown in Eq. 9. Here, major axis and minor axis of any component are calculated
using principle component analysis (PCA).

Elongateness =
Component minor axis
Component major axis

ð9Þ

2.4 Component Classification

After computing features of foreground components, the feature set is further fed
into a multi-layer Perceptron (MLP) having three layers—input layer, output layer
and hidden layer. The number of neurons at the input layer is the number of features
used, the number of neurons at the output layer is 2 and that of the hidden layer is
empirically chosen.

3 Experimental Result

Experiment has been carried out with a data set of 227 images captured by high
resolution camera shown in Fig. 5. Size and aspect ratio of images are not same.
A total 712 foreground components are extracted from these images, out of which
353 are text components, 262 are non-text components and 97 are mixed mode
components. So, the object segmentation accuracy is 0.8638 (for k = 0.65).

To train the MLP for component classifications, a TC’s and NC’s are labelled as
0 and 1, respectively. Then, the labelled set of TC’s and NC’s are divided into
training and test set in the ratio of 2:1. Mixed mode components are not considered
for classification. As the text/non-text separation is a binary classification, the
number of true positive (TP), true negative (TN), false positive (FP) and false
negative (FN) is measured with the help of labelled components and classified
components. Then, F-Measure (FM) is measured using Precision (P) and Recall
(R) as shown in Eq. 10.

F M=
2×P×R
P+R

ð10Þ

where R= TP
TP+FN and P= TP

TP+FP.
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The accuracy of classification of text and non-text components is also computed
by these parameters. The formula for computing accuracy is shown in Eq. 11.

accuracy =
TP+TN

TP+TN+FP+FN
ð11Þ

The overall accuracy of component classification is measured as the product of
object segmentation accuracy and component classification accuracy.

After calculating all the above statistical parameters, final quantitative result is
shown in Table 1.

Precision defines how many classified text components are relevant, and Recall
defines how many relevant components are correctly classified. It may be observed
that the obtained result of Precision and Recall are quite high and Recall rate is
higher than Precision rate.

It may be noticed from Fig. 6 that some components are wrongly classified.

Fig. 5 Successfully classified sample images (text components are marked by bounding box)

Table 1 Quantitative analysis by statistical measurement

Recall (R) Precision (P) F-Measure (FM) Accuracy Overall accuracy
0.9801 0.9637 0.9718 0.9648 0.8332
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4 Conclusion

In this paper, a text region extraction scheme has been presented for camera cap-
tured text images by foreground object segmentation and component classification
using various statistical features. Present work mainly focussed on various types of
camera captured images for detecting text components. We have obtained object
segmentation accuracy of 0.8638 and component classification accuracy of 0.9648.
So, the overall text extraction accuracy is 0.8332. It may be stated that although,
component classification accuracy is quite high, overall accuracy comes down due
to relatively less segmentation accuracy. While component features are very strong,
segmentation needs to be improved. However, for images with near homogenous
background, current system works reasonably satisfactory for practical applications.
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Video Inpainting Based on Re-weighted
Tensor Decomposition

Anjali Ravindran, M. Baburaj and Sudhish N. George

Abstract Video inpainting is the process of improving the information content

in a video by removing irrelevant video objects and restoring lost or deteriorated

parts utilizing the spatiotemporal features that are available from adjacent frames.

This paper proposes an effective video inpainting technique utilizing the multi-

dimensional data decomposition technique. In Tensor Robust Principal Component

Analysis (TRPCA), a multi-dimensional data corrupted by gross errors is decom-

posed into a low multi-rank component and a sparse component. The proposed

method employs an improved version of TRPCA called Re-weighted low-rank Ten-

sor Decomposition (RWTD) to separate the true information and the irrelevant

sparse components in a video. Through this, manual identification of the compo-

nents which have to be removed is avoided. Subsequent inpainting algorithm fills

the region with appropriate and visually plausible data. The capabilities of the pro-

posed method are validated by applying into videos having moving sparse outliers in

it. The experimental results reveal that the proposed method performs well compared

with other techniques.

Keywords Video inpainting ⋅ Tensor decomposition ⋅ Sparsity ⋅ Low-rank tensor

recovery
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1 Introduction

Inpainting is a major technique used for restoring missing or defected regions in data

(images or videos), by utilizing the available information. Unlike images, in videos,

temporal as well as spatial information is available for inpainting. The objective of

video inpainting techniques is to maintain the visual coherence throughout the video

while inpainting. Video inpainting [1] has a wide range of applications like video

modification for privacy protection [2], film restoration [3], red-eye removal [4],

multimedia editing and visualization [5]. Video inpainting approaches can generally

be classified into patch-based and object-based approaches. Patch-based inpainting

methods work well in images, but are less effective in videos, due to the difficulty in

handling spatial and temporal continuity.

Bertalmio et al. [6] proposed an inpainting technique, which relies on Partial Dif-

ferential Equations (PDEs), fluid dynamics, and Stoke’s theorem to transport the

inpainting information into the region. But it cannot reproduce large textured regions

adequately. Yan et al. [7] proposed a texture synthesis-based inpainting approach

for removing logos from video clips. But it cannot handle natural scenes effectively.

Newson et al. [8] proposed a patch-based inpainting which searches for the nearest

neighbors of the occluded pixel patches, and the aggregate information was used

for inpainting. Umeda et al. in [3] introduced a video inpainting technique which

utilizes directional median filtering along with spatiotemporal, exemplar-based

inpainting in order to fill the missing areas in a more effective way. It requires a

threshold value to be set to determine whether the median filter has to be applied

or not. Timothy et al. [9] proposed a patch-based video inpainting method which

considers only a single object at a time for inpainting process. This makes the pro-

cess a time-consuming operation. Venkatesh et al. [10] proposed an object-based

inpainting which relies on dictionary learning for the foreground–background seg-

mentation. In [11], Kumar et al. proposed a moving text line detection and extraction

technique based on edge and connected component detection.

Multi-dimensional data also called tensor affected by outliers can be decomposed

into low-rank and sparse components [12]. Kilmer et al. [13] proposed a tensor

decomposition scheme based on tensor SVD (t-SVD). Here, tubal rank for low-rank

tensor recovery is replaced with the tensor nuclear norm. This makes the non-convex

problem a convex one. Lu et al. [12] proposed a Tensor Robust Principal Compo-

nent Analysis (TRPCA) technique which is an elegant tensor extension of RPCA.

Baburaj et al. [14] proposed an improved form of TRPCA called Re-weighted low-

rank Tensor Decomposition (RWTD) by applying re-weighted techniques.

In this paper, we propose a video inpainting technique assuming that the irrele-

vant component in it is sparse. Video is decomposed into sparse and low-rank com-

ponents using RWTD [14], and irrelevant sparse components are identified. These

identified sparse components are replaced by appropriate data from low-rank com-

ponents. Effectiveness of the technique is illustrated by applying it for the moving

sparse outlier removal in a set of synthetic videos.
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The organization of the rest of the paper is as follows: Sect. 2 gives a brief intro-

duction about the tensors and basic operations on it. In Sect. 3, the proposed method

and decomposition algorithm are explained in detail. An evaluation of the perfor-

mance of our method is given in Sect. 4. Conclusions are drawn in the Sect. 5.

2 Preliminaries on Tensor and Notations

Throughout this paper, we use Euler script, e.g., to denote tensors; bold face capital

letters, e.g., 𝐌 for matrices; bold lower-case letters, e.g., 𝐯 for vectors; and lower-

case letters, e.g., k for scalars.

A tensor is a multi-dimensional array of data [15–17] in the field of real numbers,

i.e., ℝn1×n2×…nN . Vectors are referred to as first-order tensors, matrices as second-

order tensors, and multi-dimensional data of order three or above is called higher-

order tensors.

Tensor slices are matrices obtained from the tensor by keeping all, except two

indices constant [16]. For example, for an order-3 tensor, (k, ∶, ∶) denotes kth hor-

izontal, (∶, k, ∶) denotes kth lateral, and (∶, ∶, k) denotes kth frontal slices. The

kth frontal slices of  can be compactly represented as 𝐀(k)
. Tensor fibers are vec-

tors obtained from the tensor by keeping all, except one index constant. The notations

(∶, i, j), (i, ∶, j), and (i, j, ∶) are used to represent mode-1, mode-2 and mode-3

fibers, respectively. For  ∈ ℝn1×n2×n3 , fft(⋅) of  along third dimension, denoted by

f , is given by f = fft (, 3). Unfold operation on  ∈ ℝn1×n2×n3 gives a block

n1n3 × n2 matrix, whereas the fold command does the reverse operation. As men-

tioned in [13] and [16], the five block-based operations needed to implement a third-

order tensor multiplication are defined as follows,

bcirc() =
⎡
⎢
⎢
⎢
⎣

(1) (n3) … (2)

(2) (1) … (3)

⋮ ⋮ ⋮ ⋮
(n3) (n3−1) … (1)

⎤
⎥
⎥
⎥
⎦

(1)

unfold() =
⎡
⎢
⎢
⎢
⎣

(1)

(2)

⋮
(n3)

⎤
⎥
⎥
⎥
⎦

, fold(unfold()) =  (2)

bdiag() =
⎡
⎢
⎢
⎣

(1)

⋱
(n3)

⎤
⎥
⎥
⎦

, fold(bdiag()) =  (3)
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Definition 1 (Tensor Transpose) For a third-order tensor  ∈ ℝn1×n2×n3 , to obtain

the transpose T ∈ ℝn2×n1×n3 , each frontal slice of  is transposed first and the order

of the transposed frontal slices are reversed 2 through n3. For example, let  = T

then

𝐁(1) = 𝐀(1)T

𝐁(k) = 𝐀(n3−k+2)T
, k = 2, 3, ..., n3

(4)

Definition 2 (Identity Tensor) A tensor  ∈ ℝn1×n1×n3 is said to be an identity tensor

if its first frontal slice is an n1 × n1 identity matrix and all other slices are zeros.

Definition 3 (f -diagonal Tensor) If each frontal slice of a tensor is a diagonal

matrix, then the tensor is said to be f -diagonal.

Definition 4 (t-product) The product of two tensors,  ∈ ℝn1×n2×n3 and

 ∈ ℝn2×n4×n3 , is defined as,

 =  ∗  = fold(bcir()unfold()),
 ∈ ℝn1×n4×n3 (5)

(i, j, ∶) =
n3∑

k=1
(i, k, ∶)⊛ (k, j, ∶) (6)


(k)
f = 

(k)
f 

(k)
f , k = 1,… , n3 (7)

Definition 5 (Orthogonal Tensor) The tensor  ∈ ℝn1×n1×n3 is orthogonal if


T ∗  =  ∗ 

T =  (8)

Definition 6 (Unitary Tensor) The tensor  ∈ ℝn1×n2×n3 is unitary if


T ∗  =  ∗ 

T = n (9)

where n ∈ ℝ

Definition 7 (Tensor Singular Value Decomposition (t-SVD)) The singular value

decomposition of a tensor  ∈ ℝn1×n2×n3 , is given by,

 =  ∗ Σ ∗ 
T

(10)

Here,  is a unitary tensor of size n1 × n1 × n3,  is another unitary tensor having

size n2 × n2 × n3, and Σ is f -diagonal tensor of size n1 × n2 × n3. Computation of

matrix SVDs in the Fourier domain provides the t-SVD [12].
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Definition 8 (Tensor Multi-rank and Tubal Rank) A vector r in ℝn3 whose ith ele-

ment is equal to the rank of ith frontal slice of a tensor  ∈ ℝn1×n2×n3 is called the

multi-rank of . The tubal rank rt is defined as largest rank of all frontal slices of 

or rt = max(r).
Definition 9 (Tensor Nuclear Norm) For a tensor  ∈ ℝn1×n2×n3 , the tensor nuclear

norm is given by,

⇑⇑⇑⇑
⇑⇑⇑⇑
⊛

=
n3∑

k=1

min(n1,n2)∑

i=1
|Σf (i, i, k)| (11)

Definition 10 (Weighted Tensor Nuclear Norm) Let  ∈ ℝn1×n2×n3 and let  ∈
ℝn1×n2×n3 be a weight tensor and Σf (i, j, k) ∈ ℝn1×n2×n3 be the singular value ten-

sor of , then the Weighted Tensor Nuclear Norm (WTNN) operator WNN(.) ∶
ℝn1×n2×n3 → ℝ is defined as,

∥  ∥
⊛

=
n3∑

k=1

min(n1,n2)∑

i=1
(i, i, k)|Σf (i, i, k)| (12)

3 Proposed Method

Video inpainting refers to the process of filling the undesired or removed parts of

a video with appropriate data available from adjacent frames. Videos are generally

considered as a multi-dimensional array (tensor) of order 3.

The proposed inpainting method is based on the assumption that the insignificant

moving sparse outliers in the video, which has to be removed and inpainted, is sparse.

A low-rank sparse decomposition decomposes such video into a low-rank component

which consists of true data and a sparse component which consists of the moving

sparse outliers. Since videos are third-order tensors, a matricization process has to

be done prior to the matrix decomposition which may sometimes cause information

loss. So, a tensor decomposition technique will be more effective compared to matrix

decomposition.

Tensor decomposition, in general, refers to the recovery of a low multi-rank tensor

from sparsely corrupted ones [12]. It assumes that if a tensor  ∈ ℝn1×n2×n3 having

sparse noise is given, then it can be decomposed into low multi-rank  ∈ ℝn1×n2×n3

and sparse  ∈ ℝn1×n2×n3 components such that some incoherence conditions [18]

are satisfied. Similar to matrix decomposition, tensor decomposition employs the

Alternating Direction Method of Multipliers (ADMMs) [12] approach which solves

the optimization problem serially. The non-convex optimization problem for tensor

decomposition is given by,

min
,

rank() + 𝜆

⇑⇑⇑⇑
⇑⇑⇑⇑0 such that  =  +  (13)
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where 𝜆 is the regularization parameter and ∥ ⋅ ∥0 is the l0 norm. Non-convex prob-

lems do not possess a single local minimum. Hence, the above problem is NP hard.

The convex optimization problem corresponding to (13) is given by,

min
,

⇑⇑⇑⇑
⇑⇑⇑⇑
⊛

+ 𝜆

⇑⇑⇑⇑
⇑⇑⇑⇑1 such that  =  +  (14)

where ∥ ⋅ ∥
⊛

denotes the tensor nuclear norm and ∥ ⋅ ∥1 is the l1 norm. But this

method suffers a lot when the tensor becomes complicated or when too many error

samples are present. To account this, an enhanced decomposition technique called

Re-weighted Tensor Decomposition (RWTD) is used. RWTD encompasses a spar-

sity enhancement technique through re-weighted norms. Re-weighted tensor decom-

position [14] can be expressed as,

min
,

n3∑

k=1

min(n1,n2)∑

i=1
(i, i, k)|Σf (i, i, k)| + 𝜆

⇑⇑⇑⇑⇑ ⊙ 
⇑⇑⇑⇑⇑1

such that  =  +  (15)

where  and  are weights of the singular values of  and entries of  , respec-

tively. Σf (i, j, k) denotes the singular values of  and ⊙ denotes standard Hadamard

product. The weighted nuclear norm and weighted l1 norm provide more closer

approximations of rank and l0 norm [14]. Using Definition 10, Eq. (15) can be

expressed in a simplified form as,

min
,

∥  ∥
⊛

+𝜆⇑⇑⇑⇑⇑ ⊙ 
⇑⇑⇑⇑⇑1

such that  =  +  (16)

Alternating Direction Method of Multipliers (ADMM) [19, 20] can be applied to

solve this optimization problem.

Given the original video with sparse outliers  ∈ ℝn1×n2×n3 , RWTD [14] splits

the video into a low-rank component  ∈ ℝn1×n2×n3 and a sparse component  ∈
ℝn1×n2×n3 . The moving sparse outliers are obtained here as the sparse component.

The RWTD decomposition is illustrated in Fig. 1. This sparse component undergoes

a thresholding operation to create an index set of insignificant pixels, 𝛺.

𝛺(i, j, k) =

{
1, if S(i, j, k) > 𝜏

0, otherwise
(17)

where 𝜏 is an appropriate threshold, having value between 0 and 1.

The projection of  onto 𝛺, which is denoted by 
𝛺

(), in conjunction with the
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Fig. 1 Illustration of low-rank sparse decomposition of tensors

Algorithm 1: Proposed Video Inpainting Algorithm

Input: Observed Data  ∈ ℝn1×n2×n3

Output: Inpainted Data

1 , , ∈ ℝn1×n2×n3

2 min, ∥  ∥
⊛

+𝜆⇑⇑⇑⇑⇑ ⊙ 
⇑⇑⇑⇑⇑1 , such that  =  + 

3 Find index set of unwanted pixels. 𝛺(i, j, k) =

{
1, if S(i, j, k) > 𝜏

0, otherwise

4 Find 
𝛺

() =

{
(i, j, k) if (i, j, k) ∈ 𝛺

0 if (i, j, k) ∉ 𝛺

5 Find 
𝛺

⟂ () =

{
0 if (i, j, k) ∈ 𝛺

(i, j, k) if (i, j, k) ∉ 𝛺

6 Inpainted result,  = 
𝛺

() + 
𝛺

⟂ ()
7 return 

orthogonal projection of  onto 𝛺 denoted by 
𝛺

⟂ () is used for the inpainting

process. The simple projection operator 
𝛺

() is defined as,


𝛺

() (i, j, k) =

{
(i, j, k) if (i, j, k) ∈ 𝛺

0 if (i, j, k) ∉ 𝛺

(18)

and its complementary projection 
𝛺

⟂ () is defined as,


𝛺

⟂ () (i, j, k) =

{
0 if (i, j, k) ∈ 𝛺

(i, j, k) if (i, j, k) ∉ 𝛺

(19)

Final inpainted tensor  is obtained as,

 = 
𝛺

() + 
𝛺

⟂ () (20)
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Along with the decomposition step, inpainting accuracy and the resulting visual

plausibility are greatly dependent on these projections. The whole inpainting algo-

rithm is given in Algorithm 1.

4 Results

The performance of the proposed method has been evaluated in terms of its visual

quality. Experiments were conducted on 64-bit processor having 2 GHz processor

speed, and we have used R2015a version of MATLAB.

We have used a set of videos, each having 25 frames of frame size 144 × 176

which are available online [23]. Moving sparse outliers for different combinations

of size and direction of motion were created separately in MATLAB and were added

with the videos in the dataset which in turn causes an increment in the rank of the

video. Diagonal, vertical, and horizontal motions were considered for each outlier

size. Figure 2 shows the results for the proposed video inpainting method. The videos

‘Hall’ and ‘Container’ are having less background motions. So the proposed algo-

rithm provides better results in these videos. The videos ‘Highway’ and ‘Coastguard’

with limited background motions also provide moderate results for all the sparse

outlier-motion combinations. ‘Soccer’ and ‘Bus’ are the videos recorded by non-

stationary cameras, so the results are lightly degraded.

An error metric was computed for each inpainted video to evaluate how much

closer the inpainted result is to the original video without moving sparse outliers.

The error metric used here for evaluation is,

Fig. 2 Inpainting results of four videos. a Original video frames with moving sparse outliers,

results obtained through b TRPCA, c NNTF, d LRR, e TD, and f our method
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Table 1 Inverse Relative Squared Error (IRSE) in dB for the inpainted videos for sparse outliers

of different sizes and movements

Video Method used Outlier size and movement

Small,

vertical

Large,

vertical

Small,

diagonal

Large,

diagonal

Small,

random

Large,

random

Hall TRPCA [12] 27.56 27.68 27.69 25.97 27.67 28.01

LRR [21] 30.77 27.14 30.31 29.62 30.41 30.21

TD [15] 30.78 27.76 30.31 29.64 30.39 30.23

NNTF [22] 23.49 16.40 23.80 22.68 23.74 22.78

Proposed 35.55 36.47 36.21 34.23 35.67 35.86
Container TRPCA [12] 21.76 22.82 22.83 22.48 22.81 21.96

LRR [21] 29.35 26.27 29.57 29.06 29.51 28.98

TD [15] 29.34 26.81 29.56 29.05 29.47 28.96

NNTF [22] 23.62 15.70 23.95 22.43 23.97 22.10

Proposed 31.41 31.76 31.74 31.46 31.62 31.63
Highway TRPCA [12] 26.29 26.26 26.27 25.70 26.23 26.26

LRR [21] 30.37 27.62 30.38 29.95 30.41 30.08

TD [15] 28.37 27.96 30.39 29.97 30.42 28.10

NNTF [22] 24.96 18.00 27.14 24.41 27.00 24.39

Proposed 30.95 31.92 31.28 31.11 31.75 30.62
Coastguard TRPCA [12] 21.96 21.95 21.95 21.74 21.87 21.80

LRR [21] 23.49 22.63 23.38 23.39 23.29 23.50

TD [15] 23.31 22.78 23.19 23.26 23.20 23.32

NNTF [22] 22.14 15.34 23.06 20.93 23.19 20.91

Proposed 31.89 32.20 32.25 26.56 31.75 32.58
Soccer TRPCA [12] 19.64 19.71 19.30 19.58 19.56 21.58

LRR [21] 18.78 18.86 18.58 18.59 18.60 18.66

TD [15] 18.54 18.73 18.31 18.39 18.32 18.47

NNTF [22] 19.87 14.68 19.96 19.42 20.05 19.49

Proposed 26.39 24.55 26.63 26.70 26.07 25.99
Bus TRPCA [12] 15.42 15.35 15.38 15.43 15.38 14.77

LRR [21] 16.16 12.51 16.33 16.04 16.29 15.98

TD [15] 12.41 12.65 12.31 12.51 12.30 12.49

NNTF [22] 14.20 10.87 14.21 14.04 14.16 14.06

Proposed 18.58 18.00 18.59 20.17 18.62 18.58

Error =
⇑⇑⇑⇑ − 

⇑⇑⇑⇑F
⇑⇑⇑⇑

⇑⇑⇑⇑F
(21)

where  is the inpainted output,  is the original video without sparse outliers,

and ∥ ⋅ ∥F denotes the Frobenius norm. It can be expressed as the Inverse Relative

Squared Error (iRSE) in decibel as,
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Fig. 3 Illustration of inverse relative squared error for inpainted videos with large, vertically mov-

ing sparse outliers

iRSE(in dB) = −20log10
⇑⇑⇑⇑ − 

⇑⇑⇑⇑F
⇑⇑⇑⇑

⇑⇑⇑⇑F
(22)

In order to evaluate the effectiveness of the tensor decomposition step, we com-

pared RWTD used here with some other tensor decomposition techniques [24]

like Tensor Robust Principal Component Analysis (TRPCA), a Low-Rank Recov-

ery (LRR) method using Linearized Alternating Direction Method with Adaptive

Penalty [21], a Tensor Decomposition (TD) using Alternating Direction Augmented

Fig. 4 Illustration of inverse relative squared error for inpainted videos with small, randomly mov-

ing sparse outliers
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Lagrangian method [15], and a Nonnegative Tensor Factorisation (NNTF) [22]

method. We present an evaluation of the results in Table 1. Figure 2 shows the

result of inpainting through various tensor decomposition methods. It can be clearly

observed that use of RWTD provides better inpainting results than other decomposi-

tion techniques. The inpainting results comparison for large, vertically moving sparse

outliers and small, randomly moving sparse outliers are pictorially represented in

Figs. 3 and 4 respectively.

5 Conclusion

In this paper, an efficient inpainting method for the moving sparse outliers removal in

videos in a visually plausible way is implemented. Re-weighted tensor decomposi-

tion technique is used to obtain accurate video inpainting. This inpainting technique

is applicable in the areas where irrelevant text lines scrolling through the frame in

the TV channels can be removed. The proposed method was tested on a number of

videos with various background and sparse outlier movements and has been found

to outperform all other methods obtained by replacing RWTD with other decompo-

sition techniques.
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Deep Convolutional Neural Network
for Person Re-identification:
A Comprehensive Review

Harendra Chahar and Neeta Nain

Abstract In video surveillance, person re-identification (re-id) is a popular tech-

nique to automatically finding whether a person has been already seen in a group of

cameras. In the recent years, availability of large-scale datasets, the deep learning-

based approaches have made significant improvement in the accuracy over the years

as compared to hand-crafted approaches. In this paper, we have distinguished the

person re-id approaches into two categories, i.e., image-based and video-based

approaches; deep learning approaches are reviewed in both categories. This paper

contains the brief survey of deep learning approaches on both image and video per-

son re-id datasets. We have also presented the current ongoing works, issues, and

future directions in large-scale datasets.

Keywords Person re-identification ⋅ Convolutional neural network ⋅ Open-world

person re-identification

1 Introduction

The definition of re-identification is introduced in [1] as follows: “To re-identify a

particular subject, then, is to identify it as numerically the same particular subject as

one encountered on a previous instance”. In video surveillance, person identification

is defined as whether the same person has been already observed at another place by

different cameras. This person re-identification task is used for the safety purpose

at public place, distributed large networks of cameras in public-parks, streets and

university campuses, etc. It is very strenuous for human to manually monitor video

surveillance systems to accurately and efficiently finding a probe or to track a person
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Fig. 1 Typical examples of pedestrians shot by different cameras. Each column corresponds to

one person. Huge variations due to the light, pose, and viewpoint changes

across a group of cameras. A person re-id system can be divided into three parts,

i.e., person detection, person tracking, and person retrieval. In this survey, person

retrieval part is defined as person re-identification. In computer vision field, matching

accurately two images of the same person under intensive appearance changes, such

as lighting, pose, occlusion, background clutter, and viewpoint, is the most challeng-

ing problems for re-id system depicted in Fig. 1. Given its significance in research

and real-world application problem, the re-id community is growing rapidly in recent

years.

Few person re-id surveys already exist [2–5]. In this survey, we mainly discuss

the vision part, which is also a focus in the computer vision community, another

difference from previous surveys is that we focus on different re-id subtasks currently

available or likely to be visible in the future, and special emphasis has been given

to deep learning methods for person re-identification and issues on very large-scale

person re-id datasets, which are currently popular topics or will be reflected in future

trends.

This paper is organized as follows: Sect. 2 introduces a brief history of person

re-id; Sect. 3 describes different kinds of deep learning approaches in image-based

person re-id systems. Section 4 presents deep learning approaches in video-based

person re-id systems. In Sect. 5, we present different open ongoing issues and future

directions on large-scale datasets. Conclusions have drawn in Sect. 6.

2 History of Person Re-id Systems

Person re-id research problem has started with multi-camera tracking in [6]. Later,

Huang and Russell [7] have proposed a Bayesian formulation to estimate the poste-

rior of predicting the appearance of objects in one camera given evidence observed

in other camera views. This appearance model combines multiple spatial-temporal

features like color, velocity, vehicle length, height, and width. More details of multi-

camera tracking are presented in [6].
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In 2005, Wojciech Zajdel et al. [8] have proposed a method to re-identify, wherein

a unique latent label is used for each person, and a dynamic Bayesian network is

defined to encode the probabilistic relationship between the labels and features from

the tracklets. Bayesian inference algorithm is used for determining the Id of incoming

person by computing posterior label distributions.

In 2010, authors in [9, 10] have proposed technique for multi-shot person re-

id. Color is a common feature used in both works, and in [10] authors additionally

employ a segmentation model to detect the foreground. Minimum distance among

bounding boxes in two image sets has been used for distance measurement, and

authors in [9] also use the Bhattacharyya distance for the color and generic epitome

features.

In 2014, Yi et al. [11] and Li et al. [12] have proposed a siamese neural network,

which is used to find whether a pair of input images belong to same subject. Since

then, this deep learning becomes a popular option in computer vision community for

person re-id.

3 Deep Learning-Based Person Re-identification on Image
Datasets

In 2006, Gheissari et al. [13] have proposed a method for person re-id based on using

single images. Consider a closed-world model scenario, where G is set of N images,

denoted as {gi}Ni=1 belongs to N different identities 1, 2, ...,N. For a query image q,

its identity is determined by:

i∗ = argmaxi∈1,2,...,Nsim(q, gi), (1)

where sim (, ) is a similarity function and i∗ is the identity of query image q.

In 2012, Krizhevsky et al. [14] won the ILSVRC’12 competition with a large mar-

gin by using convolutional neural network (CNN)-based deep learning model, since

then CNN-based deep learning models have been becoming popular. Two kinds of

CNN model, i.e., the classification model used in image classification [14] and object

detection [15], have been employed in the vision community. Since, these deep learn-

ing based CNN architecture requires the large number of training data. Therefore,

currently most of the CNN-based re-id methods are using the siamese model [11].

In [12], authors have proposed a CNN model to jointly handle misalignment, photo-

metric and geometric transforms, occlusions, and background clutter. In this model,

a patch matching layer is added which multiplies the convolution responses of two

images in different horizontal stripes and uses product to compute patch similarity

in similar latitude.

