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Abstract With the exponential growth of distributed devices, the era of cloud
computing is continued to expand and the systems are required to be more and more
energy-efficient with time. The virtualization in cloud manages a large-scale
grid-of-servers to efficiently process the demands while optimizing power con-
sumption and energy efficiency. However, to ensure the overall performance, it is
critical to predict and extract the high-level features of the future virtual machines
(VMs). To predict its load deeply, this paper investigates the methods of a revo-
lutionary machine-learning technique, i.e., deep learning. It extracts the multiple
correlation among VMs based on its past workload trace and predicts their future
workload with high accuracy. The VM workload prediction helps the decision
makers for capacity planning and to apply the suitable VM placement and migration
technique with a more robust scaling decision. The effectiveness of deep learning
approaches is extensively evaluated using real workload traces of PlanetLab and
optimized with selection of model, granularity of training data, number of layers,
activation functions, epochs, batch size, the type of optimizer, etc.

Keywords Cloud computing ⋅ Deep learning ⋅ Energy efficiency
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1 Introduction

Billions of smart devices, i.e., sensors and smart phones that compose the cyber
physical systems (CPS) and Internet of things (IoT), will continuously generate
huge amount of data than any individual Web application. The digital universe
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resides escalating in a computing cloud, higher than terra firma of huge hardware
data centers connected to billions of distributed devices, all monitored and con-
trolled by intelligent softwares [1]. Cloud computing is undoubtedly a fine approach
to address these staggering requirements. To address the data boom caused by the
devices like IoT requires fully controlled cloud services. The cloud service provi-
ders have to guarantee the levels of interoperability, portability, and manageability
that are almost far away to achieve with the current solutions. Service providers
help the companies to select suitable communication hardware and software to
support cloud protocols as well as secure remote upgrades. To offer fully managed
private, public, and hybrid cloud solutions from a simple development to
resource-intensive applications, the cloud infrastructure and platform technologies
have to ensure elastic scalability and high-throughput event processing services. To
achieve this, the companies have designed open-source distributed database sys-
tems for accumulating, processing, and managing large amount of data across
commodity clusters and servers. In order to extract the knowledge from the col-
lected data and to feed users of smart city applications, such system follows a
typical three-layer architecture. Firstly, the collection layer is responsible to collect
data from individual devices and send it to the gateways. In the transmission layer,
data is moved from gateways to distributed cloud platforms. At last, at the pro-
cessing layer data is convoluted in the platform of cloud where the knowledge is
extracted and makes available to applications [2]. During such complex process,
cloud has promised the vision of computing resources and advances the faster
network with lower latency. As the services of cloud computing become well-liked,
more and more data centers persisted to be deployed around the globe to remotely
deliver the computational power over the Internet. Such data centers acquired a
larger fraction of the planet’s computing resources. During its management, the
service providers will definitely suffered from critical business challenges such as
security, privacy, interoperability, portability, reliability, availability, bandwidth
cost, performance, cost management, complexity of building cloud, and its envi-
ronmental impact. But, the major worries while providing the light-speed transfer of
data are the increased carbon emissions due to servers. In this reference,
energy-efficient management of data center resources is a critical and challenging
task while considering operational costs as well as CO2 emissions to the sur-
roundings. In a data center, the long-term operation of servers will not only wear
out the equipment, but will also carry the problems of high temperature and energy
consumption [3]. A recent report on power consumption of server farms is of
evidence that the electricity consumed by servers around the globe accounts to 3%
of the global electricity production and about 2% of total greenhouse gas emissions.

Virtual machine (VM)-based distributed and scalable on-demand resource
allocation techniques, load balancing approaches, and energy-performance
trade-offs while reducing cost and power consumption at the large-scale data
centers are the need of time. VM allocation methods try to deploy multiple
heterogeneous VMs on each physical machine (PM). In case of high overload
situation, i.e., higher than specified threshold of CPU utilization, more VMs are
reallocated from one operating PM to another to avoid the violation of service-level
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agreement (SLA) [4] while the under-utilization, i.e., lower than specified threshold
of CPU utilization, will scale down the performance. During such live migration,
the overall performance of running applications inside the VM can be impacted
negatively [5]. Therefore, by predicting the future workload of VM will not only
enhance the overall utilization of resources but also minimize the problem of energy
consumption. The prediction of the workload will help the decision makers for
capacity planning and applying suitable VM placement as well as migration
technique as depicted in Fig. 1 [6].

