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Abstract Microstructure evolution during steel processing assumes a critical role
in tailoring mechanical properties, e.g., the austenite–ferrite transformations are a
key metallurgical tool to improve properties of advanced low-carbon steels.
Microstructure engineering is a concept that links the processing parameters to the
properties by accurately modeling the microstructure evolution. Systematic exper-
imental laboratory studies provide the basis for model development and validation.
Laser ultrasonics, dilatometry, and a range of microscopy techniques (including
electron backscatter diffraction mapping) are used to characterize recrystallization,
grain growth, phase transformations, and precipitation in high-performance steels.
Based on these studies, a suite of state variable models is proposed. Examples of
their applications are given for intercritical annealing of advanced automotive steel
sheets and welding of high-strength line pipe grades. The extension of state variable
models to the scale of the microstructure is illustrated using the phase field
approach. Here, the emphasis is placed on simulating the austenite decomposition
into complex ferrite–bainite microstructures. The challenges and opportunities to
develop next-generation process models will be discussed.
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1 Introduction

High-performance steels with improved properties are required for a wide range of
applications including automotive, construction, and energy sectors. These steels
are increasingly produced as thermomechanical controlled processed (TMCP)
grades where the microstructure is tailored to obtain a steel with the desired
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mechanical properties without any additional normalization treatments. To deter-
mine, optimize, and control robust processing paths, computational tools have
become an essential aspect of producing consistently high-quality TMCP grades.

Since the 1980s significant progress has been made in developing
knowledge-based process models for the steel industry [1–4]. An important concept
here is to predict the steel properties as a function of the operational process
parameters (e.g., reduction schedule, rolling temperatures, cooling bank activities,
and annealing cycle) by accurately modeling the microstructure evolution (e.g.,
recrystallization, grain growth, precipitation, and phase transformation) during
processing. These microstructure models are combined with deformation and
temperature models, and the predicted final microstructure is linked via structure–
property relationships with the resulting properties. This approach has been widely
used for ferrite–pearlite steels (including HSLA steels) as well as dual-phase steels
with ferrite–martensite microstructures [4]. Numerous empirical parameters for
these models are typically determined from time-consuming laboratory experiments
and, thus, limiting these models to the investigated steel chemistries and processing
conditions. It is imperative to formulate next-generation process models with pre-
dictive capabilities using a minimum of empirical parameters to also aid alloy
design for advanced high-strength steels where novel alloying concepts are being
explored for creating complex multiphase microstructures that are required to
achieve desired property improvements. Computational materials science now
offers exciting opportunities to formulate models containing fundamental infor-
mation on the basic atomic mechanisms of microstructure evolution that can be
implemented across different lengths and timescales [5]. For example, the phase
field method [6] is a powerful tool to describe the morphological complexity of
multiphase microstructures by predicting actual microstructures rather than average
microstructure parameters (e.g., fraction transformed and grain size). One challenge
here is that interface properties including the interaction of alloying elements with
moving interfaces have to be quantified as an input for phase field simulations.
While experimental studies can be used to deduce effective interface mobilities as
empirical parameters, it is critical to develop more rigorous computational strategies
by using atomistic simulations to provide insight into the underlying atomistic
mechanisms of microstructure evolution and guidance for the selection of kinetic
parameters. For example, alloying elements like Nb, Mo, and Mn affect recrys-
tallization, grain growth, and phase transformations through their interaction with
the migrating interfaces (i.e., grain boundaries and austenite–ferrite interfaces) [5].
Linking complex multiphase microstructures to properties is challenging as
appropriate structure–property relationships are not yet readily available.

The present paper provides a brief review of the status of microstructure-based
process models and their application to high-performance steels. Examples are
provided for intercritical annealing of dual-phase steels and the heat-affected zone
(HAZ) in line pipe steels.
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2 Process Models

2.1 State Variable Approach

The original microstructure-based process models essentially employed a state
variable approach by considering the evolution of microstructure parameters that
can be measured experimentally, e.g., fraction transformed/recrystallized, grain
size, precipitate size and volume fraction, and dislocation density. In a simplest
scenario, only the fractions X transformed/recrystallized may be considered and this
has frequently been achieved by employing the Johnson–Mehl–Avrami–
Kolmogorov (JMAK) model, i.e.,

X ¼ 1� exp �btnð Þ; ð1Þ

where b is a rate parameter and n is the JMAK exponent that is determined from
laboratory studies. Provided n is independent of temperature, the JMAK model can
in combination with the additivity principle be applied to non-isothermal heat
treatments that are typically employed in industrial processing. Additivity can be
assumed for most transformation and recrystallization conditions of practical
interest as long as they do occur not simultaneously with other microstructure
changes. For example, potentially concurrently occurring ferrite recrystallization
and intercritical austenite formation would require a more sophisticated model
approach.