Improved siamese model has proposed by Ahmed et al. [16], wherein the cross-

input neighborhood dissimilarity features have computed, which are used to compare

the features from one input image to features in neighboring locations of the other
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Table 1 Statistics of image-based benchmark datasets for person re-id

Dataset Time #ID #Image #Camera Label

VIPeR [27] 2007 632 1264 2 Hand

iLIDS [28] 2009 119 476 2 Hand

GRID [29] 2009 250 1275 8 Hand

CUHK01 [30] 2012 971 3884 2 Hand

CUHK02 [31] 2013 1816 7264 10 Hand

CUHK03 [12] 2014 1467 13164 2 Hand/DPM

PRID 450S [32] 2014 450 900 2 Hand

Market-1501 [33] 2015 1501 32668 6 Hand/DPM

image. Varior et al. [17] have proposed a system based on a siamese network, which

uses long short-term memory (LSTM) modules. This module is used to store spatial

connection to enhance the discriminative ability of the deep features by sequential

access of image parts. In [18], authors have proposed a method to find effective

subtle patterns in testing of paired images fedded into the network by inserting a

gating function after each convolutional layer. In [19], siamese network has been

integrated with a soft attention-based model to adaptively focus on the important

local parts of paired input images. Cheng et al. [20] have proposed a triplet loss

function, which takes three images as input. After the first convolutional layer, each

image is partitioned into four overlapping body parts and fused with a global one in

the fully connected layer.

In [21], authors have been proposed a three-stage learning process for attribute

prediction based on an independent dataset and an attributes triplet loss function has

trained on datasets with id labels. In [22], training set consists of identities from mul-

tiple datasets and a softmax loss is used in the classification. This method provides

good accuracy on large datasets, such as PRW [23] and MARS [24] without careful

training sample selection. In [25], authors have proposed a method, wherein a single

Fisher vector [26] for each image has been constructed by using SIFT and color his-

tograms aggregation. Based on the input Fisher vectors, a fully connected network

has been build and linear discriminative analysis is used as an objective function

which provides high inter-class variance and low intra-class variance.

3.1 Accuracy on Different Datasets Over the Years

Different kinds of datasets have been released for image-based person re-id such

as VIPeR [27], GRID [29], iLIDS [28], CUHK01 [30], CUHK02 [31], CUHK03

[12], and Market-1501 [33]. The statistics about these datasets have been provided in

Table 1. From this table, we have observed that the size of datasets has been increased

over the years. As compared to earlier datasets, recent datasets, such as CUHK03
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and Market-1501, have over the 1000 subjects which is good amount for training the

deep learning models. Still, computer vision community is looking for large amount

of datasets to train the models because deep learning models fully depend on datasets

and provide good performance on larger datasets.

For the evaluation, the cumulative matching characteristics (CMC) curve and

mean average precision (mAP) are usually used in both image and video datasets for

person re-identification methods. CMC calculate the probability that a query image

appears in gallery datasets. No matter how many ground truth matches in the gallery,

only the first match is counted in the CMC calculation. If there exist multiple ground

truths in the gallery, then mean average precision (mAP) is used for evaluation, which

provides all the true matches belong in the gallery datasets to the query image.

From Table 2, we have observed that improvement in rank-1 accuracy on the dif-

ferent datasets VIPeR [27], CUHK01 [30], CUHK03 [12], PRID [32], iLIDS [28],

and Market-1501 [33] over the years. We have observed highest rank-1 accuracy on

Table 2 Rank-1 accuracy of different image-based person re-identification approaches based on

deep learning architecture on different datasets, i.e., (VIPeR, CUHK-01, CUHK-03, PRID, iLIDS,

and Market-1501)

Authors/year Evolution VIPeR

(%)

CUHK-01

(%)

CUHK-03

(%)

PRID

(%)

iLIDS

(%)

Market-

1501

(%)

D Y [34]

(2014)

CMC 28.23 – – – – –

Wei Li [12]

(2014)

CMC – 27.87 20.65 – – –

Ahmed [16]

(2015)

CMC 34.81 65.0 54.74 – – –

Shi-Zhe Chen

[35] (2016)

CMC 38.37 50.41 – – – –

Lin Wu [36]

(2016)

CMC/mAP – 71.14 64.80 – – 37.21

Xiao [22]

(2016)

CMC 38.6 66.6 75.33 64.0 64.6 –

Chi-Su [21]

(2016)

CMC/mAP 43.5 – – 22.6 – 39.4

Cheng [20]

(2016)

CMC 47.8 53.7 – 22.0 60.4 –

Hao Liu [19]

(2016)

CMC/mAP – 81.04 65.65 – – 48.24

Varior [17]

(2016)

CMC/mAP 42.4 – 57.3 – – 61.6

Varior [18]

(2016)

CMC/mAP 37.8 – 68.1 – – 65.88

Wang [37]

(2016)

CMC 35.76 71.80 52.17 – – –
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these datasets 47.8%, 81.04%, 75.33%, 64.0%, 64.6%, and 65.88% from these works

[18–20, 22], respectively. Except the VIPeR dataset, from the literature, we have

observed that deep learning methods provided new state of the art on remaining five

datasets as compared to hand-crafted person re-id systems. We have also observed

overwhelming advantage of deep learning [18, 22] on largest datasets CUHK03

and Market-1501 so far. The improvement in object detection and image classifi-

cation methods using deep learning in the next few years will also continuously

dominate person re-id community. We have also observed that rank-1 accuracy is

65.88% and mAP is 39.55% , which is quite low, on Market-1501 dataset. This

indicates that although it is relatively easy to find rank-1 accuracy, it is not trivial

to locate the hard positives and thus achieve a high recall (mAP). Therefore, there

is still much room for further improvement, especially when larger datasets are to

be released and important breakthroughs are to be expected in image-based person

re-id.

4 Deep Learning-Based Person Re-identification
on Video Datasets

In recent years, video-based person re-id has become popular due to the increased

data richness which induces more research possibilities. It shares a similar formula-

tion to image-based person re-id as Eq. 1. Video-based person re-id replaces images

q and g with two sets of bounding boxes {qi}
nq
i=1 and {gj}

ng
j=1, where nq and ng are the

number of bounding boxes within each video sequence, respectively.

The common difference between video-based and image-based person re-id is that

there are multiple images for each video sequence. Therefore, either a multi-match

strategy or a single-match strategy should be employed after video pooling. In the

previous works [9, 10], multi-match strategy has been used which requires higher

computational cost. This may lead to be problematic on large datasets. Alternatively,

a global vector has been constructed by aggregates frame-level features, which has

better scalability called as pooling-based methods. As a consequence, recent video-

based re-id methods generally use the pooling step. It can be either max/average

pooling as [24, 38] or learned by a fully connected layer [39].

In [24], authors have proposed a system which does not require to capture the

temporal information explicitly, wherein the images of subjects are used as its train-

ing samples to train a classification CNN model with softmax loss. Max pooling has

been used to aggregate the frame features which provided the competitive accuracy

on three datasets. Hence, these methods have been proven to be effective. Still, there

is room for improvement at this stage, and the person re-id community is looking to

take ideas from community of action/event recognition.

Fernando et al. [40] have proposed model which is used to capture frame features

generated over the time in a video sequence. Wang et al. [41] have proposed a model,
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wherein CNN model is embedded with a multi-level encoding layer and provides

video descriptors of different sequence lengths.

In recent works of [38, 39, 42], where appearance features such as color and

LBP are used as the starting point into recurrent neural networks to capture the time

flow between frames. In [38], authors have been proposed a model, wherein CNN is

used to extract features from consecutive video frames, after that these features are

fedded through a recurrent final layer. Max or average pooling is used to combine

features to produce an appearance feature for the video. In [42], authors have used

the similar architecture as [38] with miner difference. The special kind of recurrent

neural network, the gated recurrent unit, and an identification loss are used, which

provide loss convergence and improve the performance. Yan et al. [39] and Zheng

et al. [24] have proposed models which use the identification model to classify each

input video into their respective subjects, and hand-crafted low-level features (i.e.,

color and local binary pattern) are fed into many LSTMs. The output of these is

connected to a softmax layer. Wu et al. [43] have proposed a model to extract both

spatial-temporal and appearance features from a video. A hybrid network is build by

fusing these two types of features. From this survey, we may conclude that spatial-

temporal models and discriminative combination of appearance are efficient solution

in future video person re-id research community.

There exist many video-based person re-id datasets such as ETHZ [44], PRID-

2011 [46], 3DPES [45], iLIDS-VID [47], MARS [24]. The statistics about these

datasets have been provided in Table 3. The MARS dataset [24] was recently released

which is a large-scale video re-id dataset containing 1,261 identities in over 20,000

video sequences. From Table 4, we have observed highest Rank-1 accuracy on

iLIDS-VID and PRID-2011 datasets 58%, 70% respectively. Deep learning

Table 3 Statistics of video-based benchmark datasets for person re-id

Dataset Time #ID #Track #Bbox #Camera Label

ETHZ [44] 2007 148 148 8580 1 Hand

3DPES [45] 2011 200 1000 200 k 8 Hand

PRID-2011 [46] 2011 200 400 40 k 2 Hand

iLIDS-VID [47] 2014 300 600 44 k 2 Hand

MARS [24] 2016 1261 20715 1 M 6 DPM&GMMCP

Table 4 Rank-1 accuracy of different video-based person re-identification approaches based on

deep learning architecture on different datasets, i.e., iLIDS-VID and PRIQ-2011

Authors/year Evaluation iLIDS-VID (%) PRIQ-2011 (%)

Wu [42] CMC 46.1 69.0

Yan [39] CMC 49.3 58.2

McLaughlin [38] CMC 58 70
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methods are producing overwhelmingly superior accuracy in video-based person re-

id. On both the iLIDS-VID and PRID-2011 datasets, the best performing methods

are based on the convolutional neural network with optional insertion of a recurrent

neural network [38].

5 Currently Ongoing Underdeveloped Issues and Future
Directions

Annotating large-scale datasets has always been a focus in the computer vision com-

munity. This problem is even more challenging in person re-id, because apart from

drawing a bounding box of a pedestrian, one has to assign him an ID. ID assignment

is not trivial since a pedestrian may reenter the fields of view (FOV) or enter another

observation camera a long time after the pedestrians first appearance. In this survey,

we believe two alternative strategies can help bypass the data issue.

First, how to use annotations from tracking and detection datasets remains under-

explored. The second strategy is transfer learning that transfers a trained model from

the source to the target domain. Transferring CNN models to other re-id datasets can

be more difficult because the deep model provides a good fit to the source. Xiao et al.

[22] gather a number of source re-id datasets and jointly train a recognition model

for the target dataset. Hence, unsupervised transfer learning is still an open issue for

the deeply learned models.

The re-identification process can be viewed as a retrieval task, in which re-ranking

is an important step to improve the retrieval accuracy. It refers to the reordering of

the initial ranking result from which re-ranking knowledge can be discovered. For a

detailed survey of search re-ranking methods, re-ranking is still an open direction in

person re-id, while it has been extensively studied in instance retrieval.

We have observed that existing re-id works can be viewed as an identification task

described in Eq. 1. In the identification task, query subjects are assumed to exist in

the dataset and our aim is to determine the id of the query subject. On the other side,

study of open-world person re-id systems is person verification task. This verifica-

tion task is based on identification task described in Eq. 1 with one more constraint

sim(q, gi) > h, where h is the threshold. If this condition satisfies, then query sub-

ject q belongs to identity i∗; otherwise, subject q is determined as an outlier subject

which is not presented in the dataset, although i∗ is the first ranked subject in the

identification phase.

Only few works have been done on open-world person re-id systems. Zheng et al.

[48] have been designed a system which has dataset of several known subjects and

a number of probes. The aim of this work is to achieve low false target recognition

rate and high true target recognition. Liao et al. [49] have proposed a method which

has two phases, i.e., detection and identification. In the first phase, it finds whether

a probe subject is present in the dataset or not. In the second phase, it assigns an id

to the accepted probe subject.
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Open-world re-id still remains a challenging task as evidenced by the low recog-

nition rate under low false accept rate, as shown in [48, 49].

5.1 Person Re-id in Very Large Datasets

In recent years, the size of data has increased significantly in the re-id community,

which gives rise to community for use of deep learning approaches. However, it

is evident that available datasets are still far from a real-world problem. We have

observed that the largest dataset used in survey is 500 k [33], and evidence suggests

that mAP drops over 7% compared to Market-1501 with a 19 k dataset. Moreover,

in [33], approximate nearest neighbor search has used for fast retrieval with low

accuracy.

From both a research and an application perspective, person re-id in very large

datasets should be a critical direction in the future. There is also a need to design a

person re-id systems for highly crowded scenes, e.g., in a public rally or a traffic jam.

Therefore, there is a need to design an efficient method to improve both accuracy

and efficiency of the person re-id systems. We also have to design a person re-id

system which is robust and large-scale learning of descriptors and distance metrics.

As a consequence, training a global person re-id model with adaptation to various

illumination condition and camera location is a priority.

6 Conclusion

Person re-identification is gaining extensive interest in the modern scientific com-

munity. We have presented a history of person re-id systems. Then, deep learning

approaches have been discussed in both images and video-based datasets. We also

highlight some important open issues that may attract further attention from the com-

munity. They include solving the data volume issue, re-id re-ranking methods, and

open-world person re-id systems. The integration of discriminative feature learning,

detector/tracking optimization, and efficient data structures will lead to a successful

person re-identification system which we believe are necessary steps toward practical

systems.
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Flexible Threshold Visual Odometry
Algorithm Using Fuzzy Logics

Rahul Mahajan, P. Vivekananda Shanmuganathan, Vinod Karar
and Shashi Poddar

Abstract Visual odometry is a widely known art in the field of computer vision
used for the task of estimating rotation and translation between two consecutive
time instants. The RANSAC scheme used for outlier rejection incorporates a
constant threshold for selecting inliers. The selection of an optimum number of
inliers dispersed over the entire image is very important for accurate pose estima-
tion and is decided on the basis of inlier threshold. In this paper, the threshold for
inlier classification is adapted with the help of fuzzy logic scheme and varies with
the data dynamics. The fuzzy logic is designed with an assumption about the
maximum possible camera rotation that can be observed between consequent
frames. The proposed methodology has been applied on KITTI dataset, and a
comparison has been laid forth between adaptive RANSAC with and without using
fuzzy logic with an aim of imparting flexibility to visual odometry algorithm.

Keywords Visual odometry ⋅ RANSAC ⋅ Fuzzy logic ⋅ Navigation

1 Introduction

With the advancement in automation and mobile robotics, machine vision has
become an integral part of several industrial and commercial applications. Visual
odometry (VO) is one of the most important aspects of machine vision that aims at
computing the motion vector of any moving vehicle. The current vision-based
navigation scheme has its origin from the works done by Moravec [1],
Matthies-Shafer [2], and Lounguet-Higgins [3] in 1980s and has several new
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dimensions added to it since then. VO is a subset of the complex localization
problem solved in the widely known simultaneous localization and mapping
(SLAM) framework [4] and does not require to store features over frames. Several
approaches for performing VO have been presented over the years and are either
dense [5] or sparse [6, 7] in nature. The VO can be also classified on the kind of
camera used for capturing a scene [8, 9] or on the number of views used, that is,
monocular or stereo [10] or multi-view cameras. RGB-D cameras are also being
used for indoor odometry purposes [11] or where the scene is not very far away
from the camera [12].

In this work, a sparse feature-based technique has been used for estimating
motion through a grayscale stereo camera-based setup. A general VO pipeline
includes feature extraction, matching, triangulation, pose estimation, and optionally
refinement. A comparison among various feature descriptors used for feature
extraction, and matching techniques are given in [13, 14]. There are several tri-
angulation techniques of which the one proposed by Hartley is very popular and
used in this work [6]. Pose estimation (rotation and translation) in VO is performed
using two prominent schemes, that is, absolute orientation [15–17] and relative
orientation schemes [18]. In an absolute orientation scheme, the pose is estimated
by fitting an appropriate rotation and translation, which minimizes the corre-
sponding feature position error across stereo frames in 3D. The relative orientation
scheme does not require feature triangulation, but carries out matching over 2D
correspondences, estimating poses in a framework of perspective from
n-projections. At times, the pose estimated from either of the pose estimation
framework is refined using optimization subroutine, popularly known as bundle
adjustment techniques [19, 20]. The above framework of pose estimation has
several subroutines in which the error gets accumulated, which either may be in the
feature extraction, feature matching, or 3D triangulation process. These 3D trian-
gulated points are inclusive of outliers, which need to be segregated for achieving
accurate pose estimate.

Several outlier rejection schemes have been proposed in the literature over the
past few years like M-estimation [21], least median of squares [22], RANSAC [23],
and their several modifications. One of the most widely used approaches for han-
dling such uncertainties is referred as Random Sampling and Consensus (RANSAC)
and has been studied in much detail [24]. RANSAC is an outlier rejection scheme
which is used to improve the accuracy of VO [10, 13] or Visual SLAM [13]. Various
modifications have been proposed in the RANSAC algorithms to improve its effi-
ciency and comparisons of different classes have been provided in [24, 25]. In this
paper, the RANSAC scheme has been modified by applying fuzzy logic to choose its
inlier threshold. The RANSAC scheme used here requires three different points for
pose estimation and incorporates the absolute orientation scheme. The paper does
not claim any improvement in the working efficiency of RANSAC but shows an
improvement in the initial pose estimation made using the proposed method. The
later part of the paper is divided into different sections. In Sect. 2, the theoretical
background required for understanding the visual odometry pipeline is described for
ready reference. Section 3 contains the proposed methodology along with the need
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for using fuzzy logic and the entire fuzzy system design procedure. Section 4 pre-
sents the results and analysis of the proposed scheme, and the accuracy comparisons
are made with respect to the simple adaptive RANSAC scheme. Finally, Sect. 5
concludes the paper along with its future scope.

2 Theoretical Background

Visual odometry is a widely growing art that has started finding varying applica-
tions ranging from terrestrial navigation to unknown environment mapping. The
proposed scheme of fuzzy-based adaptive RANSAC for improving navigation
estimates requires several subroutines to be studied and implemented. This section
describes few of the mathematical preliminaries in brief for better and compre-
hensive understanding of the paper and is presented under following four
subsections.

2.1 Feature Extraction, Matching, and Selection

Feature-based visual odometry technique requires an extraction of features from the
2D image which are then converted into descriptors. Traditional feature detectors
like the ones proposed by Moravec [1] and Harris [26] were simple corner detectors
but did not ensure scale invariance. In order to overcome these problems, Lowe
et al. [27] proposed a scale-invariant feature descriptor (SIFT) which has undergone
several changes since then. Present-day feature detectors are described with the help
of descriptor which takes cues from the region around the feature point. An
improvement over the 128-length SIFT vector was proposed as speeded-up robust
feature (SURF) [28] and is used widely for computer vision tasks. These feature
descriptors are used to match features between two image frames. Grid-based
technique divides the complete 2D image into a grid of subimages from which a
finite number of features are selected, if available. This helps in improving the
robustness of the estimated pose and has been advocated in [29, 30].

2.2 Triangulation

The pose estimation task using absolute orientation scheme requires the matched
feature points to be triangulated to 3D space. Triangulation is a process of obtaining
the 3D position for a given 2D image point using the camera calibration (K) and the
projection matrix (P). One of the traditional mechanisms to obtain 3D point is to
back-propagate the rays originating from the 2D-matched feature points in the
stereo image and obtain the position where these two corresponding rays meet in
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3D space. However, owing to the presence of noise and error in previous steps,
these rays originating from the 2D image points generally do not intersect at a point.
This uncertainty has several reasons such as lens distortion, wrong correspondence
matching. There exist several mechanisms to reduce these effects of which the
direct linear transformation (DLT) technique proposed by Hartley and Sturm [31] is
very popular. Although several other optimal schemes for triangulation do exist, the
DLT has been used here for its simplicity.

2.3 Outlier Rejection

RANSAC is one of the most widely used outlier rejection scheme used in computer
vision applications. It works on hypothesized and verified manner by selecting a
subset of points and generating a model hypothesis. It then verifies the list of points
which are consistent in the entire dataset with the hypothesized model and classifies
them as inliers and the rest of the points as outliers. It hypothesizes for a few
numbers of times and chooses the hypothesis with maximum number of inliers. The
minimization function used for RANSAC is the feature position error given as

E= ∑
n

i=1
RXi + tð Þ−Yij jj j2 ð1Þ

Here, R and t denote rotation and translation, respectively, and, X and Y are the
n 3D point correspondences in consequent frames. In order to apply this RANSAC
scheme, the correct estimation of outlier percentage is needed beforehand. This
helps in calculating the maximum number of iterations for which the RANSAC
algorithm should be repeated in order to obtain a set with maximum inliers.
However, this outlier percentage is not known previously and cannot be predicted
accurately. Adaptive RANSAC [6] is one of the techniques which adapts this
parameter on the basis of varying outlier population and calculates the maximum
number of iterations required. The adaptive RANSAC has some added advantages
over the simple RANSAC algorithm for which it is preferred in this paper and are as
follows. Firstly, there is no need of assuming a rigid outlier probability for all the
frames beforehand. Secondly, more robust solution is obtained when the outlier
probability is more than assumed and has lesser computation when outlier proba-
bility is lesser than the assumed.

2.4 Pose Estimation

The 3D matched feature correspondences are passed through an outlier rejection
scheme, thus improving the robustness of estimated rotation and translation in pose
estimation scheme. This paper uses the absolute orientation scheme for pose

292 R. Mahajan et al.



estimation and incorporates the promising technique proposed by Umeyama [17].
The main goal of this scheme is to obtain the six degrees of freedom (3 rotation, 3
translation) between two subsequent 3D image point clouds. Umeyama’s method is
an improvement over the pose estimation scheme proposed by Horn [15] and Arun
et al. [16]. The pose estimation scheme applied here is briefly described in the
following steps and initiates with finding R which minimizes

∈ 2 =
1
n
∑
n

i=1
Y −RXk k2. ð2Þ

This is followed by estimating translation t as:

t= μy −Rμx. ð3Þ

Here, μx and μy are the centroids of the two 3D point clouds. The minimization
problem of the Eq. (2) is solved using the singular value decomposition. Calculate
centroids of the 3D point clouds

μx =
1
n
∑
n

i=1
Xi , μy =

1
n
∑n

i=1 Yi. ð4Þ

• Calculate the correlation matrix using

∑
xy

=
1
n
∑
n

i=1
Yi − μy
� �

Xi − μxð ÞT . ð5Þ

• Determining UDVT by the singular value decomposition of ∑
xy

∙ S=
I,

diag 1, 1, . . . , − 1ð Þ,
�

if det Uð Þ. det Vð Þ=1
if det Uð Þ. det Vð Þ= − 1

• Rotation, R is obtained as

R=USVT . ð6Þ

• And, translation, t is obtained as

t= μy −Rμx. ð7Þ
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The rotation and translation obtained using the above scheme are then used to
obtain the transformation matrix as:

T =

r11 r12 r13 tx
r21 r22 r23 ty
r31
0

r32
0

r33
0

tz
1

2
64

3
75 ð8Þ

Here rij and ti are the components of rotation matrix and translation matrix. The
rotation and translation are estimated in the camera coordinate frame and is then
converted into a world coordinate frame. The pose is simply a 3 × 4 matrix
stacking rotation and translation elements in the world coordinate frame given as
P= ½Rwjtw�. This transformation matrix is concatenated for generating path and
refining pose in some of the schemes. The bundle adjustment technique is not
discussed in detail here as it is not within the scope of this paper.

3 Proposed Methodology

The proposed scheme of fuzzy-aided visual odometry scheme has been applied to
the online available KITTI dataset. The KITTI dataset has been generated by
capturing consequent images from a stereo camera mounted on a car along with
other aiding sensors which help in generating the ground truth. In this work, the
absolute orientation scheme for pose estimation is used which minimizes the
position error of 3D triangulated point clouds. The feature extraction methodology
used here, that is, speeded-up robust features (SURF) scheme, is rotation and affine
invariant, robust to noise and has good repeatability in terms of extracted features.
Unlike traditional schemes, the proposed scheme applies grid-based feature selec-
tion for providing spatial variance to the feature space and improves pose estima-
tion [8, 30]. Figures 1 and 2 show the feature selection with and without the use of
the grid-based technique. It can be observed from Fig. 1 that the features are
concentrated in specific regions of the image while in Fig. 2, only a few of the
features are selected from each grid, providing importance to the weak features
lying in sparse regions as well. The features selected from different grids are then
triangulated using a direct linear transformation technique [6] and sent for pose
estimation framework.

Many a times developer faces situations where parameters such as inlier
threshold, the similarity matching threshold for feature point selection, etc., are
chosen by the developer and is solely a matter of developer’s experience. Hence,
the selection of these parameters and their optimization is a task of utmost
importance to provide robustness to the RANSAC algorithm [32]. A novice may
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experience great difficulty in selecting these parameter values, unless recommended
or obtained based on the environment. However, there always exists an ambiguity
in the parameter selection as there is no fine line that advocates selection of a
defined value. The main aim of this work is to induce flexibility in one of the many
parameter selection tasks, that is, the inlier selection threshold in RANSAC for the
visual odometry pipeline. The proposed scheme monitors rotation over consecutive
frames and triggers threshold selection on the basis of these inputs to the fuzzy
logic.

The proposed scheme of using fuzzy logic to estimate RANSAC threshold is a
novel approach and is found to improve the estimated motion accuracy. The
number of inliers increases with the increasing RANSAC threshold, allowing more
feature points to enter into the pose estimation framework. These 3D point clouds
have several outliers between two consecutive frames and need to be removed using
outlier rejection schemes as discussed in Sect. 2.3. The outlier rejection scheme,
RANSAC, needs a threshold for selecting inliers [6, 23, 33] which varies as per the
situation. It is important to have sufficient number of inliers dispersed over the
complete image to obtain better pose estimate.

It has been found empirically that a considerable variation in the number of
inliers is seen while the vehicle takes a turn. As the yaw angle of the vehicle
changes while the vehicle turns, the number of feature points extracted get reduced,

Fig. 2 Feature selection with grid-based feature selection

Fig. 1 Feature selection without grid-based feature selection
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which leads to lesser inliers with the same threshold. It is thus hypothesized here to
adapt the inlier threshold with the varying dynamics of the vehicle. Mamdani-type
fuzzy logic [34] is incorporated here to regulate this threshold which is used for
classifying correspondences as inliers. This fuzzy logic is a multiple-input
single-output (MISO) system for which the previous frame’s rotation and change
in rotation are the inputs and the output is the inlier threshold value. Both inputs,
‘rotations’ and ‘change in rotations,’ are defined using the fuzzy sets as: big neg-
ative (BN), small negative (SN), zero (ZE), small positive (SP), and big positive
(BP). The output, ‘inlier threshold,’ is classified as small (S), medium (M), large
(LA), larger (LR), and largest (LT) while the membership function used is trian-
gular. The fuzzy logic design for input parameters is shown in Figs. 3 and 4, and for
the output in Fig. 5. There are certain observations that were made before devel-
oping this fuzzy logic system. Some of the observations for the current problem are
as follows: (i) A variation of inliers is observed when RANSAC is performed over
the same data points in different runs, owing to its probabilistic nature; (ii) previous
frame’s rotation has direct relation to image blurriness and inversely proportional to
the number of feature matches; and (iii) structured environment leads to better
matching of features across frames than the unstructured scenes of tree and vege-
tation. The above observations have thus inspired certain assumptions for the fuzzy
logic design and are as follows: (i) At least 25 inliers are required to obtain a
reliable pose estimate; (ii) the vehicle tends to move in a direction in which it is
traveling and would not change its direction of travel abruptly from one frame to
another; (iii) higher the absolute rotation of the previous frame, higher is the
threshold value for RANSAC. The above observations and analysis have been used
to define limits for different fuzzy input sets and are defined separately for rotation
(R) and change in rotation (ΔR). The ranges for the fuzzy sets shown in Figs. 3, 4,
and 5 are selected empirically and can be modified by the designer. The main aim of
this paper is to demonstrate the effectiveness of using fuzzy logic to improve
estimated motion by modifying the RANSAC threshold.

The generalized rules for the fuzzy logic system designed here are as follows:
(i) If change in rotation is positive and the previous rotation is positive, threshold
increases, (ii) if change in rotation is negative and the previous rotation is positive,
threshold decreases, (iii) if change in rotation is positive and the previous rotation is

Fig. 3 Membership
functions for input ‘change in
rotation’
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negative, threshold decreases, and (iv) if change in rotation is negative and the
previous rotation is negative, threshold increases. Figure 6 below depicts mapping
of changing threshold with the fuzzy set selection, as per the input.

Fig. 4 Membership functions for input ‘previous frame’s rotation’

Fig. 5 Membership functions for output ‘threshold for RANSAC’

Fig. 6 Visual odometry results for sequence a and b in left and right, respectively

Flexible Threshold Visual Odometry Algorithm Using Fuzzy Logics 297



4 Results and Discussion

The algorithm developed here is used to estimate pose for the online available KITTI
visual odometry dataset. The odometry results obtained from the proposed method-
ology are compared with the ground truth data for testing and analysis. As seen, there
is an improvement in the pose estimation by applying fuzzy logic scheme to vary
RANSAC threshold. The fuzzy adaptive RANSAC for visual odometry (FARVO)
pipeline is compared to simple adaptive RANSAC. The odometry results of two of the
sequences along with their average translational and rotational errors are shown in
Fig. 6. Figure 6 depicts the estimated path using the proposed methodology (key:
black) along with the ground truth (key: blue) and an adaptive version of RANSAC
without fuzzy logic (key: red). The comparison between the estimated and ground
truth path is numerically carried out on the basis of average rotational and translational
errors. The evaluation metric [33] for error calculation is given as:

Erot Fð Þ= 1
jFj ∑

ði, jÞ∈F
∠½ðpĵ ⊖ p ̂lÞ⊖ ðpj ⊖ piÞ�. ð9Þ

Etrans Fð Þ= 1
jFj ∑

ði, jÞ∈F
ðpĵ ⊖ p ̂lÞ⊖ pj ⊖ pi

� ��� ��
2. ð10Þ

Here, F is a set of frames (i, j), p ̂ and p are estimated and true camera poses,
respectively, ⊖ denotes the inverse of standard motion composition operator, and
∠½.� denotes the rotation angle. The two datasets are selected such that one of them
shows several rotational changes in between while the other has fewer rotation
changes comparatively.