In this work, we present multi-layer neural networks or popularly known deep
learning models to predict the VM workload based on its past workload traces.
Deep learning, however, is become a new era of machine learning. It has mod-
ernized the machine learning to another level of creating algorithms and to make the
system much better analyzer. In recent years, deep learning has reignited the grand
challenges of artificial intelligence and become a third boom of AI. It helped the
researchers to identify ordinary characteristics of certain objects from the massive
amounts of data. The proposed deep learning models will learn the inherent cor-
related features of VMs workload trace and more effectively predict the workload of
future VMs. The predicted load information will be transferred to workload ana-
lyzer and then given to the decision-making modeler. It will generate a decision
plan of VM management and provide it to performance modeler, and then, the
allocation and migration plan choice will be transferred to application provisioner.
The application provisioner will receive the accepted user request and apply the
suitable VM placement strategy to map the VM to physical servers. In case of
overloading, the best migration plans will be selected.

The rest part of this paper is structured as follows: Sect. 2 describes recent
works. Section 3 presents performance modeling for utilization-aware workload
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prediction. Section 4 elaborates different deep learning techniques for workload
prediction. Simulation design and performance evaluations are described in Sect. 5.
Finally, the conclusion and future works are discussed in Sect. 6.

2 Background and Related Works

Dynamic VM consolidation approaches are widely known for improving resource
utilization and maintain energy efficiency in data centers. In literature, various
strategies of VM consolidation have been presented. Bobroff et al. [7] proposed a
dynamic server consolidation method for a given workload. In their work, they
have integrated bin-packing heuristics and time series-based forecasting to reduce
the amount of physical capacity needed to support a specific rate of service-level
agreement (SLA) violations. Secron et al. [8] used a threshold value assumption to
prevent CPUs from reaching 100 percent utilization that may lead to performance
degradation. Beloglazov and Buyya [5] applied a statistical analysis of the historical
data and used two thresholds, i.e., upper and lower thresholds. They have divided
the VM consolidation technique into detection of (i) host under-load situation, i.e.,
lower than specified threshold of CPU utilization; (ii) host overload situation, i.e.,
higher than specified threshold of CPU utilization; followed by (iii) VM selection,
i.e., to pick best VMs for migration; (iv) VM placement; and (v) balancing of
workload among physical machines, i.e., servers. Therefore, it is superior to predict
the future workload rather than monitoring the current workload and applying the
migration techniques. Prediction of workload will facilitate the decision maker to
plan and deal with the capacity of resources. Such advance load prediction will not
only improve the performance of overall system but also make it energy-efficient.

In the field of VM workload prediction, numerous approaches have been pro-
posed. Dorian and Freisleben [9] proposed artificial neural networks (ANNs)-based
distributed resource allocation approach to find best VM allocations while opti-
mizing utility function. Bitirgen et al. [10] used ANN-based model to support
online model training by predicting the performance. In their work, they have
considered resource allocation at the multiprocessor chip level. Zhen et al. [11]
presented an exponentially weighted moving average (EWMA) approach for
short-term prediction of CPU load. Kousiouris et al. [12] proposed a GA-based
approach based on the artificial neural networks (ANNs) for workload prediction.
Calheiros et al. [13] proposed a proactive method for dynamic provisioning of
resources. It is based on autoregressive integrated moving average (ARIMA) model
that employs linear prediction structure and predicts future workload by using
real-world traces. Fahimeh et al. [14] proposed k-nearest neighbor regression-based
model to predict the future utilization of resources. Their utilization
prediction-aware best fit decreasing (UP-BFD) method optimizes the VM place-
ment by considering present and upcoming resource requirements. Feng et al. [15]
proposed a deep belief network (DBN) that contains multiple-layered restricted
Boltzmann machines (RBMs) and a regression layer to predict the workload of
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future VM. Authors have evaluated its performance with the existing literature
work such as EWMA and ARIMA method. All of these existing approaches have
used a linear prediction model and implemented a very low dimension structure.
These approaches give low performance when long-time workload prediction is
required and inherent VM features required to be extracted in complex cloud net-
work. To resolve these issues, this work applies and investigates deep learning
techniques to identify inherent correlation of VMs from the massive amounts of
workload trace and predict the future workload of VMs.