The next stage of complexity is to include grain size into the model and, if
required, further microstructure features that determine the properties. Here,
empirical approaches have frequently been used such as power laws for austenite
grain growth and relating the ferrite grain size to the transformation start temper-
ature during continuous cooling. In more advanced models, the actual mechanisms
of microstructure evolution are explicitly incorporated. For example, austenite grain
growth when pinning particles (e.g., NbC) are present can be described by

dg
dt

¼ 3Mr
g

� P; ð2Þ

where g is the mean grain size, M is the grain boundary mobility, r is the grain
boundary energy, and P is the pinning pressure which is related to precipitate size
and volume fraction by a Zener-type expression. Of particular interest are grain
coarsening stages that are associated with dissolution of precipitates during
reheating where a precipitation–dissolution/coarsening model can be coupled to the
grain growth model to quantify the decrease in pinning pressure [7]. The grain
boundary mobility is usually assumed to obey an Arrhenius relationship, i.e.,
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M ¼ M0 exp � Q
RT

� �
; ð3Þ

where the pre-exponentialM0 and the effective activation energy Q are employed as
fitting parameters that depend on steel chemistry.

2.2 Phase Field Modeling

The above state variable models calculate average microstructure values, i.e., an
average fraction transformed or an average grain size, etc. To obtain information on
the spatial distribution of microstructure constituents and their morphology mod-
eling on the mesoscale, i.e., the scale of the microstructure, can now routinely be
conducted. Here, phase field modeling (PFM) has emerged as the simulation tool of
choice because it is a powerful methodology to deal with complex morphological
aspects of microstructure features, e.g., formation of dendrites during solidification.
PFM has also been extensively applied to describe recrystallization and phase
transformations in steels [6]. In particular, the multiphase-field model originally
developed by Steinbach et al. [8] has been employed here where each
microstructure constituent i is defined by a unique phase field parameter ui. The
value of ui is equal to 1 inside constituent i and 0 outside constituent i. Within the
interface of width s, ui changes continuously from 0 to 1. The phase field
parameters represent the local fraction of each constituent such that the interface
consists of a mixture of constituents with the constraint of Rui = 1. The temporal
evolution of each field variable is described by the superposition of the pair-wise
interaction with its neighboring constituents [8],

dui

dt
¼

X
i6¼j

Mij rij ujr2ui � uir2uj

� �þ p2

2s2
ui � uj

� �� �
þ p

s
ffiffiffiffiffiffiffiffiffi
uiuj

p
DGij

	 

; ð4Þ

where Mij is the interfacial mobility, rij is the interfacial energy, and DGij is the
driving pressure for interface migration which can be either the stored energy for
recrystallization or the difference of chemical potentials for phase transformation.
Further, the phase field model can be coupled with diffusion equations to account
for long-range diffusion during phase transformation. Similarly to the state variable
models, the interfacial mobility is typically employed as a fitting parameter to
reproduce a set of benchmark experimental data. Further, PFM describes growth
stages and has to be combined with a suitable nucleation model to ensure that
proper algorithms are provided to seed nuclei in phase field simulations.
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3 Results

3.1 Intercritical Annealing

Dual-phase steels for automotive applications are typically produced through
intercritical annealing on continuous annealing or hot dip galvanizing lines. Here,
the cold-rolled steel recrystallizes during heating and intercritical austenite forms
which during the cooling stage transforms primarily into bainite and/or martensite.
From a modeling perspective, one must first describe ferrite recrystallization during
continuous heating to the intercritical temperature. Figure 1 shows the evolution of
the ferrite fraction recrystallized during isothermal holding at three different tem-
peratures, i.e., 650, 680, and 710 °C, in a steel with a typical dual-phase chemistry
(0.06 wt%C–1.86 wt%Mn–0.15 wt%Mo). Using the JMAK approach, i.e., Eq. 1, a
ferrite recrystallization model has been developed based on the metallographic
observations [9]. Here, the rate parameter b is a function of temperature and n is a
constant such that additivity can be applied. Further, laser ultrasonic measurements
were conducted to determine the fraction recrystallized in situ by doing the heat
treatments in a Gleeble 3500 thermomechanical simulator equipped with an LUMet
(laser ultrasonics for metallurgy) system. The procedures of the LUMet measure-
ments are described elsewhere [10, 11]. The LUMet measurements are in reason-
able agreement with the metallographic observations even though laser ultrasonics
is an indirect method, i.e., the ultrasonic velocity that changes with texture evo-
lution during recrystallization is measured such that only those portions of
recrystallization that are associated with a texture change can be recorded. The
consistency of LUMet and metallographic measurements confirms the LUMet
technique as an exciting experimental tool for rapid model development and vali-
dation as it reduces the need for extensive labor-intensive metallographic
investigations.