As seen, the trajectory obtained using FARVO pipeline could not be directly
commented regarding its performance as compared to the results obtained using
simple VO pipeline. Figures 7 and 8 provide numerical comparison between the

Fig. 7 Average rotational error for sequence a and b in left and right, respectively
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rotational and translational errors for sequence A and B as compared to ground
truth. It can be observed that the FARVO scheme performs better than the simple
adaptive RANSAC scheme which has constant inlier threshold at all the times
(Tables 1 and 2).

A further investigation has been carried out by applying the FARVO scheme on
different sequences provided in KITTI benchmark and is presented in Table 3.
Though an improvement in the pose estimation is observed using the fuzzy-aided
scheme, it does not necessarily improve the pose estimate at every instance. There
do exist some sequences which showed increase in average rotational error using
fuzzy-RANSAC algorithm also but a reduction in average translational error is

Fig. 8 Average translational error for sequence a and b in left and right, respectively

Table 1 Mapping of threshold change with fuzzy rule selection

Increase

Small Medium Large Larger Largest
Decrease

Table 2 Fuzzy rule base for adaptive RANSAC

ΔR Rotation (R)
Big negative Small negative Zero Small positive Big positive

Big negative Largest larger Larger Large Large
Small negative Larger Large Medium Medium Large
Zero Larger Medium Small Medium Larger
Small positive Large Medium Medium Large Larger
Big positive Large Large Larger Larger Largest
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observed for all the training sequences. Though the results are not very accurate as
compared to the ground truth, this paper embarks upon the usage of fuzzy logic for
design of a flexible visual odometry algorithm which is free of rigid threshold and
adapts according to the previous motion history.

5 Conclusion and Future Scope

RANSAC is a widely used outlier rejection scheme in computer vision applications
like homography computation and pose estimation. It is used to segregate inliers
and outliers from a set of data based on mathematical hypothesis. In this paper, the
fuzzy logic design has been proposed to reduce dependency on the rigid threshold
for extracting inliers in the RANSAC loop. The paper has implemented an adaptive
RANSAC and a 3D-to-3D motion estimation scheme to estimate rotation and
translation between two image frames. The proposed methodology of fuzzy-aided
RANSAC is found to reduce the translation error for most of the cases and as
compared to the simple adaptive RANSAC scheme. The rationale of choosing
fuzzy logic for threshold adaptation is its ability to provide a solution in a lesser
known environment. It has also been found in the literature that there does not exist
any well-defined relation for the yaw movement undergone by the agent and its
effect on the inliers. Thus, this research gap has been addressed in this work with
the help of a non-learning-type control mechanism. In future, the proposed scheme
would be applied for 2D-3D and 2D-2D motion estimation schemes along with
terrain information to improve threshold adaptation mechanism for known
environments.

Table 3 Average rotational and translational errors

Sl. no. Average
rotational error
using adaptive
RANSAC
(degree/m)

Average
rotational error
using FARVO
(degree/m)

Average translational
error using adaptive
RANSAC (% error)

Average
translational
error using
FARVO
(% error)

1 0.190029 0.183659 14.08384 9.45367
2 0.216545 0.202576 19.51388 14.52276
3 0.16172 0.151493 13.18257 8.268767
4 0.144733 0.147414 31.33495 18.65981
5 0.172694 0.16538 14.97984 11.14408
6 0.150165 0.14178 18.18112 10.9517
7 0.186957 0.177638 11.97847 8.323461
8 0.190529 0.187746 16.13237 11.79259
9 0.167662 0.188933 21.69584 17.71804
10 0.237451 0.233538 16.68511 11.03329

300 R. Mahajan et al.



References

1. Moravec, H.P., Obstacle avoidance and navigation in the real world by a seeing robot rover.
1980, DTIC Document.

2. Matthies, L. and S. Shafer, Error modeling in stereo navigation. IEEE Journal on Robotics and
Automation, 1987. 3(3): p. 239–248.

3. Longuet-Higgins, H.C., A computer algorithm for reconstructing a scene from two
projections. Readings in Computer Vision: Issues, Problems, Principles, and Paradigms,
MA Fischler and O. Firschein, eds, 1987: p. 61–62.

4. Mouragnon, E., et al. Real time localization and 3d reconstruction. in 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’06). 2006.

5. Kerl, C., J. Sturm, and D. Cremers. Dense visual SLAM for RGB-D cameras. in 2013 IEEE/
RSJ International Conference on Intelligent Robots and Systems. 2013.

6. Hartley, R. and A. Zisserman, Multiple view geometry in computer vision. 2003: Cambridge
university press.

7. Armangué, X. and J. Salvi, Overall view regarding fundamental matrix estimation. Image and
vision computing, 2003. 21(2): p. 205–220.

8. Corke, P., D. Strelow, and S. Singh. Omnidirectional visual odometry for a planetary rover. in
Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ Interna-
tional Conference on. 2004. IEEE.

9. Scaramuzza, D. and R. Siegwart, Appearance-guided monocular omnidirectional visual
odometry for outdoor ground vehicles. IEEE transactions on robotics, 2008. 24(5).

10. Nistér, D., O. Naroditsky, and J. Bergen. Visual odometry. in Computer Vision and Pattern
Recognition, 2004. CVPR 2004.

11. Fang, Z. and Zhang, Y., 2015. Experimental evaluation of RGB-D visual odometry methods.
International Journal of Advanced Robotic Systems, 12(3), p. 26.

12. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D. and Roy, N., 2017.
Visual odometry and mapping for autonomous flight using an RGB-D camera. In Robotics
Research (pp. 235–252). Springer International Publishing.

13. Fraundorfer, F. and D. Scaramuzza, Visual odometry: Part i: The first 30 years and
fundamentals. IEEE Robotics and Automation Magazine, 2011. 18(4): p. 80–92.

14. Giachetti, A., Matching techniques to compute image motion. Image and Vision Computing,
2000. 18(3): p. 247–260.

15. Horn, B.K., H.M. Hilden, and S. Negahdaripour, Closed-form solution of absolute orientation
using orthonormal matrices. JOSA A, 1988. 5(7): p. 1127–1135.

16. Arun, K.S., T.S. Huang, and S.D. Blostein, Least-squares fitting of two 3-D point sets. IEEE
Transactions on pattern analysis and machine intelligence, 1987(5): p. 698–700.

17. Umeyama, S., Least-squares estimation of transformation parameters between two point
patterns. IEEE Transactions on pattern analysis and machine intelligence, 1991.

18. Haralick, B.M., et al., Review and analysis of solutions of the three point perspective pose
estimation problem. International journal of computer vision, 1994. 13(3): p. 331–356.

19. Lourakis, M. and A. Argyros, The design and implementation of a generic sparse bundle
adjustment software package based on the levenberg-marquardt algorithm. 2004, Technical
Report 340, Institute of Computer Science-FORTH, Heraklion, Crete, Greece.

20. Sünderhauf, N., et al., Visual odometry using sparse bundle adjustment on an autonomous
outdoor vehicle, in Autonome Mobile Systeme 2005. 2006, Springer. p. 157–163.

21. Torr, P.H. and A. Zisserman, MLESAC: A new robust estimator with application to
estimating image geometry. Computer Vision and Image Understanding, 2000.

22. Rousseeuw, P.J., Least median of squares regression. Journal of the American statistical
association, 1984. 79(388): p. 871–880.

23. Fischler, M.A. and R.C. Bolles, Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM,
1981. 24(6): p. 381–395.

Flexible Threshold Visual Odometry Algorithm Using Fuzzy Logics 301



24. Raguram, R., J.-M. Frahm, and M. Pollefeys. A comparative analysis of RANSAC techniques
leading to adaptive real-time random sample consensus. in European Conference on
Computer Vision. 2008. Springer Berlin Heidelberg.

25. Choi, S., T. Kim, and W. Yu, Performance evaluation of RANSAC family. Journal of
Computer Vision, 1997. 24(3): p. 271–300.

26. Harris, C.G. and J. Pike, 3D positional integration from image sequences. Image and Vision
Computing, 1988. 6(2): p. 87–90.

27. 26. Lowe, D.G., Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 2004. 60(2): p. 91–110.

28. Bay, H., et al., Speeded-up robust features (SURF). Computer vision and image
understanding, 2008. 110(3): p. 346–359.

29. Kitt, B., A. Geiger, and H. Lategahn. Visual odometry based on stereo image sequences with
RANSAC-based outlier rejection scheme. in Intelligent Vehicles Symposium. 2010.

30. Nannen, V. and G. Oliver. Grid-based Spatial Keypoint Selection for Real Time Visual
Odometry. in ICPRAM. 2013.

31. Hartley, R.I. and P. Sturm, Triangulation. Computer vision and image understanding, 1997.
68(2): p. 146–157.

32. Carrasco, P.L.N. and G.O. Codina, Visual Odometry Parameters Optimization for
Autonomous Underwater Vehicles. Instrumentation viewpoint, 2013(15).

33. Geiger, A., P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. in Computer Vision and Pattern Recognition (CVPR), 2012.

34. Mamdani, E.H. and Assilian, S., 1975. An experiment in linguistic synthesis with a fuzzy
logic controller. International journal of man-machine studies, 7(1), pp. 1–13.

302 R. Mahajan et al.



Fast Single Image Learning-Based Super
Resolution of Medical Images Using
a New Analytical Solution for Reconstruction
Problem

K. Mariyambi, E. Saritha and M. Baburaj

Abstract The process of retrieving images with high resolution using its low-

resolution version is refereed to as super resolution. This paper proposes a fast and

efficient algorithm that performs resolution enhancement and denoising of medi-

cal images. By using the patch pairs of high- and low-resolution images as database,

the super-resolved image is recovered from their decimated, blurred and noise-added

version. In this paper, the high-resolution patch to be estimated can be expressed as a

sparse linear combination of HR patches over the database. Such linear combination

of patches can be modelled as nonnegative quadratic problem. The computational

cost of proposed method is reduced by finding closed form solution to the associated

image reconstruction problem. Instead of traditional splitting strategy of decimation

and convolution process, we decided to use the decimation and blurring operator’s

frequency domain properties simultaneously. Simulation result conducted on several

images with various noise level shows the potency of our SR approach compared

with existing super-resolution techniques.

1 Introduction

Most of the electronic imaging applications like medical imaging, video, surveil-

lance, etc. high resolution (HR) images are desired. Despite the advances in medical

image acquiring systems, the image resolution is decreased by several factors due to

distinct technological and physical applications. The quality of image analysis and
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processing algorithm are affected by a series of artefacts introduced by these factors.

Hence, image resolution enhancement is very challenging in case of medical image

processing. The most direct method to obtain the HR image is to improve imaging

system hardware. But it should be restricted because hardware improvement results

many other technical costs. There comes the importance of a signal processing tech-

nique called super resolution (SR), and it is the process of retrieving of images of HR

from its low-resolution (LR) version. Image reconstruction by super resolution (SR)

is an active research area, because of its ability to overcome the resolution limitations

that often found in low-cost imaging sensors as well as digital imaging technology.

Single image SR [1, 2] and multiple image SR [3, 4] are the two broad cat-

egories of SR method. In multiple image SR, HR images are constructed from a

several LR images. Here information contained in a multiple low-resolution frames

that are non-redundant is combined for generating the corresponding high-resolution

image. But in single image SR, a single image is used to construct the HR image. In

interpolation-based single image SR method such as bicubic interpolation [5], the

unknown pixels are interpolated based on surrounding pixels to generate HR image.

Despite their simplicity and easy implementation, the interpolation-based algorithm

in case of LR image generated by anti-aliasing operation of HR image, blur the high-

frequency details. It generates smooth image with ringing and jagged artefact. In

reconstruction-based single image SR approach [6–9], reconstruction problem is for-

mulated by integrating priors or by using regularisation in an inverse reconstruction

problem.

Another category of single image SR is learning-based (or example-based)

method. Some example-based SR is based on nearest neighbour search [10]. In this

method, the nearest neighbours of given LR image patch are computed from the

database, then corresponding HR patch is obtained by learning the function that map

the HR and LR patches correctly. The disadvantage of this method is that their per-

formance mostly depends on parameter and quality of nearest neighbours. Recently,

after the introduction of sparse coding technique Yang et al. [11] proposed example-

based SR via sparse representation with promising performance. In [11], HR image

is obtained by using the pre-learned dictionary of HR and LR images. The drawback

of this method is that their quality depends on pre-learned dictionary and learning

dictionary is a time-consuming process.

Most of existing example-based SR methods consider the input image as noise-

less. But in case of medical images, this assumption is not valid. Trinh et al. [2]

have been achieved promising performance in case of high level of noise by using

sparse coding technique. We focus on developing example-based SR and denois-

ing of medical using fast algorithm. In case of medical images, it is easy to obtain

the standard images of same organ at approximately same location, which helps to

obtain good database. In [2], Trinh et al. proposed a sparse weight model to find

the HR patch. We propose further development and contribution mainly in image

reconstruction optimisation. In this work, we derived a closed form solution to the

reconstruction problem by employing the decimation and blurring operator’s intrin-

sic frequency domain properties simultaneously. These properties were already used

in [1, 12, 13].
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The structure of this paper is as follows. In Sect. 2, detailed explanation of pro-

posed method is described. Results and comparison with several existing SR meth-

ods are recorded in Sect. 3. Finally, conclusion is reported in Sect. 4.

2 Proposed Method

In this paper, we introduce a fast sparse weight learning-based SR algorithm to

enhance the resolution and to perform denoising of medical images. The key idea

of this method is finding nonnegative sparse coefficient for an input patch ylm ∈ ℝm

using database Pl = {uli, i ∈ }, here example patches uli which are consistent to ylm
assigns nonzero coefficient. This SR approach estimates the super-resolved image

by first finding HR patch using the given LR patch and database. Then these HR

patches are fused to recover the coarse estimate of corresponding HR image. The

finer estimate of corresponding HR image is obtained by finding the solution to the

reconstruction optimisation problem using a new analytical solution with l2 regular-

isation. Before going in detail, we first explain the image degradation model and the

properties of blurring and decimation matrix.

2.1 Image Degradation Model

In SR problem, an input LR image is considered as noisy added HR image with

blurring and decimation and mathematically,

Y = DBX + n (1)

where, vector Y ∈ ℝNl×1 is the given LR image and vector X ∈ ℝNh×1 is the HR

image to be estimated. For the sake of simplicity, n is considered as zero mean addi-

tive white Gaussian noise (AWGN) with independent identically distribution (i.i.d.).

The matrix B is blurring matrix, i.e. convolution with some blurring kernal (point

spread function (PSF)) and D is decimation matrix and it models the functionality

of camera sensor.

The LR image can be arranged as a set of image patches, where each patch is used

to perform SR. Thus, we can represent the LR image Y as a set of N image patches

as,

Y = {ylm,m = 1, 2,…N} (2)

where the vector ylm ∈ 
l×1

is the LR image patch (l =
√
l ×

√
l). Similarly, the HR

image is also be the combination of same number N of image patches
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{xhm,m = 1, 2,…N}, where xhm ∈ 
h×1 (h =

√
h ×

√
h). Where

√
h = d

√
l, d is

magnification (decimation) factor. The relation between HR and LR patch is given

by

ylm = DBxhm + nm (3)

where nm is the noise in the mth patch.

The basic assumption about blurring and decimation operators is stated as fol-

lows.

Assumption 1 The blurring kernal is shift invariant, and it represents cyclic convo-

lution operator.

It has been regularly used in image processing literature [12–14] as blurring

matrix is a block circulant with circulant blocks (BCCB) matrix. Using this assump-

tion, decomposition of blurring and its conjugate transpose matrix is given by

B = FH
𝛬F (4)

BH = FH
𝛬

HF (5)

where F and FH
denote Fourier and inverse Fourier transforms, and 𝛬 is a diagonal

matrix.

Assumption 2 The decimation operatorD is similar to down-sampling operator and

its conjugate transpose DH
is an interpolation operator.

This assumption also widely used in many research work [11–13]. The decimation

matrix satisfies the relation DDH = I
The super-resolved image is obtained by performing the following three phases:

database construction phase and image patch SR phase and HR image reconstruction

phase.

2.2 Database Construction

In this paper, database is considered as normalised patch pairs constructed from

example images. A set {Ph
i , i ∈  of vectorised image patches is first derived from

example images. Then, vectorised patch Pl
i corresponding to Ph

i is determined by

pli = DBPh
i (6)

where Ph
i corresponds to HR patch and Pl

i corresponds to LR patch. During database

construction noise is not considered, i.e. LR image is noise free. Finally, the high-

resolution/low-resolution patch pairs are used as database and are given by
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(Pl,Ph) =

(

(uli,u
h
i ) =

(
Pl
i

||Pl
i||

,

Ph
i

||Ph
i ||

)

, i ∈ 

)

(7)

Here ||uli||2 = 1 and DBuhi = uli for all i ∈ 

2.3 Image Patch SR

In this work, sparse weight model is used for patch SR. In this phase, we try to find

the estimate of the HR patch xhm, denoted as x̂hm from input LR patch ylm using the

database (Pl,Ph), where ylm = DBxhm + ni . In case of medical images due to the local

structures repetition, it is easy to find subset of patches uhi ∈ Ph that have similar

structures of xhm . These patches are then used to find the estimate x̂hm.

Linear combination of the HR patches in the database Ph is used to find HR patch

xhm as,

xhm = Σ
i∈I
𝛼miuhi (8)

where the vector 𝛼
m = [𝛼m1, 𝛼m2,… , 𝛼mi,…]T ≥ 0 represents the sparse coefficient.

Equation (8) can be written as,

xhm = Ph𝛼
m

(9)

Both xhm and Ph are nonnegative. The corresponding LR patch ylm of xhm is obtained

by multiplying Eq. (9) by DB gives

DBxhm = DBPh𝛼
m = Pl𝛼

m
(10)

Using Eq. (3), we obtain the relation,

Pl𝛼
m = ylm − nm (11)

This gives that

ylm − Pl𝛼
m = nm (12)

Then sparse coefficient vector 𝛼
m

is obtained by minimising the following opti-

misation problem.

𝛼

m = argmin
𝛼≥0

||𝛼||0 + Σ
i∈I
𝜔mi𝛼mi

subject to ||ylm − Σ
i∈I
𝛼miuli||

2
2 ≤ 𝜌𝜎

2
m

(13)
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where 𝛼 = [𝛼m1, 𝛼m2,… , 𝛼mi,…]T , 𝜌 denotes a given positive number, 𝜎m represents

the standard deviation of the noise in the mth patch, the 𝜔mi is a penalty coefficients

that lean on the dissimilarity between xhm and uhi .

For high dissimilarity between xhm and uhi , the value of penalty coefficient 𝜔mi is

high, while the value of 𝛼mi is small. In other words, 𝛼mi is large for high similarity

between xhm and uhi . However, the dissimilarity (or similarity) between xhm and uhi is

computed from its LR versions yli and ulk. With coefficient 𝛼mi is small, the objective

function in (14) can be minimised. Here, the penalty coefficients wik are defined as

𝜔mi = 𝜓(d(ylm,u
l
i)) (14)

where d is a dissimilarity criterion finding dissimilarity (or similarity) between ylm
and uli, 𝜓 is a nonnegative increasing function.

In order to define dissimilarity criterion between ylm and uli, we use the explanation

of consistency of patches. If two patches x1 and x2 are consistent, then there exists a

constant c ∈ ℝ such that x1 = cx2. If uil and DBxhm are consistent, then the patch uli
and ylm are ideally similar and are related as

ylm = 𝜇miuli + nm (15)

Since noise component nm ∼ N(0, 𝜎2
m), the mean of nm, E(nm) ≈ 0. Then, the con-

stant 𝜇mk is approximately given as:

E(ylm) = 𝜇miE(uli) + E(nm) ⟹ 𝜇mi =
E(ylm)
E(uli)

(16)

Statistical property of residual patch noise is evaluated using the parameter ami given

by

ami = |E(ylm − 𝜇miuli)| + |Var(ylm − 𝜇miuli) − 𝜎

2
m| ≃ 0 (17)

Then dissimilarity criterion is then given by

d(ylm,u
l
i) = ||ylm − 𝜇miuli||

2
2 + ami (18)

Then the function 𝜓i is computed as

𝜓i(t) = {et if t > 𝛾(m𝜎2
m)

t if t ≤ 𝛾(m𝜎2
m)

(19)

where 𝛾 is a constant and m is the total number of elements in the vector ylm. Then

sparse decomposition problem becomes
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𝛼

m = argmin
𝛼≥0

||𝛼||1 + Σ
i∈I
𝜔mi𝛼mi

subject to ||yli − Σ
k∈I

𝛼ikulk||
2
2 ≤ 𝜖𝜎

2
i

(20)

By using Lagrange multiplier method, Eq. (21) become

𝛼

m = argmin
𝛼≥0

1
2
||ylm − Σ

i∈I
𝛼miuli||

2
2 + 𝜆Σ

i∈I
(1 + 𝜔mi)𝛼mi (21)

where the parameter 𝜆 is a sparsity regularisation parameter. Equation (22) can also

be written as:

𝛼

m = argmin
𝛼≥0

1
2
||ylm − Um𝛼||

2
2 + wT

m𝛼 (22)

where Um is the matrix which is created by concatenating all columns vector uli and

wm is formed by concatenating all the coefficients 𝜆(1 + 𝜔mi), here i ∈ I.
The problem in Eq. (23) is a quadratic nonnegative programming (QNP) which

can be effectively solved by using many algorithms. In this work, multiplicative

updates algorithm proposed by Hoyer in [15] is used to solve the above problem

and is shown in Algorithm 1.

Algorithm 1: Multiplicative updates algorithm for QNP [15]

Input: 𝛼 = 𝛼0 > 0, iteration number K

Update: k=0

1 While k < K and ||ylm − Um𝛼t||22 > m𝜎2
m

2 𝛼t+1 = 𝛼t. ∗ (UT
my

l
m).∕(U

T
mUm𝛼t + wm);

3 k = k + 1;

4 End

Output: 𝛼i = 𝛼t

Once 𝛼

m
is obtained, then desired HR patch x̂hm can be computed as

x̂hm = Σ
i∈I
𝛼

i
mu

h
i (23)

Similarly, the denoised version of LR image ŷlm can be computed as

ŷlm = Σ
i∈Ii

𝛼

i
mu

l
i (24)

The entire patch SR process is summarised as Algorithm 2.
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Algorithm 2: Fast Sparse Weight Super Resolution algorithm

Input: LR image Y, magnification factor d, database (Pl,Ph, sparsity

regularization parameter 𝜆

Output: Final estimate of HR ̂Xfinal

Begin:

– Split Y into arranged set patches ylm
– For each patch ylm

∙ Compute d(ylm,u
l
i) using equation (17), (18) and (19).

∙ Compute wmi using equation (15) and (20).

∙ Find 𝛼

m
using Algoritm 1.

∙ Estimate HR patch x̂hm using equation (24) and denoised LR patch ylm using equation (25).

– End
– Fusion: Find coarse estimate of HR image ̂Xcoarse

and the denoised LR image Ydenoise
.

– Reconstruction of final HR image.

∙ Decompose blurring matrix B,

B = FH
𝛬F

∙ Compute 𝛬 using equation (28).

∙ Calculate fourier transform of r denoted as Fr,

Fr = F(BHDHYdenoise + 2𝜏 ̂X
coarse

)
∙ Compute the final HR image ̂X

final
using equation (27).

End:

2.4 HR Image Reconstruction

The obtained HR patches are then fused to obtain the coarse estimate of HR image,

̂X
coarse

. Similarly denoised LR image Ydenoise
is obtained by fusing denoised LR

patches. Finally, the finer estimate of HR image, ̂X
final

is computed by minimising

the following optimisation problem.

min
x

1
2
||Ydenoise − DBX||22 + 𝜏||X − ̂X

coarse
||22 (25)

where 𝜏 is the reconstruction regularisation parameter. In order to reduce the compu-

tational time required to find optimisation problem (26), we find an analytical solu-

tion to the problem (26) by considering the Assumptions 1 and 2. The final solution

to the reconstruction problem (26) is given by

̂X
final

= 1
2𝜏

(
r − FH

(
𝛬

−
H
(
2𝜏dINl

+ 𝛬

−
𝛬

−
H
)−1

𝛬

−

)
Fr

)
(26)

where r = BHDHYdenoise + 2𝜏 ̂X
coarse

and the matrix 𝛬 is defined by,
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𝛬 = [𝛬1, 𝛬2,…𝛬d] (27)

where d is the magnification factor and the blocks 𝛬i satisfy the relationship,

diag{𝛬1, 𝛬2,… , 𝛬d} = 𝛬 (28)

The Algorithm 2 summarises the implementation of proposed SR approach called

Fast Sparse Weight SR (FSWSR).

3 Experimental Results

This section demonstrates the experimental results performed on both noiseless

images and noisy images with different magnification factor. The experimental test

is performed on five HR test images as shown in Fig. 1. The proposed method called

Fast Sparse Weight SR (FSWSR) is compared with existing SR method such as

bicubic interpolation (Bb), Sparse coding-based SR (ScSR) [11] and SR by Sparse

Weight (SRSW) [2]. The objective quality of super-resolved image is measured using

Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity index (SSIM). The

experimental values of PSNR, SSIM and computational time with various noise

level is shown in Table 1. From the table, it is clear that our method out performs

the existing SR method (Figs. 2 and 3).

The performance of proposed method is also evaluated with various experimental

parameters such as noise level, magnification factor as a function of reconstruction

regularisation parameter. The obtained PSNR and SSIM curve are depicted in Fig. 4.

From the figure, it is observed the PSNR and SSIM curve increase with reconstruc-

tion regularisation parameter 𝜏.

For subjective evaluation of our method, results of SR of MRI image of ankle

with decimation factor, d = 2 is shown in Fig. 2. For further illustrating the denois-

ing effectiveness of our method, the result of MRI of ankle with heavy noise level

(𝜎 = 20) is shown in Fig. 3.

Fig. 1 Test images. a MRI of ankle. b CT of abdomen. c CT of chest. d MRI of knee. e CT of

thorax
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Fig. 2 Results of SR of MRI image of ankle with decimation factor d = 2. a LR image with 𝜎 = 5.

b Bicubic interpolation. c Result of ScSR [11]. d Result of SRSW [2]. e Proposed FSRSW method.

f Original image

4 Conclusion

This paper proposes fast learning-based SR for medical images to enhance the res-

olution and to perform denoising. This method uses the idea that both the standard

images and LR image are taken at approximately same location. The coarse mea-

surement of HR image is obtained as sparse decomposition problem; finally, the

finer measurement of HR image is obtained via fast algorithm using intrinsic prop-

erties of decimation blurring operator in frequency domain. The results show that

performance of our method has improved results over other existing SR methods.
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Fig. 3 Results of SR of MRI image of ankle with decimation factor d = 2. aLR image with 𝜎 = 20.

b Result of bicubic interpolation. c Result of SCSR [11]. d Result of SRSW [2]. e Proposed FSRSW

method. f Original image
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Fig. 4 PSNR and SSIM curve for different parameters as a function of reconstruction regulariza-

tion parameter
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Analyzing ConvNets Depth for Deep Face
Recognition

Mohan Raj, I. Gogul, M. Deepan Raj, V. Sathiesh Kumar, V. Vaidehi
and S. Sibi Chakkaravarthy

Abstract Deep convolutional neural networks are becoming increasingly popular
in large-scale image recognition, classification, localization, and detection. In this
paper, the performance of state-of-the-art convolution neural networks (ConvNets)
models of the ImageNet challenge (ILSVRC), namely VGG16, VGG19, OverFeat,
ResNet50, and Inception-v3 which achieved top-5 error rates up to 4.2% are ana-
lyzed in the context of face recognition. Instead of using handcrafted feature
extraction techniques which requires a domain-level understanding, ConvNets have
the advantages of automatically learning complex features, more training time, and
less evaluation time. These models are benchmarked on AR and Extended Yale B
face dataset with five performance metrics, namely Precision, Recall, F1-score,
Rank-1 accuracy, and Rank-5 accuracy. It is found that GoogleNet ConvNets
model with Inception-v3 architecture outperforms than other four architectures with
a Rank-1 accuracy of 98.46% on AR face dataset and 97.94% accuracy on Extended
Yale B face dataset. It confirms that deep CNN architectures are suitable for
real-time face recognition in the future.