3 Performance Modeling for Utilization-Aware Prediction

Let X(t) be the set of all past CPU utilization trace as the time intervals of every 5 min
and Y(t) be the CPU utilization at the next time (t + 1). To predict the CPU utilization
at (t + 1), the past information ofCPUutilization at previous time intervals (t – 1) and
(t – 2) will be used. This problem can be modeled as a regression problem, where the
input time values are (t – 2), (t – 1), t is given, and the predicted output value is
(t + 1). The mean absolute error can be calculated by Eq. (1):

MeanAbsolute Error =
1
n
∑
n

i=1

xai− x
p
i

�
�

�
�

xai
ð1Þ

where n is the prediction intervals, xai is the actual CPU utilization value, and xpi is
the predicted CPU utilization value.

The performance modeler will use this predicted CPU utilization for allocation or
migration of VM at the destination host with the following constraints of Eq. (2) [14]:

PUcpu VMð Þ+CUcpu PMð Þ≤THcpuXTUcpu PMð Þ ð2Þ

where PUcpu(VM) is a predicted CPU utilization of VM, CUcpu(PM) is the current
CPU utilization of PM, THcpu is the threshold value, and TUcpu(PM) is the total
CPU utilization of PM. If the Eq. (2) is satisfied, the VM placement can be per-
formed at destination PM and the status of PM will be updated as shown in Eq. (3):

TUcpu PMð Þ=PUcpu VMð Þ+CUcpu PMð Þ ð3Þ

During the case of hot spot mitigation or VM migration, the new PMs are
required to be searched (or) the idle PMs are to be switched in active state. The
violation can be formulated by Eq. (4):

PUcpu VMð Þ+CUcpu PMð Þ≥THcpuXTUcpu PMð Þ ð4Þ
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Overall CPU load of PM denoted by Lcpu (PM) can be calculated by Eq. (5):

Lcpu PMð Þ=
CUcpu PMð Þ
TUcpu PMð Þ

ð5Þ

where CUcpu(PM) is the current CPU load of PM, and TUcpu(PM) is the total CPU
load of PM. Threshold values of PM can be defined though Eq. (6):

THLcpu PMð Þ≤TUcpu PMð Þ≤THUcpu PMð Þ ð6Þ

where THLcpu (PM) denotes lower threshold value of PM, and THUcpu (PM) de-
notes upper threshold value of PM.

Case of host under-load situation, i.e., lower than specified threshold of CPU
utilization, is shown in Eq. (7):

TUcpu PMð Þ≤THLcpu PMð Þ ð7Þ

This is also called the case of cold spot; if it is satisfied, then there is a need of
VM migration so that the PM can be switched off or switched to sleep state and rest
PM can be utilized. It will reduce the number of active PMs and improve the degree
of energy efficiency.

Case of host overload situation, i.e., higher than specified threshold of CPU
utilization, is shown in Eq. (8):

TUcpu PMð Þ≥THUcpu PMð Þ ð8Þ

This is also called the case of hot spot; if it is satisfied, then there is a need of
VM migration so that the unnecessary SLA violation can be avoided and other PMs
will be searched to satisfy the increased demand of particular VM.

4 Deep Learning-Based Workload Prediction Techniques

The existing workload prediction approaches apply the statistical analysis of the
workload trace, i.e., CPU, memory, disk, and bandwidth and predict the future
workload by identifying variations in workload trace. To deeply analyze the
workload variations, the depth of layers in a neural network becomes a critical
factor and gave birth to “deep learning—a revolutionary machine-learning tech-
nique.” The problem of workload prediction is assumed to be a time series-based
regression problem and solved with powerful deep learning approaches. The input
of these models is workload trace of VMs recorded in different time intervals, and
output is predicted load of future VMs. These approaches apply the technique of
unsupervised learning, where only a little knowledge of resources is provided.
Accuracy of prediction can be improved with the number of hidden layers, epochs,
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batch size, activation functions, and type of optimizer. Different deep learning
models that are used in this work are discussed as follows:

4.1 Recurrent Neural Network (RNN) Model

Recurrent neural networks (RNN) [16, 17] are known to be a complement set of
classical neural networks, i.e., feed-forward network. It removes the constraint of
passing the information in forward manner and improves the model by providing at
least one feed-backward edge.

4.2 Long Short-Term Memory (LSTM) Network Model

LSTM model was proposed by Hochreiter et al. in 1997 [18], Wang and Raj [17]. It
tries to contest the vanishing gradient problem with the help of gates and an
explicitly defined memory cell. Each neuron has three gates, i.e., input, output, and
forget, along with memory cell. The input gate decides that how much information
of the previous layer is required to be stored in the cell. The output layer decides
how much of cell state to be known by the next layer, and the forget gate is for
erasing the few content of previous layer. LSTM has been widely applied in several
real-world problems.