Similar studies have been performed to develop a process model for intercritical
annealing of a DP600 steel (0.11 wt%C–1.86 wt%Mn–0.34 wt%Cr–0.16 wt%Si)
[12, 13]. Using the JMAK approach, a process model has been proposed that can be
applied for sufficiently slow line speeds where ferrite recrystallization is completed
before the onset of austenite formation. Increasing the line speed above a threshold

Fig. 1 Ferrite
recrystallization in a 0.06 wt
%C–1.86 wt%Mn–0.15 wt%
Mo steel; metallography and
model data taken from [9]
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value, ferrite recrystallization and austenite formation occur concurrently. The
simultaneous evolution of recrystallization and austenite formation can be simu-
lated by PFM [14]. After benchmarking and validating the model with experimental
data, simulations were performed by systematically varying intercritical heat
treatment cycles to construct processing maps to predict the martensite fraction that
is the dominant microstructure feature for the mechanical properties in dual-phase
steels as a function of line speed and intercritical holding temperature [15].

3.2 Heat-Affected Zone

Process models have recently been developed for the HAZ in Ti–Nb microalloyed
line pipe steels with complex ferrite–bainite microstructures that also include
martensite/austenite (M/A) constituents [16]. The modeling approach taken is
similar to that above described for intercritical annealing. For the HAZ, the
microstructure features of significance include formation, grain growth, and
decomposition of austenite and dissolution of NbC. Figure 2 shows austenite grain
growth during continuous heating at 10 °C/s in three line pipe steels with different
chemistries in terms of their C and Nb content (in wt%): 0.063C–0.034Nb, 0.028C–
0.091Nb, and 0.058C–0.091Nb. LUMet grain size measurements are based on
ultrasonic attenuation that can be correlated with the metallographically measured
austenite grain size, here quantified as equivalent area diameter [10]. A combined
austenite grain growth and NbC dissolution model has been developed adopting
Eq. 2. For the 0.063C–0.034Nb steel, the model development was based on met-
allographic grain growth studies in combination with transmission electron
microscopy investigations to quantify precipitate evolution [7]. The pre-exponential
grain boundary mobility factor M0 is the only fit parameter in the model, while
Q = 350 kJ/mol is taken from the literature [17]. Adopting the same model
approach and varying M0 austenite grain size evolution is described in the two other
steels based on the LUMet measurements. The values of M0 are summarized in
Table 1 indicating a decreasing effective grain boundary mobility with increased
alloying content, in particular Nb microalloying.

Fig. 2 Austenite grain
growth during continuous
heating at 10 °C/s in line pipe
steels
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Figure 3 provides examples of austenite decomposition during continuous
cooling in the 0.063C–0.034Nb steel. In addition to the austenite grain size, the
amount of Nb in solution strongly affects the transformation behavior. Both the
austenite grain size and the amount of Nb in solution increase with reheating
temperature. For a given cooling rate, here 30 °C/s, the transformation temperatures
decrease with increasing austenite grain size and amount of Nb in solution. The
continuous cooling transformation behavior can be described with the JMAK
approach adopting additivity when the rate parameter b is taken as a function of
temperature, austenite grain size, and Nb in solution [16].

Alternatively, PFM can be combined with the NbC dissolution model to describe
austenite grain growth and decomposition, by taking the grain boundary and
interface mobilities as functions of both temperature and Nb in solution [18].
Further, simulation of bainite formation requires to introduce anisotropy factors into
the mobility to replicate the morphological complexity of bainite sheaves, as dis-
cussed elsewhere in detail [18]. An advantage of the PFM approach is that it can be
used to seamlessly describe the microstructure gradient in the HAZ as a function of
distance from the fusion line. PFM simulations predict the gradual transition from a
coarse bainite microstructure near the fusion line to a predominantly ferrite
microstructure further away from the fusion line [18], as illustrated in Fig. 4 for the
0.063C–0.034Nb steel and Gleeble-simulated HAZ thermal cycles with peak
temperatures of 1000 and 1350 °C, respectively. To evaluate the integrity of weld
joints, it is critical to determine and predict the fracture toughness of the HAZ
which will also require a detailed description and analysis of the bainite sub-
structure. Appropriate models for the substructure evolution and its correlation with
mechanical properties have yet to be established.

Table 1 Grain boundary
mobility parameter for line
pipe steels

Steel M0 (m
4/Js)

0.063C–0.034Nb 280

0.028C–0.091Nb 100

0.058C–0.091Nb 50

Fig. 3 Austenite
decomposition in the
0.063C–0.034Nb steel cooled
at 30 °C/s from different
austenite grain sizes and Nb
contents in solution; symbols
indicate LUMet
measurements
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4 Conclusions

Microstructure process models have been developed for advanced steels with fer-
rite–bainite–martensite microstructures using the conventional microstructure
engineering state variable approach. To increase the predictive capability of these
models, PFM enables to also describe spatial and morphological aspects of these
complex microstructures. A critical aspect of future work is the development of
reliable structure–property relationships for steels with multiphase microstructures.
Further, to aid steel chemistry design, a multiscale approach may be considered for
next-generation process models where the effects of alloying elements on the ato-
mistic mechanisms of microstructure evolution are rigorously incorporated.
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