M. Raj (✉) ⋅ I. Gogul ⋅ M. Deepan Raj ⋅ V. Sathiesh Kumar ⋅ S. Sibi Chakkaravarthy
Department of Electronics Engineering, Madras Institute of Technology Campus,
Anna University, Chennai, India
e-mail: mohanraj4072@gmail.com

I. Gogul
e-mail: gogulilangoswami@gmail.com

M. Deepan Raj
e-mail: deepanraj.18@gmail.com

V. Sathiesh Kumar
e-mail: sathiieesh@gmail.com

S. Sibi Chakkaravarthy
e-mail: sb.sibi@gmail.com

V. Vaidehi
School of Computing Science and Engineering, VIT University, Chennai,
Tamil Nadu, India
e-mail: vaidehimitauc@gmail.com

© Springer Nature Singapore Pte Ltd. 2018
B. B. Chaudhuri et al. (eds.), Proceedings of 2nd International Conference
on Computer Vision & Image Processing, Advances in Intelligent Systems
and Computing 703, https://doi.org/10.1007/978-981-10-7895-8_25

317



Keywords Deep learning ⋅ Face recognition ⋅ Convolutional neural networks
Computer vision

1 Introduction

In recent years, machine learning has reached its pinnacle in automation and deep
learning started achieving success in numerous research areas of Computer Vision.
As Data became Big Data, traditional CPUs are getting replaced by powerful GPUs
for computationally intensive applications. The need to use deep learning systems is
of utmost importance in various domains such as medical image analysis, face
recognition, robotics, self-driving cars to achieve better results. Before a decade,
traditional feature extraction methods such as Local Binary Pattern (LBP) by Ojala
et al. [1], Scale-Invariant Feature Transform (SIFT) by David Lowe [2], Histogram
of Oriented Gradients (HoG) by Dalal and Triggs [3] achieved good results in
publicly available datasets. It was mainly due to the use of Bag of Visual Words
approach along with a machine learning classifier such as linear SVM as shown by
Yang et al. [4]. Recent research works in the machine learning community showed
that automatic learning of these features in raw images is possible if multiple layers
of nonlinear activation functions are used. This led to the introduction of a neural
networks, namely the CNN which was first applied on a larger dataset (ILSVRC
ImageNet challenge 2012) by Krizhevsky et al. [5] to identify the label of an
unknown image among 1000 categories. After AlexNet [5], VGGNet [6], and
GoogleNet [7] models showed that even more deeper architectures could be built to
improve the accuracy of recognition. Although deeper architectures such as
VGGNet [6], GoogleNet [7], OverFeat [8], and ResNet [9] achieve good results,
these models could take longer computation time to train on a single GPU (more
than 5–6 months). To evaluate such models with increased depth, data and com-
putational resources such as multi-GPU clusters are needed.

Face recognition in unconstrained environment is a challenging task. In digital
revolution, face recognition is found to be very useful in the near future, as it leads
to many applications like surveillance, security, emotion recognition and home
automation. Humongous researches and implementation for face recognition are
being done, to meet the current state-of-the-art requirements [10–12]. Recent deep
learning models to perform face recognition proposed by Google [13] and Face-
book [14] used their own private datasets which are huge. Google used 200 million
images of 8 million unique identities to train a CNN, and Facebook used 4.4 million
images of 4030 unique identities to train a CNN. Also, publicly available datasets
such as AR dataset, Extended Yale B dataset, and Labeled Faces in the Wild
(LFW) dataset used face recognition by the research community.

In this paper, a methodology is presented to analyze the performance of five deep
convent architectures utilized in the ILSVRC ImageNet challenge. The ILSVRC
ImageNet challenge is conducted every year for image recognition, classification,
localization, and detection. In this paper, VGG16, VGG19, OverFeat, Inception-v3,
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and ResNet50 are the Deep ConvNets architectures considered for analysis. AR and
Extended Yale B face dataset are considered to benchmark these deep ConvNets
models. By performing this analysis, it is possible to get actionable insights into the
use of Deep ConvNets architectures for face recognition using different publicly
available datasets.

This paper is organized as follows: Sect. 2 presents the deep learning technique
for face recognition, Sect. 3 discusses the effect of ConvNets depth for face
recognition, Sect. 4 analyzes the performance of state-of-the-art ConvNets model,
and Sect. 5 concludes the paper.

2 Deep Learning for Face Recognition

As deep learning ConvNets achieves good accuracy in ImageNet challenges
(around 1 million training images with 1000 classes), the need to use these models
for other vision related applications is increasing worldwide in Computer Vision
research. An increase in the amount of digital data that is available in the Internet
and the recent advancements in Graphics Processing Unit (GPU) has made Deep
ConvNets a default choice when it comes to large-scale image recognition tasks.
This is feasible mainly due to the characteristics of ConvNets which possess
automatic feature learning capability, higher training time, and very less evaluation
time. Instead of designing and training a ConvNets from scratch, which requires
more computational resources such as multi-GPU clusters (huge cost), it is decided
to go for feature extraction using ConvNets approach. Some of the existing
pre-trained neural network architectures which are made publicly available are
VGG16, VGG19, OverFeat, Inception-v3, and ResNet50 which are the popular
ConvNets considered for model selection, feature extraction, and performance
analysis. The overall methodology for analyzing the performance of these models in
the context of face recognition is shown in Fig. 1.

Supervised learning is carried out when the training database holds images along
with its labels. The overall methodology to perform deep learning for face recog-
nition is divided into two phases.

1. Feature extraction using ConvNets
2. Training and evaluation

2.1 Feature Extraction Using ConvNets

Instead of using handcrafted feature descriptors such as Local Binary Pattern
(LBP), Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features
(SURF), or Histogram of Oriented Gradients (HoG), which require domain-level
understanding of the face recognition (FR) problem, pre-trained ConvNets are used
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as feature extractors. These feature extracted vectors are also referred as “Neural
Codes”. This is possible because of the pre-trained weights and architectures of
these state-of-the-art models publicly made available for Computer Vision research.
The model weights and architectures of the models considered are loaded locally
prior to the training phase. Based on the model selected (1 out of 5 models—
VGG16, VGG19, OverFeat, ResNet50, Inception-v3), the images in the training
database are resized to a fixed dimension as shown in Table 1. After pre-processing,
each of the images in the database is sent to the selected model architecture and
features are extracted by removing the top fully connected layers. The extracted
feature for that single image is flattened and stored in a list. Its corresponding label

Fig. 1 Overall methodology involved in analyzing the performance of state-of-the-art ConvNets
in the context of face recognition

Table 1 Fixed dimension to
resize the images for
state-of-the-art models
considered

ConvNets model Fixed dimension (for pre-processing)

VGG16 224 × 224
VGG19 224 × 224
OverFeat 231 × 231
Inception-v3 299 × 299
ResNet50 224 × 224
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is also stored in another list. This process is repeated for all the images in the
training database. The extracted image features and labels are stored locally in an
HDF5 file format as NumPy arrays. This feature extraction process is carried out for
different benchmark face datasets such as AR and Extended Yale B.

2.2 Training and Evaluation

After extracting features from the training phase, the stored features and labels are
loaded and split into training and testing data based on a parameter “train_test_split”.
If “train_test_split” is chosen as 0.2, then it means 80% of the overall data is used for
training and 20% of the overall data is used to evaluate the trained model. Based on
parameter tuning and grid-search methodology, it is found that logistic regression
(LR) outperformed all the other machine learning classifiers such as Random Forests
(RF), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN). Two per-
formance metrics are chosen to evaluate the trained model, namely Rank-1 accuracy
and Rank-5 accuracy. Rank-1 accuracy gives the accuracy of the trained model when
tested with an unseen test data on the first chance. Rank-5 accuracy gives the accuracy
of the trained model when tested it with an unseen data given five chances.

3 Effect of ConvNets Depth on Face Recognition

The pre-trained models chosen share a common trait of having a deep architecture,
meaning these networks have increased convolutional depth or increased number of
layers. Based on the work by Romero et al. [15] and Ba and Caruana [16], it
became evident that training a deeper neural network achieved better performance
than a shallow network. But they have also specified that depth might make
learning easier but it is not an essential factor to be considered. Thus, in the context
of face recognition, how far does depth in ConvNets affect accuracy is analyzed.
Figure 2 shows the architecture for five state-of-the-art Deep ConvNets considered
for performance analysis.

3.1 VGGNet

VGGNet created by Simonyan et al. [6] obtained 1st place in the localization task
with 25.3% error and 2nd place in classification task with 7.3% error. The major
objective behind VGGNet is to obtain better accuracy in ImageNet challenge 2014
by implementing different configurations of deep convolutional neural network
architectures that use a sequential stack of convolutional layers with millions of
parameters to learn, thereby increasing the overall depth of the network (16–19

Analyzing ConvNets Depth for Deep Face Recognition 321



weight layers). Unlike other top-performing architectures of ILSVRC-2012 such as
Krizhevsky et al. [5], and ILSVRC-2013 such as Zeiler and Fergus [17], and
Sermanet et al. [8] (which used larger receptive fields in the first convolutional
layer), the VGGNet uses smaller [3 × 3] receptive fields or convolution kernels
throughout the entire network with a convolution stride size of 1 (i.e., no loss of
information). The network architecture starts with an input image of fixed size
[224 × 224], followed by multiple convolutional layers and max-pooling layers
with different input and output dimensions. Six different configurations are pre-
sented such as A (11 weight layers), A-LRN (11 weight layers with Local Response
Normalization), B (13 weight layers), C (16 weight layers), D (16 weight layers),

Fig. 2 State-of-the-art deep convolutional neural network models chosen for performance
analysis in the context of face recognition
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and E (19 weight layers). The convolutional layers are activated using ReLU
nonlinear activation function. [2 × 2] window size is chosen to perform
max-pooling over 5 max-pool layers giving ( × 2 reduction). Three fully connected
(FC) layers are involved for the final classification followed by a softmax classifier.
Configurations D (VGG16) and E (VGG19) were chosen for performance analysis
as these models are publicly available.

3.2 GoogLeNet

GoogLeNet created by Szegedy et al. [7] is a very deep convolutional neural
network, achieved better accuracy for classification and detection in ILSVRC 2014
ImageNet challenge. GoogLeNet, code named as Inception, has an architecture that
has increased depth and width while keeping a constant computational budget. It
achieved a top-5 error rate of 6.67% on the ILSVRC 2014 challenge. The overall
architecture of GoogLeNet contains four sections, namely stem, inception modules,
auxillary, and output classifier. Stem contains a chain of convolutions,
max-pooling, and Local Response Normalization (LRN) operations. The inception
module in GoogLeNet is a unique approach where a set of convolution and pooling
is performed at different scales on the input volume, computed in parallel and
concatenated together to produce the output volume (DepthConcat). There are 9
such inception modules with two max-pooling layers in between to reduce spatial
dimensions. In the recent variants of GoogleNet, auxillary classifiers are ignored
after the introduction of batch normalization. Prior to the output classifier, average
pooling is performed, followed by a fully connected layer with a softmax activation
function. When compared with VGGNet (which has around 180 million parame-
ters), GoogLeNet has less parameters to learn (around 5 million). An improved
variant of GoogLeNet called “Inception-v3” is considered for performance analysis,
which adds factorized convolutions and aggressive regularization.

3.3 OverFeat

OverFeat developed by Sermanet et al. [8] is another deep convolutional neural
network that achieved state-of-the-art accuracy in ILSVRC 2013 ImageNet chal-
lenge with Rank 4 in classification and Rank 1 in localization and detection. This
network is not only for the purpose of image classification, but also demonstrated
the novel approach for localization and detection using a single ConvNets. It uses a
multiscale and sliding window approach in a ConvNets as well as a novel approach
to localization by learning to predict object boundaries. Although this network
architecture is similar to that of Krizhevsky et al. [5] (best in ILSVRC 2012 Ima-
geNet challenge), major improvements were contributed toward network design
and inference step. The input image to the OverFeat network is resized to a fixed
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dimension of [231 × 231]. There are a total of 8 layers in the network with
convolution, max-pooling, and fully connected layers having varied number of
channels, filter size, stride size, pooling size, and pooling stride size. ReLU non-
linear activation function is used from layers 1–5 (similar to Krizhevsky et al. [5]),
but with no contrast normalization, with nonoverlapping pooling regions and with
larger feature maps in layers 1 and 2. Before the output classifier, there are three
fully connected layers with 3072, 4096, and 1000 nodes followed by a softmax
classifier. The publicly released OverFeat feature extractor is considered for per-
formance analysis in the context of face recognition.

3.4 ResNet50

ResNet developed by Kaiming He et al. [9] are deep convolutional neural networks
that achieved good accuracy in ILSVRC 2015 ImageNet challenge with Rank 1 in
classification task (ensemble of these residual nets achieved 3.57% error rate).
These networks demonstrated a unique approach, where instead of learning
unreferenced functions in the network, they explicitly reformulate the layers as
learning residual functions with reference to the layer inputs. The authors also
evaluated residual nets with a depth of up to 152 layers (which is 8 times that of
VGGNet) while still maintaining a lower complexity. Five types of configurations
are presented such as ResNet18 (18-layer), ResNet34 (34-layer), ResNet50 (50
layer), ResNet101 (101 layer), and ResNet152 (152 layer). Each of these config-
urations has different input/output dimensions, filter size, stride size, pooling size,
and pooling stride size. The input image to the network is resized to a fixed
dimension of [224 × 224]. ResNets perform all the standard operations of a
ConvNets such as convolution, max-pooling, and batch normalization. After each
convolution and before activation, batch normalization is performed. Stochastic
Gradient Descent (SGD) is used as the optimizer with a batch size of 256. Based on
the error that is getting accumulated, learning rate is adjusted accordingly (from an
initial value of 0.1), momentum is chosen as 0.9, and weight decay is chosen as
0.0001. The overall network is trained for 6,00,000 epochs. The publicly released
ResNet50 (50-layer) is chosen for performance analysis.

3.5 Error Rates

All the five models considered for performance analysis were evaluated based on
two performance metrics, namely “top-1 validation error” (in %) and “top-5 vali-
dation error” (in %) taken during ILSVRC challenge. The ImageNet challenge
normally consists of three data split: training data, validation data, and testing data.
Table 2 shows the performance metrics of the state-of-the-art Deep ConvNets
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models on validation data. Each model used different evaluation method to give
these results.

4 Results and Discussions

4.1 Software Requirements

The experimental setup for the proposed methodology is carried out using Intel
Xeon processor with NVIDIA Quadro K2000 GPU and 28 GB RAM. Python
programming language is used for the overall experiment from data processing,
feature extraction, model training till model evaluation. A developed, efficient, and
modular deep learning library for Python called Keras created by François Chollet
is used for the overall experiment. The entire experiment is carried out on Windows
7 Operating System (OS) with Theano as backend for Keras. Other scientific
computational python packages used are NumPy, SciPy, matplotlib, h5py,
scikit-learn, and OpenCV 3.1.

4.2 Dataset

Two publicly available face datasets are considered for analyzing the five ConvNets
architectures. The AR [18] face dataset contains 4000 color images of 126 people
(50 men and 76 women) with different facial expressions, illumination condition,
and occlusions in two different sessions per person. The Extended Yale B database
[19] contains 2432 face images of 38 subjects under 64 different illumination

Table 2 Error rates (in %) of state-of-the-art Deep ConvNets models on ILSVRC challenge

ConvNets
model

Evaluation method Top-1 val.error
(%)

Top-5 val.error
(%)

VGG16 Dense 24.8 7.5
Multi-crop 24.6 7.5
Multi-crop and dense 24.4 7.2

VGG19 Dense 24.8 7.5
Multi-crop 24.6 7.4
Multi-crop and dense 24.4 7.1

OverFeat 7 accurate models, 4 scales, fine
stride

33.96 13.24

Inception-v3 144 crops evaluated 18.77 4.2
ResNet50 Single model 20.74 5.25
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conditions. Figure 3 shows some sample images from AR face dataset and
Extended Yale B face dataset. Table 3 shows the summary of these two datasets.

Feature extraction using ConvNets is carried out after performing pre-processing
on the training images. The feature vector dimension for each image is taken from
these deep ConvNets which is shown in Table 4.

All the five Deep ConvNets considered are used as feature extractors by using
the activations of top fully connected layers which learn higher-level features from
the training images. Tables 5 and 6 show the recognition report of the five Deep
ConvNets models considered for face recognition on AR and Extended Yale B face
dataset, respectively. It could be seen that VGG16 and VGG19 both achieved 100%

AR face dataset Extended Yale B face dataset

Fig. 3 Sample face images from AR face dataset and Extended Yale B face dataset

Table 3 Face recognition dataset summary

Dataset No. of. unique identities Training images Testing images

AR 100 2340 260
Extended Yale B 38 2182 243

Table 4 Activation nodes
present in the chosen layer of
ConvNets for feature
extraction

Model Feature vector shape Activation layer

VGG16 (4096) FC-4096
VGG19 (4096) FC-4096
OverFeat (3072) FC-3072
Inception-v3 (2048) FC-2048
ResNet50 (4096) FC-4096
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Rank-5 testing accuracy, which means that if the trained model is given a chance to
guess the label of an unknown image five times, it will correctly guess it with a
probability of 1. Google’s Inception-v3 architecture outperformed all the other deep
architectures by a substantial amount on a much challenging dataset, namely
Extended Yale B dataset. This performance could mainly be contributed due to the
usage of the novel inception module. The inception module of GoogLeNet is shown
in Fig. 4. Table 7 shows the face recognition accuracy between ConvNets model
and handcrafted feature extraction technique.

Table 5 Recognition report for AR dataset on different ConvNets architectures

Model Precision (%) Recall (%) F1-score (%) Rank-1 (%) Rank-5 (%)

VGG16 100 100 100 99.62 100
VGG19 100 100 100 99.62 100
OverFeat 98 96 96 96.15 99.23
Inception-v3 99 98 98 98.46 100
ResNet50 64 56 56 55.77 76.15

Table 6 Recognition report for Extended Yale B dataset on different ConvNets architectures

Model Precision (%) Recall (%) F1-score (%) Rank-1 (%) Rank-5 (%)

VGG16 95 93 93 93.42 97.94
VGG19 95 93 93 93 96.71
OverFeat 95 94 94 94.24 97.53
Inception-v3 98 98 98 97.94 98.77

ResNet50 75 72 72 77.02 87.65

Fig. 4 Inception module of GoogleNet
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During the selection of the convolution filter size of a convolution layer, typical
choices include [1 × 1], [3 × 3], [5 × 5], and [7 × 7]. The inception module in
GoogleNet proposed a new way to perform convolution on the previous layer by
performing multiple convolutions (which are computed in parallel over the input
volume) which gets concatenated at the output volume. Instead of using [3 × 3]
and [5 × 5] filter sizes directly on the input volume (which greatly increases the
depth of output volume), dimensionality reduction (which could also be thought of
as pooling of features) is performed using [1 × 1] convolution filters, so that the
overall depth at the output volume does not get increased at a higher rate. Thus, the
inception module holds a smaller filter convolution, a medium filter convolution, a
large filter convolution, and a pooling operation performed in parallel on the input
volume which learns extremely fine grain details, higher-level details, and combats
overfitting (due to the presence of pooling operation). In addition to this, the
presence of Rectifier Linear Unit (ReLu) nonlinear activation after each convolu-
tional layer enhances the performance.

The incepton-v3 architecture does not have fully connected layers at the top,
instead it uses “average pool” operation which greatly reduces the learnable
parameters involved. Thus, instead of stacking layers in a CNN sequentially (in the
case of VGGNet and OverFeat network), GoogLeNet showed a different type of
deep architecture such as the “inception” module (network in a network) which
highly contributes to achieve better results. Although VGG16, VGG19, OverFeat,
and ResNet50 achieve good results on AR dataset as well as Extended Yale B
dataset, these deep architectures have sequentially stacked layers of convolution,
max-pooling, and fully connected layers. Thus, it is inferred that the presence of
different deep architectures such as the “inception” module in GoogLeNet con-
tributes more in achieving better results. Tables 8 and 9 show the feature sizes stored
locally after feature extraction using each of the Deep ConvNets model as well as the

Table 7 Face recognition accuracy between ConvNets and handcrafted feature extraction
technique

Dataset ConvNets accuracy % Handcrafted features (SIFT) accuracy %

AR 98.46 94.78
Extended Yale B 97.94 93.61

Table 8 Feature size and timing details for feature extraction and training for Extended Yale B
dataset on different ConvNets models

Model Feature size (MB) Feature extraction time (mins) Training time (mins)

VGG16 40.6 7 7
VGG19 40.6 7 7
OverFeat 61.7 8 8
Inception-v3 20.3 8 4
ResNet50 20.3 6 1
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timing details of feature extraction and training. From the Tables 8 and 9, it is
observed that Inception-v3 has lesser feature size when compared to other four
ConvNets models.

5 Conclusion and Future Work

This paper evaluates the performance of the Deep ConvNets architectures such as
VGG16, VGG19, OverFeat, ResNet50, and Inception-v3 for the face dataset (AR
and Extended Yale B). From the experimentation, it is found that the Inception-v3
ConvNets model outperforms than other four ConvNets model with an accuracy of
98.7%. From the performance analysis, it is confirmed that the ConvNets model
outperforms than traditional feature extraction-based technique (SIFT) in terms of
recognition accuracy. It is found that instead of making a single CNN model to train
and make predictions, an ensemble of Deep ConvNets could be used to increase the
overall accuracy.
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Use of High-Speed Photography to Track
and Analyze Melt Pool Quality in Selective
Laser Sintering

Sourin Ghosh, Priti P. Rege and Manoj J. Rathod

Abstract Manufacturing industry is moving toward a process model involving
rapid and frequent product deliveries to increase their consumer base. Employing
laser sintering methods in product fabrication provides a superior quality, low cost
and high-fidelity solution to support this. Effective monitoring and diagnostics of
laser sintering process become a critical task in this regard. This paper focuses on
analyzing spatters and plume generated during continuous laser sintering for fab-
rication of circular rings. Analysis using high-speed photography and subsequent
image processing was undertaken. By varying laser parameters, the generated
spatter and plume was tracked and features such as spatter count, spatter size, and
plume area were examined. Results show that spatter count and plume size are
related to the variations in laser power intensity. Optimal power settings are shown
to produce best quality product. The proposed analysis method could be used to
monitor the stability of laser sintering process.

Keywords Metallurgy ⋅ Selective laser sintering ⋅ Spatter tracking
Plume tracking ⋅ High-speed camera ⋅ Frame rate

1 Introduction

Engineering parts made of Iron (Fe) alloys are widely used in the manufacturing
sector in industries like automobiles, aerospace, construction. Fabrication using
traditional methods like forging, powder metallurgy involves a high turnaround
time and results in a sub-par product quality with poor mechanical properties.
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Hence, to hasten the process of bringing their products to market, companies are
turning to selective laser sintering (SLS) [1, 2]. SLS is a process where a continuous
laser beam scans the powder bed layer by layer. Each layer is created by melting,
sintering, and bonding the particles in a thin lamina [3]. The size of the layer can be
as thin as the particle size of powder used. The experiments described in this paper
use powdered iron for synthesizing circular metal rings of thickness 3 mm with an
inner diameter of 8 mm.

The process of SLS is highly dynamic and involves unstable heat transfer from
the laser beam to the metal substrate [4]. So, monitoring of the entire activity
becomes a necessity toward ensuring highest quality builds [5, 6]. An effective
method of quality measurements involves image processing techniques for object
tracking and shape measurements. It is already being used in high-power laser
welding [7] where techniques have been developed to observe and provide mea-
surements for ejected spatters and laser-induced plume. A combined occurrence of
these two phenomena is undesirable as it results in inadequate transfer of heat to the
melt surface. Application of image processing for understanding this phenomenon
in SLS and providing quality measures has not been explored much in industry.

This paper presents a simple method for monitoring laser sintering process and
introduces an image processing algorithm for feature extraction of ejected spatters and
plume growth. Through the use of high-speed photography image sequences of plume
and spatter, filtered through a spectral UV filter, have been captured during the fiber
laser sintering. When these images are input to the developed algorithm, it tracks
plume growth and ejected spatters by comparing consecutive frames. It is able to
provide statistics based on features including plume area, spatter count, spatter area.
The correlation of sintering quality with plume and spatter features is investigated.

The paper is organized as follows. Section 2 describes the experimental setup of
the fiber laser assembly for laser sintering. Section 3 presents the methodology of
image processing and subsequent feature extraction with a detailing of the spatter
and plume tracking algorithm. Section 4 highlights the achieved results and dis-
cusses about the relation between sintering quality, spatter, and plume features.

2 Experimental Setup

An SEM analysis of the Iron (Fe) particles to be used during the process is shown in
Fig. 1. Particle size varies in the range of 13–31 µm captured at 1000x resolution.
They are loosely bound with no visible compaction.

This was followed by experimentation using the setup shown in Fig. 2. The iron
powder is spread as a uniform layer of 1 mm thickness over a steel substrate. This
assembly is kept on a mechanical turntable with horizontal and vertical movement
capability (x-y direction). The assembly is covered by a transparent cubical acrylic
chamber with a spherical opening at the top for laser firing. Argon gas is fed into the
chamber for protecting sintered area from oxidation. A 400 W Yb-doped fiber laser
fitted with a beam collimator is used in continuous mode with a constant scanning
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speed of 3 mm/s. Phantom Flex v311 high-speed camera [9] is set up at an inci-
dence angle of 20° with maximum aperture and exposure setting. Additionally, for
suppressing saturation and blooming of CCD sensor of camera, a spectral band-pass
filter with passband wavelength (180–534 nm) and stopband wavelength (740–
1070 nm) is placed in front of the camera. The resulting difference in contrast on
applying the filter is visible in Fig. 3a, b. The captured video sequences are
transferred from the camera’s flash memory to the monitoring computer for further
processing. The fiber laser power is varied from 80 to 400 W. The shielding gas
flow is set at 36 L/min and nozzle angle is 0°. The turntable is driven by a precise
motor assembly which can be moved in x and y directions. The laser power and
turntable movement are programmable through computer software pre-installed
with the laser assembly. Experiments are performed with three power settings, low
power (80 W), medium power (200 W), and high power (400 W). The frame rate
for capturing video sequences is set at 3000 fps with an image resolution of 512
pixel by 512 pixel and 8-bit color depth.

2.1 Inclusion Criteria

1. Laser firing action in continuous mode.
2. Power variation between 80–400 W.
3. 4 s video per experiment
4. Observation of 90 frames (Frame no. 1233–1322) out of 12342 frames.

Fig. 1 SEM image of iron powder under consideration with marked particle sizes of 13.26 and
30.36 µm
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2.2 Exclusion Criteria

1. Laser firing action in pulsing mode.
2. Videos with multiple saturations and blooming.

Fig. 2 Experimental setup of laser sintering process

Laser Direction

Sintering 
Direction 

Laser Direction

Sintering 
Direction 

(a) (b)

Fig. 3 a Image captured without use of UV filter showing saturation (power: 80 W). b Image
captured through a UV filter showing high contrast well-defined melt pool (power: 80 W)
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3 Methodology

3.1 Sample Preparation

Powdered iron is spread as a thin layer (1 mm thick) over a steel metal base. The
preparation is covered with a cube-shaped transparent acrylic box with a spherical
opening at the top. The covering is supplied with Argon shielding gas during laser
firing. Shielding is required to prevent particulate oxide formations in the final
product due to interaction of melt pool surface with surrounding air. Apart from
shielding, it aids cooling the collimator lens [8].

3.2 Laser Assembly Preparation

The fiber laser is set to fire in continuous mode. Laser scanning speed is set at
3 mm/s. Laser beam collimator is set for 2 mm beam diameter. Experiments are
conducted by setting power to 80, 200, and 400 W.

3.3 Image Acquisition and Preprocessing

During each experiment, high-speed video sequences are recorded by the special-
ized camera [9]. The process of laser action over the loosely bound particles is an
event where rapid spatter movement can be tracked only through high-speed
imaging with frame rates greater than 1000 frames per second and not an ordinary
CCD camera.

The raw data is transferred to a monitoring workstation where image files in
TIFF format are extracted. TIFF is the best format as compared to JPEG or BMP as
it preserves information. Ninety frames in this format were extracted from the raw
video file generated by the Phantom Camera Control Software with each frame is
activity at 1/3000th of a second. The algorithm designed in MATLAB v2012a
considers these images as input.

No preprocessing was applied to extracted images and the developed algorithm
was tested directly on them.
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3.4 Spatter Tracking and Feature Extraction

Algorithm

1: Initialization
2: Read two successive color frames
3: Color to Gray scale conversion
4: Perform Background Subtraction
5: Perform binarisation
6: Compute Region properties: Filled Area, Centroid, Bounding Box
7: If Filled Area is more than or equal to 2 pixels then
8: Mark with blue bounding box
9: Else
10: Mark with red bounding box
11: End If
12: If not last frame, go to 2
13: End

The algorithm picks the nth and n−1th color frames I_color(n) and I_color(n−1) as
shown in Fig. 4a and 4b, respectively. Spatter movement is marked with red circle.
It converts them to grayscale images I_gray(n) and I_gray(n−1), shown in Fig. 5a
and 5b, respectively.

(a) (b)

Fig. 4 a nth color frame I_color(n). b n−1th color frame I_color(n-1) (power: 80 W, prominent
spatter movement is circled)
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This step is followed by background subtraction using the frame difference
method:

P I diff x, y, nð Þð Þ=PðI grayðx, y, nÞÞ−PðI grayðx, y, n− 1ÞÞ ð1Þ

where PðI grayðx, y, nÞÞ is the pixel intensity value at location (x, y) in the nth
frame and PðI grayðx, y, n− 1ÞÞ is the pixel intensity value at the same location in
the previous frame.

Background subtraction is a widely used method to detect object motion [10].
Algorithms using a varied mix of background models are compared in [11, 12] and
includes the frame difference approach. Frame difference method allows the tracking
algorithm to access inter-frame variations in the least possible time required. Its choice
is best suited here due to continuous rapid motion in every frame.

(a) (b)

Fig. 5 a nth gray frame I_gray(n). b n−1th gray frame I_gray(n−1) (prominent spatter movement
is circled)

Fig. 6 Binary image of
background subtracted frame
I_diff
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Next step is the binarization of I_diff with an optimally selected threshold as
shown in Fig. 6. This step is essential to compute the region properties of I_diff.