4.3 Boltzmann Machine Model

It is also known as a hidden unit version of Hopfield network. It is a fully connected
network made by hidden and visible units. In this model, few neurons are marked as
input while others are hidden. It initiates with random weights and learns through
contrastive divergence. The process of training and running is similar to Hopfield. It
is inspired from physics where the rise in temperature causes the state transfer. The
energy function of Boltzmann machine can be represented by Eq. (9):

E v, hð Þ= − ∑
i
vibi − ∑

k
hkbk −

1
2
∑
i, j
vivjwi, j −

1
2
∑
i, k

vihkwi, k −
1
2
∑
k, l

hkhlwk, l ð9Þ

where v defines visible units, h defines hidden units, w defines weights, and b is for
bias. The global temperature value controls the activation; if it is minimized, then
the energy of the cells decreases. The right temperature to the network achieves an
equilibrium state [17].
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4.4 Convolution Neural Network (CNN) Model

CNN is also known as LeNet. It is based on traditional multiple layer perceptrons. It
was proposed by LeCun et al. in 1998 [19]. It applies convolution and sub-sampling
operation alternatively on input data by using different computational units in
convolutional and sub-sampling layers. After this, the data represented in higher
layers fed to a fully connected network and complete the task.

5 Simulation Design and Performance Evaluation

5.1 Simulation Design

To evaluate the efficiency of deep learning approaches, a real workload trace of
PlanetLab [20, 21] is used. It is a widely popular open platform that contains the
CPU utilization of over 1000 VMs. This data is collected in every five minutes and
stored in different files. For one VM, there are total 288 observations per day [22].

5.2 Performance Evaluation

In this work, the input of model is the CPU utilization of VMs and output is future
CPU utilization. The data set is divided into two parts, i.e., training set and test set.
The training set includes the CPU utilization of VMs recorded in 7 days, and
remaining is kept for test set. For single VM workload prediction, there are total
2880 time intervals out of which 70% is used for training and 30% is used for test.
Then, the deep learning models are trained with different sizes and features as
shown in Table 1 and tested with unknown data set. The performance of deep
learning models, i.e., multi-layer NN, convolutional NN, recurrent NN, Boltzmann,
and LSTM NN for single VM workload prediction during long time intervals of
testing data, is represented in Fig. 2. It can be observed that the predicted utilization
of CPU by LSTM network is too close to actual workload, while the convolutional
network gives low performance in comparison with other techniques.

Table 1 Experimental configuration

Layers Epochs Batch size Activation function Loss function Optimizer

3 50 10 Relu, SoftMax MSE SGD
5 100 50 Relu, SoftMax MSE Adam
10 150 100 Relu, SoftMax MSE Adamax
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Overall analysis of mean absolute error for single VM is represented in Fig. 3.
The deep learning models are also depended on the amount of training data. As
much as we increase the amount of training data, it will improve the accuracy of
prediction. In case of multiple VMs, we have selected 10 continuously running
VMs and plotted its average mean absolute error in Fig. 4. The LSTM network
model gives minimum average mean absolute error and performs better than other
deep learning models. It is advantageous in the case of multiple VM workload
prediction during long time intervals. These deep learning models are beneficial
during VM management and help the decision makers to pre-plan the VM place-
ment and migration strategies. The overall performance of deep learning models
can be arranged as:
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6 Conclusion and Future Works

In this work, we have presented different utilization-aware prediction models of
deep learning approaches. It extracts the high-level features from the workload trace
of past VMs and predicts their future workload with high accuracy. The prediction
of the workload can help the decision makers to estimate the overall capacity and to
apply the suitable VM placement as well as migration technique. The proposed
framework will support the prediction of large-scale data intensive systems for
distributed decision making such as hot spot mitigation, cold spot mitigation,
threshold violation, and SLA violation. The accuracy of deep learning approaches is
evaluated using real workload traces and shown with the help of experimental
results. The results are promising and show that the LSTM-based networks improve
the performance of workload prediction while convolutional NN gives low per-
formance. Deep learning approaches are suitable for long-term prediction of
workloads. The performance of the deep learning approaches can be improved
further by increasing size of training data and depth of the model. This will help the
model to find more correlation between workload patterns and determine the load
with dynamic requirements. In future, we will try to investigate more robust and
efficient approaches of workload estimation while coordinating with multi-tier
applications and multi-tier VMs running on heterogeneous PMs in real cloud
platform.
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