Next, region properties including filled area, bounding box, and centroid are
calculated for all closed objects in I_diff. All the identified spatters with Filled
Area ≥ 2 are bounded with a blue marker and Filled Area < 2 pixels with a green
marker as shown in Fig. 7. This classification threshold of 2 pixels is concluded
after observing individual spatter size features divided over 270 frames. Figure 8a–c
show the tracked spatters for power settings of 80 W, 200 W, and 400 W, respec-
tively. Figure 8a shows a single ejected spatter encircled with a white marker.

(a) (b) (c)

Fig. 8 a–c Detected spatters with superimposed markers on input frame at 80, 200 and 400 W
(green for area < 2 and blue for area ≥ 2)

Fig. 7 Detected spatters with superimposed markers on input frame (green for area < 2 and blue
for area >2)
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3.5 Plume Tracking and Feature Extraction

Algorithm

1: Initialization
2: Read current frame
3: Color to Gray scale conversion
4: Perform Binarisation
5: Compute region properties: Filled Area, Centroid and Bounding Box
6: PlumeArea = max (Filled Area)
7: Mark with red bounding box
8: If not last frame, go to 2
9: End

The algorithm takes image I_grayn and converts into binary image based on an
optimally selected threshold. Then, it computes the region properties and segments
the plume region based on plume centroid and filled area. The extracted plume
shape is bounded with a red marker box. The tracked plume shape for power of 80,
200, and 400 W is shown in Figs. 9, 10, and 11, respectively.

Fig. 9 a, b Weld pool image with marker on detected plume (80 W)
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4 Results and Discussion

4.1 Spatter Tracking

Figure 12 shows the plot of total ejected spatter count against the frames (1–90) for
three power combinations. Due to the back pressure exerted by the laser firing on
the loosely compacted iron particles, significant spatters are observed for 400 W
power setting. Also, a dip in spatter count is observed for frame number 60–62 due
to iron particles sticking to each other due to extreme heat.

Plots of spatter count with Filled Area < 2 pixels and Filled Area ≥ 2 pixels
against respective frame numbers shown in Figs. 13 and 14 suggest a proportional
rise in high density and low-density spatter count.

Figure 15a–c shows the sintered product with power settings of 80, 200, and
400 W, respectively. It can be observed that the ring structure remains intact in

Fig. 10 a, b Weld pool image with marker on detected plume (200 W)

Fig. 11 a, b Weld pool image with marker on detected plume (400 W)
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Fig. 15b only. The ring quality in Fig. 15a is inferior and iron particles have started
unbinding right after sintering. Also, the ring can be seen to stick to the base metal
in Fig. 15c and is undesirable.

4.2 Plume Tracking

The results of the plume tracking algorithm were plotted with plume area against
frame number. Figure 16 highlights that setting the power to 400 W results in rapid
expansion of plume area as compared to 80 and 200 W. Larger plume size results in
inefficient transfer of heat from the laser to melt pool surface.

Fig. 12 Plot of total spatters against frame progression

Fig. 13 Plot of spatters (radius < 2) against frame progression

Use of High-Speed Photography to Track and Analyze Melt Pool … 341



Fig. 14 Plot of spatters (radius > 2) against frame progression

Fig. 15 a–c Manufactured product with Power: 80, 200, and 400 W, respectively

Fig. 16 Plot of plume area against frame progression
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5 Conclusion

Application of high-speed photography in monitoring fiber laser sintering of cir-
cular iron rings has been suggested. Spatter and plume generation during the
process has been captured through high contrast videos recorded at 3000 frames per
second. An image processing algorithm based on background subtraction for
extracting the laser-induced spatter and plume features has been proposed. Accurate
tracking of spatter and plume growth is accomplished. Results show that the
algorithm can accurately track spatter movement over the considered dataset. It is
observed that there is a 200% increase in spatter count of non-compacted iron
powder on doubling the laser power. There is a corresponding increase in average
plume size by 400% in high-power conditions leading to undesirable sintered
product quality.

The proposed algorithm can be used in diagnostics of rapid spatter and plume
growth during selective laser sintering. Evidently, experimentation with laser power
of 200 W produces a high-quality sintered product with ejected spatters and plume
having small sizes with growth in the same direction of sintering. It prevents energy
absorption and beam scattering ensuring optimal quality of synthesized rings.

A GUI-based tool has been developed to provide frame by frame tracking of
spatter and plume to manufacturing technicians. Plume growth monitoring is a
critical issue for them and the proposed use of image processing is an effective
approach for ensuring high-quality sintered products.

Acknowledgements The authors are grateful to Department of Electronics and Telecommuni-
cation, College of Engineering, Pune, for permitting the usage of the high-speed camera to capture
the entire laser sintering process.
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Multi-Scale Directional Mask Pattern
for Medical Image Classification
and Retrieval

Akshay A. Dudhane and Sanjay N. Talbar

Abstract This paper presents a classification scheme for interstitial lung disease
(ILD) pattern using patch-based approach and artificial neural network
(ANN) classifier. A new feature descriptor, Multi-Scale Directional Mask Pattern
(MSDMP), is proposed for feature extraction. Proposed MSDMP extracts
microstructure information from a (31 × 31) size patches of the region of interest
(ROI) which were marked by the radiologists. A two-layer feed-forward neural
network is used for classification of ILD patterns. Also, proposed MSDMP feature
descriptor has been tested on medical image retrieval system to check its robust-
ness. Two benchmark medical datasets are used to evaluate the proposed descriptor.
Performance analysis shows that the proposed feature descriptor outperforms the
other existing state-of-the-art methods in terms of average recognition rate
(ARR) and F-score.

Keyword ILD artificial neural network feature descriptor

1 Introduction

The interstitial lung disease (ILD) is broadly categorized having different conditions
of the lung and collectively represents more than 130 different categories. Usually,
all these types of ILD majorly cause thickening of the interstitium, a part of the lung
anatomic structure. The interstitium provides support to the alveoli/air sacs; also,
small blood vessels find their path through the interstitium, which allows oxygen
exchange. On the other hand, ILD causes scarring of the interstitium which turns
into a decrease in strength of the air sacs to store and carry oxygen and eventually
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patient may lose the ability to breathe. Commonly seen symptoms of the ILDs are
shortness of breath, weakness, weight loss [1]. Over to this, many times cause of the
ILD is unknown and which is known as idiopathic interstitial pneumonia (IIP).

It has been observed that growth of the ILD varies from person to person as well
as with the ILD category [1] due to which diagnosis of ILD becomes an initial step
to cure the disease. ILD diagnosis comprises of various physical examinations,
pulmonary function test, as well as various scans (X-ray, computed tomography
(CT) scans) to understand the tissue patterns. High-resolution computed tomogra-
phy (HRCT) scans show sufficient variation in the tissue patterns of different ILDs
due to which HRCT scans become popular modality to diagnose the disease.
However, interpreting the type of ILD with the help of HRCT scans is challenging
even for experienced radiologist because different ILDs may have different com-
binations of the tissue patterns. This property of the ILD motivates us to have a
computer-aided diagnosis (CAD) system which helps the radiologists to get “sec-
ond opinion” to increase their accuracy to diagnose the ILD pattern. A CAD system
for lung CT scans includes three phases, namely lung segmentation, ILD quan-
tification, and differential diagnosis. In this study, we are focusing on ILD quan-
tification (specifically, ILD pattern classification). Among various ILD patterns, we
are specifically focusing on five frequently seen ILDs namely fibrosis, ground glass,
emphysema, micronodules, and healthy patterns which are shown in Fig. 1.

2 Related Work

Since HRCT scans of ILD show the appropriate difference in tissue patterns, a lot of
research has been carried out in ILD pattern classification to build the CAD system.
Various researchers have proposed different methods based on spatial as well as
transform domain image analysis to classify ILD patterns [2–9], some of them are
briefly enlightened as follows.

Initially, Mir et al. [2] analyzed CT images based on second-order statistics.
Further, Renuka uppaluri et al. [3] have proposed adaptive multiple feature method
(AMFM) for pulmonary parenchyma classification from computed tomography
(CT) scans using regional approach. AMFM comprises of twenty-four features

Fig. 1 Sample ILD patches of size 31 × 31; one from each class. a Tissue emphysema, b tissue
fibrosis c tissue ground glass, d tissue normal, e tissue micronodule
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which were a gold standard since the use of multi-scale filter bank [5]. Multi-scale
filter bank for ILD pattern classification was proposed by sluimer et al. [5].
Uchiyama et al. [6] built CAD system in which they have segmented lung field
using morphological operations, and further, they have used six measures to clas-
sify the abnormal lung patterns. Moreover, Xu et al. used the ability of MDCT
scanners to achieve 3D sub-millimeter resolution and extracted 3D AMFM features
by extending 2D AMFM [4] to three dimensions. On the other hand, local operators
can extract the regional information which helps to analyze the frequency of local
structures [10, 11]. Inspired by volumetric local binary pattern (LBP), Murala et al.
[12] proposed a multi-resolution analysis of LBP. Also, to incorporate the direc-
tional information in texture analysis, lot of research has been carried out using
wavelet transform and Gabor filters [7–9, 13, 14]. Gabor filters are more analogous
to the human visual system than wavelet analysis because it collects information at
multiple scales and multiple orientations. Using Gabor filters, majunath et al. [13]
extracted first-order moments from image texture to increase the accuracy of image
retrieval system. However, these features are not rotation invariant. To address this
problem, Han et al. [15] proposed scale- and rotational-invariant Gabor filter
(RIGF). However, Gabor filters are computationally more complex. To overcome
this problem, Depeursinge et al. [7] have used wavelet frames and gray level
histograms for classification of five frequently seen ILD patterns (emphysema,
fibrosis, ground glass, healthy, and micronodules). They have used B-spline
wavelet basis functions and extracted first-order moments for each ROI. Moreover,
Talbar et al. [16] proposed texture classification based on wavelet features. Also,
isotropic wavelet frames [8] and optimized steerable wavelets [9] are used to extract
information from HRCT scan of lungs.

However, the accuracy of any classification system depends upon its discrimi-
native feature map and effective classifier. So, to improve the accuracy of ILD
classification, many researchers have used different classifiers [14, 17–22].
Michinobu et al. [17] proposed histogram features followed by Bayes classifier for
ground glass and micronodule detection. Also, Song et al. [18] have used sparse
representation and dictionary learning and further compared k-nearest neighbor-
hood (k-NN) and support vector machine (SVM) classifier. The classification
accuracy of the k-NN classifier is more dependent on a distance metric. To over-
come this disadvantage, they have proposed patch-adaptive sparse approximation
method for classification of ILD patterns. Sparse representation is an enhanced
k-NN model; k-NN selects the nearest neighbors by similarity ranking using dis-
tance metric, whereas in sparse representation nearest neighbors are computed by a
weighted linear combination of reference dictionary. Nevertheless, the performance
of sparse representation relies on the quality of reference dictionary. Parametric
classifiers (such as ANN) help to learn the image texture and improve the classi-
fication accuracy. So, to improve computer-aided diagnosis, Lilla et al. [23] com-
bined genetic algorithm followed by SVM classifier. Ishida et al. [19] used artificial
neural network (ANN) for detection of ILD patterns. Also, their work has been
extended by Ashizawa et al. [20] for differential diagnosis of ILD patterns.
Recently, Maris et al. [21] used the convolutional neural network for the
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classification of seven ILD patterns. Moreover, Yang et al. [18, 22] proposed
modified sparse representation and dictionary leaning-based ILD classification.

In this study, we have classified ILD patterns using patch-based approach and
novel Multi-Scale Directional Mask Pattern (MSDMP) followed by feed-forward
neural network. Further to prove the robustness of MSDMP, we have used our
approach on the state-of-the-art database for medical image retrieval.

3 Proposed Method

3.1 Feature Extraction

Multi-Scale Directional Masks Pattern (MSDMP)

Multi-scale and multi-directional representation of conventional Gabor filter gives
discriminative information about the image texture. Still, because Gabor filter is
rotational variant; which limits its use in medical imaging. To overcome this
problem, we chose rotational-invariant Gabor filters [15]. However, scale-invariant
Gabor filter introduces aliasing effect [15]. So, we have introduced directional
masks to combine multi-scale information of Gabor filters. On the other hand, local
operator extracts information from local regions of an image; histogram of these
patterns extracts edge distribution in an image. Collectively, in this study, we
proposed a new multi-scale directional mask pattern (MSDMP) texture descriptor to
merge multi-scale information of Gabor filters and most prominent advantages of
local operators.

Figure 2 shows the use of proposed directional masks to obtain multi-scale
directional 3D grid (MSD-3D), whereas Fig. 2a, b illustrates the obtained patch
from annotated ROI, which is then convolved with rotational-invariant Gabor filter
bank as in [15]; Gabor-filtered output is shown in Fig. 2c; further, Fig. 2e displays
proposed directional mask (Mask) along four directions, multiplied with the local
region extracted as shown in Fig. 2d. After multiplication with directional masks
finally, obtained multi-scale directional 3D grid is shown in Fig. 2f–i. The opera-
tion of directional mask on a sample of local region extracted from each scale is
shown in Fig. 3. Whereas Fig. 3a shows a sample of local region, Fig. 3b
demonstrates multiplication of 0◦ directional mask to obtain binary pattern as
shown in Fig. 3c using proposed MSDMP.

Let Gp, r x, yð Þ denote Gabor filter bank, where p and r represent the number of
scales and orientation correspondingly. The rotational-invariant Gabor filter (RIGF)
[15] is represented in Eq. (1):

Gp = ∑
R− 1

r=0
Gp, r x, yð Þ ð1Þ

where p=1, 2, 3 represents scales of Gabor filter.
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However, Eq. (2) represents convolution operation of image with Gabor filters.

Ip = I *Gp; p=1, 2, 3 ð2Þ

where Gp, Ip represents RIGF and Gabor-filtered output, respectively.
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Next, we multiplied directional masks with local regions of Ip to combine
multi-scale information. Consider Ipl a local region of size (3 × 3) of Gabor-filtered
output Ip as shown in Fig. 3a. We have designed directional masks as shown in
Fig. 4. So, given a directional mask, multi-scale directional 3D grid (MSD-3D) is
given by Eq. (3).

Ap
l gið Þ= Ipl gið Þ×maskdir gið Þ; i=1, 2, . . . , 8 and p=1, 2, 3 ð3Þ

where gi are the neighborhoods of center pixel gc as denoted in Fig. 3a. A
p
l is a local

multi-scale directional 3D grid (MSD-3D) as shown in Fig. 2f–i, while Fig. 4
represents directional mask maskdirð Þ along dir∈ 0◦, 90◦, 45◦, 135◦.

Further, MSDMP for Ap
l having center pixel gc is calculated by Eqs. (5), (6), (7),

and (8), where gc =A2
l 2, 2ð Þ.

diff pl =Ap
l − gc; p=1, 2, 3 ð4Þ

patterndirl 1, jð Þ= f dir diff 1l gið Þ, diff 3l gkð Þ� � ð5Þ

where i=

0, 1, 5 if dir =0◦

0, 3, 7 elseif dir=90◦

0, 2, 6 elseif dir=45◦

0, 4, 8 elseif dir=135◦

8>><
>>:

, k= mod i+4, 8ð Þ, j=1, 2, 3

and patterndirl is a binary code for local region l and the directional mask dir. Also,
diff 1l and diff 3l are the first and third plain of diff pl obtained using Eq. (4).

patterndirl 1, 4ð Þ= f dir diff 2l gið Þ, diff 2l gi+4ð Þ� � ð6Þ

where i= 1+ dir
45◦

� �
; dir∈ 0◦, 45◦, 90◦, 135◦ and patterndirl is obtained using

Eqs. (5) and (6) is a four-bit binary code for local region l and directional mask dir.

f dir x, yð Þ= 1 if x × y > 0
0 else

n
ð7Þ

Finally, MSDMP code for given MSD-3D grid Ap
l with a directional mask dir is

given by Eq. (8).

Mask   ϵ

Fig. 4 3 × 3 directional masks (dir) used for combining multi-scale information. From left to
right: 0°, 90°, 45°, 135° directions, respectively
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MSDMPdir
l = ∑

4

w=1
2w− 1 × pattern 1,wð Þ ð8Þ

Similarly, MSDMPdir
l is obtained for each local region of Ip which will create a

MSDMPdir coded image for an input image. Further, a histogram of MSDMPdir is
obtained using Eq. (9).

Hdir
MSDMP mð Þ= ∑

row

i=1
∑
col

j=1
f 1 MSDMPdir row, colð Þ,m� �

; m∈ 0, 15½ � ð9Þ

f 1 x, yð Þ= 1 if x= y
0 else

�
ð10Þ

fmap = Hdir=0◦
MSDMP Hdir=90◦

MSDMP Hdir=45◦
MSDMP Hdir=135◦

MSDMP

� � ð11Þ

where fmap is a final feature vector obtained by concatenating histogram obtained
using four different directional masks dir =0◦, 90◦, 45◦, 135◦ð Þ. So, feature vector
length for an image using MSDMP is 1 × 64ð Þ.
Gray level Run-Length Matrix (GLRLM)

Run-length encoding extracts useful information from image texture [24]. In a
coarse texture, comparatively longer gray level runs would occur, rather in fine
texture, many times short gray level run occurs. We have obtained gray level
run-length matrix from which twelve features are extracted as proposed in [25]. So,
in total, we have extracted (1 × 76) features, out of which 64 features are extracted
using MSDMP and remaining 12 features are obtained using GLRLM.

3.2 Two-Layer Block Nets

In this study, we have used patch-based approach for ILD pattern classification (as
2D ROI is marked by experienced radiologists). The patch-based approach helps to
extract the detailed information from HRCT scans. However, to achieve advantages
of patch-based approach where the ROIs are not marked, we have introduced
two-layer block net method. Figure 5 shows two-level block net.

N1level 0
pn × pm =

n
pn

� �
×

m
pm

� �
ð12Þ

where n, m are a number of rows and columns in an image, pn, pm are a number of
rows and columns in an image block, and Nlevel 0

pn × pm is the total number of (pn × pm)
sized blocks obtained at a given level zero.
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N1level 1
pn × pm =

n
0

pn

� �
×

m
0

pm

� �
ð13Þ

where n
0
= n− pn

2 , m
0
=m− pm

2 which is a size of the image at level 1, and N1level 1
pn × pm

is the total number of (pn × pm)-sized blocks obtained at a given level one.
Further, MSDMP is used to extract features from each block obtained at level_0

and level_1. Feature vector length for an image using two-level block net is
64 × N +N1ð Þð Þ

3.3 Artificial Neural Network (ANN)

ANN is a very superior and famous classifier used in pattern recognition as well as
in medical diagnosis [14, 20, 21, 26]. In this work, we have used two layered
feed-forward neural network trained with scaled conjugate gradient backpropaga-
tion algorithm for classification of ILD patterns. A number of input layer neurons
are equal to a feature dimensionality, whereas hidden layer comprises of 120
neurons. Also, output layer has five neurons indicating five classes of ILD patterns.

4 Result and Discussion

To analyze the performance of proposed method, we have used recall, precision,
F-score, and accuracy [18]. In this study, we have carried out two experiments on
state-of-the-art database.

(a) (b)

Fig. 5 Representation of two-level block net. a Represents a two-level block net and small block
at level_0. b 3D view of two-level block net
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4.1 Experiment #1

In this experiment, we have used a publicly available dataset of ILD cases (DB1)
[27]. This database has 2062 region of interest (ROI) with pattern label marked by
three experienced radiologists. We have considered 109 HRCT sets for ILD clas-
sification. Each HRCT scan is of (512 × 512) size having resolution 16 bits/pixel.
A brief summary of the dataset used is shown in Table 1. Detailed information
about the scanning protocol is: Spacing between the consecutive slices is 10–
15 mm, slice thickness is 1–2 mm, and scan time between two successive slices is
1–2 s. We have divided ROI into half overlapping patches having (31 × 31) pixel
size.

ROI patches which are having 100% overlap with lung field and 75% overlap
with marked ROI were selected for feature extraction. We have used this database
for ILD classification. Correspondingly, Table 2 shows confusion matrix of ILD
classification system where 70 and 10% ILD patches are used for training and
validation, respectively, while 20% of ILD patches are used for testing the accuracy
of the classification system. Further, proposed system is evaluated by varying
percentage of training and testing sets. Figure 6a illustrates the performance of
system framework on DB1, and Fig. 6b shows receiver operating characteristic
(ROC) with 80% ILD patches for training and validation whereas 20% for testing.
Also, Fig. 7a shows performance of k-NN classifier on DB1, and Fig. 7b shows
performance comparison between k-NN and ANN classifier by using F-score as a
performance measure. Figure 7b shows that proposed MSDMP in combination
with ANN gives better accuracy than k-NN classifier. Table 3 shows that proposed
ILD classification scheme outperforms other existing state-of-the-art methods in
terms of F-score as well as accuracy.

Table 1 Database
information

Tissue
category

# Patches generated # Training # Testing

Emphysema 516 412 104
Fibrosis 1362 1090 272
Ground glass 684 547 137
Normal 1280 966 242
Micronodule 5262 4210 1052

Table 2 Confusion matrix of
ILD classification by
proposed method on DB1

DB1 TE TF TG TN TM

Emphysema (TE) 459 9 0 11 6
Fibrosis (TF) 2 1284 30 8 25
Ground glass
(TG)

0 31 581 18 14

Normal (TN) 22 9 46 1115 108

Micronodule
(TM)

33 29 27 128 5103
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Fig. 6 Performance of the MSDMP on DB1. a ARR with different training set (%) and testing set
(%); if X% of patches are used for training, then (90-X) % of patches are used for testing.
b Receiver operating characteristic (ROC) for DB1 with training set (70%), validation set (10%),
and testing set (20%)
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Fig. 7 Performance of the MSDMP on DB1. a Performance of k-NN classifier: ARR with
different nearest neighbors (k) and using different distance measures. b Classwise comparison
between k-NN and ANN classifiers with F-score as a performance measure
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4.2 Experiment # 2

In this experiment, we have used VIA/I-ELCAP database [28] which is jointly
created by vision and image analysis (VIA) and early lung cancer action program
(ELCAP) research groups. This database provides HRCT scans of the lung having a
resolution of (512 × 512). To check robustness of proposed MSDMP descriptor,
we have used subset of this database in medical image retrieval system. This subset
comprised of ten scans. Each scan contains 100 HRCT images. We have collected
these cropped HRCT images from Murala et al. [12]. Figure 8 illustrates the
sample-cropped HRCT scans from VIA/I-ELCAP database. Result of medical
image retrieval system in terms of ARR using combination of proposed MSDMP
feature descriptor and two-layer block nets is shown in Table 4.

5 Conclusion

This paper presents a classification scheme for ILD pattern using patch-based
approach and ANN classifier. A new feature descriptor, Multi-Scale Directional
Mask Pattern (MSDMP), is proposed for feature extraction. MSDMP combines
multi-scale information from rotation-invariant Gabor transform and extracts
information between the center pixel and directional multi-scale neighborhoods.

Table 3 Comparison of the proposed method and state-of-the-art methods

Method Features Classifier Favg Accuracy

Song [18] LBP + Intensity histogram + gradient
Descriptor

PASA 0.8146 0.8264

Song [22] Large margin local estimate classification 0.84 0.86
Marios [21] CNN 0.8547 0.8561
Proposed
method

MSDMP + GLRLM ANN 0.9135 90.44

Fig. 8 Sample images from VIA-ELCAP CT database. From left to right one image from each
category

Table 4 Results of
(MSDMP + Two-layer block
net) in terms of ARR on DB2

Database Distance metric
L1 Euclidean d1

VIA-ELCAP_CT 99.07 98.43 99.12
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Further, the robustness of proposed feature descriptor is tested on VIA-ELCAP_CT
with application to medical image retrieval system (MIRS). Also, results are
compared with k-NN classifier. Performance evaluation shows that combination of
proposed MSDMP descriptor, two-level block nets, and ANN classifier outper-
forms other existing methods.
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Enhanced Characterness for Text Detection
in the Wild

Aarushi Agrawal, Prerana Mukherjee, Siddharth Srivastava
and Brejesh Lall

Abstract Text spotting is an interesting research problem as text may appear at any

random place and may occur in various forms. Moreover, ability to detect text opens

the horizons for improving many advanced computer vision problems. In this paper,

we propose a novel language agnostic text detection method utilizing edge-enhanced

maximally stable extremal regions (MSERs) in natural scenes by defining strong

characterness measures. We show that a simple combination of characterness cues

helps in rejecting the non-text regions. These regions are further fine-tuned for reject-

ing the non-textual neighbor regions. Comprehensive evaluation of the proposed

scheme shows that it provides comparative to better generalization performance to

the traditional methods for this task.

Keywords Text detection ⋅ HOG ⋅ Enhanced MSER ⋅ Stroke width

1 Introduction

Text co-occurring in images and videos serves as a warehouse for valuable infor-

mation for image description and thus assists in providing suitable annotations.

Typical practical applications involve extracting street names and numbers, textual

indications such as ‘diversion ahead,’ etc., from road signs in natural scenes. Such
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information can be further stored in geo-tagged databases [1]. Autonomous vehicles

are also heavily dependent on efficiency and accuracy of such methods to effec-

tively follow traffic rules. Another area where text detection is applied is indexing

and tagging images/videos where text in images helps in better understanding of

the content [2]. Performing the above tasks is trivial for humans, but segregating it

against a challenging background still remains as a complicated task for machines.

Traditional methods for text detection employ the use of blob detection schemes

like maximally stable extremal regions (MSERs) [3, 4], edge-based analysis, stroke

width transform (SWT) [5, 6], strokelets [7] and features like histogram of oriented

gradients (HOGs) [1, 8], Gabor-based features [6], text covariance descriptors [5, 9],

and shape descriptors (e.g., Fourier descriptors [10, 11], Zernike moments [12]). The

reason behind great popularity of using MSERs and SWT is theirO(n) time complex-

ity for performing efficient segmentation which helps in detecting the text regions.

MSERs are very effective in detecting the text components, but it is extremely sensi-

tive to noise. So, most of the techniques concentrate on pruning the non-text regions

using some heuristics or geometric properties. Despite the advent of deep learning-

based techniques [13, 14] which have resulted in tremendous progress in machine-

driven text detection, the traditional methods still hold relevance primarily owing to

their simplicity and comparable generalization capability to different languages.

Authors in [15] utilize text specific saliency detection measure termed as char-
acterness. The authors demonstrate that due to the presence of contrasting objects,

saliency alone cannot be an effective indicator of textual region. They overcome

this limitation by introducing saliency cues which accentuate the boundary informa-

tion in addition to saliency [16]. Deriving motivation from this work, we propose a

simple combination of various characterness cues for generating candidate bounding

boxes for text regions. We use these characterness cues (HOG, stroke width variance,

pyramid histogram of oriented gradients (PHOGs)) to refine the blobs generated by

edge-enhanced MSERs (eMSERs) [15] for generating text candidates. This is fol-

lowed by rejection of non-text regions by incorporating difference of entropy as a

discriminating factor. The last step is the refinement step, where we combine the

smaller blobs into one single text region by concatenating blobs with similar stroke

width variance and characterness cue distribution. As per the above discussion, the

key contributions of the paper are listed below:

1. We develop a language agnostic text identification framework using text

candidates obtained from edge-based MSERs and combination of various char-

acterness cues. This is followed by a entropy-assisted non-text region rejection

strategy. Finally, the blobs are refined by combining regions with similar stroke

width variance and distribution of characterness cues in respective regions.

2. We provide comprehensive evaluation on popular text datasets against recent text

detection techniques and show that the proposed technique provides equivalent

or better results.

Organization of the paper is as follows: The proposed methodology is discussed

in Sect. 2. The experimental results and discussions are detailed in Sect. 3. Finally,

the conclusion is provided in Sect. 4.
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Fig. 1 Workflow of the

proposed methodology

2 Proposed Methodology

The workflow of the proposed method is shown in Fig. 1. In the following subsec-

tions, we describe in detail the components of the proposed method.

2.1 Text Candidate Generation Using eMSERs

We begin by generating initial set of text candidates using edge-enhanced maximally

stable extremal regions (eMSERs) approach [15]. MSER is a method for blob detec-

tion which extracts the covariant regions in the image. It is based on aggregation of

regions which have similar intensity values at various thresholds which makes it a

suitable candidate for detecting regions with text in images. It efficiently detects the

characters in case of distinctive boundaries but fails in the presence of blur. In order

to handle this, eMSERS are computed over the gradient amplitude-based image. It

divides the image into two sets of regions: dark and bright; dark regions are those
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(a) (b)

(c) (d)

(a) (b) (c)

Fig. 2 Left column: a original image b bright regions c dark regions d after processing on these

regions final set of blobs detected by eMSERs; right column: top row: a–c eMSER region; bottom

row: a binarized region obtained from original image b binarized region neglected due to size

constraints c binarized image—refined object (alphabet) obtained with less disturbance which gives

us better results

which have lower intensity than their surroundings and vice versa. Initially, non-text

regions are rejected based on geometric properties like aspect ratio, number of pix-

els, and skeleton length followed by connected component analysis for combining

the text regions. Figure 2 shows instances of bright and dark regions formed during

text candidate generation using eMSERs. As can be observed, in the bright regions

the color of the text is lighter as compared to dark background (red) while in the dark

regions the dark text was highlighted against the light colored background.

2.2 Elimination of Non-text Regions

The regions are further refined based on the property that text usually appears on

a surrounding having a distinctive intensity. Utilizing this property, we refine tex-

tual regions while reject non-textual regions. To achieve this, we find corresponding

image patches for the blobs identified by eMSERs. As the image patches contain

spurious data along with the information in the form of text, we perform binariza-

tion over these image patches using Otsu’s threshold [17] for that region and obtain

a common region CRi between the binarized image patch bi and the blob obtained by

eMSER R (where bi ∩ R > 90%) for image i. A blob is rejected, if it is not contained

in the binarized image patch. Figure 2 shows some examples of this rejection strat-

egy. We then define various characterness cues [15] for common regions CRi. Apart

from stroke width and HOG used in [15], we check the values of pyramid histogram

of oriented gradients (PHOGs) features and entropy for the blobs. During the exper-

iments, we found that PHOG is a good measure of similarity over HOG. In case of

alphabets, i.e., textual regions, we observe that the HOG and PHOG values for CRi
are very less. We now briefly explain these cues.
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1. Stroke width variance: A stroke is effectively a continuous band of same width in

an image. Stroke width transform (SWT) [18] is defined as a local operator which

gives the most likely stroke for every pixel in the image. In SWT, all the pixels

are initialized with infinity as their stroke width. A Canny-based edgemap is then

calculated followed by calculation of gradient direction for all the edge pixels. If

the gradient direction (gp) of an edge pixel p is opposite to the gradient direction

(gq) of next edge pixel q, then the distance between p and q is the stroke width, else

the ray tracing p and q is discarded. The pixels having similar stroke widths are

grouped using connected component analysis. The letter candidates are chosen

after some postprocessing based on the stroke width variance and aspect ratio.

The letter candidates are grouped to give text regions. The idea is to segregate text

from other high-frequency content that might be present in the scene, e.g., trees

branches etc. We perform a bottom-up aggregation by merging pixels with similar

stroke widths into connected components which allows in detecting characters

across wide range of scales. It is able to identify near-horizontal text candidates.

Stroke width of a region (r) is defined as [15]

SW(r) =
SWvar(l)
Mean(l)2

(1)

where l defines the shortest path between every pixel p in the skeletal image of

region (r) to the boundary of the region, SWvar is the stroke width variance, and

Mean gives the stroke width mean. We utilize the stroke width variance only

which should be less for text candidates. We also store the values of stroke width

as
SWmode√
HXW

and
SWmax−SWmin√

HXW
(stroke width deviation) where H and W denote height

and width of the common region, respectively.

2. HOG and PHOG: PHOG consists of a histogram of orientation gradients over

every subregion in the image for every resolution level. The HOG vectors com-

puted over each pyramid in the grid cells are concatenated. As compared to HOG,

PHOG is more efficient. HOG is invariant to geometric and photometric trans-

formations. In addition to this, PHOG helps in providing a spatial layout for the

local shape of the image. Therefore, we utilize their combination as a character-

ness cue.

3. Entropy: We calculate the entropy as Shannon’s entropy for the common regions

(bi ∩ R) given as

H = −
N−1∑

i=1
pilog(pi) (2)

where N denotes the number of gray levels and pi refers to the probability associ-

ated to the gray level i. In information theory, entropy is the measure of average

information of a signal given its probability distribution. Higher entropy indicates

higher disorder. In our scenario, text candidates show lower variation in color

values; thus, typically there is a dominating color in histogram having one sharp

peak. However, for non-character candidates, its color values span the histogram
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Fig. 3 a Smaller regions in the blobs detected by eMSERs b final result after postprocessing

as result of color variation. This corresponds to the entropy of the text candidates

yielding smaller values than that of the non-text candidates and hence acts as an

important cue in distinguishing among them and rejecting non-text candidates as

described in the next section.

2.3 Bounding Box Refinement

The remaining set of regions are refined by calculating a set of parameters as stroke

width distribution, pretrained characterness cue distribution, and stroke width differ-

ence. We define a characterness cue distribution by computing the characterness cue

values on ICDAR 2013 dataset. Additionally, we use this distribution to combine

the neighboring candidate regions and aggregate them into one larger text region.

We recompute the neighbors if they have similar distribution and reject otherwise.

Finally, we combine all the neighboring regions into a single text candidate. Figure 3

shows the results of this postprocessing step.

3 Experimental Results and Discussions

3.1 Experimental Setup and Datasets

The experiments were performed on a 32 GB RAM machine with Xeon 1650 pro-

cessor and 1GB NVIDIA graphics card. MATLAB 2015b was used as the program-

ming platform. The datasets used for evaluation of the proposed methodology are

publicly available text datasets: MSRATD500 [19] and KAIST [20]. MSRATD500

consists of 500 images (indoor and outdoor scenes). The standard size of image
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varies between 1296 × 864 and 1920 × 1280. It consists of scenes capturing sign-

boards with text in Chinese, English, and mixed. The diversity and complex back-

ground in the images make the dataset challenging. The KAIST scene text dataset

consists of 3000 images captured in different environmental settings (indoor and out-

door) with varying lighting conditions. The images are of size 640 × 480. It consists

of scenes with English, Korean, and mixed texts. The majority of scenes are of shop

and street numbers.

3.2 Evaluation Methodology

Metrics. The proposed technique is evaluated with precision, recall, and F-measure

metrics on the chosen datasets. The input for computing these metrics is Intersection

over Union (IoU) score, given as

IoU =
|S1 ∩ S2|
|S1 ∪ S2|

(3)

where S1 indicates the set of white pixels inside the blobs detected by our strategy

before the elimination step (smaller individual blobs), S2 indicates the set of white

pixels inside the ground truth region, and |⋅| is the cardinality. The performance

metrics in this paper are reported on blobs with majority of region being text, i.e.,

having IoU > 0.5.

Training and Testing. We perform training on ICDAR 2013 [21] dataset while the

test set consists of MSRATD and KAIST datasets. This is unlike earlier methods

where, in general, the training and testing samples are drawn from the same dataset.

Moreover, such a setting makes the evaluation potentially challenging as well as

allows us to evaluate the generalization ability of various techniques. The results on

Characterness [15] and Blob Detection [22] methods with training and testing sets

as described earlier are reported using the publicly available source code.

3.3 Results

Qualitative Results. Figure 4 shows qualitative results on a few example images

from MSRATD and KAIST datasets. It can be observed that the images obtained

after region refinement demonstrate better localization of textual regions while those

on MSRATD dataset (Fig. 4(i)) show tighter localization as compared to other tech-

niques. One of the aims of the proposed technique is to reduce false positives, which

can be observed from the second row of Fig. 4(i) where the proposed method pro-

vides a tight bounding box on text regions while there are false positives with other

techniques except Characterness. The signboard in the image does not consist of any
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(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Fig. 4 Results on (i) MSRATD and (ii) KAIST dataset images: a ground truth, b Characterness

[15], c Blob Detection [22], d proposed approach (before refinement step), and e proposed approach

Table 1 Performance measures on MSRATD dataset

Method/metric Precision Recall F-measure

Proposed 0.85 0.33 0.46

Characterness [15] 0.53 0.25 0.31

Blob detection [22] 0.80 0.47 0.55

Epshtein et al. [18] 0.25 0.25 0.25

Chen et al. [23] 0.05 0.05 0.05

TD-ICDAR [19] 0.53 0.52 0.50

Gomez et al. [24] 0.58 0.54 0.56

text data still the contemporary methods detect it as a text candidate. This could be

due the fact that the signboard consists of a rounded sketch which may correspond to

alphabets such as ‘O’, ‘Q’. Since the proposed technique strictly encodes the stroke

width variance along with other characterness cues, we are able to avoid detection of

such false candidates. Similar findings are observed for the KAIST dataset as well.

Quantitative Results. Tables 1 and 2 show empirical results on MSRA and KAIST

scene datasets, respectively. From the empirical results, it can be seen that on

MSRATD dataset, the proposed method achieves significantly higher precision and

F-measure as compared to Characterness while having a 28% (precision) and 64%

(F-measure) gain and a slightly lower (∼6%) recall rate with blob detection. The pro-

posed technique outperforms the compared methods on precision while performs

close in terms of F-measure and recall. It is important to note here that the pro-

posed technique does not involve any explicit training allowing the technique to be

directly extensible to domains such as symbol identification, road sign identification.

On KAIST dataset, the proposed method consistently outperforms characterness on

all benchmarks with average improvement of 36%, 17%, and 29% in precision, recall,

and F-measure, respectively. The proposed technique also achieves better precision

as compared to blob detection. The results show that the proposed method is able to

generalize better on a test set while being trained on an entirely distinctive character

set. For completeness in comparison, we also provide performance of other tech-

niques on KAIST dataset. However, it should be noted that the objective of these
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Table 2 Performance measures on KAIST dataset

Method/metric Precision Recall F-measure

KAIST-English
Proposed 0.8485 0.3299 0.4562

Characterness 0.5299 0.2476 0.3136

Blob detection 0.8047 0.4716 0.5547

KAIST-Korean
Proposed 0.9545 0.3556 0.4994

Characterness 0.7263 0.3209 0.4083

Blob detection [22] 0.9091 0.5141 0.6269

KAIST-Mixed
Proposed 0.9702 0.3362 0.4838

Characterness 0.8345 0.3043 0.4053

Blob detection 0.9218 0.4826 0.5985

KAIST-All
Proposed 0.9244 0.3407 0.4798

Characterness [15] 0.6969 0.2910 0.3757

Blob detection [22] 0.8785 0.4894 0.5933

Gomaz et al. [24] 0.66 0.78 0.71

Lee et al. [20] 0.69 0.60 0.64

techniques is generally to maximize text detection specifically for a script or to attain

script independence with curated training examples with the mixture of scripts to be

detected. This possibly makes the comparison with proposed technique tougher as

the objective is to obtain better generalization ability.

4 Conclusion

This paper proposed an effective text detection scheme by utilizing stronger charac-

terness measure. A postprocessing step is used to reject the non-textual blobs and

combine smaller blobs obtained by eMSERs into one larger region. The effective-

ness of the proposed scheme has been analyzed with precision, recall, and F-measure

evaluation measures showing that the proposed scheme performs better than the

traditional text detection schemes.
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Denoising of Volumetric MR Image Using
Low-Rank Approximation on Tensor SVD
Framework

Hawazin S. Khaleel, Sameera V. Mohd Sagheer, M. Baburaj
and Sudhish N. George

Abstract In this paper, we focus on denoising of additively corrupted volumetric
magnetic resonance (MR) images for improved clinical diagnosis and further
processing. We have considered three dimensional MR images as third-order
tensors. MR image denoising is solved as a low-rank tensor approximation problem,
where the non-local similarity and correlation existing in volumetric MR images are
exploited. The corrupted images are divided into 3D patches and similar patches form
a group matrix. The group matrices exhibit low-rank property and is decomposed
with tensor singular value decomposition (t-SVD) technique, and reweighted itera-
tive thresholding is performed on core coefficients for removing the noise. The pro-
posedmethod is comparedwith the state-of-the-art methods and has shown improved
performance.

Keywords MR image · Denoising · Tensor singular value decomposition
Low-rank approximation

1 Introduction

Magnetic resonance imaging (MRI) is awidely used non-invasive technique based on
nuclear magnetic resonance (NMR) phenomenon, in which the resonance
property of atoms is utilized to produce high-resolution images of interior parts
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of human body for clinical diagnosis of different diseases. In image processing per-
spective, MR imaging system involves forward and inverse Fourier transform [1].

However, MR images are perturbed by serious random noise due to limitations in
the scanning times, hardware ofMR imaging system, etc., which degrades the quality
of images. This adversely affect the further processing of data which includes the
proper diagnosis of diseases. The term noise in the context of MRI may refer to any
physiological distortions, thermal noise from the subject, or electronic noise while
obtaining the signal [2]. The MR images are acquired as complex data in the Fourier
space/k-space consisting of real and imaginary components. Each of the quadrants
is assumed to be interfered with additive Gaussian noise of equal variance [3]. Thus,
the magnitude of image M is given by

M =
√

(MR + nR)2 + (MI + nI )2 (1)

where MR and MI are the real and imaginary components of complex MR image,
respectively, and nR and nI are the additive noise corrupting both the quadrants.

The state-of-the-art methods for MR image denoising can be widely categorized
as filtering approaches, transform domain techniques, statistical methods, algorithms
based on sparsity, and self similarity, low-rank approximation, etc. [4]. In [5],Henkel-
man et al. introduced averaging, spatial, and temporal filtering for MR image denois-
ing. As spatial filters caused blurring, anisotropic diffusion filter and its variants were
proposed in [6, 7]. Later, Hasanzadeh et al. [8] solved denoising as linear minimum
mean square error (LMMSE) estimation. Since this method failed to exploit data
redundancy in the 3D MR data, non-local LMMSE estimation was proposed in [9].
A set of algorithms based on non-local means filter (NLM) [10] were proposed
in [11–14], which produced the state-of-the-art results. Later, in [15], Coupe et al.
approached MRI denoising based on principal component analysis (PCA). Another
effective non-local denoising method is the well-known BM3D [16]. In this tech-
nique, similar patches are grouped into 3Ddata arrays, followedby shrinking/filtering
in the 3D transform domain. In [17, 18], BM3D was extended to volumetric data,
popular as BM4D technique. However, both BM4D and BM3D methods make use
of orthogonal transforms and hence cannot adapt to varying image contents [19].

The low-rank structure of volumetric image/video is explored in many signal pro-
cessing applications. In [20], theMRI denoising problemwas addressed using sparse
and low-rank matrix decomposition method. This method exploited rank deficiency
of multichannel coil images and sparsity of artifacts. Nguyen et al. [21] addressed
MR spectroscopic image (MRSI) denoisingwith low-rank approximation techniques
that exploit low structure of MRSI data due to linear predictability and partial sepa-
rability.

In [22], 2D natural image denoising was modeled as weighted nuclear norm
minimization (WNNM) problem. Here the image model is P = M + N , M is the
clean image of size n1 × n2, and N is the additive noise, and the minimization
problem can be modeled as
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M̂ = min
M

1

σ 2
‖P − M‖2F + λ‖M‖w,∗ (2)

where ‖M‖w,∗ is the weighted nuclear norm and is given as ‖M‖w,∗ =∑
i |wiσi (M)|1 where w = [w1,w2 . . .wn] is the weight assigned to i th singular

value σi (M) and n = min(n1, n2). Recently, many tensor-based low-rank approxi-
mation were proposed in the context of multi-frame image denoising. Since volumet-
ricMR image canbe treated as amulti-frame image [23], tensor-based approaches can
be used for denoising the image. Dong et al. [24] proposed low-rank tensor approx-
imation (LRTA) framework with Laplacian scale mixture (LSM) modeling which
gave better results for multi-spectral images. Higher-Order singular value decom-
position (HOSVD)/TUCKER decomposition and PARAFAC decomposition based
tensor denoising techniques have appeared in [19, 25–27]. However, TUCKER and
PARAFACdecompositions have several disadvantages [28]. In the case of PARAFAC
decomposition calculation of approximation of a tensor for a given fixed rank is
numerically unstable. The TUCKER decomposition is a general form to guarantee
the existence of an orthogonal decomposition. These traditional methods rely on
tensor flattening and hence lack flexibility.

An alternative representation known as tensor-singular value decomposition
(t-SVD) has been proposed in [29] for building approximations to a given tensor.
The algorithm for computing t-SVD is based on fast Fourier transform and hence
is more efficient compared to the computation of full HOSVD [29]. In this paper,
we propose denoising technique for 3D MRI in t-SVD framework, exploiting the
non-local self similarity in an MR image. We considered the process of denoising
of additively corrupted MR images for improving the accuracy of clinical diagnosis
and further processing.

The organization of this paper is as follows. Section2 overviews the basic def-
initions and notations used in this paper and the third-order tensor singular value
decomposition utilized in the proposed algorithm. In Sect. 3, detailed explanation of
proposed denoising method for MR images is given. Section4 explains experimental
analysis of the algorithm. In Sect. 5, we conclude the paper along with discussion of
future works.

2 Basic Theory

2.1 Tensor Definitions and Notations

The term tensor denotes an n-dimensional array of elements. For example, a third-
order tensor can be thought as a “cube” of data as shown in Fig. 1. Slices of a
tensor refer to the two-dimensional structure by holding two indices of a third-order
tensor. IfP is a third-order tensor, then P(n, :, :) corresponds to nth horizontal slice,
P(:, n, :) corresponds to nth lateral slice, and P(:, :, n) corresponds to nth frontal
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(a) (b) (c) (d)

Fig. 1 Slices of third-order tensor [26]: a A third-order tensor b Horizontal c Lateral d Frontal
slices

slice, which is shown in Fig. 1. P(:,m, n) is the (m, n)th mode-1 fiber, P(m, :, n)

gives (m, n)th mode-2 fiber, and P(m, n, :) denotes the (m, n)th mode-3 fibers.
A new framework of t-SVD was proposed for tensor completion and denoising

of multilinear data in some of the recent works [28]. The t-SVD representation of
tensors has shown promising performance with respect to the tensor approximation
problem.

2.1.1 Third-Order tensor Singular Value Decomposition (t-SVD)

To define t-SVD, we need to first understand the notion of t-product.

Definition 1 t-product: IfM = N ∗ P whereN ε R
k1×k2×k3 , P ε R

k2×k4×k3 and ∗
denotes t-product, then M is a tensor of size k1 × k4 × k3, where the (l,m)th fiber
of the tensor M is given by

∑n2
p=1 N (l, p, :) ∗ P(p,m, :) for l = 1, 2, ..., k1 and

m = 1, 2, ..., k4.
It is to be noted that, in t-product, matrix multiplication between elements is

replaced by circular convolution of fibers.

Definition 2 t-SVD: For C ε R
(n1×n1×n3), the t-SVD of C is given by

C = U ∗ S ∗ VT (3)

where,U andV are orthogonal tensors of size n1 × n1 × n3 and n2 × n2 × n3 respec-
tively. Here S is a rectangular tensor with each frontal slices diagonal (i.e. f-diagonal
[28]) of size n1 × n2 × n3, and ∗ denotes the t-product.

This decomposition is obtained by findingmatrix SVDs of frontal slices in Fourier
domain as explained in Algorithm 1 [28]. An illustration of t-SVD decomposition
for the 3D case is shown in Fig. 2.



Denoising of Volumetric MR Image Using Low-Rank Approximation … 375

Algorithm 1 Generalized t-SVD computation of N th order tensor
Input: A ε R

n1×n2×n3...×nN

η = n3n4 . . . nN
1: for k = 3 to N do
2: A f ← fft(A, [ ], k);
3: end for
4: for m = 1 to η do
5: [U,S,V] = SVD(A f (:, :,m))

6: U f (:, :,m) = U; S f (:, :,m) = S; V f (:, :,m) = V;
7: end for
8: for m = 3 to η do
9: U ← ifft(U f , [ ],m); S ← ifft(S f , [ ],m); V ← ifft(V f , [ ],m);
10: end for

Fig. 2 The t-SVD of n1 × n2 × n3 tensor [28]

Definition 3 Tensor Nuclear Norm The tensor nuclear norm of tensor An1×n2×n3

is defined as follows: ‖ A ‖T NN= ∑n3
k=1

∑min(n1,n2)
i=1 |S f (i, i, k)|, where S f follows

the same definition as in Algorithm 1.

3 Proposed Method: t-SVD Denoising for MR images

Wemodel the denoising problem as recovering originalMR image from its corrupted
observations utilizing the low-rank structure of grouped image patches. For deriving
the low-rank approximation, the noise degradation model is given by [19],

y = x + n (4)

where y is the corrupted MR image, x is the original MR image and n is the additive
noise. The major steps of proposed method is illustrated in Fig. 3. t-SVD denois-
ing is performed on grouped image patches where the core coefficients of t-SVD
decomposition undergo iterative thresholding for the removal of noise. The noisy
image y is divided into 3D patches {y j }Mj=1 of size p × p × L . For a given reference
patch y j , K similar patches are found using block matching technique employing
Euclidean distance as the similaritymetric. The similar cubic patches are stacked into
a 3D array, by vectorizing each slice of 3D patch and grouping the similar patches as
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Fig. 3 Illustration of proposed t-SVD denoising

columns of 3D array. Hence group matrix {Pj }Kj=1 is formed. The steps are outlined
in Algorithm 2. As the images in 3D MR data are correlated, the tensor formed
by similar cubic patches will exhibit low-rank property. For a given grouped tensor
Pj , the estimate of denoised group X̂ j can be obtained by low-rank approximation
(LRA) model [19]. Thus,

X̂ j = min
X j

‖ Pj − X j ‖2F
s.t. multi-rank(X j ) ≤ {r j,1, r j,2, r j,3, ..., r j,L}

(5)

Algorithm 2 Formation of similar patches

Input: Reference patch y j , y j ε R
p×p×L

Output: 3D group of similar patches Pj , Pj ε R
p2×K×L

1: for j = 1, 2 . . . , n do
2: U j = {yc | S(y j , yc) =‖ y j − yc ‖22< τ } for c = 1, 2 . . . , n where |U j | = K , K is

the number of similar patches.
3: Pj ={{yk,l(:)}Ll=1}Kk=1, where yk,l (:) → vectorization of each frontal slice of 3Dpatch yk ε U j .
4: end for
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The t-SVD decomposition of X j = U j ∗ S j ∗ VT
j where ∗ denotes the t-product,

U j and V j are orthogonal tensors, and S j is a rectangular f -diagonal tensor (i.e., each
frontal slice is diagonal) [28]. Thus, the model in Eq. (5) can be expressed as

(Û j , Ŝ j , V̂ j ) = min
X j

{‖ Pj − U j ∗ S j ∗ VT
j ‖2F +τ ‖ X j ‖T NN } (6)

where, ‖ X j ‖T NN is the tensor nuclear norm (TNN). This model can be solved by
iterative thresholding of t-SVD coefficients [19]. Firstly, t-SVD decomposition of
each groupmatrix Pj is computed. The singular values of each groupmatrix exhibit a
decaying pattern. Hence, iterative thresholding is applied on S j values to denoise 3D
MR images. To improve the flexibility of nuclear minimization problem in Eq. (6),
weighted tensor nuclear norm (WTNN) is considered. Thus, problemEq. (6) becomes

(Û j , Ŝ j , V̂ j ) = min
X j

{‖ Pj − U j ∗ S j ∗ V j ‖2F +τ ‖ X j ‖W,T NN } (7)

where ‖ X j ‖W,T NN is the weighted tensor nuclear norm. The estimate of denoised
group P̂j is obtained by solving Eq. (7). We decompose Pj in t-SVD domain as
U j ∗ S j ∗ VT

j where U j ε R
p2×p2×L , V j ε R

K×K×L and S j ε R
p2×K×L . The closed

form solution to Eq. (7) is the weighted iterative thresholding of coefficient matrix
S j in Fourier domain, i.e., SF

j , which will shrink less the larger values and shrink
more the smaller values.SF

j is obtained from an intermediate step in the computation
of t-SVD, i.e.,

[Ui , Si , Vi ] = SVD(PF
j (:, :, i)), for i = 1, 2, . . . , L wherePF

j ← 3D-fft(Pj ) (8)

UF
j (:, :, i) = Ui ; SF

j (:, :, i) = Si ; VF
j (:, :, i) = Vi , for i = 1, 2, . . . , L (9)

The thresholding operation of core tensor SF
j is given by,

ŜF
j = [

diag(SF
i,i,k − wk

i )+
]L
k=1

(10)

where wk
i =

[
C

|SF
i,i,k | + ε

]L

k=1

, ε > 0 and C is empirically set as 2ζ
√
nσ 2

w, where

σw is the updated variance as σ is getting reduced at each iteration and ζ is the tuning
factor. The value of σw at t th iteration is given by,

σw = γ

√
σ 2− ‖ y − x̂ t−1 ‖22 (11)
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Algorithm 3 t-SVD-based denoising by weighted TNN minimization for additive
noise removal
Input: Noisy MR image y
Output: Denoised MR image x̂
1: x̂0 = y
2: for t = 1 to i ter do
3: x̂ t−1 = x̂ t−1 + δ(y − x̂ t−1)

4: σw = γ

√
σ 2− ‖ y − x̂ t−1 ‖22 , σ is the variance of noise.

5: Pj = Algorithm 2
(
y j

)
, y j ε R

p×p×L ,
j = 1, 2, . . . , n

6: for j = 1, 2 . . . , n do
7: PF

j ← fft(Pj , [ ], 3);
8: for j = 1 to L do
9: [Uj , S j , Vj ] = SVD(PF

j (:, :, j))
10: UF

j (:, :, j) = Uj ; SF
j (:, :, j) = S j ; VF

j (:, :, j) = Vj ;
11: end for

12: ŜF
j =

[
diag(SF

i,i,k − wk
i )+

]L

k=1
where wk

i =
[

C

|SF
i,i,k | + ε

]L

k=1

,

C = 2ζ
√
nσ 2

w, ε > 0, ζ > 0, for i = 1, 2, . . . ,min(p2, K )

13: Û j ← ifft(ÛF
j , [ ], 3); S ← ifft(ŜF

j , [ ], 3); V̂ j ← ifft(V̂F
j , [ ], 3);

14: Estimate of j th cubic patch X̂ j = Û j ∗ Ŝ j ∗ V̂T
j .

15: end for

16: The denoised image x̂ t =
∑

M wM {X̂ j }M∑
M wM

.

17: end for

where σ 2 is the variance of noise, γ is the scaling factor, and x̂ t−1 is the denoised
image from previous iteration. The denoised patches are then weighted averaged to
procure the denoised image. A regularization step is included in each iteration i.e.,

x̂ t = x̂ t + δ(y − x̂ t ) (12)

where δ is the regularization parameter. Thus, detailed information from the input
MRI is added with denoised data to avoid losing much information in each iteration.
The detailed procedure of the proposed method is described in Algorithm 3.

4 Analysis and Discussions

The efficiency of the proposed t-SVD-based denoising algorithm is assessed by con-
ducting simulations on synthetic 3D MRI data from BrainWeb database [30] and
Aukland database [31]. BrainWeb data includes noise-free T1 weighted (T1w) and
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Fig. 4 Test images from BrainWeb and Aukland database; a BrainWeb T1w , b BrainWeb T2w,
c Aukland set 1, d Aukland set 2

T2-weighted (T2w) data, and Aukland data consists of MR images of cardiac region,
shown in Fig. 4. The data were corrupted with simulated additive white Gaussian at
different values of noise variance. The variance σ is ranging from 1 to 15% of max-
imum intensity, i.e., σ = 2.5, 5, 7, 10, 12, 18 . . . 38. The performance of denoising
method was analyzed quantitatively using the quality metrics—peak signal to noise
ratio (PSNR), edge preserving index (EPI), and structural similarity index (SSIM).
The parameters of the algorithm were chosen empirically for different noise settings
and fixed according to the best results obtained. The patch sizewas chosen differently
for various noise levels and was set as 7 × 7 for σ ≤ 20 and 9 × 9 for σ > 20 with a
reasonable trade-off between accuracy and speed. The number of similar patches K
in each group was chosen in the range [60, 120]. K cannot be too small as few sim-
ilar patches will be grouped, or dissimilar patches will be grouped if K is too large.
The regularization parameter δ controls the quantum of residual image summed to

Fig. 5 Denoised data at σ = 28 corresponding to noise level 11% of maximum intensity; top row:
BrainWeb dataset, bottom row: Aukland dataset; a, f Noisy image; b, g PRINLM [12]; c, hHOSVD
[19]; d, i ANLM [14]; e, j Proposed
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Fig. 6 EPI values for increasing noise variance σ : a T1w b T2w c Aukland set
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Fig. 7 SSIM values for increasing noise variance σ : a T1w b T2w c Aukland set

the output. The scaling factor γ will control the estimation of noise variance in
each iteration. The parameters δ and γ were chosen in the interval (0, 1) and
[0, 1], respectively. For all cases, we have chosen tuning factor ζ = √

2K . The
proposed algorithm is compared with some of the well-known denoising techniques
in the literature such as PRINLM [12], ANLM [14] and HOSVD [19]. The results
are compared with respect to the performance metrics PSNR, SSIM and EPI for
Brainweb and Aukland data. The denoised data of various methods at a noise level
of 11% of maximum intensity are shown in Fig. 5. Table1 shows PSNR obtained
for T1w, T2w, PDw Brainweb data and Aukland data at different noise levels. The
average PSNR is tabulated by testing four different images over 15 test cases. It can
be observed that the proposed method gives highest average PSNR. To verify our
method does not degradeMR data in a visual perspective, SSIM and EPI of denoised
images were calculated for different noise levels. Figure6 shows the performance of
algorithm with respect to EPI. It can be inferred that, as noise variance increases, the
EPI deterioration is slow as required for medical images. SSIM values at different
noise settings are shown in Fig. 7. As observed, the proposedmethod is advantageous
with respect to objective metrics and preserves the features as expected.
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5 Conclusion and Future Works

In this paper, we have developed a novel MR image denoising technique using
low-rank approximation. Here, similar cubic patches were grouped together to form
a third-order tensor which is factorized using t-SVD and solved with the low-rank
approximationmodel by weighted thresholding of core coefficients. The results were
compared with various state-of-the-art approaches mentioned in the literature. The
simulations were performed on test images from BrainWeb and Aukland database
under different noise settings. The implementation of algorithms was performed for
additively corrupted MR images, and different quality metrics such as PSNR, SSIM,
and EPI were compared. As observed, the proposed method has shown quantitative
and qualitative improvement in the results. Also, proposed method can be extended
for removing rician noise which is common in MR images. The automatic determi-
nation of optimal parameters and robustness of algorithm to varying noise levels is
warranted in a future study.
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V-LESS: A Video from Linear Event
Summaries

Krishan Kumar, Deepti D. Shrimankar and Navjot Singh

Abstract In this paper, we propose a novel V-LESS technique for generating the

event summaries from monocular videos. We employed Linear Discriminant Anal-

ysis (LDA) as a machine learning approach. First, we analyze the features of the

frames, after breaking the video into the frames. Then these frames are used as input

to the model which classifies the frames into active frames and inactive frames using

LDA. The clusters are formed with the remaining active frames. Finally, the events

are obtained using the key-frames with the assumption that a key-frame is either the

centroid or the nearest frame to the centroid of an event. The users can easily opt

the number of key-frames without incurring the additional computational overhead.

Experimental results on two benchmark datasets show that our model outperforms

the state-of-the-art models on Precision and F-measure. It also successfully abates

the video content while holding the interesting information as events. The compu-

tational complexity indicates that the V-LESS model meets the requirements for the

real-time applications.

Keywords Event ⋅ Key-frames ⋅ LDA ⋅ Video summarization

1 Introduction

In this multimedia era, a rapid growth in the amount of digital video data around the

clock is recorded by numerous cameras in the last few years. Thus, a large volume of

the video content is rapidly produced by different applications such as video semantic
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annotation and saliency [1], video retrieval and browsing [2]. Therefore, a technique

is promptly required, which can summarize the videos in order to help us for storing

and accessing the content in minimum time as well as minimum storage space. Video

summarization (VS) is one of the primary elements for the success of the above

applications which can reduce the size of the video adequately and comprehensively

which can be divided into two categories: key-frame-based VS and skimming-based

VS [3].

Key-frames-based VS mainly keeps the overall content of a video through holding

the important frames which is also referred as Storyboard-based VS. It was scruti-

nized by employing various clustering algorithms [4, 5] where different clusters are

formed on the basis of the similarity between frames. This type of VS can be fur-

ther categorized into two groups. (a) Local perspective storyboard where the tem-

poral segment of video becomes free from the redundancy by selecting the frames

as key-frames which are dissimilar from their neighboring frames [6]. However, the

performance of such technique may be declined due to consideration of the local

perspective only [7]. (b) Global perspective storyboard involves the extracted key-
frames that cover the whole video in order to boost up the performance [8–10]. More-

over, various unsupervised learning approaches [11] have been employed for global

representation-based VS. These techniques mainly summarize the video content by

structural analysis with multiple features.

On the other hand, skimming-based VS often preserve the summaries of a video

with interesting events along with their semantics in the form of highlights. This

video highlights can be referred as Event Summarization (ES). In this era, ES appli-

cations are widely used in sports videos, surveillance videos, etc. However, the main

issue with ES process is to determine the correct integration model. The model

should include the identification of the detected event boundaries so that the succinct-

ness of the skim must be verifiable while holding the sufficient events. Although,

ES has benefited over storyboard VS [12]. ES is the ability to include audio and

motion elements that potentially enhance both the expressiveness and information

in the abstract. On the other hand, Key-frames are also useful in abating computa-

tional time for various video analysis and retrieval applications. It is very important

to observe that although video skimming and storyboard based VS is often generated

differently, these also can be renovated from one to the other. Moreover, a good VS
technique is urgently required, which helps us to get utmost video content about the

target video sequence in a limited time.

We decided to employ an algorithm (LDA) to provide better classification in com-

parison to principal component analysis (PCA) [13]. PCA is better in feature classi-

fication, but for data classification, LDA does better. Moreover, LDA has the more

powerful capability in representing nonlinear patterns than PCA. This is expected

to be helpful for exploring the nonlinear structure in video data. In this paper, a

novel V-LESS scheme-based on LDA is proposed and realized. By using LDA, the

coarse and fine structures in the video are efficiently characterized by the compo-

nents extracted from the feature space. The application for key-frame extraction and

skimming formation is also scrutinized to demonstrate the advantages of the repre-

sentational forms. Our contributions are in threefold:
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∙ We convert the VS problem into the LDA-based data classification problem and

also propose a novel V-LESS technique which is robust to extract the potential

key-frames and also to remove the unimportant frames from the final summaries

of the events.

∙ We design an integrated framework for both key-frame extraction and video skim-

ming in a unified framework which offers the flexibility for practical applications

in real time (average computing cost is 141 ms/frame).

∙ The V-LESS model offers us to select the numbers of key-frames without incur-

ring an additional computational cost, in contrast to state of the art, which require

presetting the number of key-frame.

2 Problem Formulation

Video V is divided into N frames by size of W × H, where W and H represent the

width and height of a frame, respectively. On an average, the videos are used from

two benchmark datasets which comprise about 3000 RGB frames. The variation in

the visual content of the successive frames is not much, but still, computation in

processing these frames requires processing all the three planes of a frame. In order

to reduce the computation time, all N-colored frames of a video are converted into

gray scale frames. Each frame is then resized into the one-dimensional vector as an

input vector for the LDA as data is classified into two categories: positive (active)

frames and negative (low inactive) frames.

Video frame classification with LDA: The existing supervised approaches [7–9] have

been scrutinized to generate the summaries of videos, with an aim of the outputs

based on each input vector, where these models learn to produce the required such

outputs. We observed that the PCA technique [13] can be employed as the unsu-

pervised approach which is mainly used to obtain the directions (also referred as

principal components) that maximize the variance in a dataset. On the other hand,

LDA is supervised where it computes the directions (linear discriminants). LDA

also represents the axes that maximize the separation between classes. Even, both

LDA and PCA are linear transformation methodologies that are typically employed

for dimensionality reduction. However, it was observed that LDA is the much bet-

ter approach for multi-class classification task than PCA where class labels are well

known. Moreover, LDA easily deals the case where the frequency within-class is

unequal and their performances have been investigated on the randomly generated

test dataset.

We got inspired by the above-supervised training techniques and decided to use a

supervised approach (LDA). In order to formulate the existing VS problem as frame

classification technique, initially, two target classes for a video is built for positive

and negative frames independently. Then, LDA is used to search for a linear combi-

nation of variables (frames) that best separates the two classes (targets). In addition

to this, it maximizes the fraction of between-class variance and the within-class
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variance for a particular dataset with the guarantee of maximal separability [14]. It

uses the beneath Fisher score function to capture the notion of separability:

Fscore(𝛼) =
𝛼
T
𝜇1 − 𝛼

T
𝜇2

𝛼
TCv 𝛼

=
𝛾1 − 𝛾2

Variance of 𝛾 within groups
(1)

where 𝜇1 and 𝜇2 are the mean vectors of the frames, 𝛾 is 𝛼1f1 + 𝛼2f2 +⋯ + 𝛼NfN .

f1, f2, ..., fn−1 and fN are the N video frames. Moreover, the each frame is represented

in the vector form with d features (=H ×W) where H and W are the height and width

of frames, respectively. Given the Fisher score function requires to estimate the linear

coefficients 𝛼 = Cv−1(𝜇1 − 𝜇2) that maximize the score, where Cv = 1
n1+n2

(n1Cv1 +
n2Cv2) is the pooled covariance matrix, andCv1 andCv2 are the covariance matrices.

Here, we observed that the estimation of the Mahalanobis distance (Md) between two

classes may be used to assess the effectiveness of the discrimination between the

native and positive frames. Md value greater than 3 indicates that the two averages

differ by more than 3 standard deviations. It means that the overlap, i.e., probability

of misclassification becomes quite small. Md is defined as:

Md = 𝛼
T (𝜇1 − 𝜇2) (2)

Finally, a new frame is classified by projecting it onto the maximally separating direc-

tion and classifying it as Cv1 if:

log
p(cv1)
p(cv2)

< 𝛼
T (x − (

𝜇1 + 𝜇2
2

)) where p is class probability (3)

Predictors: A simple linear correlation between the Fisher scores and predictors was

employed for text which predictors contribute significantly to the discriminant func-

tion. Cv, correlation varies from −1 to 1, where −1 and 1 represent the highest con-

tribution, but in opposite directions, and 0 indicates no contribution at all. However,

it is very difficult to understand the analogy between the VS problem and an LDA

approach directly.

We divide our work into two stages: phase I (Classification) and phase II (Sum-

marization) as shown in Fig. 1. At phase I, a video is divided into two classes posi-

tive frames and negative frames (see Algorithm 1) to filter out unimportant frames.

The resulting frames of phase I are then processed at phase II (Event summa-

rization), where the Event summarization process is employed to extract the final

Fig. 1 Major component of the V-LESS model
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Algorithm 1 Event summarization using LDA (ELDA)

1: procedure ELDA({f1, f2, , fN} N VIDEO FRAMES WITH 1-DIMENSION)

2: Calculating N-dimensional mean vectors and assuming the number of classes (c)=2.

3: Calculating scatter matrix within-class SMW =
c∑

i=1
Si Phase I

where Si =
N∑

f∈Di

(f − 𝜇i)(f − 𝜇i)T , 𝜇i =
1
ni

n∑

f∈Di

fk

4: Calculating scatter matrix between-class SMB =
c∑

i=1
Ni(𝜇i − 𝜇)(𝜇i − 𝜇)T

where 𝜇-overall mean, 𝜇i-sample mean and Ni sizes of the respective classes.

5: Solving the matrix A = SM−1
W SMB as the generalized eigenvalue (𝜆) problem

and calculating the v=eigenvector from Av = 𝜆v.

6: Selecting linear discriminants for the new frames:

∙ Sorting eigenvectors by decreasing 𝜆 value and pick k top eigenvectors i.e.,

eigenvectors v with the lowest 𝜆 value, bear the least information (negative/

inactive frames) and dropped using equation 1.

∙ Filter the positive frames using equation 3.

7: Form the maximum clusters of the resultant positive frames using equation 2.

8: Announce the frames close to centroids of the clusters as key-frames. Phase II

9: return E <– final key-frames obtained using as discussed in section 2.1.

10: end procedure

key-frames (see Sect. 2.1). The benefit of the two-phase LDA-based model is very

few (positive) frames need to process at phase II which helps us to obtain faster Event

summarization.

2.1 Event Summarization: Video Skimming Using
Key-Frames

In order to achieve a good ES as video skimming through key-frames. We observe

that event boundaries play a vital role in the summarization process. It hardly occurs

that an event is with a single frame. Thus, a parameter [bmin, bmax] boundary frame

number is estimated for detecting the boundary of an event, where bmin and bmax indi-

cate the minimum and maximum boundary frame number, respectively. Moreover,

the parameter [bmin, bmax] value may or may not be at equidistant from the centroid

of the cluster. The parameter [bmin, bmax] value is obtained based on the similarity

(Euclidean distance) between all frames of a cluster and key-frame of the cluster.

Therefore, a parameter is required to fix the boundaries (bmin, bmax) of an event.

Here, this parameter is also known as Event Boundary Threshold (EBT) which is

experimentally calculated based on the size (H: Height×W: Width) of a frame, i.e.,

EBT (%) = H ×W ×90
100

. If a frame either on the left-hand side or on the right-hand side

of the key-frame number in the video should have 90% match with the key-frame,

then the frame will be counted in the event. The value of bmin and bmax are fixed

by the lowest frame number and with the largest frame number which has the 90%
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match with key-frame, respectively. Finally, all potential events are detected based

on the extracted key-frames. Then, these events are arranged in temporal order to

achieve the video skimming. Therefore, the V-LESS model does not only allow the

users to access the key-frame-based VS but also allow to access ES without incurring

additional cost.

3 Experiments and Discussions

In this section, we discuss the several experiments and assessments to verify the effi-

cacy and competence of our V-LESS model-based VS technique. We implemented

LDA technique on two benchmark datasets. We selected first dataset of 50 videos

from the Open Video Project (OVP)
1

which is the one employed in [6, 15, 16]. The

second dataset
2

of 50 videos which contains several categories like “sports, adver-
tisements, TV shows, and home videos”. The duration of videos varies from 1 to

10 min as reported in paper VSUMM [16].

Qualitative Analysis: Human-detected ground truth key-frames (ground truth) for

both datasets from five users are accessed from VSUMM [16] official Web site. The

output summaries of Delaunay Clustering DT [6], STIMO (VISTO approach exten-

sion) [15], OVP [17], and VSUMM [16] and are accessed from the same Web site.

The average of the five ground truth set results in key-frames (summary) is counted

while measuring the quantitative metrics. We compared our proposed LDA-based

VS approach with DT [6], STIMO [15], OVP [17], VSUMM [16], Sparse Dictionary

(SD)-based approach [18], Keypoint-Based Key-frame Selection (KBKS) [19], and

Minimum Sparse Reconstruction (MSR) [20]. In the SD algorithm, the frames are

elected as per the importance of curve corresponding to the top 10 local maximums.

In the KBKS algorithm, the key-frames are elected automatically till 85% coverage.

MSR-based VS algorithms selected a key-frame when experimental parameter TPOR

crosses over 85% in order to perform a fair comparison. Our proposed V-LESS tech-

nique extracted the key-frames after applying LDA on the video and then removed

the negative frames using Eq. 1. Then key-frames are declared as the central frame of

a cluster after the formation of the different clusters using Eq. 2. A sample key-frame
for fifth video of first dataset is shown in Fig. 2 with following observations:

∙ The existing DT, VSUMM1, VSUMM2, OVP, and OnMSR techniques failed to

extract the last key-frame of the ground truth where some existing approach

extracts some duplicate key-frames. However, our proposed V-LESS approach

extracted better key-frames than the existing models without duplicate key-frames.

A sample resultant key-frame for forty-ninth video of the second dataset is depicted

in Fig. 3. Here, we observed that

1
http://www.open-video.org.

2
https://sites.google.com/site/vsummsite/download.

http://www.open-video.org
https://sites.google.com/site/vsummsite/download
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Fig. 2 Sample VS results for fifth video of the first dataset

∙ The existing VSUMM1, VSUMM2, SD, and KBKS techniques failed to extract

more than 60% key-frame of the ground truth. However, our proposed V-LESS
technique extracted most of the key-frames as selected in the ground truth without

duplicate key-frames.

Quantitative Analysis: The process of extracting key-frame to attain the best VS had

been intensively investigated, but there is no standard or best approach to assess

their performance. Even, key-frame extraction by different techniques is equated with

all the user summaries (ground truth summaries) by employing three assessment

metrics. Precision = TP
TP+FP

, Recall = TP
TP+FN

, and F-measure (F
𝛽
) = (1+𝛽2) ×Precision×Recall

𝛽
2 ⋅Precision+Recall

metrics are usually estimated to gain the quantitative calculation with marked ground

truth in frame unit of the following definitions:

∙ True Positive (TP): an algorithm selects a frame and the frame is a part of an

important event.

∙ False Positive (FP): an algorithm selects a frame, but the frame is not a part of an

important event.

∙ True Negative (TN): an algorithm does not select a frame and the frame is not a

part of an important event.
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Fig. 3 Sample VS results for forty-ninth video of the second dataset

∙ False Negative (FN): an algorithm does not select a frame, but the frame is a part

of an important event.

Moreover, high Precision represents a larger fraction of the unimportant frames,

which are removed by the algorithm. High Recall represents a larger fraction of the

important frames, which are returned by the algorithm. In all, F-measure can be

interpreted as the weighted average of Precision and Recall. For a user who consid-

ers equal priorities to both Precision and Recall, 𝛽 = 1, i.e., F1 becomes the Har-

monic mean of Precision and Recall. It is also referred as the balanced F-score.

Consequently, the maximum value of F-measure means more accurate technique.

We compared our resultant key-frames with the ground truth summary and 𝛿 = H ×W
d

value is used to compare the similarity (Euclidean distance) between extracted key-
frame and ground truth summary form. Here, H and W are height and width of a

frame, respectively, and d= 10 is fixed experimentally.

If similarity is greater than or equal to 𝛿 only, then we count such key-frame as

a matched frame in the quantitative analysis for calculation of Precision and Recall.
The quantitative performance of the V-LESS model is compared with state-of-the-

art models for both datasets using 𝛽 = 1 in Tables 1 and 2 where the best results are

shown in bold. From Tables 1 and 2, it is observed that,

∙ Our proposed LDA-based summarization technique gains relatively a better

performance as compared to other models.
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Table 1 Performance of the model with state-of-the-art models for 1st dataset

Algorithm Precision (%) Recall (%) F-measure (%)

DT [6] 47.0 50.0 48.5

STIMO [15] 39.0 65.0 48.8

OVP [17] 43.0 64.0 51.4

VSUMM1 [16] 42.0 77.0 54.4

VSUMM2 [16] 48.0 63.0 54.5

SD [18] 40.0 61.0 48.3

KBKS [19] 31.0 89.0 46.0

OffMSRm [20] 58.0 58.0 58.0

OffMSRa [20] 60.0 57.0 58.5

OnMSR [20] 50.0 66.0 56.9

Proposed V-LESS 68.9 61.6 65.0

Table 2 Performance of the model with state-of-the-art models for 2nd dataset

Algorithm Precision (%) Recall (%) F-measure (%)

VSUMM1 [16] 38.0 72.0 49.7

VSUMM2 [16] 44.0 54.0 48.5

SD [18] 37.0 53.0 43.6

KBKS [19] 37.0 60.0 45.5

OffMSRm [20] 52.0 45.0 48.2

OffMSRa [20] 54.0 47.0 50.2

OnMSR [20] 47.0 54.0 50.2

Proposed V-LESS 54.6 51.8 53.2

∙ Precision of our proposed V-LESS technique on both datasets is maximum among

all other models.

∙ Recall of our proposed V-LESS technique on both datasets is better than the most

of the models except STIMO, VSUMM, KBKS, OVP, and OnMSR.

∙ F-measure of our V-LESS model is also maximum among all the other models

which mean our proposed summarization model attains better performance than

existing models.

Computational Complexity: For the experiments, the frame size of the videos from

the Open Video Project OVP [17] is 352 × 240. With a standard 3.0 GHz dual-core

desktop computer, for a video shot of 300 frames (i.e., 10 s). In order to abate the

computational cost, we utilized the LDA-based VS technique in two phases. Roughly,

35 s is required with taking account the time on feature extraction at phase I and

less than 7.5 s at phase II. Hence, the time cost is not more than 42.5 s, which is

much less than the KBKS [19]-based technique taking about 150 s (about 3.5 times

faster). Therefore, the proposed V-LESS technique (i.e., 0.14 s per frame) can be used
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Table 3 Computational time comparison

Algorithm Sampling rate (frame/s) Total time (s)

DT [6] 30 92.5

VSUMM [16] 30 71.8

SD [18] 24–30 90

KBKS [19] 30 150

MSR [20] 5 72.3

Proposed V-LESS 30 42.4

for the real-time applications like videos for entertainment, educational purposes,

surveillance and security systems. The computational time of our V-LESS model

for a video shot of 300 frames is compared with the existing models in Table 3.

4 Conclusion

In this paper, we have suggested a machine learning, supervised LDA based summa-

rization V-LESS model for producing the concisely and intelligently video abstrac-

tion. This model mainly facilitated for the users to access the huge volumes of video

content in an effective and efficient manner which is based on extraction of key-
frames. So that number of frames in the summary should be minimized as possible.

The experimental results on two benchmark datasets with various types of videos

demonstrate that the V-LESS technique outperforms the state-of-the-art models with

the best Precision and F-measure. Moreover, computational cost indicates that our

approach can be used in real-time applications.
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Action Recognition from Optical Flow
Visualizations

Arpan Gupta and M. Sakthi Balan

Abstract Optical flow is an important computer vision technique used for motion

estimation, object tracking and activity recognition. In this paper, we study the effec-

tiveness of the optical flow feature in recognizing simple actions by using only their

RGB visualizations as input to a deep neural network. Feeding only the optical flow

visualizations, instead of the raw multimedia content, ensures that only a single

motion feature is used as a classification criterion. Here, we deal with human action

recognition as a multi-class classification problem. In order to categorize an action,

we train an AlexNet-like Convolutional Neural Network (CNN) on Farneback opti-

cal flow visualization features of the action videos. We have chosen the KTH data set,

which contains six types of action videos, namely walking, running, boxing, jogging,

hand-clapping and hand-waving. The accuracy obtained on the test set is 84.72%, and

it is naturally less than the state of the art since only a single motion feature is used

for classification, but it is high enough to show the effectiveness of optical flow visu-

alization as a good distinguishing criterion for action recognition. The AlexNet-like

CNN was trained in Caffe on two NVIDIA Quadro K4200 GPU cards, while the

Farneback optical flow features were calculated using OpenCV library.
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1 Introduction

Activity recognition in videos is an important area of research. Some of its appli-

cations are as follows: automated recognition in a video surveillance system, which

ensures diligent operation as against an actual human (security guard) monitoring

the videos, which can be tiresome. Automated anomaly detection in a crowded scene

and traffic monitoring are also important applications of the same. It also has applica-

tions in elderly care and patient monitoring, though contact sensor-based gadgets and

vital measuring instruments are preferred over the video feeds for activity recogni-

tion purposes. Moreover, the huge amount of video data available with the online or

offline service companies needs to be efficiently and automatically indexed, searched

and annotated. These multimedia content-based analysis tasks require scalable algo-

rithms that can be applied to a wide range of videos.

Researchers have been developing new and improved feature representation tech-

niques for multimedia data so as to ensure accurate and reliable recognition of entities

and actions from images and videos. Some of these so-called handcrafted features

include Scale Invariant Feature Transform (SIFT), Histogram of Gradients (HOG),

Motion History Images (MHI), GIST, etc. These features represent some spatial

or temporal information of the multimedia content in a lower dimensional space

that can be directly fed to a computationally feasible machine learning model for

object/action recognition. A comprehensive survey of motion analysis, making use

of such types of features, is presented in [3].

Lately, deep learning networks, such as Convolution Neural Network (CNN), and

Recurrent Neural Network (RNN) have been proved to be better at generalized recog-

nition and prediction tasks. They automatically extract relevant features from the raw

high-dimensional data by using repeated convolution filters. The ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [21] has attracted the attention of

vision researchers from all over the world. ILSVRC provides the largest annotated

image data set for a variety of analysis tasks like recognition, classification, object

detection and object localization. The winners of this competition have successfully

used modified versions of CNNs and improved upon the accuracy year after year.

The CNNs have, mostly, been applied to image processing tasks, where an image

is independent of other images and they have only spatial dimensions. CNNs help

in automatic extraction of features that are relevant for the classification task. There

have not been many attempts of applying CNNs on videos, which adds a temporal

dimension to the input data. The temporal features need to be considered for accurate

human action recognition from a sequence of video frames.

Optical flow is one such important motion feature which can be used to recognize

human actions. Humans are able to identify motion with ease. They can also predict

the direction of future motion. A running person will tend to move forward, frame

after frame. For example, in Fig. 2f, the person will, most likely, move to the right,

in the subsequent frame. Thus, its corresponding optical flow will denote the person

moving towards right. With the optical flow features, one can, mostly, identify simple
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actions like walking, boxing, hand-waving, etc. The examples given in Fig. 2 denote

a single action frame and its corresponding optical flow visualization.

A question arises that if only the optical flow motion feature is taken into consid-

eration, will this feature alone be enough to identify simple actions. If so, then how

to develop the classification pipeline for this multi-class classification problem. In

our work, we try to answer this question by developing a simple multi-class classi-

fication pipeline, which uses only the optical flow visualization feature for the task

of action recognition. To do so, we train a CNN only on the optical flow visualiza-

tions of consecutive frame pairs of the action videos and use the trained model to

categorize a test video by a simple voting mechanism. The same approach, due to its

simplicity, can be applied for other spatio-temporal feature visualizations to compare

their effectiveness on a classification task. The CNN automatically extracts the rel-

evant features from the visualizations, like it does for the large image data sets. The

only difference is, instead of extracting some general set of latent features, it extracts

a set of latent features representing some motion encoded in the form of optical flow.

Section 2 covers the literature review. Section 3 describes our proposed approach

for recognition of actions using only the optical flow visualization features. The KTH

human action data set and the CNN architecture descriptions are given in Sects. 4.1

and 4.2, respectively. The results and the related discussion are presented, thereafter,

in Sect. 5, which is followed by conclusion and references. Lastly, the Appendix

contains some sample optical flow visualizations obtained from the training set.

2 Literature Review

Activity recognition from videos has been discussed in detail in [2, 24]. Optical

flow, proposed by Horn and Schunck [12], has applications in video compression,

segmentation, analysis and stabilization. If flow vectors are computed for a small

subset of the spatial coordinates, then optical flow is said to be sparse, whereas if

flow vectors are computed for all the locations, then it is known as dense optical flow.

A number of methods have been proposed to calculate sparse and dense optical flow

fields [6, 7, 9, 18]. Evaluations of various optical flow algorithms are provided on

the KITTI
1

data set [10] and on the Middlebury
2

data set [4].

The authors of [23] have trained two separate CNNs for recognition of actions

from videos. One CNN is used to learn spatial information in frames, while the other

CNN learns the motion information across frames. In order to learn the motion infor-

mation, the second CNN is trained on the optical flow displacement fields. Together,

they are able to give state-of-the-art accuracy on UCF-101 and HMDB-51 data sets.

In [13], a 3D CNN for human action recognition has been developed by extend-

ing the 2D CNN. This helps in extracting features from the spatial as well as the

temporal domain, thereby capturing motion information, which is then fed to a

1
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo.

2
http://vision.middlebury.edu/flow/eval/results/results-e1.php.

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://vision.middlebury.edu/flow/eval/results/results-e1.php


400 A. Gupta and M. S. Balan

classifier for recognizing human actions. The authors applied their 3D CNN model

on the TRECVID and KTH data sets.

Fischer et al. in [8] have developed FlowNet, a CNN which is able to predict future

optical flow by taking only two image frames as input. Their model was learnt on a

synthetic data set which they created by superimposing the images of 3D chairs on

background images taken from Flickr. Further, they modified their CNN to include a

“correlation” layer. Their model was tested on KITTI, MPI-Sintel, Middlebury and

their own Flying Chairs data sets.

The problem of large displacements in optical flow has been tackled in [26].

The authors of [26] have developed DeepFlow, a technique involving variational

approach and matching algorithm. The matching algorithm proposed by them is,

specifically, for optical flow features, where they can efficiently recognize fast actions,

denoting large displacements. They have trained a six-layer CNN for the same.

Mahbub et al. [19] have also performed action classification on the KTH and

Weizmann data sets using Lucas–Kanade optical flow [18] and random sample con-

sensus (RANSAC) methods. They obtain a low dimensional feature vector represen-

tation of motion with localization and apply a Euclidean-based model and SVM for

classification.

A project in the Stanford by Pol Rosello [20] trained AlexNet-like CNNs for pre-

diction of future optical flow vectors after applying spline interpolation on the net-

work predictions.

The above methods mainly used some spatio-temporal feature along with tradi-

tional machine learning model for action recognition, or they have modified deep

neural networks to make them learn from temporal frame sequences. A simple

approach that has not been tried is making a deep neural network learn to recognize

actions by training it on the image visualizations of motion features. This removes

the burden of coming up with a modified version of CNN which takes 3D video

input, with increased set of parameters. The standard CNN architectures can, thus,

be effectively used.

In our work, we recognize human actions based on only the optical flow visualiza-

tion
3

features. These visualizations encode the magnitude and direction information

by mapping the 2D flow field vectors to the RGB colour space.

3 Methodology

We hypothesize that optical flow field visualizations are sufficient to categorize sim-

ple actions. Here, simple actions can be defined as having a (nearly) static back-

ground with uniform motion of single/similar foreground object(s). The optical flow

field visualizations are mapping of 2D flow vectors (u, v), which are calculated for

spatial locations, to HSV colour space, where “H” channel corresponds to direction,

“V” channel corresponds to magnitude, and taking maximum saturation (“S”) level.

3
http://docs.opencv.org/3.2.0/d7/d8b/tutorial_py_lucas_kanade.html.

http://docs.opencv.org/3.2.0/d7/d8b/tutorial_py_lucas_kanade.html
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The mapping is done by a simple min–max normalization. The HSV pixel is, sub-

sequently, mapped to RGB image space. This optical flow visualization is dark at

spatial coordinates where there is no motion, and is bright where motion is involved.

A drawback is that, in some frame pairs, noise is present due to camera jitter and,

therefore, the visualization appears bright even for the portion of the frame denot-

ing the background (refer Fig. 3). Also, as optical flow is not considering the entire

history of motion and takes into account only two frames of the same video 𝛿t time

apart, a single visualization would not provide enough information for the entire

action video. For representing previously occurred motion in a video, with a single

visualization, Motion History Image(MHI) [1] can be used.

A 2D flow field (u, v) denotes velocity of a pixel in a frame at time t to a frame

at time t + 𝛿t, taking into consideration some assumptions, such as brightness con-

stancy. Here, 𝛿t has to be small enough to ensure that pixel motions are tractable

between frames, else the optical flow generated will be noisy. Therefore, a smaller

value of 𝛿t has lower noise content. We consider 𝛿t = 1, i.e. only consecutive frame

pairs, for creation of visualization features. More number of visualizations can be

created by estimating an upper bound for 𝛿t. But care should be taken as increasing

𝛿t might make “jogging” look like “running”. That is, similar types of actions might

get mixed up.

These raw visualization features can be directly fed to a CNN. Training a CNN

requires a large number of examples due to the huge amount of parameters involved.

Creation of visualization from videos in the above manner can generate a large num-

ber of training samples, due to the many sequential frames available in video data.

A CNN trained in this manner will be able to make predictions on single visual-

ization images. As such, we will get N − 1 action label predictions for a sequence

of N frames of a video, by taking optical flow of only the consecutive frame pairs

(𝛿t = 1). Deciding on a single action label can be done by taking the action which

gets the highest number of votes.

4 Experimentation

Our training and evaluation procedures are summarized in the following steps:

1. Calculation of Farneback dense optical flow [7] values from two consecutive

frames of all training set videos. This is done only for the frame sequences where

the action is occurring. The action markers, provided with the KTH data set, help

in identification of action sequences in a video.

2. Conversion of optical flow matrix to HSV and then to BGR visualization.

3. Conversion of visualizations to LMDB with random key values. It ensures that

the mini-batches of training samples, consisting of a contiguous set of samples,

are not biased.

4. Training an AlexNet-like CNN (details in Sect. 4.2).

5. Evaluation of trained CNN on the validation set for determining the threshold of

summed-up pixel values of background subtraction mask (BGThreshold) [27].
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This helps in identifying frames of no action and, hence, these frames are not

used for prediction.

6. Using the trained CNN and BGThreshold value of 110000 to make predictions

for all visualizations (with 𝛿t = 1) of test set videos, except those frames where

summed-up background subtraction mask is less than BGThreshold.

7. Getting the resultant label of each test set action video by taking the action with

the highest number of votes.

4.1 Data set Description

KTH action recognition data set [22] is a well-known benchmark data set for the

task of recognizing simple human actions. The data set has 6 actions namely boxing,

hand-clapping, hand-waving, jogging, running and walking, which are performed by

25 different persons in varying conditions. Actions are performed in indoor and out-

door setting with static homogeneous background, having scale/lighting variations,

and different clothes. Each video is of 25 fps frame rate, duration of around 15–30 s,

and contains one action performed by a single person. The frames are down-sampled

to 120 × 160 (H × W). The outdoor actions generally have more noise (sometimes

due to zooming) than the indoor actions. Running, jogging and walking have indi-

viduals coming in from one side of the frame and leaving from the other side, as

such, there are time sequences with no action, when the person is out of the frame.

A text annotation of the frame markings, where the actions are occurring, has been

provided along with the data set.

We create the optical flow field visualization data set from the raw action videos as

explained in Sect. 3 by taking temporally consecutive occurring frame pairs. Thus,

for an N frame sequence where an action occurs, we get (N − 1) flow visualiza-

tion images. The training set is formed taking into consideration the action sequence

frame markings. This would reduce the noise in the training set, but will also reduce

the number of examples on which to train the network. The total number of visual-

izations was 74016 in the training set (for 191 action videos, 1 action video is miss-

ing in the original data set). The validation and test sets have 192 and 216 videos,

respectively.

The validation and test sets do not take into consideration the action sequence

frame markings provided in annotation file. Therefore, the number of frame pairs for

test set is 102312 (for 216 action videos). These include sequences of video where

no action is occurring. We employ background subtraction to detect frames of no

action. The mask values will be low for frames where only the background is visible,

and will be high if a foreground object appears in the frame. We choose a threshold

of 110000 for summed-up mask values by checking for a range of values on the

validation set. Fig. 1b shows percentage accuracy on the validation set for different

values of BGThreshold.
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(a) Loss Vs #Iteration (b) Accuracy(%) Vs BGThreshold

Fig. 1 AlexNet-like CNN. Train batch size = 64, epochs = 35

Some sample optical flow visualizations from the training set are shown in the

Appendix. Figures 2 and 3 illustrate identifiable and noisy visualizations, respec-

tively. In Fig. 2c, the hand motions are in separate directions, thus having different

colours. A person walking, running or jogging in any direction cannot be easily dis-

tinguished by the visualization alone. Figure 3d, e has some bright colours even in

the absence of the person. Usually, outdoor actions have more noise as compared to

the indoor actions.

4.2 CNN Architecture Description

We used Caffe [14] for training an AlexNet-like [15] CNN and OpenCV [5] for find-

ing dense Farneback optical flow features [7]. The BGR optical flow feature visual-

izations were converted into LMDB format before being fed to the CNN. The LMDB

format is a standard format for improving the training performance of a CNN in

Caffe.

Scaling of the pixel values was done at the input layer of the CNN, by dividing

by 255, and mirroring was used as a data augmentation technique. The weights were

initialized by Xavier initialization [11], with constant bias. The details of the CNN

layers are provided in Table 1. Each convolution layer (conv) and fully connected

layer (FC) was followed by a rectified linear unit layer (ReLU). The three FC layers

had 128, 128 and 6 neurons, respectively. FC6 and FC7 used a dropout ratio of 0.5 at

the time of training. The six neurons correspond to the six action labels. Final layer

computed the softmax loss.
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Table 1 AlexNet-like CNN architecture. Batch size = 64; input scaled by 1/255. Total parameters

= 1771456

Layer #Filters Width Stride Pad Output #Parameters

Input – – – – 3 × 120 × 160 0

conv1 64 7 1 0 64 × 114 × 154 64 × 7 × 7 × 3
MaxPool – 2 2 0 64 × 57 × 77 0

conv2 128 3 2 0 128 × 28 × 38 128 × 3 × 3 × 64
MaxPool – 2 2 0 128 × 14 × 19 0

conv3 192 3 1 0 192 × 12 × 17 192 × 3 × 3 × 128
conv4 128 3 1 0 128 × 10 × 15 128 × 3 × 3 × 192
conv5 128 3 1 0 128 × 8 × 13 128 × 3 × 3 × 128
MaxPool – 3 1 0 128 × 6 × 11 0

FC6 – – – – 128 (128 × 6 × 11) × 128
dropout – – – – Ratio = 0.5 0

FC7 – – – – 128 128 × 128
dropout – – – – Ratio = 0.5 0

FC8 – – – – 6 128 × 6

We used Stochastic Gradient Descent with 40000 iterations for training the net-

work, with base learning rate(𝛼) = 0.01, momentum(𝜇) = 0.9, and learning rate is

dropped by a factor of 10 (𝛾 = 0.1) after every 10000 iterations.

The network was trained on two NVIDIA Quadro K4200 GPU cards.

5 Results and Discussion

After training the CNN for 40000 iterations and setting BGThreshold = 110000, the

final accuracy on the test set was calculated in the same way as done for the validation

set. This came out to be 84.72%.

Figure 1a illustrates the progress of loss during training of the CNN.

The data used is only the optical flow visualization data, which is quite often not

identifiable, even by humans. As is clear from Fig. 2, the optical flows of running and

jogging are very similar. Boxing and running involve background noise, probably,

due to the outdoor scenario and camera jitter. As such, there will be noise in the BGR

colour space mapping. Owing to these constraints, the CNN tends to misclassify such

cases. “Running” is often misclassified and appears to be “jogging”, while other

actions have reasonable accuracy values.

The classification scores for individual classes on the test set are shown in Table 2.

Boxing and hand-waving are easy to identify and, thus, have high accuracy scores.

Jogging has high accuracy but most of the running samples are misclassified as jog-

ging. Thus, it may be concluded that actions having similar motions, either slow or
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Table 2 Evaluation on test set and comparison. Total 216 videos, out of which 183 are classified

correctly (i.e. 84.72%). Rows are predictions, and columns are ground truth labels

Ground Truth

Boxing Hand-

clapping

Hand-

waving

Jogging Running Walking

Boxing 35 2 0 0 0 1

Hand-clapping 0 29 2 0 0 0

Hand-waving 0 5 34 0 0 0

Jogging 0 0 0 35 18 1

Running 1 0 0 1 18 2

Walking 0 0 0 0 0 32

Accuracy (%) 97.22 80.56 94.44 97.22 50.0 88.89

Mahbub et al.

[19] (%)

83.784 86.496 86.486 82.432 83.784 83.784

fast, will need some extra information for classification, other than the optical flow

information.

Our results are not among the best-reported results on this data set. The main

reason being that we used only a single short-term motion feature for classification.

Laptev et al. [16] have reported 91.8% accuracy. Similarly, Liu and Shah [17] have

used 2D Gabor filter-based detection and reported an accuracy of 94.2%, but they

both follow a leave-one-out-cross-validation approach and, hence, cannot be com-

pared to our results. A broad study of the different local spatio-temporal features for

action recognition is provided in [25].

6 Conclusion and Future Scope

In this work, we have trained an AlexNet-like CNN on dense optical flow visualiza-

tion features of videos for the purpose of action recognition. The problem is treated

as a multi-class classification problem, where the classes correspond to the types of

human actions. We use the famous KTH human action data set which has six types of

action videos. The training is performed using the optical flow visualizations of 191

action videos of training set, using frames where action is occurring. We obtained

an accuracy of 84.72% on the test set, which is lower than the state of the art on this

data set, due to the consideration of a single motion feature.

Our focus has been the simplicity of the method rather than improving the accu-

racy, as only one motion feature with consecutive frame pair optical flow is used.

Variations of the CNN can be tried to improve the accuracy up to some extent, which

is representative of the information available with the raw features. A CNN tends to

automate the feature extraction process but those features would not be relevant if
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the data itself is not representative of the classes. Here, we explore the effectiveness

of using only the optical flow visualizations to distinguish different actions.

In future, we will be trying to explore the effect of other such motion features

like MHI and build a comparative study of the different features with respect to the

activity recognition task. A simple method to improve the accuracy may also be

tried, by using the multi-stream CNN architectures that learn from different high-

dimensional subspaces and try to optimize the final score by combining the losses

obtained from the different streams.

Appendix: Sample Optical Flow Visualizations

See Figs. 2 and 3.

(a) Boxing (b) Hand-clapping

(c) Hand-waving (d) Jogging

(e) Running (f) Walking

Fig. 2 Optical flow visualizations with less noise
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(a) Boxing (b) Hand-clapping

(c) Hand-waving (d) Jogging

(e) Running (f) Walking

Fig. 3 Optical flow visualizations with high noise and ambiguity
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Human Activity Recognition by Fusion
of RGB, Depth, and Skeletal Data

Pushpajit Khaire, Javed Imran and Praveen Kumar

Abstract A significant increase in research of human activity recognition can be
seen in recent years due to availability of low-cost RGB-D sensors and advance-
ment of deep learning algorithms. In this paper, we augmented our previous work
on human activity recognition (Imran et al., IEEE international conference on
advances in computing, communications, and informatics (ICACCI), 2016) [1] by
incorporating skeletal data for fusion. Three main approaches are used to fuse
skeletal data with RGB, depth data, and the results are compared with each other.
A challenging UTD-MHAD activity recognition dataset with intraclass variations,
comprising of twenty-seven activities, is used for testing and experimentation.
Proposed fusion results in accuracy of 95.38% (nearly 4% improvement over pre-
vious work), and it also justifies the fact that recognition improves with an increase
in number of evidences in support.

Keywords Convolutional neural networks ⋅ Deep learning
Depth motion map ⋅ RGB-D sensors ⋅ Skeleton ⋅ UTD-MHAD
Motion history image and fusion

1 Introduction

Human activity recognition and related research aimed to automatically detect and
analyze human activities from videos. It has applications in robotics, surveillance,
security, industry automation, and health care among many others. There has been a
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considerable increase in research interest in this area, mainly because of two rea-
sons; first, availability of low-cost depth sensors and second, due to return of neural
networks in deep form as convolutional neural networks. Success of other deep
learning techniques also enhanced research in activity recognition. Availability of
cost inexpensive sensors, which captures a sequence of RGB images, depth images,
or other modalities such as skeleton, provides a fast and accurate multivariate data
for analyzing activities. As explained in [1], there are several advantages of depth
cameras as compared to traditional RGB cameras. For example, the output of depth
cameras is insensitive to changes in lighting conditions. In addition, the 3D
structure and shape information provided by the depth maps makes it easier to deal
with problems like segmentation and detection. Depth images are able to provide
three-dimensional structure and motion information toward distinguishing different
actions [2]. Furthermore, the availability of well-known and diverse RGB-D
datasets like MSR Action 3D [3], Berkeley MHAD [4], UTD-MHAD [2], and CAD
60 [5] among others, supports in extensive research for human activity recognition.

There are many works on depth data reported in the literature. For instance, a
three-channel deep convolutional neural network with weighted hierarchical depth
motion maps, for human action recognition, was proposed in [6]. The 2D spatial
structures of weighted hierarchical depth motion maps are converted into
pseudo-color images for additional enhancement and assistance in recognition.
Three ConvNets are initialized with the models obtained from ImageNet and
fine-tuned independently on the color-coded weighted hierarchical depth motion
maps constructed in three orthogonal planes. The proposed method achieved better
results on most of the individual datasets and corresponding methods at that
juncture; similar technique with added modality is presented in [1].

In [7], an effective local spatiotemporal descriptor for action recognition from
depth video sequences is discussed. The entire algorithm is carried out in three
stages. In the first stage, a depth sequence is divided into temporally overlapping
depth segments which are used to generate three depth motion maps (DMMs),
capturing the shape and motion cues. A methodology to recognize human action as
time series of representative 3D poses was proposed in [8], and the projected method
takes 3D skeletal joint locations inferred from depth maps as input and a compact
representation of postures named HOJ3D that characterizes human postures as
histograms of 3D joint locations within a modified spherical coordinate system.
Posture words were built by clustering and training of discrete HMMs to classify
sequential postures into action types. A framework for human activity recognition
using 3D posture data is discussed in [9]. In order to obtain a suitable representation
of the human body, 11 relevant joints were detected and encoded as a relevant set of
joints into postures. Thus, since each posture represents a recurrent pattern of joints
positions, an activity can be described as a sequence of known postures.

Our previous work in [1] bears similarity with [6] in the sense that pretrained
ImageNet model is applied to train depth motion maps (DMMs) in four projected
views; Front, Side, Top, and Bottom. We add Motion History Images (MHIs) as a
fourth modality in earlier work; MHIs were generated from RGB videos where the
intensity of each pixel is a function of the regency of motion in a sequence. Four
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CNNs were trained separately corresponding to Front view, Side view, Top view,
and MHI. Individual results of four streams were fused separately to produce the
final classification score.

A simple and effective recognition technique using skeleton joints is presented in
[10]. Activity represented by skeleton joint sequences is converted to posture
features by clustering; these features are then trained on multiclass support vector
machine for classification. Computation and association of key poses are carried out
using a clustering algorithm, without the need of a learning algorithm. However, it
is effective only when number of classes is less and does not fair well for complex
datasets. It is also ineffective on large classes with intraclass variations among
activities constituted by similar gestures as in UTD-MHAD [2].

This work is an improvement of our earlier work done in [1]. Here we add
skeletal data as new modality and explore different classification and fusion method
with earlier modalities so as to improve the overall recognition rate. We attempted
three different methodologies for this purpose whose details are given in the fol-
lowing section.

2 Proposed Classification and Fusion Approaches

As the main focus of the work is to utilize skeletal data from RGB-D sensors for
possible fusion with depth data and traditional RGB data, three different methods
were explored for combining skeletal modality. First is a simple technique of
modified weighted fusion using skeletal variance along orthogonal planes. The
variance of movement of skeleton joints along different coordinates is utilized to
assign appropriate weights for the fusion of scores from Front, Side, Top, and
MHI CNN streams instead of simple averaging of scores. In the second approach,
clustering is applied to skeletal data and multiclass SVM is used for classification.
This trained SVM model is applied as a fifth stream for final classification. Finally,
in the third approach, artificial skeleton images are generated from skeletal data,
which are then trained on pretrained VGG-16 CNN for recognition purpose. This
newly trained CNN is used as a fifth stream for final classification. Details on each
approach are given in following subsections.

2.1 Modified Weighted Fusion Using Skeletal Variance
in Orthogonal Planes

Simple averaging of scores from different modalities tends to misclassify, when
there are conflicting scores, i.e., classification from two or more streams is different.
An attempt is made to handle such conflicts, by using the information from the
skeleton stream. First a thresholding technique is employed to detect cases of
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conflicting scores. The threshold value is selected by calculating the difference
between the first two maximum peak values in the fused scores of all the test
samples, followed by taking the mean of the distribution of difference values. By
experimentation, we set the threshold value equal to one-third of the mean value.
All those cases where the difference in the score of the two peak values was less
than the threshold value were considered to be a case of conflict, which was handled
by a different scheme of weighted fusion. The idea is discussed through Fig. 1. In
simple averaging scheme, a random test sample is classified by taking the maxi-
mum of the final/fused classification score. In Fig. 1, the final classification score
belongs to class 1, being the maximum, test sample will be classified as class 1. But
as observed in figure, there are secondary peaks/maximum with marginal difference
from the largest peak value which have most probably arisen because of conflicting
scores from the different streams (Front, Side, Top, and MHI). Thus, these cases
should be considered as conflicting cases where simple averaging tends to mis-
classify. These cases are further handled via weighted fusion after assessing the
reliability of each stream score using the variance of skeleton stream data.

For conflicting scores above a certain threshold, i.e., for misclassified samples, a
general intuition is applied by means of variance in skeletal data. For a test sample,
statistical variance of all joints in skeletal data along the orthogonal planes X, Y,
and Z is computed, denoted by σx

2, σy,
2 and σz,

2 respectively. For fusion streams Front,
Side, Top, and MHI presented in our previous work [1], variance of skeletal data
acts as evidence to support as a weighted factor for these streams.

Let m1, m2, m3, and m4 be the weighted factors for fusion streams of Front, Side,
Top, and MHI, respectively. Using a general intuition of visibility, we can relate the
variance and four stream views as inversely proportional to their corresponding
variances in Z, Y, X, and Z planes, respectively. Changing the proportionality sign
to equality sign by adding the constant of proportionality, equation for weighted
factors can be written as:

Fig. 1 Final scores obtained for a test sample after average fusion. X-axis denotes total 27 classes;
final fusion scores are denoted on the Y-axis
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m1 = k ̸σ2z
m2 = k ̸σ2y
m3 = k ̸σ2x
m4 = k ̸σ2z

ð1Þ

For normalization of weighted factors, we consider the value of k as:

k=
σ2z × σ2y × σ2x

2 × σ2xσ
2
y + σ2zσ

2
y + σ2zσ

2
x

ð2Þ

These modified weights are further combined with individual scores of FScores,
SScores, TScores, and MHIScores of Front, Side, Top, and MHI, respectively. Each
scores obtained from individual modality is a vector of size equal to the number of
classes in consideration. Final scores obtained by weighted fusion using average
rule and product rule are given in Eq. (3).

FinalScores=
m1 ×FScores+m2 × SScores+m3 × TScores+m4 ×MHIScores

4
ð3Þ

For normalization of weights, constant of proportionality k has more significance
in average rule rather than in product rule. For product rule, fusion of scores can be
obtained using Eq. (4)

FinalScores=FScoresm1 × SScoresm2 × TScoresm3 ×MHIScoresm4 ð4Þ

FinalScores obtained by weighted fusion is a vector containing posterior
probabilities (scores) for each class. A test sample is classified to a class, having
maximum score within FinalScores.

2.2 Fusion of Scores Obtained by Trained SVM on Skeletal
Data

An effort is made to train multiclass support vector machine for classification, using
clustering of skeleton joint sequences. For creation of feature vector constituting an
activity from skeletal data, normalization of joints followed by posture selection is
performed. Normalization is done by calculating Euclidean distance between spine
(torso) joint and neck joint. Posture selection representing an activity is carried out
by applying k-means clustering on normalized joints sequences. Clustering results
in formation of centroids; these centroids in sorted order are given as features for
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training multiclass SVM. Multiclass SVM is implemented with the
“one-versus-one” approach; this approach is constructed by building of several
binary classifiers and then by training them one against one. For classification of N
number of classes, N (N − 1)/2 binary classifiers are needed; the final decision of
the classification is taken by applying voting strategy among all the binary clas-
sifiers [10].

For classification, training and testing strategy presented in [1, 2] is followed.
Training is performed on odd subject samples, and testing is performed on even
subject samples of the dataset; trained SVM is utilized as a fifth stream for clas-
sification and combined with other trained modalities of depth and RGB data. The
final classification score is acquired through average fusion as described in Fig. 2.

2.3 Skeleton Images with Convolutional Neural Networks

The earlier two methods require less number of computations. The third approach
uses convolutional neural networks with skeleton images which are generated from
skeleton joint sequences. These synthetically generated images are then trained on
pretrained CNN for classification. Finally, classification score is obtained from
softmax classifier which is later fused with other modalities. Details on creation of
skeleton images followed by training on CNN are given as below.
Skeleton Sequences to Images: An activity in skeletal data constitutes of n frames
(sequences) and k number of joints. Number of frames for an activity differs from

Front DMM

MHI

Normalization 
of Joints K- Clusters

Trained 
SVM

M(M-1) / 2 

Fusion 
Scores 

(Product)

Skeleton 
Joints

Convolu onal 
Layer

Pooling
Layer

Fully 
Connected

Layer

So max
Layer

Final
Scores

CNN-1

CNN-4

Fig. 2 Fusion of skeleton stream using SVM with 4-CNN streams of FrontDMM, SideDMM,
TopDMM, and MHI
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activity to activity; it also differs for same activity performed by different subjects.
Number of joints throughout the activity mostly remains unchanged. Subset of
RBG frames and skeleton frames (sequences) for activity “draw circle counter-
clockwise” from the UTD-MHAD dataset is shown in Fig. 3a and Fig. 3b,
respectively. In each frame, a joint has three-dimensional coordinate values, i.e., x,
y, and z values. To account for the variations in the height and positions of different
human subjects for same or different activities requires normalization of joints.
A straightforward solution is to compensate the position of the skeleton by cen-
tering the coordinate space on one skeleton joint. Based on this, a method for
normalization is introduced here.
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Fig. 3 Subset of frames (sequences) for activity “draw circle counterclockwise” from the
UTD-MHAD dataset. a RGB frames. b Skeleton sequences
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Let J(p, q, c) denotes the joint value of pth joint in qth frame and cth coordinate in
an activity. For an activity, each joint of skeleton J(p, q, c) in their respective
coordinate space is normalized to the distance between spine (torso) and hip joint of
first frame. Here, J(3, 1, c) and J(4, 1, c) indicate spine joint and hip joint of first frame.
Normalized joints are denoted by JN(p, q, c), values of c can be x, y, or z according to
normalization done in coordinate space. Normalization of joints is done using
Eq. (5)

JN p, q, cð Þ =
J p, q, cð Þ − J 3, 1, cð Þ
J 4, 1, cð Þ − J 3, 1, cð Þ

�
�

�
�

ð5Þ

where,

p = 1, 2, …, k (number of joints in an activity)
q = 1, 2, …, n (number of frames in an activity)
c = x or y or z (coordinate values)

Let Px and Py be the pixel locations in two-dimensional image to be filled with
color associated with parts (joints). For an activity having q frames and p joints,
pixel locations are obtained as:

Pxðp, qÞ=C1+ k1 × JN p, q, xð Þ + k2 × JN p, q, yð Þ + k3 × JN p, q, zð Þ
Pyðp, qÞ=C2+ k4 × JN p, q, xð Þ + k5 × JN p, q, yð Þ + k6 × JN p, q, zð Þ

ð6Þ

where C1, C2, k1, k2, k3, k4, k5, k6 are constants, usually the values of C1 and C2 are
the midpoints of size of the image in x and y directions, it also depends upon the
joint selected for normalization. Other constant values may depend upon stretch
required in x and y directions for pixel formation. Pxðp, qÞ and Pyðp, qÞ are matrices
of size (p × q) which indicates pixel locations for subsequent joints in each frame,
where row p corresponds to joints and column q corresponds to frames.

To transform skeleton sequences comprising an activity to a skeleton image,
skeleton joints of the human body are divided into five main parts, i.e., two arms,
two legs, and a trunk. Each part of the skeleton is represented by a different color in
an image, like left arm, right arm, left leg, right leg, and trunk are represented by
green, red, gray, yellow, and blue, respectively. Skeleton joints associated with
body part have the same color, for instance; left shoulder, left elbow, left wrist, and
left hand joints associated with left arm have green color. To create a motion
template for storing the history of movement of body parts, the color intensity is
varied by a constant factor proportional to the number of frames. Change in color
intensity reflects the movement of part from initial frame to final frame along with
change in location. Algorithm 1 describes the skeleton image formulation and
colorization of an activity using pixel locations of skeleton joints obtained from
Eq. (6)
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Algorithm 1: Skeleton Image Creation and Colorization for an Activity

Figure 4 shows the sample images created for different activities using depth
maps, motion history, and skeleton sequences utilized for training and testing.
Figure 4(5) shows the skeleton image obtained for activity “draw circle counter-
clockwise”. Five body parts: left arm, right arm, left leg, right leg, and trunk are
represented by green, red, gray, yellow, and blue, respectively. Changes in color of
parts can be noted as frame changes in activity. Skeleton images thus created
resembles with activity represented by other modalities such as depth motion maps
and motion history image.
Training on pretrained VGG-16: For each activity with n frames, a single
skeleton image is created from skeleton joints and number of frames. These syn-
thetically generated skeleton images are given as input to the first layer of VGG-16
pretrained model for training. To match the size specifications of the input layer of
pretrained model, skeleton images were resized to 224 × 224. Numbers of training
samples were increased by changing different background color to skeleton images
constituting same activity. Figure 5 shows fusion of 5-CNN streams. The fifth
stream is trained separately using skeleton images as input and then later fused with
other four CNN streams.
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3 Results and Discussion

Proposed methods were tested on UTD-MHAD [2], one of the challenging dataset
for activity recognition. It comprises of 27 activities with average number of frames
for each activity nearly 60 frames, the variations between activities like “draw circle
clockwise”, “draw triangle,” “draw circle counterclockwise,” and others were very
minimal, thus making it difficult for a recognition technique to distinguish between

Activity  “tennis swing”

(1) (2) (3) (4) (5)

Activity “draw circle counter-clock wise”

Activity  “draw triangle”

Fig. 4 Sample images created from UTD-MHAD dataset for: (1) Front-DMM, (2) Side-DMM,
(3) Top-DMM, (4) MHI, and (5) skeleton image. Representing activities, “draw circle
counterclockwise,” “draw triangle” and “tennis swing”

Skeleton 
Images

Front DMM

Fusion 
Scores 

(Product)

Convolu onal 
Layer

Pooling
Layer

Fully 
Connected

Layer
So max

Layer

Final
Scores

CNN-1

CNN-5

Fig. 5 Fusion of 5-CNN streams of FrontDMM, SideDMM, TopDMM, MHI, and skeleton images
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them. Training is performed on odd subjects samples, and testing is performed on
even subject samples as followed in [1, 2]. For all the approaches presented,
training and testing is done on machine with GPU-Quadro m6000. Training sam-
ples were generated from subject 1 and subject 3, while testing was performed on
430 samples of even subjects of UTD-MHAD dataset.

The results obtained from all the three methods are compared along with results
from other works in the literature. Comparison of different methods for activity
recognition on UTD-MHAD dataset is given in Table 1. Comparing the three
approaches presented here, multiclass SVM using clustering technique does not
perform well for complex datasets with intraclass variations. Given method of
clustering performs well on datasets like CAD-60, having large number of frames
which distinctively form clustering points from joint sequences. With k-means
clustering, best result was noted when k has value of 5. After fusion with 4-CNN
streams, slight improvement in recognition was notifiable.

Method of modified weighted fusion, using variance of skeleton joints, was very
simple with less number of computations, and no training of classifier is required. It
acts as evidence to fusion strategy and provides assistance to other recognition
methods arranged with depth and/or RGB data. Still, being computationally effi-
cient, it improves the accuracy of the fusion strategy by nearly 2% over average
fusion.

Out of the proposed three methods, generation of skeleton images from joint
sequences is computationally expensive compared to other two. Training has been
done on pretrained VGG-16 model with 2160 skeleton image samples. These
samples are generated by replacing the uniform background color with different
colors. On comparison, method of skeleton images with CNN gives better results
compared to other two proposed methods. Highest accuracy achieved was 95.38%,
with only 20 samples misclassified out of 430 tested. Class-specific accuracy of
recognition for 430 test samples is given in Fig. 6.

Table 1 Comparison of activity recognition methods on UTD-MHAD

Sr. No Approach Accuracy (%)

1 C. Chen et al. [2] 79.1
2 Bulbul et al. [11] 88.4
3 Javed et al. [12] (Average Rule) 88.8
4 Javed et al. [12] (Product Rule) 91.2
5 Ours (Clustering and SVM) (Average Rule) 89.12
6 Ours (Variance-Fusion) (Average Rule) 90.27
7 Ours (Skeleton Images with CNN) (Average Rule) 92.82
8 Ours (Clustering and SVM) (Product Rule) 89.45
9 Ours (Variance-Fusion) (Product Rule) 91.89

10 Ours (Skeleton Images with CNN) (Product Rule) 95.38
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4 Conclusion and Future Work

Skeletal data of human body obtained from depth sensor have significant infor-
mation, which can be used for tasks such as activity recognition, surveillance. Main
focus of the presented paper was to utilize skeletal data for activity recognition
along with other RGB and depth data. As shown in results, presented three
approaches for fusion improves the overall accuracy of recognition. Out of the
proposed methods, fusion of trained CNN on skeleton images as fifth CNN stream,
achieved significant improvement in recognition with accuracy of 95.38%. More
complex problems on recognition in constrained environments such as ATMs,
surveillance, and other applications can be addressed in future.
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